Self-improving property of nonlinear higher order parabolic systems near the boundary

Størrelse: px
Begynne med side:

Download "Self-improving property of nonlinear higher order parabolic systems near the boundary"

Transkript

1 Nonlinear Differ Equ Appl 7 200), 2 54 c 2009 Birkhäuser Verlag Basel/Switzerland /0/ published online October 2, 2009 DOI 0007/s Nonlinear Differential Equations and Applications NoDEA Self-improving property of nonlinear higher order parabolic systems near the boundary Verena Bögelein and Mikko Parviainen Abstract We establish global regularity results for a wide class of non-linear higher order parabolic systems The model problem we have in mind is the parabolic p-laplacian system of order 2m, m, tu + ) m div m D m u p 2 D m u ) =0 with prescribed boundary and initial values We prove that if the boundary values are sufficiently regular, then D m u is globally integrable to a better power than the natural p The method also produces a global estimate Mathematics Subject Classification 2000) 35D0, 35G30, 35K50, 35K65 Keywords Global higher integrability, Degenerate parabolic systems, Higher order parabolic p-laplacian Introduction We study the global regularity properties of solutions to a wide class of nonlinear higher order parabolic systems In particular, the parabolic p-laplacian system of order 2m, m, t u + ) m div m D m u p 2 D m u ) =0 with prescribed initial and boundary values provides a basic example Under suitable conditions on the boundary data, the corresponding initial boundary value problem admits a solution u such that D m u is integrable to the power p Our aim is to show that D m u is actually globally integrable to a better power, that is, D m u L p+ε all the way up to the boundary provided that V Bögelein was supported by ESF Short Visit Grant and M Parviainen was supported by The Emil Aaltonen Foundation, The Fulbright Center, and The Magnus Ehrnrooth Foundation

2 22 V Bögelein and M Parviainen NoDEA the boundary values and the domain are sufficiently smooth We assume that the complement of the domain satisfies a uniform capacity density condition, which is essentially sharp for higher integrability results Moreover, the method produces an explicit estimate for the L p+ε -norm of D m u Higher integrability plays an important role in stability and partial regularity results for solutions and their gradients in both the elliptic and parabolic cases For elliptic regularity results with the standard and also non-standard growth conditions, see for example Acerbi-Mingione [ 3, 28] For recent parabolic applications of higher integrability in the framework of partial regularity and Calderón-Zygmund type estimates, see for example Acerbi-Mingione [4], Acerbi-Mingione-Seregin [5], Bögelein [0], Duzaar-Mingione [6], Duzaar- Mingione-Steffen [7] and Bögelein-Duzaar-Mingione [] The elliptic higher integrability techniques developed by Gehring [20], and Elcrat and Meyers [8] see also [2]) could not directly be carried over to the parabolic case Nevertheless, Giaquinta and Struwe proved a first parabolic analogue for systems with linear growth in [22] Higher integrability for more general parabolic systems with non-linear growth conditions remained open for some time: the first positive result for degenerate and singular second order parabolic p-growth systems was obtained by Kinnunen and Lewis [26] The proof employs the method of intrinsic scaling with respect to the gradient of the solution The idea to consider parabolic cylinders whose scaling depends on the solution itself goes back to DiBenedetto and Friedman [2 4] The local higher integrability result was recently extended to higher order parabolic systems in [9], and global higher integrability results for quasiminimizers and second order parabolic systems were obtained in [35 37] Our basic strategy follows the guidelines of the local result in [26] Indeed, we first derive a reverse Hölder inequality on intrinsic cylinders up to the boundary and then use a covering argument to extend the estimates to the whole space time cylinder The intuitive idea is to use cylinders whose space time scaling is roughly speaking comparable to the mean value of D m u 2 p on the same cylinder In a certain sense this space time scaling reflects the non-homogeneity of the parabolic system, which is not present in the elliptic case However, the boundary effects and lower order terms cause extra difficulties: the covering now consists of three kinds of intrinsic cylinders that may lie near the lateral or initial boundary, or inside the domain To estimate the lower order terms near the lateral boundary, we employ a boundary version of Poincaré s inequality iteratively This step exploits the uniform capacity density condition of the complement Near the initial boundary, we compare the solution with the mean value polynomial of the initial values To this end, the oscillation of weighted means of the solution and lower order derivatives between the different time slices needs to be controlled For the solution itself, we directly exploit the weak formulation of the parabolic system whereas for the derivatives, we utilize the suitable weighted means In the singular case, that is when p<2, the quadratic terms on the right-hand side of the Caccioppoli inequality usually cause technical difficulties Therefore, we employ an iteration method in order to absorb these terms

3 Vol 7 200) Self-improving property 23 at an early stage cf Lemmas 43 and 55) In this way, we later avoid additional terms in the scaling which simplifies the proof considerably Indeed, practically the same proof now runs in both the singular and degenerate cases This observation is useful even in the local second order higher integrability proof 2 Statement of the result We consider initial-boundary value problems of the type t u + ) m D α A α z,d m u)=0, in Ω T, α =m u = g, on p Ω T 2) Here, Ω is a bounded domain in n and Ω T =Ω 0,T) n+ stands for a parabolic cylinder The initial and lateral boundary values g of the solution are prescribed on the parabolic boundary p Ω T =Ω {0}) Ω 0,T)) of Ω T Moreover,u: Ω T N is a vector valued function and, as usual, we denote by t u = u t the derivative with respect to the time-variable t and by Du, respectively D k u = {D α u i } α =k i=,,n, the derivatives of order k) with respect to the space-variable x For convenience of notation, we identify D m u as a vector in l, l = N ) n+m m, and similarly for D k u Furthermore, we adopt the shorthand notation z =x, t) n+ For simplicity of notation, we write A = {A α } α =m, where A α :Ω T l N, and thus A :Ω T l l We assume that A is a Carathéodory function: z A z,w) is measurable for every w l, w A z,w) is continuous for almost every z Ω T, and satisfies the following p-growth conditions: A z,w),w ν w p, 22) A z,w) L w p + ), 23) for all z Ω T, w l and some constants 0 <ν and L< and 2n p>max{, n+2m } Above we have made several simplifications for expository reasons: we could add an inhomogeneity with controlled growth conditions into the right-hand side of 2) as well as additional functions to the growth bounds, cf [9] Nevertheless, the proofs would remain virtually the same The 2n restriction p>max{, n+2m } is necessary in the parabolic framework because of the Sobolev embedding W m, 2n n+2m L 2 as we have to deal with the L 2 -norm of u appearing in Caccioppoli s inequality There will naturally appear several exponents throughout the paper Set 2 = max{, 2n n+2m } and p = max{, pn n+2m },

4 24 V Bögelein and M Parviainen NoDEA and observe that when m =, we simply obtain the usual Sobolev exponents We will be able to combine the degenerate and singular cases by defining p = max{2,p}, p = max{2,p } and p = min{2, p p } Next we define the space V p β 0,T; Ω) for the initial and boundary values For β 0, we denote V p β {ϕ L 0,T;Ω)= p+β 0,T; W m,p+β Ω; N )) W, p +β 0,T; L p +β Ω; N )) } C[0,T); L 2 Ω; N )) : ϕ, 0) W m, p +β Ω; N ) The role of the continuity assumption is to fix the right representative Observe that even smooth boundary values lead to a nontrivial theory Next we specify the notion of a global solution Definition 2 Let p>2 A function u L p 0,T; W m,p Ω; N )) C[0,T); L 2 Ω; N )) is a global weak) solution to the initial-boundary value problem 2) if u ϕ t A z,d m u),d m ϕ dz = 0 24) Ω T for every test-function ϕ C0 Ω T ; N ) and, moreover, u g),t) W m,p 0 Ω; N ) for almost every t 0,T) 25) and h ux, t) gx, 0) 2 dx dt 0 as h 0 26) h 0 Ω for a given function g V p 0 0,T;Ω) Note that the space L p 0,T; W m,p Ω; N )) C[0,T); L 2 Ω; N )) seems natural in the light of the existence theorems see Lions [30] and Showalter [38] Chapter III, Proposition 2) We work on the parabolic cylinders of the form Q z0 ϱ, s) =B x0 ϱ) Λ t0 s) n+, where z 0 =x 0,t 0 ) n+, ϱ, s > 0andB x0 ϱ) denotes the open ball in n with center x 0 and radius ϱ and Λ t0 s) =t 0 s, t 0 + s) the interval of length 2s centered at t 0 In the case s = ϱ 2m, we write Q z0 ϱ) = Q z0 ϱ, ϱ 2m ) When no confusion arises, we shall omit the reference points Furthermore, we write αbϱ) =Bαϱ), αλs) =Λα 2m s), and αqϱ, s) =Qαϱ, α 2m s), for a ball, interval, and cylinder scaled by the factor α>0 Next we state our main theorem The global higher integrability is achieved under the assumption that the complement of the domain Ω satisfies a uniform capacity density condition This regularity condition guarantees that

5 Vol 7 200) Self-improving property 25 there is enough of complement near every boundary point The capacity density condition could be replaced for example by the stronger measure density condition For the precise formulation of the condition, see Definition 3 Theorem 22 Suppose that u is a global solution according to Definition 2 with boundary and initial data g V p β 0,T;Ω) for some β>0 and let n \ Ω be uniformly p-thick Then there exists ε = εn, N, m, p, L/ν) 0,β] such that u L p+ε 0,T; W m,p+ε Ω; N )) Moreover, for any parabolic cylinder Q 0 = B 0 Λ 0 = Q z0, 2 ) n+,we have the following boundary estimate ) ε+d)/d D m u p+ε c dz D m u p + G p )dz Q 0 Q 4 Q0 ΩT 0 Q 0 Ω T + c G p+ε dz + c Q 0 Q 0 Ω T ) p+ε)/ p +ε) cδ + D m g, 0) p +ε dx B 0 B 0 Ω where c = cn, N, m, p, L/ν) and δ =if 0 Λ 0 and δ =0otherwise Here, we have denoted G = D m g p + g p ) /p τ if B 0 \ Ω 27) and G =0otherwise and { 2 if p 2, d = n2 p) p if 2 <p<2 2m 3 Preliminaries 3 Variational p-capacity Let <p< and O be an open set The variational p-capacity of a compact set C O is defined to be cap p C, O) =inf f p dx, f O where the infimum is taken over all the functions f C0 O) such that f = in C To define the variational p-capacity of an open set U O, we take the supremum over the capacities of the compact sets belonging to U The variational p-capacity of an arbitrary set E O is defined by taking the infimum over the capacities of the open sets containing E For the capacity of a ball, we have cap p Bϱ),B2ϱ)) = cϱ n p 3) For further details, see Chapter 4 of Evans-Gariepy [9], Chapter 2 of Heinonen-Kilpeläinen-Martio [24], or Chapter 2 of Malý-Ziemer [3]

6 26 V Bögelein and M Parviainen NoDEA Next we introduce the uniform capacity density condition, which allows us to use a boundary version of a Sobolev Poincaré type inequality This condition is essentially sharp for our main result as shown by Kilpeläinen-Koskela [25] in the elliptic case and in [27] for the second order parabolic p-laplace equation Definition 3 AsetE n is uniformly p-thick if there exist constants µ, ϱ 0 > 0 such that cap p E B x ϱ),b x 2ϱ)) µ cap p B x ϱ),b x 2ϱ)), for all x E and for all 0 <ϱ<ϱ 0 If p>n, the condition is superfluous since then every set is uniformly p-thick The next lemma slightly extends the capacity estimate from the above definition cf [36], Lemma 38) Lemma 32 Let Ω be a bounded open set in n and suppose that n \ Ω is uniformly p-thick Choose y Ω such that B y 4ϱ/3) \ Ω Then there exists a constant µ = µµ, ϱ 0,n,p) > 0 such that cap p By 2ϱ) \ Ω,B y 4ϱ) ) µ cap p By 2ϱ),B y 4ϱ) ) A uniformly q-thick set is also uniformly ϑ-thick for all ϑ q Thisisa consequence of Hölder s and Young s inequalities Lemma 33 If a compact set E is uniformly q-thick, then E is uniformly ϑ- thick for all ϑ q The next theorem states that a uniformly p-thick set has a self-improving property This result was shown by Lewis in Theorem of [29] See also Ancona [7] and Mikkonen [33] Theorem 34 Let <p n IfasetE is uniformly p-thick, then there exists γ = γn, p, µ),p) for which E is uniformly γ-thick Next, we formulate a well-known version of the Sobolev-type inequality For the proof, see Chapter 0 of Maz ja s monograph [32] or Hedberg [23] and also [36] Later we combine this estimate with the boundary regularity condition and obtain a boundary version of Sobolev s inequality The lemma employs quasicontinuous representatives of Sobolev functions We call u W,p Ω) p-quasicontinuous if for each ε>0 there exists an open set U, U Ω B, such that cap p U, B 2 ) ε, and the restriction of u to the set Ω \ U is finite valued and continuous The p-quasicontinuous functions are closely related to the Sobolev space W,p Ω): for example, if u W,p Ω), then u has a p-quasicontinuous representative Adopting the usual notation for the mean value integral we have the following Bϱ) u q dx = Bϱ) Bϱ) u q dx

7 Vol 7 200) Self-improving property 27 Lemma 35 Let B = Bϱ) be a ball in n and suppose that u W,q B) is q-quasicontinuous Denote N Bϱ/2) u) ={x Bϱ/2) : ux) =0} Then there exists a constant c = cn, q) > 0 such that Bϱ) u q dx c cap q N Bϱ/2) u),bϱ)) Bϱ) Du q dx 32 Interpolation estimates When dealing with higher order problems, interpolation estimates play an essential role In several points, particularly when Poincaré s inequality cannot be applied they shall help us to treat the intermediate derivatives First, we provide an interpolation estimate for intermediate derivatives on the annulus, cf Adams [6], Theorem 44 or [8], Lemma B Note that the crucial point here is the right dependence on the width of the annulus Lemma 36 Let Br ) Br 2 ) be two concentric balls in n with 0 <r < r 2 and let u W m,p Br 2 )) with p Then for any 0 k m and 0 <ε there exists c = cn, m, p, /ε), such that Br 2)\Br ) ε D k u p dx r 2 r )m k)p D m u p dx + c Br 2)\Br ) Br 2)\Br ) u p dx r 2 r ) mp One of the difficulties in proving the main result is the fact that both powers 2 and p play a role in Caccioppoli s inequality We now state Gagliardo Nirenberg Sobolev s inequality see Nirenberg [34]) in a form, which helps us to combine the different powers Theorem 37 Let Bϱ) be a ball in n and u W m,q Bϱ)), m N and σ, q, r and θ 0, ) and 0 k m with k n σ θm n q ) θ) n r Then there exists c = cn, m, σ) such that θσ/q θ)σ/r D k σ u m dx c D j q r u dx u dx Bϱ) ϱ m k ϱ m j j=0 Bϱ) The following lemma will help us to absorb certain integrals into the lefthand side The proof employs a standard iteration argument, see for instance Giaquinta s monograph [2], Chapter V, Lemma 3 Lemma 38 Let 0 <ϑ<, A, B 0, α>0 and let f 0 be a bounded function satisfying ft) ϑfs)+as t) α + B for all 0 <r t<s ϱ Then there exists a constant c tech = c tech α, ϑ), such that fr) c tech Aϱ r) α + B ) Bϱ) ϱ m

8 28 V Bögelein and M Parviainen NoDEA 33 Mean value polynomials In order to prove a higher integrability result for the mth derivative of u, we shall approximate the function up to order m For this aim, we shall employ mean value polynomials of order m Let B x0 r) be a ball in n and f W m, B x0 r); N ) Then its mean value polynomial P r f) : n N of degree m is defined uniquely by the condition δp r f) ) x0;r =δf) x0;r, 32) where δu =u,du,,d m u) denotes the vector of lower order derivatives and f) x0;r = f dz B x0 r) denotes the mean-value of f on B x0 r) Therefore, 32) can be rewritten as D k P r f) ) x0;r =D k f) x0;r for k =0,,m The mean value polynomial can be expressed in terms of the mean values of f as P r f) x) = b β α! Dα+β f) x0;r x x 0 ) α, where α m α+β m, if β =0 b β = b β γ y x 0 ) γ dy, if β γ! 0<γ β B x0 r) For more details, see for instance Duzaar Gastel Grotowski [5] Due to the defining property of P r f), we can replace in the above representation D α+β f) x0;r by D α+β P r f) ) x0;r Moreover, we can show that b β cn, m) r β for all multi-indices β with 0 β m This observation leads us to the estimate m P x) cn, m) k D k P ) x0;r for all x B x0 ), 33) k=0 valid for any polynomial P : n N of order m and balls B x0 r), B x0 ) in n with 0 <r See [8], Lemma A, for a more detailed proof From this estimate, we can deduce a bound for the difference of the mean value polynomials on two different balls The proof applies the definition of the mean value polynomials together with Poincaré s inequality Lemma 39 Let B x0 r), B x0 ) be two balls in n with /2 r<and suppose that f W m, B x0 ); N ) Denote by P r f),p f) : n N the mean value polynomials of f of degree m Then there exists c = cn, N, m) such that x) P f) x) c m D m f dx for all x B x0 ) P r f) B x0 )

9 Vol 7 200) Self-improving property 29 Proof To estimate the difference of the polynomials, we use 33) with P r f) P f) f) ) instead of P and exploit the defining property of the polynomial P r to find m P r f) P f) )x) c k D k P r f) P f) )dy k=0 B x0 r) m = c k D k f P f) )dy k=0 B x0 r) Next we enlarge the domain of integration in the integrals on the right-hand side and recall that B x0 ) / B x0 r) 2 n since /2 r Finally, applying Poincaré s inequality m k times to D k f P f) ) which is allowed since D k f P f) )) x 0,r = 0 leads us to m P r f) P f) )x) c k D k f P f) ) dx c m D m f dx k=0 This is the desired estimate B x0 ) B x0 ) 34 Steklov-means Since weak solutions do not a priori possess any differentiability properties with respect to the time variable t, it is standard to use a mollification in time Therefore, given a function f L Ω T ), we define its Steklov-mean by t+h fx, s)ds, t 0,T h), f h x, t) =[f] h x, t) = h t 0, t T h, T ), for 0 <h<t and x, t) Ω T Using Steklov-means, we get for ae t 0,T) an equivalent system: t u h,t) ϕ + [A,D m u)] h,t),d m ϕ dx =0, 34) Ω for all ϕ L 2 Ω; N ) W m,p 0 Ω; N ) 4 Estimates near the lateral boundary In this chapter, we derive estimates on parabolic cylinders lying near the lateral boundary Ω 0,T) For notational convenience, in this chapter we will combine the boundary terms and the constant coming from the growth bounds as follows G = D m g p + g p ) /p τ + Since we now are in the lateral boundary situation we have G = G +, where G is from 27) As usual, the first step when proving higher integrability is

10 30 V Bögelein and M Parviainen NoDEA to derive suitable Caccioppoli s inequality Although we state it for arbitrary cylinders in n+, it will be needed later only for cylinders intersecting the lateral boundary Lemma 4 Let u be a global solution according to Definition 2 Then there exists c Cac = c Cac n, m, p, L/ν) such that for all parabolic cylinders Q z0 r, s), Q z0, S) n+ with 0 </2 r<, s = λ 2 p r 2m, S = λ 2 p 2m, λ>0 there holds sup t Λ t0 s) 0,T ) c Cac B x0 r) Ω Q z0,s) Ω T λ p 2 u g),t) 2 dx + u g r) m 2 D m u p dz Q z0 r,s) Ω T p + u g r) m + G p dz Proof We choose r r <r 2 and η C0 B x0 r 2 )), ζ C ) tobe two cut-off functions with { η inbx0 r ), 0 η, D k c η η r 2 r ) for all 0 k m; k ζ 0on,t 0 S),ζ on t 0 s, ), 0 ζ, 0 ζ 2 S s 4) Choosing the test-function ϕ h = ηζ 2 u h g h ) in the Steklov-formulation 34) and integrating with respect to τ over 0,t), we get for t 0,T) τ u h ϕ h + [A,D m u)] h,d m ϕ h dz =0, 42) Ω t where we abbreviated Ω t =Ω 0,t) For the first term on the left-hand side, we find that τ u h ϕ h dz = τ u h g h ) ϕ h + τ g h ϕ h dz Ω t Ω t 2 u g),t) 2 ηζt) 2 dx u g 2 ηζζ dz + τ g u g)ηζ 2 dz, Ω Ω t Ω t as h 0 Here we have also taken into account that the initial boundary term vanishes at τ = 0 because of the initial condition The last integral on the right-hand side is now further estimated with the help of Young s inequality with exponents 2, 2) if p<2, respectively p, p/p )) when p 2 Note also that r 2 r, respectively λ 2 p r 2 r ) 2m S We get τ g u g)ηζ 2 dz g p p 2 u g 2 u g p τ +λ + dz Ω t Q z0,s) Ω T r 2 r ) 2m r 2 r ) mp Passing to the limit h 0 also in the second term on the right side of 42), we find [A,D m u)] h,d m ϕ h dz Ω t A,D m u),d m u ηζ 2 A,D m u),d m g ηζ 2 + A,D m u), lot ζ 2 dz, Ω t

11 Vol 7 200) Self-improving property 3 where we abbreviated the lower order terms by m ) m lot = D m k η D k u g) k k=0 From the ellipticity 22) ofa, we infer for the first term that A,D m u),d m u ηζ 2 dz ν D m u p ηζ 2 dz, Ω t Ω t while for the second one, we obtain by the growth bound 23) ofa and Young s inequality for ε>0 that A,D m u),d m g ηζ 2 dz ε D Ω t Ω m u p +)ηζ 2 dz + c ε D m g p dz, t Ω t where c ε = c ε p, L, /ε) Similarly, for the third term, we get A,D m u), lot ζ 2 dz ε D m u p +)ζ 2 dz+c ε lot Ω t Ω t spt η Ω p ζ 2 dz, t where c ε = c ε p, L, /ε) To estimate the integral involving the terms of lower order, we first note that D k η = 0 on B x0 r ) for k Due to our boundary condition 25) we can extend u g by zero outside Ω T to an L p W m,p function, ie for the extended function we know u g L p 0,T; W m,p B x0 r 2 ); N ) This allows us to replace the domain of integration by B x0 r 2 )\B x0 r ) 0,t) and then apply the Interpolation-Lemma 36 slicewise on the annulus B x0 r 2 )\B x0 r ) This yields for 0 < ε that m t lot p ζ 2 D k u g) p dz c Ω t k=0 0 B x0 r 2)\B x0 r ) r 2 r ) pm k) ζ2 dz t t ε D m u g) p ζ 2 u g p dz + c ε 0 B x0 r 2)\B x0 r ) 0 B x0 r 2) r 2 r ) mp ζ2 dz, where c ε = c ε n, m, p, / ε) Combining the previous observations with 42), recalling that η = on B x0 r ) and choosing ε with respect to p, L and ε we infer for ae t 0,T) that t 2 u g),t) 2 ζ 2 t)dx + ν D m u p ζ 2 dx dτ B x0 r ) Ω 0 B x0 r ) Ω t 3ε D m u p ζ 2 dz + c 0 B x0 r 2) Ω λ,s) ΩT Qz0 p 2 u g 2 u g p + r 2 r ) 2m r 2 r ) mp + G p dz, where c = cn, m, p, L, /ε) Now, we choose ε = ν/6 and multiply with /ν Applying Lemma 38, we get rid of the term involving D m u on the right-hand side Then, we take the supremum over t Λ t0 s) 0,T) in the first term on the left-hand side of the resulting inequality and choose t = min{t 0 + S, T } in

12 32 V Bögelein and M Parviainen NoDEA the second term Finally we recall that ζ onλ t0 s) to conclude desired Caccioppoli s inequality Next, we derive a Poincaré type inequality for solutions on parabolic cylinders intersecting the lateral boundary Ω 0,T) The capacity density condition and the boundary condition allow us to apply Poincaré s inequality slicewise to u g Therefore, in contrast to the local situation, we do not need to compare mean value polynomials between different time slices Lemma 42 Let u be a global solution according to Definition 2 and suppose that n \ Ω is uniformly p-thick Furthermore, let Q z0 ϱ, s) n+ be a parabolic cylinder such that B x0 ϱ/3) \ Ω Then there exist γ = γn, p, µ),p) such that for all 0 k m and γ ϑ p, we have D k u g) ϑ dz cϱ ϑm k) D m u ϑ + G ϑ dz, Q z0 ϱ,s) Ω T Q z0 ϱ,s) Ω T where c = cn, m, N, µ, ϱ 0,ϑ) and G was defined in 27 Proof Let γ = γn, p, µ),p) be the constant from Theorem 34 Then we know that n \ Ω is uniformly γ-thick, and therefore also uniformly ϑ-thick by Lemma 33 Then we extend u g by zero outside of Ω T, use the same notation for the extension We fix k j m andt Λs) 0,T)and denote N j Bϱ/2) = {x Bϱ/2) : Dj u g)x, t) =0} From Lemma 35, we get here, we consider for the moment the ϑ-quasicontinuous representative of u) D j u g),t) ϑ dx = D j u g),t) ϑ dx Bϱ) Ω Bϱ) cϱ n cap ϑ N j Bϱ/2),Bϱ)) D j+ u g),t) ϑ dx, Bϱ) with c = cn, N, ϑ) Since n \ Ω is uniformly ϑ-thick, Lemma 32 and 3) imply ) cap ϑ N j Bϱ/2),Bϱ) ) µ cap ϑ Bϱ/2),Bϱ) = cϱ n ϑ Note that µ = µn, µ, ϱ 0,ϑ) Combining this capacity estimate with the previous one, we conclude D j u g),t) ϑ dx cϱ ϑ D j+ u g),t) ϑ dx, Bϱ) Ω Bϱ) Ω where c = cn, N, µ, ϱ 0,ϑ) Integrating with respect to t over Λs) 0,T)and iterating the resulting estimate for j = k,,m, we deduce the following Poincaré s inequality D k u g) ϑ dz cϱ ϑm k) D m u g) ϑ dz Qϱ,s) Ω T Qϱ,s) Ω T The assertion now follows by Young s inequality and the definition of G

13 Vol 7 200) Self-improving property 33 Also in the singular case, ie when p<2, we will have to estimate the L 2 -norm of u, since it appears on the right-hand side of Caccioppoli s inequality in Lemma 4 Therefore, we prove a suitable L 2 -estimate in the following lemma This lemma simplifies the proof in the singular case considerably since we absorb the additional terms into the left-hand side Indeed, due to this lemma, we can apply the same scaling as in the degenerate case Lemma 43 Let κ, 2 <p<2, andu be a global solution according to Definition 2 Furthermore, let Q = Q z0 ϱ, s) n+ with 0 <ϱ, s = λ 2 p ϱ 2m, andλ>0 be a parabolic cylinder such that B x0 2ϱ/3) \ Ω If D m u p + 2Q G p) dz κλ p, 43) 2Q Ω T then there exists c = cn, N, m, p, L/ν, µ, ϱ 0,κ) such that u g 2 dz cϱ 2m λ p Proof We first extend u g by zero outside of Ω T Next, we choose α < α 2 2 and denote α i Q = Q z0 α i ϱ, αi 2m s) fori =, 2 Applying Gagliardo Nirenberg Sobolev s inequality, ie Theorem 37 with σ, q, θ, r, k) replaced by 2,p,p/2, 2, 0) slicewise to u g),t), we obtain u g 2 dz = u g 2 dz α Q Ω T α Q 2 p)/2 m cϱ mp D k p u g) ϱ m k dx u g 2 dx dt cϱ mp α Λ k=0 m k=0 α Q α B D k u g) ϱ m k p α B dz sup t α Λ α B u g),t) 2 dx 2 p)/2 44) To estimate the integrals in the sum on the right-hand side, we recall that α Q 2Q and u g =0on2Q \ Ω T Therefore, we can replace the domain of integration by 2Q Ω T which allows us to apply Poincaré s inequality from Lemma 42 on 2Q Ω T Finally, using hypothesis 43) and the fact that 2Q =2 n+2m Q we infer for 0 k m that α Q D k u g) ϱ m k p dz c D m u p + G p dz cλ p Q, 2Q Ω T where c = cn, m, N, µ, ϱ 0,κ) We now come to the estimate for the sup-term in 44) Here, we first apply Caccioppoli s inequality, ie Lemma 4 Then we use Young s inequality, note that p<2, to estimate the second term on the right-hand side and the assumption 43) to estimate the term involving

14 34 V Bögelein and M Parviainen NoDEA G Finally, we recall that Q =2ϱ 2m λ 2 p B Proceeding this way, we obtain for ae t α Λ that u g),t) 2 dx = α n B u g),t) 2 dx α B c Cac B α B Ω α2q ΩT λ p 2 u g 2 α 2 ϱ α ϱ) 2m + u g p α 2 ϱ α ϱ) mp + G p dz c λ B α2q ΩT p 2 u g 2 α 2 ϱ α ϱ) 2m + λp dz = c u g Q α2q ΩT 2 α 2 α ) 2m dz + cϱ2m λ 2, where c = cn, m, p, L/ν, κ) Joining the previous estimates with 44), applying Young s inequality and recalling that s = λ 2 p ϱ 2m, we arrive at u g 2 dz 2 u g 2 c dz + α Q Ω T α 2Q Ω T α 2 α ) 2m2 p)/p ϱ2m Q λ p, where c = cn, N, m, p, L/ν, µ, ϱ 0,κ) Applying Lemma 38, we deduce the desired estimate Now, we have the prerequisites to prove a reverse Hölder type inequality for parabolic cylinders lying near the lateral boundary Lemma 44 Let κ, andu be a global solution according to Definition 2 and suppose that n \Ω is uniformly p-thick Furthermore, let Q = Q z0 ϱ, s) n+ with 0 <ϱ and s = λ 2 p ϱ 2m, λ be a parabolic cylinder such that B x0 4ϱ/3) \ Ω Suppose that λ p κ D m u p + Q G p )dz, D m u p + Q Ω T 8Q G p )dz κλ p 8Q Ω T 45) and let γ = γn, p, µ) be the constant from Lemma 42 Then, for any q with max{γ, p } q<pthere exists c = cn, N, m, p, L/ν, µ, ϱ 0,κ) such that ) p/q c D m u p dz D m u q dz + c 4Q 4Q Ω T 4Q Gp dz 4Q Ω T Proof First, we extend u g by zero outside of Ω T and use the same notation for the extension From Caccioppoli s inequality, ie Lemma 4, weget D m u p dz c 2 p Cac λ p 2 u g Q 2Q Ω T ϱ m + u g ϱ m + G p dz 46) In the following, we will infer bounds for the first two terms on the right-hand side Therefore, we abbreviate note that u g =0on2Q \ Ω T ) σ I σ = λ p σ u g ϱ m dz 2Q

15 Vol 7 200) Self-improving property 35 for σ =2orσ = p First, observe that u g),t) W m,p 2B; N ) when extended by zero on 2B \ Ω Now we fix q [max{γ, p },p), apply Gagliardo Nirenberg Sobolev s inequality, ie Theorem 37 in the case r = 2and θ = q/σ slicewise to u g),t) and take the supremum over t 2Λ in the second integral to infer where I σ cn, m, p) λ p σ m k=0 2Q J =sup t 2Λ 2B D k u g) ϱ m k u g),t) ϱ m 2 q dx dz J σ q)/2, 47) Let us first observe that we can replace the domain of integration in the above integrals by 2Q Ω, respectively 2B Ω, since u g = 0 on the set 2Q \ Ω T We first consider the sum of integrals on the right-hand side of 47) Here, we apply Poincaré s inequality from Lemma 42 to find for 0 k m that 2Q D k u g) ϱ m k q dz c 4Q 4Q Ω T D k u g) ϱ m k c D m u q + G q dz, 4Q 4Q Ω T where c = cµ, ϱ 0,n,m,N,κ) Next, we derive an estimate for J Using Q = 2λ 2 p ϱ 2m B and applying Caccioppoli s inequality, Lemma 4, weget J c 2 Cac u g p Q 4Q Ω T ϱ m + λ 2 p u g ϱ m + λ 2 p Gp dz Our aim is to bound the right-hand side in terms of λ 2 For the first term we either apply Lemma 43 when p<2, which is applicable due to the second inequality in 45), or when p 2, we in turn apply Poincaré s inequality from Lemma 42, Hölder s inequality and the second inequality in 45) To estimate the second term on the right-hand side, we use Poincaré s inequality from Lemma 42 and the second inequality in 45) in any case Finally, the term involving G p is estimated in terms of λ p also due to our assumption 45) Observe that here we utilize the fact that the scaling also takes the boundary terms into account Proceeding this way we find that J cλ 2 Combining this and the second last estimate with 47) and applying Young s inequality, we obtain for ε>0 that I σ cλ p σ 4Q ελ p cε + 4Q q dz D m u q + G q )dz λ σ q 4Q Ω T ) p/q D m u q dz + c ε G p dz, 4Q Ω T 4Q 4Q Ω T

16 36 V Bögelein and M Parviainen NoDEA where c ε = c ε n, N, m, p, L/ν, µ, ϱ 0,κ,/ε) Inserting this estimate for σ =2 and σ = p in 46), we arrive at D m u p dz ) p/q 2c Cac ελ p cε + D m u q dz + c ε 4Q 4Q Ω T 4Q Gp dz, 4Q Ω T where c ε = c ε n, N, m, p, L/ν, µ, ϱ 0,κ,/ε) Now we use the first inequality in 45) to bound λ p in terms of the integral on the left-hand side of the preceding inequality Choosing ε small enough, we can absorb this term on the left Proceeding this way, we deduce the desired reverse Hölder inequality 5 Estimates near the initial boundary In this chapter, we are concerned with parabolic cylinders lying near the initial boundary Ω {0} We shall use the following abbreviation for the initial values g 0 x) =gx, 0) for x Ω Due to our assumptions the initial values are well defined Moreover, given a ball B x0 r) in n, we denote by P r g0) : n N the mean value polynomial of g 0 of degree m onb x0 r) defined by δp r g0) ) x0;r =δg 0 ) x0;r, asintroduced in Sect 33 As usual, we first prove suitable Caccioppoli s inequality for parabolic cylinders lying near the initial boundary Lemma 5 Suppose that u is a global solution according to Definition 2 Then there exists c Cac = c Cac n, m, p, L/ν) such that for all parabolic cylinders Q z0 r, s), Q z0, S) n+ with 0 </2 r<, s = λ 2 p r 2m, S = λ 2 p 2m, λ satisfying B x0 ) Ω and 0 Λ t0 S) there holds sup u P g0) ),t) 2 dx + D t Λ t0 s) 0,T ) B x0 r) Q m u p dz z0 r,s) Ω T c Cac λ p 2 u P g0) 2 u P g0) p r) m + r) m + dz Q z0,s) Ω T + c Cac n+2m B x0 ) D m g 0 2 dx Proof Since the proof is very much similar to the one of Lemma 4, we only point out the differences We again start with the Steklov-formulation 42) of the parabolic system But now we take ϕ h = ηζ 2 u h P g0) ) as test-function with cut-off functions η, ζ as in 4) The main difference compared to the proof of Lemma 4 is related to the first term on the left-hand side of 42) Therefore, we shall only accomplish how to treat this term Taking into 2/2

17 Vol 7 200) Self-improving property 37 account that t P g0) = 0 and the initial condition 26), we find in the limit h 0 ) τ u h ϕ h dz = τ u h P g0) ϕ h dz Ω t Ω t ),t) 2 ηζt) 2 g 0 P g0) 2 ηζ0) 2 dx 2 Ω u P g0) u P g0) Ω t 2 ηζζ dz To estimate the second integral on the right-hand side we iterate Sobolev Poincaré s inequality [recall that spt η B) andη, ζ, that D k g 0 P g0) )] =0for0 k m by the definition of P g0) and that D m P g0) =0) g 0 P g0) 2 ηζ0) 2 dx c B) 2 Ω B) Dg 0 P g0) cn, m) B) 2m B) ) 2n/n+2) dx D m g 0 2 dx 2/2 n+2)/n The remaining terms in 42) are estimated similarly as in the proof of Lemma 4 with P g0) instead of g note again that D m P g0) = 0) This leads us to the desired Caccioppoli s inequality In our notion of a global weak solution we did not impose any differentiability assumption with respect to time Therefore, we cannot apply usual Poincaré s inequality Nevertheless, we can exploit the parabolic system to gain the needed regularity with respect to time Indeed, in the next lemma, we will show that the weighted means D k u) η t) ofd k u,t) defined below possess an absolutely continuous representative This is first deduced for the weighted means of u by using the system The result then extends to the weighted means of derivatives D k u with integration by parts We say η C0 B x0 ϱ)) is a nonnegative weight-function on B x0 ϱ) n,if η 0, η dx = and D l η c η /ϱ l for 0 l 2m 5) B x0 ϱ) Note that the smallest possible value of c η depends on n and mletq z0 ϱ, s) n+ be a parabolic cylinder and v L Q z0 ϱ, s); k ), k N Then we define

18 38 V Bögelein and M Parviainen NoDEA the weighted mean of v,t)onb x0 ϱ) for ae t Λ t0 s) by v) η t) = v,t) η dx 52) B x0 ϱ) Lemma 52 Suppose that u is a global solution according to Definition 2 and let Q z0 ϱ, s) n+ be a parabolic cylinder with 0 <ϱ, s>0 and B x0 ϱ) Ω Letη C0 B x0 ϱ)) be a nonnegative weight-function satisfying 5) Then there exists c = cn,l,c η ) such that for the weighted means of D k u, 0 k m, andaet,t 2 Λ t0 s) 0,T), there holds D k u) η t 2 ) D k u) η t ) c ϱ m+k t2 t B x0 ϱ) D m u p + ) dx dt Proof Let i {,,N} and η be as above and choose ϕ: n+ N with ϕ i = η, ϕ j 0forj i as a test-function in the Steklov-formulation 34) For ae t,t 2 Λ t0 s) 0,T), we get [u i ] h ) η t 2 ) [u i ] h ) η t )= = t2 t t2 t [u i ] h ) η dt t B x0 ϱ) [A i,d m u)] h,d m η dx dt, where A i :Ω T l l/n denotes a component of A To infer the assertion for the case k = 0, we use the growth conditions 23) fora and the fact that D m η c/ϱ m After passing to the limit h 0 and summing over i =,,N we obtain u) η t 2 ) u) η t ) cl ϱ m t2 t B x0 ϱ) D m u p + ) dx dt For the general case, we consider a multi-index α of order k and obtain with integration by parts D α u) η t) = D α u,t)ηdx = ) k u,t)d α η dx = ) k u) D α ηt) B x0 ϱ) B x0 ϱ) Therefore the asserted estimate follows from the case k = 0 by exchanging η with D α η and summing over α = k Since we have achieved some regularity with respect to time of our solution u, we are now in a position to prove a Poincaré type inequality Lemma 53 Suppose that u is a global solution according to Definition 2 and let Q = Q z0 ϱ, s) n+ be a parabolic cylinder with 0 <ϱ and

19 Vol 7 200) Self-improving property 39 s = λ 2 p ϱ 2m, λ> and B = B x0 ϱ) Ω and 0 Λ t0 s) Then for all 0 k m and ϑ p there exists c = cn, N, m, L, ϑ) such that Q Q Ω T D k u P g 0) dz c ϑ ϱ ) ϱ m k + [ D m u ϑ dz λ2 p Q D m u p +) dz + Q Ω T B ϑ D m g 0 dx Proof Let η C 0 B) be a nonnegative weight-function satisfying 5) For k j m and ae t Λ 0,T) and 0 <h<t 0 + s, we decompose B D j u,t) P g 0) ϱ ) ϑ dx 4 ϑ Dj u,t) P g 0) B ϱ ) h + D j u) η t) D j u) η τ)dτ 0 h + D j u) η τ) D j g 0 ) η dτ 0 + D j g 0 ) η D j P g 0) ϱ ) D j u,t) P g 0) dx ) η ϑ ϑ ϑ ϑ ϱ ) η =4 ϑ It)+IIt)+III + IV ) 53) To estimate It), we apply Poincaré s inequality slicewise to D j u P ϱ g0) ),t) and find for ae t Λ 0,T) It) cn, ϑ) ϱ ϑ D j+ u,t) P g0) ϑ dx B ϱ ) To estimate IIt), we use Lemma 52 note that Q =2ϱ 2m λ 2 p B ) It implies for ae t Λ 0,T) that IIt) ess sup t,t 2 Λ 0,T ) D j u) η t ) D j u) η t 2 ) ϑ λ cϱ ϑm j) 2 p ) ϑ D m u p +)dz Note that the previous bound is independent of h To estimate III,wefirst consider a multi-index α of order j With integration by parts, we obtain

20 40 V Bögelein and M Parviainen NoDEA h h D α u) η τ) D α g 0 ) η dτ = D α u,τ) g 0 )η dx dτ 0 0 B h = u,τ) g 0 )D α η dx dτ 0 c ϱ j B h 0 B u,τ) g 0 dx dτ 0 as h 0 by our initial condition 26) Observe that the weight function helped us to complete the previous step Summing over all indices α of order j, we therefore conclude that III 0ash 0 Finally, to estimate IV, we recall that η cn, m) and apply Poincaré s inequality m j times to D j g 0 P ϱ g0) ) note that D l g 0 P ϱ g0) )) B =0forl = j,,m andd m P ϱ g0) =0)to infer ϑ ϑ IV D j g 0 P g0) dx cϱ ϑm j) D m g 0 dx B ϱ ) Combining the previous estimates for It) IV with 53), passing to the limit h 0 and integrating with respect to t over Λ 0,T), we get for k j m D j u P g0) ϱ ) ϑ dz cϱϑ D j+ u P g0) ϱ ) ϑ dz ϑ + cϱ ϑm j) λ2 p D m u p +)dz + D m g 0 dx, where c = cn, N, m, L, ϑ) Iterating this estimate for j = k,,m, we find D k u P ϱ g0) ) ϑ dz Q Q Ω T cϱϑ Q cϱ2ϑ Q Q Ω T Q Ω T D k+ u P g0) ϱ ) D k+2 u P g0) ϱ ) B B ϑ dz + cϱ ϑm k) ) ϑ ϑ dz + cϱ ϑm k) ) ϑ cϱϑm k) D m u ϑ dz + cϱ ϑm k) ) ϑ, with the obvious meaning of ) ϑ This proves the asserted Poincaré type inequality The integral D m u p dz) ϑ on the right-hand side of the previous Poincaré type inequality has the wrong exponent Therefore, we shall exploit

21 Vol 7 200) Self-improving property 4 the intrinsic scaling of the cylinders, which depends via hypothesis 54) on the solution itself This will help us to compensate the degeneracy Corollary 54 Let κ and u be a global solution according to Definition 2 Furthermore, let Q = Q z0 ϱ, s) n+ be a parabolic cylinder with 0 <ϱ, λ>0 and s = λ 2 p ϱ 2m and B = B x0 ϱ) Ω and 0 Λ t0 s) Suppose that D m u p +)dz κλ p 54) Then there exists c = cn, N, m, L, ϑ, κ) such that for all 0 k m and ϑ p, we have D k u P g0) ϑ ϑ ϱ ) ϱ m k dz c λ + D m g 0 dx Proof We first apply Poincaré s inequality from Lemma 53 note that s/ϱ 2m = λ 2 p ) Then we use Hölder s inequality and hypothesis 54) to infer D k u P g0) ϑ ϱ ) ϱ m k dz [ λ c D m u ϑ 2 p dz + D m u p +) dz ϑ + D m g 0 dx B ϑ c λ ϑ + λ 2 p λ p + D m g 0 dx = c λ + D m g 0 dx B where c = cn, N, m, L, ϑ, κ) This proves the desired estimate B ϑ, The next lemma is an analogue of Lemma 43 for parabolic cylinders near the initial boundary Later, in the proof of the reverse Hölder inequality it will help us to bound the L 2 -norm of u in the case p<2 Lemma 55 Let κ, 2 <p<2 and let u be a global solution according to Definition 2 Furthermore, let Q = Q z0 ϱ, s) n+ be a parabolic cylinder with 0 <ϱ, λ>0 and s = λ 2 p ϱ 2m and 2B = B x0 2ϱ) Ω and 0 Λ t0 s) If D m u p +)dz κλ p, 55) 2Q 2Q Ω T B

22 42 V Bögelein and M Parviainen NoDEA then there exists c = cn, N, m, p, L/ν, κ) such that u P ϱ g0) 2 dz cϱ 2m λ 2 + D m g 0 2 dx 2B 2/2 Proof Let α < α 2 2 Applying Gagliardo Nirenberg Sobolev s inequality, ie Theorem 37 with σ, q, θ, r, k) replaced by 2,p,p/2, 2, 0) slicewise to u P α g0) ϱ ),t), we obtain α Q Ω T u P g0) 2 dz cϱ mp α ϱ m k=0 α Q Ω T D k u P g0) p α ϱ ) ϱ m k dz J 2 p)/2, 56) where J = sup t α Λ 0,T ) α B u,t) P g0) α ϱ 2 dx We first estimate the integrals in the sum on the right-hand side of 56) For this aim we apply Corollary 54 on α Q [note that the hypothesis 54) follows from 55) since α Q 2Q and 2Q / α Q 2 n+2m ] yielding that Q α Q Ω T D k u P g0) p α ϱ ) ϱ m k dz c λ + α B p D m g 0 dx 57) We now come to the estimate of J Lemma 39 provides the following estimate for difference of the mean value polynomials on α Q and α 2 Q: P g0) α ϱ x) P g0) α 2ϱ x) cϱ m α B D m g 0 dx cϱ m 2B D m g 0 2 dx /2, for all x α 2 B and thus we can use the Caccioppoli inequality, Lemma 5 to obtain the following estimate for J: J c ) g0) α n B λ p 2 u P α 2ϱ 2 α 2Q Ω T α 2 ϱ α ϱ) 2m + u P α g0) 2ϱ p + dz α 2 ϱ α ϱ) mp 2/2 + cϱ 2m D m g 0 2 dx 2B c Q α 2Q Ω T g u P 0) α 2ϱ 2 dz + cϱ2m α 2 α ) 2m λ 2 + D m g 0 2 dx 2B 2/2

23 Vol 7 200) Self-improving property 43 Here, in the last line, we have used Young s inequality and the fact that s = λ 2 p ϱ 2m and λ similarly as in the proof of Lemma 43) Joining the previous estimate and 57) with 56) and applying Young s inequality, we find α Q Ω T u P α g0) ϱ 2 dz 2 α 2Q Ω T λ 2 Q + Applying Lemma 38 we obtain the desired estimate u P α g0) 2ϱ 2 c dz+ ϱ2m α 2 α ) 2m2 p)/p D m g 0 2 dx 2/2 Now we are in a position to prove a reverse Hölder inequality on cylinders intersecting the initial boundary We take G from Sect 4 into account in the scaling because then we can later use the same scaling in all the cases Lemma 56 Let κ and let u be a global solution according to Definition 2 Furthermore, let Q = Q z0 ϱ, s) n+ be a parabolic cylinder with 0 <ϱ, λ>0 and s = λ 2 p ϱ 2m and 8B Ω, where8b = B x0 8ϱ) and 0 2Λ t0 s) Suppose that λ p κ Q Q Ω T D m u p + G p )dz, 2B D m u p + 8Q G p )dz κλ p, 8Q Ω T 58) for some G L p 8Q) with G Then there exists a constant c = cn, N, m, p, L/ν, κ), such that for any q with max{p, p } q<pthere holds ) p/q c D m u p dz D m u q dz 4Q 4Q Ω T + c 4Q Gp dz + cλ p p D m g p 0 dx p/ p 4Q Ω T Proof From Caccioppoli s inequality, ie Lemma 5, weget D m u p dz c Cac λ p 2 u P g0) 2 2ϱ u P g0) p 2ϱ Q 2Q Ω T ϱ m + ϱ m + dz + c Cac λ p 2 D m g 0 2 dx 2/2 59) We still have to bound the first two terms on the right-hand side Therefore, we abbreviate I σ = λp σ u P g0) σ 2ϱ Q ϱ m dz 2Q Ω T 2B 4B

24 44 V Bögelein and M Parviainen NoDEA for σ =2orσ = p Now,wefixq [max{p, p },p) In order to estimate I σ we apply Gagliardo Nirenberg Sobolev s inequality, ie Theorem 37 with r =2andθ = q/σ slicewise to u P g0) 2ϱ ),t) yielding that m I σ cn, m, p) λp σ D k u P g0) 2ϱ ) q 2Q k=0 2Q Ω T ϱ m k dz J σ q)/2, 50) where u,t) P g0) 2 2ϱ J sup ϱ m dx t 2Λ 0,T ) 2B To estimate the integrals in the sum on the right-hand side, we enlarge the domain of integration from 2Q to 4Q and apply Poincaré s inequality from Lemma 53 to infer for 0 k m that recall that G ) D k u P g0) 2ϱ ) q [ 2Q 2Q Ω T ϱ m k dz c D m u q dz 4Q 4Q Ω T q + λ2 p D m u + 4Q G) p dz + D m g 0 dx 4Q Ω T 4B To further estimate the second term on the right-hand side, we use Hölder s inequality and hypothesis 58) ie the first inequality in 58) when p<2, respectively the second inequality in 58) when p>2) to find λ 2 p D m u + 4Q G) p dz = λ 2 p ) /p ) ) /p ) 4Q Ω T λ 2 p 4Q cλ 2 p λ pp 2) p = c ) p 2)/p D m u + G) p dz D m u + 4Q Ω T 4Q G) q dz 4Q Ω T ) /q D m u + 4Q G) q dz 4Q Ω T ) /q D m u + 4Q G) q dz 4Q Ω T ) /q Inserting this above to bound the second term on the right-hand side, we deduce D k u P g0) 2ϱ ) q 2Q 2Q Ω T ϱ m k dz q ) /q c D m u q + 4Q G q )dz + D m g 0 dx 5) 4Q Ω T The estimate of J now is similar to the one from Lemma 55 We first apply Caccioppoli s inequality in Lemma 5 with Q z0 r, s) andq z0, S) replaced by 2Q and 4Q, note that Q =2λ 2 p ϱ 2m B and then estimate the terms 4B

25 Vol 7 200) Self-improving property 45 appearing on the right-hand side as follows: in the case p 2, we now use Corollary 54 to bound the first integral on the right-hand side, while in the case p<2 we use Lemma 55 Moreover, from Corollary 54, we also infer a bound for the second integral on the right-hand side Note that the second inequality in 58) ensures that the hypothesis of Corollary 54 and Lemma 55 are satisfied Proceeding this way we arrive at sup t 2Λ 0,T ) 2B u,t) P g0) 4ϱ ϱ m 2 dx c λ 2 + D m g 0 2 dx 4B 2/2 Since by Lemma 39, we can bound the difference of the mean value polynomials on 2B and 4B as g0) x) P x) cϱ m D m g 0 dx for all x 4B, P g0) 2ϱ 4ϱ 4B this leads us to J c λ 2 + D m g 0 2 dx 4B 2/2 Inserting the previous estimate and 5) in50) for σ = 2 and σ = p and applying Young s inequality, we obtain for ε>0 that ) p/q I σ ελ p + c ε D m u q + 4Q G q )dz + 4Q Ω T 4B D m g 0 2 dx p/2, where c ε = c ε n, N, m, p, L/ν, κ, /ε) Inserting this estimate for σ =2and σ = p in 59) and using Young s inequality for the term involving g 0 note that ) p/2 +λ p 2 ) 2/2 ελ p +c ε λ p max{2,p} ) max{2,p}/2 ), we arrive at ) p/q D m u p dz 3c Cac ελ p cε + D m u q + 4Q G q )dz 4Q Ω T Q + c ε λ p p 4B D m g 0 2 dx p/2 Now we use the first inequality in 58) to bound λ p in terms of the integral on the left-hand side of the preceding inequality Choosing ε small enough we can absorb this term on the left Finally, applying Hölder s inequality to the term involving G and to the initial term if necessary ie if p>2) we deduce the desired reverse Hölder inequality

26 46 V Bögelein and M Parviainen NoDEA 6 Proof of the higher integrability In this chapter, we prove the global higher integrability result from Theorem 22 To deduce the desired estimate on the set Ω T, we will cover Ω T by intrinsic cylinders Therefore, we have to take into account three different configurations, that is, cylinders lying in the interior of Ω T and those lying near the lateral or initial boundaries For the latter two, we have proved reverse Hölder type inequalities in Lemmas 44 and 56 For the interior cylinders there holds an analogue of Lemma 56 without the initial boundary term, of course cf [9], Lemma 3) Proof of Theorem 22 We fix a cylinder Q 0 = Q z0, 2 ) n+ which might intersect the complement of Ω T As usual, we denote 4 Q 0 = Q z0 /4, /4) 2 ) and also B 0 = B z0 ) and Λ 0 =Λ t0 2 ) At the end, a choice Ω T 4 Q 0 leads to the global higher integrability result To begin with, we cover Q 0 by Whitney-type cylinders Q i = Q zi r i,ri 2m ), i =, 2,, where r i is comparable to the parabolic distance of Q i to the boundary Q 0 of Q 0 see, for example, page 5 of [39]) The parabolic distance of two sets E,F n+ is defined to be dist p E,F)=inf { } x x + t t /2m) :x, t) E,x, t) F In addition, the cylinders Q i are of bounded overlap, meaning that every z belongs at most to a fixed finite number of cylinders depending only on n and m, and 5Q i Q 0 Later we shall divide Q 0 into a good and a bad set, ie into certain level sets according to a level λ>0 In order to apply the reverse Hölder inequality from Lemma 44, respectively Lemma 56, we aim to find cylinders having the scaling factor λ 2 p and satisfying 45), respectively 58) around each point lying in the bad set For this we first set λ 0 = Q 0 Q 0 Ω T D m u p + G p) dz) /d, where d was defined in the statement of Theorem 22 and G is defined by { G p if B 0 Ω = G p + ifb 0 \ Ω We now choose λ such that λ>max{λ 0, } = λ 0 For z Q 0 Ω T, we define hz) = c Q 0 min{ Q i /d : z Q /d i } D m uz),

27 Vol 7 200) Self-improving property 47 where c will be fixed later Further, we consider z Q 0 Ω T such that h z) >λ and fix a Whitney-cylinder Q i = Q zi r i,ri 2m ) such that z Q i Ω T We define ) /d Q0 α = α z) =, Q i and θ = θ z) =λα z)) 2 p Now we will use the stopping time argument to find an intrinsic cylinder around z of the type Q z r, θr 2 ) on which the assumptions 45), respectively 58) of Lemma 44, respectively 56 are satisfied To begin with, we show that the first inequality in 45), respectively the first inequality in 58), is valid for suitably small cylinders due to Lebesgue s differentiation theorem Indeed, for almost every z Q i Ω T such that h z) >λ,wehave lim r 0 Qr,θr 2m ) Q zr,θr 2m ) Ω T D m u p + G p) dz>c p α p λ p 6) Note that Q z r,θr 2m ) Ω T = Q z r,θr 2m )forr > 0 small enough Our next aim is to show that the second inequality in 45), respectively the second inequality in 58), is valid due to the definition of λ 0 For this we have to distinguish the cases p 2andp<2since the scaling factor θ is smaller that one in the former case, respectively larger than one in the latter case We start considering the case p 2,wherewehaved =2andθ For an intrinsic cylinder Q z r, θr 2m ), with radius r such that r i /64 r r i, note that Q z r, θr 2m ) 2Q i Q 0 ), we obtain due to the definition of λ 0,α and d Qr, θr 2m ) c Q 0 Q i θ Q 0 Q zr,θr 2m ) Ω T Q 0 Ω T D m u p + G p) dz D m u p + G p) dz c p α p λ p, 62) where c is chosen to be large enough This fixes the constant c inthe definition of h in dependence of n, m and p Now we want to use a similar reasoning for the case 2 <p<2 Here, the basic difference compared to the case p 2 is that the scaling factor θ for the parabolic cylinders is now larger than Nevertheless, we still have to ensure that the considered intrinsic cylinders are contained in Q 0 To accomplish this, we consider radii r with θ /2m r i /64 r θ /2m r i Thus,Q z r, θr 2m ) Q 0, and due to the definition of λ 0,α and d note that d = p n2 p)/2m) in the present case), we obtain Qr, θr 2m ) c p α p λ p Q zr,θr 2m ) Ω T D m u p + G p) dz c Q 0 Q i θn/2m) λ d 63)

28 48 V Bögelein and M Parviainen NoDEA According to 6) and 62) when p 2, respectively 63) when p<2 and due to the fact that the integrals above depend continuously on the radius of the cylinder, there exists one largest radius ϱ = ϱ z) with ϱ 0,r i /64] when p 2, respectively ϱ 0,θ /2m r i /64] when p<2 such that equality holds In the following, we denote briefly Q = Q z ϱ, θϱ 2m ),B= B x ϱ), 4Q = Q z 4ϱ, θ4ϱ) 2m ), 4B = B x 4ϱ), 4Λ = Λθ4ϱ) 2m ), etc Note that 64Q Q 0 by the choice of ϱ Hence, from the previous reasoning we have Q Q Ω T D m u p + G p) dz = c p αλ)p c p αλ) p 64) and D m u p + 64Q G p) dz c p αλ)p 65) 64Q Ω T Now we set q = max{p,γ, p }, where γ = γn, p, µ) is the constant from Lemma 44 From64) and 65), we see that after enlarging the domain of integration if necessary) conditions 45) and 58) are satisfied with λ replaced by αλ and, further, s = θϱ 2m =αλ) 2 p ϱ 2m We now distinguish severalcasesif8b \ Ω, we can apply Lemma 44 with 8Q instead of Q then the condition B x0 4ϱ/3)\Ω has to be replaced by B x0 32ϱ/3)\Ω which is fulfilled) In this case, the first inequality in 45) is satisfied on 8Q with 8 n+2m c instead of κ after enlarging the domain of integration in 64) from Q to 8Q Weget D m u p dz 8Q 8Q Ω T ) p/q c D m u q dz + c 32Q 32Q Ω T 32Q Gp dz 66) 32Q Ω T On the other hand, if 8B Ω, we still have to distinguish the cases when the cylinder lies near, respectively far from the initial boundary If 8B Ω and 2Q intersects the initial boundary, ie 0 2Λ, then we are in a position to apply Lemma 56 note that the second inequality in 58) is satisfied on 8Q with 8 n+2m c instead of κ due to 65) after enlarging the domain of integration from 8Q to 64Q) Therefore the application of the lemma implies ) p/q D m u p c dz D m u q dz 4Q 4Q Ω T + c 4Q Gp dz + c αλ) p p D m g p 0 dx p/ p 67) 4Q Ω T In the remaining case 8B Ωand2Λ 0,T), we have 2Q Ω T In that case we can use the interior analogue of Lemma 56 to obtain p/q D m u p c dz D m u dz) q + G p dz 68) Q 2Q Q 2Q 4B 2Q

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT2400 Analyse 1. Eksamensdag: Onsdag 15. juni 2011. Tid for eksamen: 09.00 13.00 Oppgavesettet er på 6 sider. Vedlegg: Tillatte

Detaljer

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl.

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl. 1 MAT131 Bokmål Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl. 09-14 Oppgavesettet er 4 oppgaver fordelt på

Detaljer

SVM and Complementary Slackness

SVM and Complementary Slackness SVM and Complementary Slackness David Rosenberg New York University February 21, 2017 David Rosenberg (New York University) DS-GA 1003 February 21, 2017 1 / 20 SVM Review: Primal and Dual Formulations

Detaljer

Graphs similar to strongly regular graphs

Graphs similar to strongly regular graphs Joint work with Martin Ma aj 5th June 2014 Degree/diameter problem Denition The degree/diameter problem is the problem of nding the largest possible graph with given diameter d and given maximum degree

Detaljer

Slope-Intercept Formula

Slope-Intercept Formula LESSON 7 Slope Intercept Formula LESSON 7 Slope-Intercept Formula Here are two new words that describe lines slope and intercept. The slope is given by m (a mountain has slope and starts with m), and intercept

Detaljer

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001)

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001) by Simin Feng, Herbert G. Winful Opt. Lett. 26, 485-487 (2001) http://smos.sogang.ac.r April 18, 2014 Introduction What is the Gouy phase shift? For Gaussian beam or TEM 00 mode, ( w 0 r 2 E(r, z) = E

Detaljer

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3 Relational Algebra 1 Unit 3.3 Unit 3.3 - Relational Algebra 1 1 Relational Algebra Relational Algebra is : the formal description of how a relational database operates the mathematics which underpin SQL

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Date of exam: Friday, May

Detaljer

Trigonometric Substitution

Trigonometric Substitution Trigonometric Substitution Alvin Lin Calculus II: August 06 - December 06 Trigonometric Substitution sin 4 (x) cos (x) dx When you have a product of sin and cos of different powers, you have three different

Detaljer

Neural Network. Sensors Sorter

Neural Network. Sensors Sorter CSC 302 1.5 Neural Networks Simple Neural Nets for Pattern Recognition 1 Apple-Banana Sorter Neural Network Sensors Sorter Apples Bananas 2 Prototype Vectors Measurement vector p = [shape, texture, weight]

Detaljer

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postponed exam: ECON420 Mathematics 2: Calculus and linear algebra Date of exam: Tuesday, June 8, 203 Time for exam: 09:00 a.m. 2:00 noon The problem set covers

Detaljer

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2 Mathematics 4Q Name: SOLUTIONS. (x + 5)(x +5x) 7 8 (x +5x) 8 + C [u x +5x]. (3 x) (3 x) + C [u 3 x] 3. 7x +9 (7x + 9)3/ [u 7x + 9] 4. x 3 ( + x 4 ) /3 3 8 ( + x4 ) /3 + C [u + x 4 ] 5. e 5x+ 5 e5x+ + C

Detaljer

Moving Objects. We need to move our objects in 3D space.

Moving Objects. We need to move our objects in 3D space. Transformations Moving Objects We need to move our objects in 3D space. Moving Objects We need to move our objects in 3D space. An object/model (box, car, building, character,... ) is defined in one position

Detaljer

Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with.

Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with. Solutions #1 1. a Show that the path γ : [, π] R 3 defined by γt : cost ı sint j sint k lies on the surface z xy. b valuate y 3 cosx dx siny z dy xdz where is the closed curve parametrized by γ. Solution.

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Tirsdag 7. juni

Detaljer

Generalization of age-structured models in theory and practice

Generalization of age-structured models in theory and practice Generalization of age-structured models in theory and practice Stein Ivar Steinshamn, stein.steinshamn@snf.no 25.10.11 www.snf.no Outline How age-structured models can be generalized. What this generalization

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON30/40 Matematikk : Matematisk analyse og lineær algebra Exam: ECON30/40 Mathematics : Calculus and Linear Algebra Eksamensdag: Tirsdag 0. desember

Detaljer

Gradient. Masahiro Yamamoto. last update on February 29, 2012 (1) (2) (3) (4) (5)

Gradient. Masahiro Yamamoto. last update on February 29, 2012 (1) (2) (3) (4) (5) Gradient Masahiro Yamamoto last update on February 9, 0 definition of grad The gradient of the scalar function φr) is defined by gradφ = φr) = i φ x + j φ y + k φ ) φ= φ=0 ) ) 3) 4) 5) uphill contour downhill

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 4. juni 2010 Tid for eksamen: 9.00 12.00 Oppgavesettet

Detaljer

Existence of resistance forms in some (non self-similar) fractal spaces

Existence of resistance forms in some (non self-similar) fractal spaces Existence of resistance forms in some (non self-similar) fractal spaces Patricia Alonso Ruiz D. Kelleher, A. Teplyaev University of Ulm Cornell, 12 June 2014 Motivation X Fractal Motivation X Fractal Laplacian

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Onsdag 6. desember

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt ksamen i: ECON3120/4120 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON3120/4120 Mathematics 2: Calculus and linear algebra Eksamensdag:

Detaljer

Level Set methods. Sandra Allaart-Bruin. Level Set methods p.1/24

Level Set methods. Sandra Allaart-Bruin. Level Set methods p.1/24 Level Set methods Sandra Allaart-Bruin sbruin@win.tue.nl Level Set methods p.1/24 Overview Introduction Level Set methods p.2/24 Overview Introduction Boundary Value Formulation Level Set methods p.2/24

Detaljer

Databases 1. Extended Relational Algebra

Databases 1. Extended Relational Algebra Databases 1 Extended Relational Algebra Relational Algebra What is an Algebra? Mathematical system consisting of: Operands --- variables or values from which new values can be constructed. Operators ---

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON20/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON20/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Fredag 2. mai

Detaljer

Trust region methods: global/local convergence, approximate January methods 24, / 15

Trust region methods: global/local convergence, approximate January methods 24, / 15 Trust region methods: global/local convergence, approximate methods January 24, 2014 Trust region methods: global/local convergence, approximate January methods 24, 2014 1 / 15 Trust-region idea Model

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON420 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag

Detaljer

Den som gjør godt, er av Gud (Multilingual Edition)

Den som gjør godt, er av Gud (Multilingual Edition) Den som gjør godt, er av Gud (Multilingual Edition) Arne Jordly Click here if your download doesn"t start automatically Den som gjør godt, er av Gud (Multilingual Edition) Arne Jordly Den som gjør godt,

Detaljer

Call function of two parameters

Call function of two parameters Call function of two parameters APPLYUSER USER x fµ 1 x 2 eµ x 1 x 2 distinct e 1 0 0 v 1 1 1 e 2 1 1 v 2 2 2 2 e x 1 v 1 x 2 v 2 v APPLY f e 1 e 2 0 v 2 0 µ Evaluating function application The math demands

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON420 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag

Detaljer

TFY4170 Fysikk 2 Justin Wells

TFY4170 Fysikk 2 Justin Wells TFY4170 Fysikk 2 Justin Wells Forelesning 5: Wave Physics Interference, Diffraction, Young s double slit, many slits. Mansfield & O Sullivan: 12.6, 12.7, 19.4,19.5 Waves! Wave phenomena! Wave equation

Detaljer

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ.

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ. Oppgave 1 Beviskalklen i læreboka inneholder sluttningsregelen QR: {ψ φ}, ψ ( xφ). En betingelse for å anvende regelen er at det ikke finnes frie forekomste av x i ψ. Videre så inneholder beviskalklen

Detaljer

Kneser hypergraphs. May 21th, CERMICS, Optimisation et Systèmes

Kneser hypergraphs. May 21th, CERMICS, Optimisation et Systèmes Kneser hypergraphs Frédéric Meunier May 21th, 2015 CERMICS, Optimisation et Systèmes Kneser hypergraphs m, l, r three integers s.t. m rl. Kneser hypergraph KG r (m, l): V (KG r (m, l)) = ( [m]) l { E(KG

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON360/460 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Exam: ECON360/460 - Resource allocation and economic policy Eksamensdag: Fredag 2. november

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Mathematics 2: Calculus and linear algebra Exam: ECON320/420 Mathematics 2: Calculus and linear algebra Eksamensdag: Tirsdag 30. mai 207

Detaljer

TMA4329 Intro til vitensk. beregn. V2017

TMA4329 Intro til vitensk. beregn. V2017 Norges teknisk naturvitenskapelige universitet Institutt for Matematiske Fag TMA439 Intro til vitensk. beregn. V17 ving 4 [S]T. Sauer, Numerical Analysis, Second International Edition, Pearson, 14 Teorioppgaver

Detaljer

On the Existence of Strong Solutions to a Fluid Structure Interaction Problem with Navier Boundary Conditions

On the Existence of Strong Solutions to a Fluid Structure Interaction Problem with Navier Boundary Conditions J. Math. Fluid Mech. 2019 21:36 c 2019 Springer Nature Switzerland AG https://doi.org/10.1007/s00021-019-0440-7 Journal of Mathematical Fluid Mechanics On the Existence of Strong Solutions to a Fluid Structure

Detaljer

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger Institutt for matematiske fag Eksamensoppgave i TMA432 Introduksjon til vitenskapelige beregninger Faglig kontakt under eksamen: Anton Evgrafov Tlf: 453 163 Eksamensdato: 8. august 217 Eksamenstid (fra

Detaljer

Speed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F.

Speed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F. September 9, 2011 Physics 131 Prof. E. F. Redish Theme Music: Speed Racer Theme Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz 1 Reading questions Are the lines on the spatial graphs representing

Detaljer

Exercise 1: Phase Splitter DC Operation

Exercise 1: Phase Splitter DC Operation Exercise 1: DC Operation When you have completed this exercise, you will be able to measure dc operating voltages and currents by using a typical transistor phase splitter circuit. You will verify your

Detaljer

Emneevaluering GEOV272 V17

Emneevaluering GEOV272 V17 Emneevaluering GEOV272 V17 Studentenes evaluering av kurset Svarprosent: 36 % (5 av 14 studenter) Hvilket semester er du på? Hva er ditt kjønn? Er du...? Er du...? - Annet PhD Candidate Samsvaret mellom

Detaljer

Splitting the differential Riccati equation

Splitting the differential Riccati equation Splitting the differential Riccati equation Tony Stillfjord Numerical Analysis, Lund University Joint work with Eskil Hansen Innsbruck Okt 15, 2014 Outline Splitting methods for evolution equations The

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON1910 Poverty and distribution in developing countries Exam: ECON1910 Poverty and distribution in developing countries Eksamensdag: 1. juni 2011 Sensur

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSIEE I OSLO ØKONOMISK INSIU Eksamen i: ECON320/420 Mathematics 2: Calculus and Linear Algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag:. desember 207 Sensur kunngjøres:

Detaljer

Solvability and Regularity for an Elliptic System Prescribing the Curl, Divergence, and Partial Trace of a Vector Field on Sobolev-Class Domains

Solvability and Regularity for an Elliptic System Prescribing the Curl, Divergence, and Partial Trace of a Vector Field on Sobolev-Class Domains J. Math. Fluid Mech. 19 (2017), 375 422 c 2016 Springer International Publishing 1422-6928/17/030375-48 DOI 10.1007/s00021-016-0289-y Journal of Mathematical Fluid Mechanics Solvability and Regularity

Detaljer

melting ECMI Modelling week 2008 Modelling and simulation of ice/snow melting Sabrina Wandl - University of Linz Tuomo Mäki-Marttunen - Tampere UT

melting ECMI Modelling week 2008 Modelling and simulation of ice/snow melting Sabrina Wandl - University of Linz Tuomo Mäki-Marttunen - Tampere UT and and ECMI week 2008 Outline and Problem Description find model for processes consideration of effects caused by presence of salt point and numerical solution and and heat equations liquid phase: T L

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON3120/4120 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON3120/4120 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Tirsdag

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON3120/4120 Mathematics 2: Calculus an linear algebra Exam: ECON3120/4120 Mathematics 2: Calculus an linear algebra Eksamensag: Tirsag 3. juni 2008

Detaljer

STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD

STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD 1 Bakgrunnen for dette initiativet fra SEF, er ønsket om å gjøre arbeid i høyden tryggere / sikrere. Både for stillasmontører og brukere av stillaser. 2 Reviderte

Detaljer

Dynamic Programming Longest Common Subsequence. Class 27

Dynamic Programming Longest Common Subsequence. Class 27 Dynamic Programming Longest Common Subsequence Class 27 Protein a protein is a complex molecule composed of long single-strand chains of amino acid molecules there are 20 amino acids that make up proteins

Detaljer

HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN

HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN EKSAMEN I FAGET STE 6243 MODERNE MATERIALER KLASSE: 5ID DATO: 7 Oktober 2005 TID: 900-200, 3 timer ANTALL SIDER: 7 (inklusiv Appendix: tabell og formler) TILLATTE

Detaljer

Stationary Phase Monte Carlo Methods

Stationary Phase Monte Carlo Methods Stationary Phase Monte Carlo Methods Daniel Doro Ferrante G. S. Guralnik, J. D. Doll and D. Sabo HET Physics Dept, Brown University, USA. danieldf@het.brown.edu www.het.brown.edu Introduction: Motivations

Detaljer

KROPPEN LEDER STRØM. Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal.

KROPPEN LEDER STRØM. Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal. KROPPEN LEDER STRØM Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal. Hva forteller dette signalet? Gå flere sammen. Ta hverandre i hendene, og la de to ytterste personene

Detaljer

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23 UTKAST ENGLISH VERSION EKSAMEN I: MOT100A STOKASTISKE PROSESSER VARIGHET: 4 TIMER DATO: 16. februar 2006 TILLATTE HJELPEMIDLER: Kalkulator; Tabeller og formler i statistikk (Tapir forlag): Rottman: Matematisk

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag:

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT BOKMÅL Utsatt eksamen i: ECON2915 Vekst og næringsstruktur Eksamensdag: 07.12.2012 Tid for eksamen: kl. 09:00-12:00 Oppgavesettet er på 5 sider Tillatte hjelpemidler:

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag 8. desember

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON2915 Vekst og næringsstruktur Exam: ECON2915 - Growth and business structure Eksamensdag: Fredag 2. desember 2005 Sensur kunngjøres: 20. desember

Detaljer

5 E Lesson: Solving Monohybrid Punnett Squares with Coding

5 E Lesson: Solving Monohybrid Punnett Squares with Coding 5 E Lesson: Solving Monohybrid Punnett Squares with Coding Genetics Fill in the Brown colour Blank Options Hair texture A field of biology that studies heredity, or the passing of traits from parents to

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 4. april 2008 Tid for eksamen: 9.00 12.00 Oppgavesettet

Detaljer

32.2. Linear Multistep Methods. Introduction. Prerequisites. Learning Outcomes

32.2. Linear Multistep Methods. Introduction. Prerequisites. Learning Outcomes Linear Multistep Methods 32.2 Introduction In the previous Section we saw two methods (Euler and trapezium) for approximating the solutions of certain initial value problems. In this Section we will see

Detaljer

1 Aksiomatisk definisjon av vanlige tallsystemer

1 Aksiomatisk definisjon av vanlige tallsystemer Notat XX for MAT1140 1 Aksiomatisk definisjon av vanlige tallsystemer 1.1 Aksiomer Vi betrakter en mengde R, utstyrt med to avbild- Algebraiske aksiomer. ninger: addisjon { R R R, (x, y) x + y. { R R R,

Detaljer

Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)

Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) INF247 Er du? Er du? - Annet Ph.D. Student Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen,

Detaljer

Smart High-Side Power Switch BTS730

Smart High-Side Power Switch BTS730 PG-DSO20 RoHS compliant (green product) AEC qualified 1 Ω Ω µ Data Sheet 1 V1.0, 2007-12-17 Data Sheet 2 V1.0, 2007-12-17 Ω µ µ Data Sheet 3 V1.0, 2007-12-17 µ µ Data Sheet 4 V1.0, 2007-12-17 Data Sheet

Detaljer

Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX)

Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX) Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX) Peter J. Rosendahl Click here if your download doesn"t start automatically Han Ola of Han Per:

Detaljer

On time splitting for NLS in the semiclassical regime

On time splitting for NLS in the semiclassical regime On time splitting for NLS in the semiclassical regime Rémi Carles CNRS & Univ. Montpellier Rémi Carles (Montpellier) Splitting for semiclassical NLS 1 / 21 Splitting for NLS i t u + 1 2 u = f ( u 2) u,

Detaljer

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS English Exam: ECON2915 Economic Growth Date of exam: 25.11.2014 Grades will be given: 16.12.2014 Time for exam: 09.00 12.00 The problem set covers 3 pages Resources

Detaljer

ECON3120/4120 Mathematics 2, spring 2004 Problem solutions for the seminar on 5 May Old exam problems

ECON3120/4120 Mathematics 2, spring 2004 Problem solutions for the seminar on 5 May Old exam problems Department of Economics May 004 Arne Strøm ECON0/40 Mathematics, spring 004 Problem solutions for the seminar on 5 May 004 (For practical reasons (read laziness, most of the solutions this time are in

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230/4230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 24. mars 2006 Tid for eksamen: 13.30 16.30

Detaljer

Verifiable Secret-Sharing Schemes

Verifiable Secret-Sharing Schemes Aarhus University Verifiable Secret-Sharing Schemes Irene Giacomelli joint work with Ivan Damgård, Bernardo David and Jesper B. Nielsen Aalborg, 30th June 2014 Verifiable Secret-Sharing Schemes Aalborg,

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON20 Forbruker, bedrift og marked, høsten 2004 Exam: ECON20 - Consumer behavior, firm behavior and markets, autumn 2004 Eksamensdag: Onsdag 24. november

Detaljer

Endelig ikke-røyker for Kvinner! (Norwegian Edition)

Endelig ikke-røyker for Kvinner! (Norwegian Edition) Endelig ikke-røyker for Kvinner! (Norwegian Edition) Allen Carr Click here if your download doesn"t start automatically Endelig ikke-røyker for Kvinner! (Norwegian Edition) Allen Carr Endelig ikke-røyker

Detaljer

Maple Basics. K. Cooper

Maple Basics. K. Cooper Basics K. Cooper 2012 History History 1982 Macsyma/MIT 1988 Mathematica/Wolfram 1988 /Waterloo Others later History Why? Prevent silly mistakes Time Complexity Plots Generate LATEX This is the 21st century;

Detaljer

Second Order ODE's (2P) Young Won Lim 7/1/14

Second Order ODE's (2P) Young Won Lim 7/1/14 Second Order ODE's (2P) Copyright (c) 2011-2014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or

Detaljer

Information search for the research protocol in IIC/IID

Information search for the research protocol in IIC/IID Information search for the research protocol in IIC/IID 1 Medical Library, 2013 Library services for students working with the research protocol and thesis (hovedoppgaven) Open library courses: http://www.ntnu.no/ub/fagside/medisin/medbiblkurs

Detaljer

An oscillatory bifurcation from infinity, and

An oscillatory bifurcation from infinity, and Nonlinear differ. equ. appl. 15 (28), 335 345 121 9722/8/3335 11, DOI 1.17/s3-8-724-1 c 28 Birkhäuser Verlag Basel/Switzerland An oscillatory bifurcation from infinity, and from zero Philip Korman Abstract.

Detaljer

Ringvorlesung Biophysik 2016

Ringvorlesung Biophysik 2016 Ringvorlesung Biophysik 2016 Born-Oppenheimer Approximation & Beyond Irene Burghardt (burghardt@chemie.uni-frankfurt.de) http://www.theochem.uni-frankfurt.de/teaching/ 1 Starting point: the molecular Hamiltonian

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON1410 - Internasjonal økonomi Exam: ECON1410 - International economics Eksamensdag: 18.06.2013 Date of exam: 18.06.2013 Tid for eksamen: kl.

Detaljer

Dagens tema: Eksempel Klisjéer (mønstre) Tommelfingerregler

Dagens tema: Eksempel Klisjéer (mønstre) Tommelfingerregler UNIVERSITETET I OSLO INF1300 Introduksjon til databaser Dagens tema: Eksempel Klisjéer (mønstre) Tommelfingerregler Institutt for informatikk Dumitru Roman 1 Eksempel (1) 1. The system shall give an overview

Detaljer

MA2501 Numerical methods

MA2501 Numerical methods MA250 Numerical methods Solutions to problem set Problem a) The function f (x) = x 3 3x + satisfies the following relations f (0) = > 0, f () = < 0 and there must consequently be at least one zero for

Detaljer

stjerneponcho for voksne star poncho for grown ups

stjerneponcho for voksne star poncho for grown ups stjerneponcho for voksne star poncho for grown ups www.pickles.no / shop.pickles.no NORSK Størrelser XS (S) M (L) Garn Pickles Pure Alpaca 300 (350) 400 (400) g hovedfarge 100 (100) 150 (150) g hver av

Detaljer

FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt)

FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt) FYSMEK1110 Eksamensverksted 23. Mai 2018 14:15-18:00 Oppgave 1 (maks. 45 minutt) Page 1 of 9 Svar, eksempler, diskusjon og gode råd fra studenter (30 min) Hva får dere poeng for? Gode råd fra forelesere

Detaljer

Eksamen i FY3466 KVANTEFELTTEORI II Tirsdag 20. mai :00 13:00

Eksamen i FY3466 KVANTEFELTTEORI II Tirsdag 20. mai :00 13:00 NTNU Side 1 av 3 Institutt for fysikk Faglig kontakt under eksamen: Professor Kåre Olaussen Telefon: 9 36 52 eller 45 43 71 70 Eksamen i FY3466 KVANTEFELTTEORI II Tirsdag 20. mai 2008 09:00 13:00 Tillatte

Detaljer

Eksamen i TMA4190 Mangfoldigheter Onsdag 4 juni, Tid :

Eksamen i TMA4190 Mangfoldigheter Onsdag 4 juni, Tid : Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag SOLUTIONS Eksamen i TMA4190 Mangfoldigheter Onsdag 4 juni, 2013. Tid : 09.00 13.00 Oppgave 1 a) La U R n være enhetsdisken x

Detaljer

Perpetuum (im)mobile

Perpetuum (im)mobile Perpetuum (im)mobile Sett hjulet i bevegelse og se hva som skjer! Hva tror du er hensikten med armene som slår ut når hjulet snurrer mot høyre? Hva tror du ordet Perpetuum mobile betyr? Modell 170, Rev.

Detaljer

Dean Zollman, Kansas State University Mojgan Matloob-Haghanikar, Winona State University Sytil Murphy, Shepherd University

Dean Zollman, Kansas State University Mojgan Matloob-Haghanikar, Winona State University Sytil Murphy, Shepherd University Dean Zollman, Kansas State University Mojgan Matloob-Haghanikar, Winona State University Sytil Murphy, Shepherd University Investigating Impact of types of delivery of undergraduate science content courses

Detaljer

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS English Postponed exam: ECON2915 Economic growth Date of exam: 11.12.2014 Time for exam: 09:00 a.m. 12:00 noon The problem set covers 4 pages Resources allowed:

Detaljer

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger Institutt for matematiske fag Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger Faglig kontakt under eksamen: Anton Evgrafov Tlf: 4503 0163 Eksamensdato: 30. mai 2017 Eksamenstid (fra

Detaljer

PATIENCE TÅLMODIGHET. Is the ability to wait for something. Det trenger vi når vi må vente på noe

PATIENCE TÅLMODIGHET. Is the ability to wait for something. Det trenger vi når vi må vente på noe CARING OMSORG Is when we show that we care about others by our actions or our words Det er når vi viser at vi bryr oss om andre med det vi sier eller gjør PATIENCE TÅLMODIGHET Is the ability to wait for

Detaljer

GEF2200 Atmosfærefysikk 2017

GEF2200 Atmosfærefysikk 2017 GEF2200 Atmosfærefysikk 2017 Løsningsforslag til sett 3 Oppgaver hentet fra boka Wallace and Hobbs (2006) er merket WH06 WH06 3.18r Unsaturated air is lifted (adiabatically): The rst pair of quantities

Detaljer

On Capacity Planning for Minimum Vulnerability

On Capacity Planning for Minimum Vulnerability On Capacity Planning for Minimum Vulnerability Alireza Bigdeli Ali Tizghadam Alberto Leon-Garcia University of Toronto DRCN - October 2011 Kakow - Poland 1 Outline Introduction Network Criticality and

Detaljer

Eksamen ENG1002/1003 Engelsk fellesfag Elevar og privatistar/elever og privatister. Nynorsk/Bokmål

Eksamen ENG1002/1003 Engelsk fellesfag Elevar og privatistar/elever og privatister. Nynorsk/Bokmål Eksamen 22.11.2012 ENG1002/1003 Engelsk fellesfag Elevar og privatistar/elever og privatister Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid Hjelpemiddel Eksamen varer i 5 timar. Alle hjelpemiddel

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT 1 UNIVERSITETET I OSO ØKONOMISK INSTITUTT Eksamen i: ECON915 Vekst og næringgstruktur Exam: ECON915 Growth and business structure Eksamensdag: Torsdag 6. november 009 Sensur kunngjøres: 18. desember ca

Detaljer

Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)

Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) INF234 Er du? Er du? - Annet Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) Hvor

Detaljer

Andrew Gendreau, Olga Rosenbaum, Anthony Taylor, Kenneth Wong, Karl Dusen

Andrew Gendreau, Olga Rosenbaum, Anthony Taylor, Kenneth Wong, Karl Dusen Andrew Gendreau, Olga Rosenbaum, Anthony Taylor, Kenneth Wong, Karl Dusen The Process Goal Definition Data Collection Data Preprocessing EDA Choice of Variables Choice of Method(s) Performance Evaluation

Detaljer

Continuity. Subtopics

Continuity. Subtopics 0 Cotiuity Chapter 0: Cotiuity Subtopics.0 Itroductio (Revisio). Cotiuity of a Fuctio at a Poit. Discotiuity of a Fuctio. Types of Discotiuity.4 Algebra of Cotiuous Fuctios.5 Cotiuity i a Iterval.6 Cotiuity

Detaljer

Fault Tolerant K-Center Problems

Fault Tolerant K-Center Problems Fault Tolerant K-Center Problems Samir Khuller Dept. of Computer Science and UMIACS University of Maryland College Park, MD 20742 Robert Pless y Dept. of Computer Science University of Maryland College

Detaljer

Oppgave 1a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet.

Oppgave 1a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet. TDT445 Øving 4 Oppgave a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet. Nøkkel: Supernøkkel: Funksjonell avhengighet: Data i en database som kan unikt identifisere (et sett

Detaljer

Eksamen i TFY4230 STATISTISK FYSIKK Onsdag 21. desember, :00 19:00

Eksamen i TFY4230 STATISTISK FYSIKK Onsdag 21. desember, :00 19:00 NTNU Side 1 av 3 Institutt for fysikk Faglig kontakt under eksamen: Professor Kåre Olaussen Telefon: 9 36 52 eller 45 43 71 70 Eksamen i TFY4230 STATISTISK FYSIKK Onsdag 21. desember, 2011 15:00 19:00

Detaljer

Solutions of nonlinear differential equations

Solutions of nonlinear differential equations Nonlinear Differ. Equ. Appl. 17 (21), 249 27 c 29 Birkhäuser Verlag Basel/Switzerland 121-9722/1/2249-22 published online December 11, 29 DOI 1.17/s3-9-52-7 Nonlinear Differential Equations and Applications

Detaljer