Superlinear Ambrosetti Prodi problem for the p-laplacian operator

Størrelse: px
Begynne med side:

Download "Superlinear Ambrosetti Prodi problem for the p-laplacian operator"

Transkript

1 Nonlinear Differ. Equ. Appl. 17 (010), c 010 Birkhäuser Verlag Basel/Switzerland /10/ published online January 8, 010 DOI /s Nonlinear Differential Equations and Applications NoDEA Superlinear Ambrosetti Prodi problem for the p-laplacian operator T. Junges Miotto Abstract. Based on a new Liouville theorem, we study a superlinear Ambrosetti Prodi problem for the p-laplacian operator, 1 < p < N. For this, we use the sub and supersolution method, blow up technique and the Leray Schauder degree theory. Mathematics Subject Classification (000). 35J5; 35B45; 47H11. Keywords. Leray Schauder degree, Sub-supersolutions, Blow up technique, Multiplicity of solutions. 1. Introduction The main purpose of this work is to investigate the existence of multiple solutions of the problem { Δp u = f(x, u)+tφ + h, in Ω (P u =0, on Ω, t ) where Ω R N is a bounded smooth domain, Δ p = div( u p u) isthe p-laplacian operator and 1 <p<n. We assume that φ, h L (Ω), with φ 0inΩandt R is a parameter, where will be defined later. Denoting λ 1 the first eigenvalue of ( Δ p,w 1,p 0 (Ω)) we consider f : Ω R R a continuous function satisfying the following conditions: f(x, u) (H1) lim sup u u p u = μ<λ 1, uniformly x Ω, (H) There exists σ > 0 such that f(x, s) +σ s p s is increasing in s, f(x, 0) = 0. f(x, u) (H3) lim u + u α = a(x), a C(Ω), a 1, p 1 <α<p N N p, where p = Np N p, ((H3) is known as p-superlinear condition at infinity and simply superlinear when p = ).

2 338 T. Junges Miotto NoDEA This problem belongs to a class of problems known as the Ambrosetti Prodi type. For the case p = with different variants and formulations, it has been extensively studied by several authors. We shall quote here the original work [1], as well as the subsequent developments [3 5, 14] and the references therein. For the superlinear case see for example [6, 9 11]. More recently, Ambrosetti Prodi type results for p-laplacian operator, with p>1 have been studied, but few results are really known. We can cite Perera [19] which used the linking and homotopy theory to study a similar problem with zero Dirichlet condition on the boundary and asymmetric nonlinearities. Mawhin in [18] studied the existence of periodic solutions for the ODE case with φ = 1. Arcoya and Ruiz in [] treated problem (P t ) with f growing as u p u, that is, the p-linear case, which was also studied by Koizumi and Schmitt in [15]. Our main contribution is to study this problem where f has a p-superlinear behavior. Motivated by results in [] we prove the following theorem: Theorem 1.1. Suppose (H1) (H3) hold. There exist <t t < + such that problem (P t ) has: i) at least, two solutions provided that t<t, ii) at least, one solution provided that t t, iii) no solution provided that t>t. We conjecture that t = t, but this question is still open. In order to prove Theorem 1.1, we use the sub and supersolution method and topological arguments. Then we need a priori bounds on the eventual solutions of (P t )to apply the Leray Schauder degree. In order to use the sub and supersolution method we only need the hypothesis (H1), and therefore the first solution is obtained arguing as in []. We can also cite the work of de Figueiredo, Gossez and Ubilla in [7] that use a variational approach to the method of upper lower solutions. However to get the second solution we need the a priori estimates of eventual solutions of (P t ). We remark that Arcoya and Ruiz s proof of this fact does not apply for our case. To overcome this fact, we follow [8], obtaining not only a priori bound on negative part of u, but also on t, such that (P t ) has a solution and in this way we obtain an a priori bound for u. The main difficulty is that the operator studied in [8] is linear, then the a priori bound on t follows easily from the linearity of the operator and from ABP estimate. For our case, since our operator is not linear, we have to adapt a Dong s result [1] thatusea comparison principle. For the boundedness of u we use the blow up technique, which only was possible to use thanks to a recent paper of Lorca [17], where he proves a Liouville type result for a half space. To obtain the second solution we will use the Leray Shauder degree theory, following the results of [] and [5]. This paper is organized as follows. Section is devoted to finding the first solution. In Sect. 3, we obtain a priori estimates for eventual solutions of (P t ) using the blow up method and in Sect. 4 we apply the Leray Shauder degree theory to obtain the second solution.

3 Vol. 17 (010) Superlinear Ambrosetti Prodi problem 339 All along this work we will use the following notations: i) represents the L norm in Ω, ii) C 0 (Ω) = {u C(Ω); u(x) =0, x Ω}. Similarly, we define C0(Ω) 1 and C 1,α 0 (Ω). iii) for any h 1,h L (Ω), we say that h 1 h if, for any compact subset K Ω, there exists ε>0 such that h 1 (x) +ε<h (x) for almost every x K. iv) for any u, v C0(Ω); 1 we will say that u v in Ω if u(x) <v(x) forx Ω and u v (x) < (x) for all x Ω, where η(x) denotes the inward normal to Ω atx.. First solution Our main tool to find the first solution will be the sub and supersolution method. We will find now the sub and supersolutions for (P t ): Proposition.1. For every w C0(Ω), 1 t R, there exists u C 1,α 0 (Ω) such that u w and Δ p u f(x, u)+tφ + h, in Ω. Proof. Let w C0(Ω), 1 t R be fixed, but arbitrary. By (H1) we have that for ε (0,λ 1 μ), there exists constant C>0such that f(x, u) (μ + ε) u p u C, for all u<0. Let u W 1,p 0 (Ω) be solution of Δ p u =(μ + ε) u p u C + tφ + h, in Ω, u =0on Ω. where without loss of generality we take C large enough to get C + tφ + h<0. Claim.. We can take C>0 large enough such that u w. In fact, let {C n } be a sequence such that C n (without loss of generality assume that C n > 1) and {u n } a sequence of solutions of Δ p u n =(μ + ε) u n p u n C n + tφ + h, in Ω, u n =0, on Ω. (.1) u n Thus, if v n =, then we have that v (C n ) 1 n is solution of Δ p v n =(μ + ε) v n p v n 1+ tφ + h, in Ω, v n =0, on Ω. C n By Lemma. in [] we obtain v n C 1,α (Ω), 0 <α<1, and v n C 1,α (Ω) M. Thus by the compact imbedding C 1,α (Ω) C 1,β (Ω), 0 β<αwehave that, up to a subsequence, v n v in C 1,β (Ω). By Lemma.3 in [] wegetv n v which is solution of { Δp v =(μ + ε) v p v 1, in Ω (.) v =0, on Ω. By Maximum Principle it follows that v 0 and by Vazquez Maximum Principle we get v 0.

4 340 T. Junges Miotto NoDEA Note that v n = un v 0, thus u (C 1 n < 0, un un n) < 0and,u n as n. Since u n,w C0(Ω) 1 we have that for n large enough, u n w. Let n 0 such that u n0 w and C n0 >C. Then, defining u = u n0, since u n0 is solution of (.1) wehave, Δ p u =(μ + ε) u p u C n0 + tφ + h < (μ + ε) u p u C + tφ + h f(x, u)+tφ + h, that is, u is subsolution of (P t ) that satisfies u w. Proposition.3. Given a function w C0(Ω), 1 there exists t such that for every t t, there exists a strict supersolution u C0(Ω) 1 for (P t ) with u w. Proof. Fix an open set Ω 0 such that Ω 0 Ω. Define M> max f(x, s) + h. x Ω,s [ 1,0] For each n>0, let u n W 1,p 0 (Ω) be the solution of Δ p u n = g n (x), in Ω, u n =0, on Ω, where { n g n (x) =,x Ω 0 M, x Ω\Ω 0. g Note that n n χ Ω0 in L (Ω), as n goes to, where χ Ω0 is the characteristic function of Ω 0. Define now v n = un n. By Lemma.3 in [], we deduce that the sequence v n v in C 1,α (Ω), 0 <α<1, v solution of { Δp v = χ Ω0, in Ω, v =0, on Ω. By Maximum Principle and Vazquez Maximum Principle we have that v 0. Arguing as Claim. we obtain that for n 0 large enough, u n0 w and u n0 < 0 in Ω. We can assume that u n0 < 1 inω 0. Define ū = u n0 and t < (n 0 + max x Ω,s [min ū, 1] f(x, s) + h ). infū 1 ((, 1]) φ Take into account that, since φ 0, infū 1 ((, 1]) φ>0 (here the infimum is considered in an essential way). For x Ω there are two possibilities: either ū(x) [ 1, 0), or ū(x) < 1. In the first case we have that x Ω\Ω 0, since ū< 1 inω 0, and then f(x, ū)+ tφ(x)+h(x) <M= g n0 = Δ p ū. On the other hand, if ū(x) < 1, then, by definition of t, f(x, ū) + tφ(x) +h(x) f(y, s) + t inf φ + h ū 1 ((, 1]) max y Ω,s [min ū, 1] < n 0 = g n0 = Δ p ū.

5 Vol. 17 (010) Superlinear Ambrosetti Prodi problem 341 Therefore ū is supersolution of (P t) and for all t t, ū is supersolution of (P t ) with ū w, which concludes the proof. The next result is the well known sub and supersolution method, which give us the first solution, through the Schauder fixed point theorem. Theorem.4. Let u, u C 1 (Ω) be the sub and supersolution of (P t ), respectively, such that u u in Ω, with u 0 u on Ω. Then there exists u C 1 (Ω) solution of (P t ) such that u u u in Ω and u =0on Ω. Proof. Define the operators N t : C0(Ω) 1 L (Ω) and T : L (Ω) C0(Ω) 1 by N(v) =f(x, v)+σ v p v + tφ + h, v C0(Ω) 1 and T (v) =w iff Δ p w + σ w p w = v, v L (Ω). Define also Q t : C0(Ω) 1 C0(Ω) 1 by Q t = T N t. Note that u is a fixed point of Q t if and only if u is a solution of (P t ). We will show that Q t is compact: since Q t = T N t and N t is continuous, it is enough to show that T is compact. In fact, let {u n } be a bounded sequence in L (Ω) and w n = T (u n ), thus Δ p w n + σ w n p w n = u n. By Lemma. in [] w n C 1,α (Ω) with w n C 1,α < C. By the compact embedding C 1,α (Ω) C 1,β (Ω) it follows that, up to a subsequence, w n w in C 1,β (Ω), therefore T is compact. Now, define O = {u C0(Ω); 1 u(x) u(x) u(x)}. Note that O is closed and convex. Still, by the comparison principle (see Tolksdorf [1]) we have that Q t (O) O, and by Lemma. in [] Q t (O) is bounded. Thus, by Schauder fixed point theorem there exists u C0(Ω) 1 which is a fixed point of Q t, that is, there exists u C0(Ω) 1 solution of (P t ) such that u u u in Ω. 3. A priori bounds In order to obtain the second solution using the degree theory, we need to get a priori estimates. In this section we start getting a estimate for the negative part of u, and later we show that if u is solution of (P t )fort bigger than a certain negative constant, then t<c(1 + u ). Finally, we prove an a priori bound on u using the blow up technique, as introduced by Gidas Spruck [13]. We remark here that to use the blow up technique we need the Liouville type results for R N and half space, which had been gotten by [0] and [17], respectively. For that matter, in our hypothesis (H3) we need to impose N N p that p 1 <α<p to be able to use those results. For the reader s convenience we enunciate these results:

6 34 T. Junges Miotto NoDEA Theorem 3.1 (Theorem III [0]). Assume g is subcritical and g(u) > 0 for all u>0. Then every bounded solution of Δ p u + g(u) =0, u 0 x R N, p < N, is trivial. Theorem 3. (Theorem 3.1 [17]). Consider the problem u m Δ p u Cu m, x R N +, (3.1) where C 1. Assume that p 1 <m<p N N p. Then, there is no positive solution of (3.1) in C 1 (R N + ). To prove the boundedness of the negative part, we will need the following result due to Ladyzhenskaya and Ural tseva [16]: Theorem 3.3 (Theorem 5.1 [16]). Suppose u W 1,m (Ω) L q (Ω) has bounded essential max Ω u(x) and that for k ˆk essential max Ω u(x) satisfies the inequality ( ) m u m ˆγ u k l l M +ˆγ k αi (mes(a k )) 1 m N +εi, A k A k i=1 where A k = {x Ω; u(x) k}, ˆγ,l,α i and M are positive constants. Suppose also that l Nm N m,ε i > 0, m α i <ε i q + m. Then, essential max Ω u(x) does not exceed some constant that depends on ˆγ,l, α i, ε i (for i =1,..., M), m, N, ˆk, q, mes(ω), and either the norm u L1 (Aˆk) (for q< Nm N m ) or the norm u L q (for q (Aˆk) Nm N m ). Next, arguing as [], we will prove the boundedness of negative part of a eventual solution of (P t ): Theorem 3.4. For any C 0 R +, there exists constant M>0such that for all t C 0,ifu is solution of (P t ) then u M. Proof. Let u be a solution of (P t ). Considering u as a test function we get u p u u = (f(x, u)+tφ + h)u. Ω Ω Now, if Ω = {x Ω; u(x) 0}, since u = u in Ω and u = u in Ω,wehavethat u p = f(x, u)u + tφu + hu. Ω Ω Since f satisfies (H1) we have that for all ε (0,λ 1 μ), there exists C>0 large enough such that f(x, u) (μ + ε) u p u C, for all u<0, that is f(x, u)u (μ + ε) u p Cu, for all u<0. Then, u p (μ + ε) u p Cu + tφu + hu. Ω Ω

7 Vol. 17 (010) Superlinear Ambrosetti Prodi problem 343 Thus, by the variational characterization of λ 1 and by Holder inequality it follows that ( ) ( ) ( ) (μ + ε) 1 u p p C C 0 φ + h p u p 1 p, λ 1 Ω Ω Ω which implies u p M, (3.) where M is independent of t C 0. Now, consider ˆk = 1 and for k ˆk define the set A k = {x Ω; u (x) >k}, then u p = u p u (u k) = u p u (u k) +. A k A k Ω Since u is a solution of (P t ) and again by (H1) we have Ω u p u (u k) + (f(x, u) C 0 φ + h)(u k) A k (μ + ε) u p u (u k)+ (C + C 0 φ + h )(u k) A k A k = I 1 + I. For I we have that I (C + C 0 φ + h ) u k p p. A k In order to estimate these integrals, we will use the following Young s inequality ( ab δa 1 s ) s 1 s s + (1 s)b 1 1 s, a, b 0, s (0, 1), δ > 0. δ Setting γ = C + C 0 φ + h, by Young s inequality with s = 1 p (0, 1) > 0 where γ (p( N p N p ),p)fori, and for I 1 taking s = p > 0 we obtain, and δ = λ1kγ 4 γ (0, 1) and δ = λ1 4(μ+ε) u p I 1 + I A k λ ( ) 1 4(μ + ε)(p 1) u p μ + ε + u k p 4 A k pλ 1 p A k + λ 1k γ ( ) 1 u p k p 4 γ p 1 + γ 4 A k pλ 1 k γ p k p mes(ak ).

8 344 T. Junges Miotto NoDEA By the variational characterization of λ 1, it follows ) ( ) 14 kγ p 4(μ + ε)(p 1) (1 u p μ + ε u k p 4 A k pλ 1 p A }{{}}{{} k ν ν 1 ( 4 γ + γ pλ 1 ) 1 p 1 p } {{ } ν 3 mes(a k )k p γ. It follows from definition of γ that k γ p < 1 for all k>ˆk and then ν 1 > 1. We have also that ν,ν 3 > 0. Take γ = max{ν,ν 3 }, then ( ) u p γ u k p + γk p γ mes(ak ). A k A k Since 1 <p<n, we have by Sobolev imbedding and by (3.) that u L p (Ω) C u W 1,p 0 (Ω) C, where C > 0 is independent of t C 0. By Theorem 3.3 with q = p, m = l = p, M = 1, ε1 = p N, α 1 = p γ ( p, p p N + p),ˆγ = γ and ˆk = 1, we obtain that u M, where M depends only of p, γ, N, 1,mes(Ω), C. Theorem 3.5. For any C 0 R +, there exists constant C 1 such that for all t C 0,ifu is solution of (P t ) then t C 1 (1 + u ). Proof. Let C 0 R + and t C 0. If C 0 t 0, then let C 1 0 be an arbitrary constant, thus t C 1 C 1 (1 + u ) and the theorem is proved. Suppose that t>0. Let u be solution of (P t ). By Theorem 3.4 we have that u M, hence by (H) we have f(x, u)+σ u p u f(x, M)+σ M p ( M). Define k 1 =inff(x, M)+σ M p ( M) Ω (note that k 1 does not depend on t). Let Ω 0 Ω be a compact set and δ>0 such that φ>δin Ω 0, then Δ p u + σ u p u = f(x, u)+σ u p u + tφ + h >k 1 + tδ h, in Ω 0.If t k 1 + h δ, (3.3) then defining C 1 = it follows that k1+ h δ

9 Vol. 17 (010) Superlinear Ambrosetti Prodi problem 345 t C 1 C 1 (1 + u ) and the theorem is proved. Assume t> k 1 + h δ. Thus we have that tδ > k 1 + h k 1 + h and hence k 1 h +tδ > 0. ) 1 Define w 1 = v, where v is the solution of ( k1+tδ h Δ p v + σ v p v =1inΩ 0, v =0on Ω 0. Then we have ( ) Δ p w 1 + σ w 1 p k1 + tδ h w 1 = ( Δ p v + σ v p v) ( ) k1 + tδ h = < Δ p u + σ u p u, in Ω 0. Since u C 1 (Ω), it follows that u inf Ω0 u(x) M. Now we will analyze the two cases: inf Ω0 u(x) 0 and inf Ω0 u(x) < 0. First case: If inf Ω0 u(x) 0, then w 1 =0 inf Ω0 u(x) u on Ω 0 and by the Comparison Principle we obtain u w 1 in Ω 0.Letx 0 Ω 0 such that v(x 0 )= v, thus ( ) 1 k1 + tδ h u u(x 0 ) v(x0 ) that is t u δ v + h k 1 u δ δ v + h k 1 δ < u δ v + t, or t< 4 u δ v. (3.4) Second case: If inf Ω0 u(x)<0, then z =v M, where M = satisfies, in Ω 0, Δ p z + σ z p z = Δ p v + σ v M p (v M) < Δ p v + σ v p v =1, and z = v M = M, on Ω 0. M ( ) 1 k1 +tδ h

10 346 T. Junges Miotto NoDEA ( ) 1 k1+tδ h Thus defining w = z, it follows that ( Δ p w + σ w p k1 + tδ h w = < Δ p u + σ u p u in Ω 0. Still ( ) 1 ( k1 + tδ h k1 + tδ h w = z = = M u, ) ( Δ p z + σ z p z) on Ω 0. By the Comparison Principle we have u w on Ω 0. Let x 0 Ω 0 as above, thus that is, or t Define { C 1 = max u u(x 0 ) w (x 0 ) ( k1 + tδ h = ( k1 + tδ h = ( u + M) δ v 4 δ v, + h k 1 δ ) 1 (v(x0 ) M) ) 1 v M, ) 1 < ( u + M ) δ v M + t, t< p ( u + M ) δ v. (3.5) p δ v, p M δ v, h k 1 δ }. Then by (3.3), (3.4) and (3.5) wehavet C 1 (1 + u ), which concludes the proof. We also need the following theorem: Theorem 3.6. There exists a constant C such that for all t 1 and for all solution u of (P t ) with this t we have u C t 1 α. Proof. Consider g :Ω R R defined by g(x, s) =f(x, s) a(x)(s + ) α. Note that g is continuous and by (H3) we have g(x, s) lim s s α =0. (3.6)

11 Vol. 17 (010) Superlinear Ambrosetti Prodi problem 347 Suppose that the conclusion of theorem is false, then there exists sequences {t n } such that t n 1and{u n } solution of (P tn ) such that u n α >nt n. (3.7) Since u n is solution of (P tn ), it follows from definition of g that Δ p u n = a(x)(u + n ) α + g(x, u n )+t n φ + h. (3.8) By Theorem 3.4 we have that u n M, thus u + n = u n for n n 0 large enough. Define λ n = u n 1 q, where q = p α () > 0. Then it follows that λ n = u n 1 q (ntn ) 1 qα n 1 qα 0 as n. Without loss of generality we can assume that λ q n < 1forn n 0. Consider also, for n n 0 a function v n defined by v n (x) =λ q nu n (λ n x + x n )+M, where u n (x n )= u + n = u n.thus,forn n 0, v n (0) = 1 + M and 0 v n (x) 1+M. On the other hand (3.8) and a direct computation show that v n satisfies Δ p v n (x) =λ q()+p n a(y n )(u + n (y n )) α + λ q()+p n t n φ(y n ) +λ q()+p n [g(y n,u n (y n )) + h(y n )] = λ q()+p qα n a(y n )[v n (x) M + λ q n u n (y n )] α + λ q()+p n t n φ(y n ) +λ q()+p n [g(y n,u n (y n )) + h(y n )], where y n = λ n x + x n for x Ω n = Ω xn λ n and n n 0. Now, note that by definition of q we have q(p 1) + p qα = 0. Still, by (3.7), λ q()+p n t n = u n α t n 0 as n. Thus, since φ L (Ω), we have that λ q()+p n t n φ 0asn.Moreover, lim n λq()+p n [g(y n,u n (y n )) + h(y n )] = lim n g(λ n x + x n,u n (λ n x + x n )) u n α, since h L (Ω). We know that {u n (λ n x + x n )} is bounded from below by Theorem 3.4. If{u n (λ n x + x n )} is bounded from above, for all x Ω n and n N, then since g is continuous, we have that g(λ n x + x n,u n (λ n x + x n )) lim n u n α =0. If {u n (λ n x + x n )} is unbounded from above, then there exists { x n } Ω n such that u n (λ n x n + x n ) as n. Since α>0, by definition of {x n } we have that (u n (λ n x n + x n )) α (u n (x n )) α and then by (3.6), g(λ n x n +x n,u n (λ n x n +x n )) g(λ n x n +x n,u n (λ n x n +x n )) lim n u n α lim n (u n (λ n x n +x n )) α =0. Hence, since Ω is compact, we have that, for a subsequence, x n x 0 Ω. By regularity theorems in [1, ] forp-laplacian operators, one can obtain

12 348 T. Junges Miotto NoDEA estimates on {v n } ensuring that, for a subsequence, v n v locally uniformly, with v C 1 (G) andv satisfies Δ p v = a(x 0 )(v M) α in G, where G = R N,ifx 0 ΩorG = R N +,ifx 0 Ω. Since v n (x) M + λ q n u n (y n )=λ q n u + n (y n ) 0, for all x Ω n,n n 0 and v n ( ) M + λ q n u n (λ n +x n ) v M locally uniformly, we have that v M 0, for all x G. Thus defining w = v M, wehavethatw C 1 (G), w(0) = 1 and w(x) 0, for all x G.Moreover,w satisfies Δ p w = a(x 0 )w α in G. If G = R N, by Theorem 3.1 we have that w 0, which is a contradiction with the fact that w(0) = 1. And if G = R N +, in the same way, we obtain a contradiction with the Theorem 3.. Thus we conclude the proof. Remark 3.7. Since tφ = t + φ t φ, we can consider h = h t φ and suppose t>0, thus repeating the proof of Theorem 3.6 replacing t by max{t, 1}, we obtain: for each C 0 R +, there exists a constant C such that for all t C 0 and for all solution of (P t ) with this t we have u α C max{t, 1}. From Theorems 3.5 and 3.6 we get the following results: Theorem 3.8. Given t 0 R, there exist R, R >0 such that for all t t 0,ifu is a solution of (P t ) then u R and t R. Proof. Let t 0 R and define C 0 = t 0 0. It follows from Theorem 3.5 that for all t t 0 t 0 = C 0,ifu is a solution of (P t ) then t C 1 (1 + u ). By Remark 3.7 we have that t C 1 (1 + u ) C 1 (1 + (C max{1,t}) α ). If t 1, then t C 1 (1 + (C t) α ). Since α < 1 we infer that t is bounded, that is, there exists R 1 such that t R. By Remark 3.7 we obtain that u α C max{1,t} RC, defining R =( RC ) 1 α we obtain the result. Theorem 3.9. Given t 0 R, there exist R, R >0 such that for all t t 0,ifu is a solution of (P t ) then u C 1 (Ω) R and t R. Proof. Given t 0 R, define C 0 = t 0 0. By Theorem 3.8 we have that if u is a solution of (P t ) then u < R and t< R. Now, since u is a solution of (P t ) we have Δ p u = f(x, u)+tφ + h. Note that d(x, u) =f(x, u)+tφ + h is a Caratheodory function that satisfies d(x, u) f(x, u) + t φ + h. Since u [ M, R] ( M given by Theorem 3.4), f(x, u) R 1 for (x, u) Ω [ M, R] and then d(x, u) R 1 + R φ + h = R. Thus by Lemma. in [] u C 1,α (Ω), for 0 α<1and u C 1,α (Ω) R.

13 Vol. 17 (010) Superlinear Ambrosetti Prodi problem Second solution As we said previously, employing Leray Schauder degree Theory, we complete the proof Theorem 1.1 by finding another solution of (P t ). Now we are ready to prove it. Let us denote S = {t R;(P t ) has at least one supersolution}. From Proposition.3, we have that there exists t R such that (P t )hasa supersolution and for all t t, (P t ) has a supersolution, thus S is not empty and if t S then (,t] S. Define S 1 = {t R;(P t ) has at least one solution}. Obviously S 1 S. Moreover, if t S, then (P t ) has one supersolution ū. It follows from Proposition.1 that there exists subsolution u such that u ū. Thus by Theorem.4 there exists u solution of (P t ) with u u ū and therefore t S 1.ThusS 1 = S. By Theorem 3.8 wegetthat(p t ) does not have solution for all t R, thus S is bounded from above and we can define t =supt. S It follows from definition of supremum that for all t t,(p t )doesnothave solution and therefore we prove the item (iii) of Theorem 1.1. Now we will show (ii). From definition of supremum there exists {t n } Ssuch that t n t. Without loss of generality we can assume that t n is increasing. Since t n S, there exists u n solution of (P tn ), that is, for all ϕ W 1,p 0 (Ω), u n p u n ϕ = (f(x, u n )+t n φ + h)ϕ. (4.1) Ω Ω Considering t 0 = t 1 (the first element of the above sequence), we have by Theorem 3.4 and Theorem 3.8 that u n [ M,R], thus f(x, u n ) K. Still by Theorem 3.8 it follows that f(x, u n )+t n φ + h K + R φ + h C thus by Lemma. in [] it follows that {u n } is bounded in C 1,α (Ω) and therefore it has a convergent subsequence u nk u in C 1,β (Ω), 0 β<α.thus, take a limit as n k in (4.1) weget u p u ϕ = (f(x, u )+t φ + h)ϕ, Ω Ω that is, u is solution of (P t ). Hence, t Sand S =(,t ], which concludes the item ii). We will show now the item i). Letu be solution of (P t ) and define T = {t R;(P t ) has at least one supersolution ū u }.

14 350 T. Junges Miotto NoDEA It follows from Proposition.3 that T is a nonempty interval which is unbounded from below. Consider t 0 T. We will show that (P t0 ) has at least two solutions. Since t 0 T, there exists ū supersolution of (P t0 ) such that ū u. Proposition.1 and Theorem.4 provide us a solution u 0 of (P t0 ). Taking a smaller subsolution, if necessary, u 0 verifies u u 0 ū u. Define D = {u C0(Ω); 1 u <u<u u, < u < u, u C 1 (Ω) <R 0}, where R 0 is defined later. Define also f(x, u)+σ u p u, ξ u f(x, ξ) = f(x, ξ)+σ ξ p ξ, u ξ u f(x, u )+σ u p u, ξ u and Q t : C0(Ω) 1 C0(Ω) 1 by Q t (v) =w iff Δ p w + σ w p w = f(x, v)+tφ + h. From Theorem.4 we have that Q t is compact. Since f is bounded we have that the solutions of equation above are uniformly bounded in C 1,α (Ω) and then we can define R 0 > sup{ Q t0 (v) C 1 0 (Ω) ; v C1 0(Ω)}. We will show that Q t0 ( D) D. In fact, let v D and consider w = Q t0 (v). Since f is increasing and t 0 t we have that Δ p w + σ w p w = f(x, v)+t 0 φ + h f(x, u )+t 0 φ + h Δ p u + σ u p u. By Comparison Principle, w u. We will show that w contradiction that w and η is an inward normal vector, we have u w (x)< (x)= lim λ 0 u. Suppose by (x) > u (x) for some x Ω, since w(x) =u (x) =0 w(x + λη) w(x) lim λ which is a contradiction. Hence w = u (x), u. Similarly we obtain u w and u (x + λη) u (x) λ 0 λ u w. By definition of R 0 it follows that w D. Moreover if Q t is given by Theorem.4, we have that Q t = Q t in D, u is a solution of (P t ) if and only if u is a fixed point of Q t and u 0 D.If the boundary of D contains a solution of (P t0 ) then the proof is completed. Suppose that D does not contain any solution of (P t0 ). Let ψ Dand H λ = H :[0, 1] D C 1 0(Ω) defined by H(λ, u) =λq t0 (u)+(1 λ)ψ. Note that D is an open, bounded and convex set thus since Q t0 ( D) D, we have that H(λ, w) D, for all (λ, w) [0, 1) D. Therefore we conclude that 0 (I H(λ, ))( D), for all λ [0, 1], because if this occurred, we would have H(λ 0,v)=v, for some v D and for some λ 0 [0, 1]. Now, H(λ, v) D,for all λ [0, 1), and for λ = 1 we would have that H(1,v)=v, forv D, which

15 Vol. 17 (010) Superlinear Ambrosetti Prodi problem 351 is a contradiction since D does not contain any solution of (P t0 ). Therefore deg(i H λ, D, 0) is well defined. By the invariance homotopy we have deg(i ψ, D, 0) = deg(i H 0, D, 0) = deg(i H 1, D, 0) = deg(i Q t0, D, 0). Now, take y(λ) =λψ and H λ = H :[0, 1] D C0(Ω) 1 defined by H(λ, u) =(1 λ)ψ, again by the invariance homotopy we have deg(i ψ, D, 0) = deg(i H 0, D,y(0)) = deg(i H 1, D,y(1)) = deg(i,d,ψ)=1. Therefore it follows that deg(i Q t0, D, 0) = 1. We will prove that for r R large enough, deg(i Q t0,b r (0), 0) = 0. For t 0,let R, R > 0 be given by Theorem 3.9. Consider r>r, ˆt > R and define H t = H :[t 0, ˆt] B r (0) C0(Ω) 1 by H(t, u) =Q t (u). Note that H is compact and 0 (I H(t, ))( B r (0)), for all t [t 0, ˆt] (because on the contrary case there exists v B r (0) such that Q t (v) = H(t, v) =v, for some t [t 0, ˆt], and then v is a solution of (P t ) with v = r>r,which is a contradiction since for all t t 0, the solutions of (P t ) are bounded from above by R). By the invariance homotopy we have deg(i H t0,b r (0), 0) = deg(i Hˆt,B r(0), 0) = 0, since from Theorem 3.8, fort> R (P t ) has no solution. By the excision property of the degree, 0=deg(I Q t0,b r (0), 0) = deg(i Q t0, D, 0) + deg(i Q t0,b r (0) \D, 0), and hence deg(i Q t0,b r (0) \D, 0) 0, that is, there exists v B r (0) \D solution of (P t0 ) and thus (P t0 ) has two solutions. Thus we have that for t T, there exists at least two solutions for (P t ). Consider t =supt. T Thus (P t ) has at least two solutions for all t<t, concluding the proof of the theorem. Remark 4.1. We would like to prove that t = t, but we do not know how to do it. Indeed, we note that t t,thuswehavetoprovethatt t,thatis, t T.Now,sinceu is solution of (P t ), in particular, u is a supersolution of (P t )andu u. By Proposition.1 and Theorem.4 there is a solution u of (P t ) that satisfies u u u. But we do not get to assure that u u. Thus we can not assure that u D, only u D. Hence the reasoning used in the sequence and the Leray Schauder degree can not be applied.

16 35 T. Junges Miotto NoDEA Acknowledgments This paper was developed in part during my Ph.D. thesis at UNICAMP, under advise of Professor Djairo G. de Figueiredo. The author would like to thank Professor Djairo G. de Figueiredo and Professor Olimpio H. Miyagaki for all discussions and encouragement during the development of this work. The author was supported partially by Capes-Brazil. References [1] Ambrosetti, A., Prodi, G.: On the inversion of some differentiable mappings with singularities between Banach spaces. Ann. Mat. Pure Appl. 93, (197) [] Arcoya, D., Ruiz, D.: The Ambrosetti Prodi problem for the p-laplace operator. Comm. Partial Differ. Equ. 31, (006) [3] Berger, M.S., Podolak, E.: On the solutions of a nonlinear Dirichlet problem. Indiana Univ. Math. J. 4, (1974/1975) [4] Dancer, E.N.: On the ranges of certain weakly nonlinear elliptic partial differential equations. J. Math. Pures Appl. 57, (1978) [5] de Figueiredo, D.G.: Lectures on boundary value problems of Ambrosetti Prodi type. 1th Brazilian Seminar of Analysis, Brasil, 1980 [6] de Figueiredo, D.G.: On the superlinear Ambrosetti Prodi problem. Nonlinear Anal. 8, (1984) [7] de Figueiredo, D.G., Gossez, J.-P., Ubilla, P.: Local superlinearity and sublinearity for the p-laplacian. J. Funct. Anal. 57(3), (009) [8] de Figueiredo, D.G., Sirakov, B.: On the Ambrosetti Prodi problem for nonvariational elliptic systems. J. Differ. Equ. 40, (007) [9] de Figueiredo, D.G., Solimini, S.: A variational approach to superlinear elliptic problems. Comm. Partial Differ. Equ. 9, (1984) [10] de Figueiredo, D.G., Srikanth, P.N., Santra, S.: Non-radially symmetric solutions for a superlinear Ambrosetti Prodi type problem. Comm. Contem. Math. 7(6), (005) [11] de Figueiredo, D.G., Yang, J.: Critical superlinear Ambrosetti Prodi problems. Topol. Methods Nonlinear Anal. 14(1), (1999) [1] Dong, W.: A priori estimates and existence of positive solutions for a quasilinear elliptic equation. J. Lond. Math. Soc. 7, (005) [13] Gidas, B., Spruck, J.: A priori bounds for positive solutions of nonlinear elliptic equations. Comm. Partial Differ. Equ. 6, (1981) [14] Hess, P.: On a nonlinear elliptic boundary value problem of the Ambrosetti Prodi type. Boll. Un. Mat. Ital. A 17, (1980)

17 Vol. 17 (010) Superlinear Ambrosetti Prodi problem 353 [15] Koizumi, E., Schmitt, K.: Ambrosetti Prodi-type problems for quasilinear elliptic equations. Diff. Int. Equ. 18, 41 6 (005) [16] Ladyzhenskaya, O.A., Ural tseva, N.N.: Linear and Quasilinear Elliptic Equations. 1st edn. Academic Press, London (1968) [17] Lorca, S.: Nonexistence of positive solution for quasilinear elliptic problems in the half-space. J. Inequal. Appl. 007, 1 4 (007) [18] Mawhin, J.: The periodic Ambrosetti Prodi problem for nonlinear perturbations of the p-laplacian. J. Eur. Math. Soc. 8, (006) [19] Perera, K.: An existence result for a class of quasilinear elliptic boundary value problems with jumping nonlinearities. Topol. Methods Nonlinear Anal. 0, (00) [0] Serrin, J., Zou, H.: Cauchy Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities. Acta Math. 189, (00) [1] Tolksdorf, P.: On the Dirichlet problem for quasilinear equations in domains with conical boundary points. Comm. Partial Differ. Equ. 8, (1983) [] Tolksdorf, P.: Regularity for more general class of quasilinear elliptic equations. J. Differ. Equ. 51, (1984) T. Junges Miotto Departamento de Matemática, Universidade Federal de Santa Maria, Av. Roraima, 1000 CCNE, Santa Maria, RS , Brazil jungesmiotto@gmail.com Received: 5 February 009. Accepted: 13 January 010.

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT2400 Analyse 1. Eksamensdag: Onsdag 15. juni 2011. Tid for eksamen: 09.00 13.00 Oppgavesettet er på 6 sider. Vedlegg: Tillatte

Detaljer

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl.

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl. 1 MAT131 Bokmål Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl. 09-14 Oppgavesettet er 4 oppgaver fordelt på

Detaljer

Slope-Intercept Formula

Slope-Intercept Formula LESSON 7 Slope Intercept Formula LESSON 7 Slope-Intercept Formula Here are two new words that describe lines slope and intercept. The slope is given by m (a mountain has slope and starts with m), and intercept

Detaljer

Graphs similar to strongly regular graphs

Graphs similar to strongly regular graphs Joint work with Martin Ma aj 5th June 2014 Degree/diameter problem Denition The degree/diameter problem is the problem of nding the largest possible graph with given diameter d and given maximum degree

Detaljer

Existence of resistance forms in some (non self-similar) fractal spaces

Existence of resistance forms in some (non self-similar) fractal spaces Existence of resistance forms in some (non self-similar) fractal spaces Patricia Alonso Ruiz D. Kelleher, A. Teplyaev University of Ulm Cornell, 12 June 2014 Motivation X Fractal Motivation X Fractal Laplacian

Detaljer

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postponed exam: ECON420 Mathematics 2: Calculus and linear algebra Date of exam: Tuesday, June 8, 203 Time for exam: 09:00 a.m. 2:00 noon The problem set covers

Detaljer

SVM and Complementary Slackness

SVM and Complementary Slackness SVM and Complementary Slackness David Rosenberg New York University February 21, 2017 David Rosenberg (New York University) DS-GA 1003 February 21, 2017 1 / 20 SVM Review: Primal and Dual Formulations

Detaljer

Trust region methods: global/local convergence, approximate January methods 24, / 15

Trust region methods: global/local convergence, approximate January methods 24, / 15 Trust region methods: global/local convergence, approximate methods January 24, 2014 Trust region methods: global/local convergence, approximate January methods 24, 2014 1 / 15 Trust-region idea Model

Detaljer

Kneser hypergraphs. May 21th, CERMICS, Optimisation et Systèmes

Kneser hypergraphs. May 21th, CERMICS, Optimisation et Systèmes Kneser hypergraphs Frédéric Meunier May 21th, 2015 CERMICS, Optimisation et Systèmes Kneser hypergraphs m, l, r three integers s.t. m rl. Kneser hypergraph KG r (m, l): V (KG r (m, l)) = ( [m]) l { E(KG

Detaljer

Trigonometric Substitution

Trigonometric Substitution Trigonometric Substitution Alvin Lin Calculus II: August 06 - December 06 Trigonometric Substitution sin 4 (x) cos (x) dx When you have a product of sin and cos of different powers, you have three different

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Tirsdag 7. juni

Detaljer

An oscillatory bifurcation from infinity, and

An oscillatory bifurcation from infinity, and Nonlinear differ. equ. appl. 15 (28), 335 345 121 9722/8/3335 11, DOI 1.17/s3-8-724-1 c 28 Birkhäuser Verlag Basel/Switzerland An oscillatory bifurcation from infinity, and from zero Philip Korman Abstract.

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt ksamen i: ECON3120/4120 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON3120/4120 Mathematics 2: Calculus and linear algebra Eksamensdag:

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Date of exam: Friday, May

Detaljer

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ.

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ. Oppgave 1 Beviskalklen i læreboka inneholder sluttningsregelen QR: {ψ φ}, ψ ( xφ). En betingelse for å anvende regelen er at det ikke finnes frie forekomste av x i ψ. Videre så inneholder beviskalklen

Detaljer

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2 Mathematics 4Q Name: SOLUTIONS. (x + 5)(x +5x) 7 8 (x +5x) 8 + C [u x +5x]. (3 x) (3 x) + C [u 3 x] 3. 7x +9 (7x + 9)3/ [u 7x + 9] 4. x 3 ( + x 4 ) /3 3 8 ( + x4 ) /3 + C [u + x 4 ] 5. e 5x+ 5 e5x+ + C

Detaljer

Dynamic Programming Longest Common Subsequence. Class 27

Dynamic Programming Longest Common Subsequence. Class 27 Dynamic Programming Longest Common Subsequence Class 27 Protein a protein is a complex molecule composed of long single-strand chains of amino acid molecules there are 20 amino acids that make up proteins

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Onsdag 6. desember

Detaljer

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001)

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001) by Simin Feng, Herbert G. Winful Opt. Lett. 26, 485-487 (2001) http://smos.sogang.ac.r April 18, 2014 Introduction What is the Gouy phase shift? For Gaussian beam or TEM 00 mode, ( w 0 r 2 E(r, z) = E

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 4. juni 2010 Tid for eksamen: 9.00 12.00 Oppgavesettet

Detaljer

Moving Objects. We need to move our objects in 3D space.

Moving Objects. We need to move our objects in 3D space. Transformations Moving Objects We need to move our objects in 3D space. Moving Objects We need to move our objects in 3D space. An object/model (box, car, building, character,... ) is defined in one position

Detaljer

Flows and Critical Points

Flows and Critical Points Nonlinear differ. equ. appl. 15 (2008), 495 509 c 2008 Birkhäuser Verlag Basel/Switzerland 1021-9722/040495-15 published online 26 November 2008 DOI 10.1007/s00030-008-7031-2 Nonlinear Differential Equations

Detaljer

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3 Relational Algebra 1 Unit 3.3 Unit 3.3 - Relational Algebra 1 1 Relational Algebra Relational Algebra is : the formal description of how a relational database operates the mathematics which underpin SQL

Detaljer

Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with.

Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with. Solutions #1 1. a Show that the path γ : [, π] R 3 defined by γt : cost ı sint j sint k lies on the surface z xy. b valuate y 3 cosx dx siny z dy xdz where is the closed curve parametrized by γ. Solution.

Detaljer

1 Aksiomatisk definisjon av vanlige tallsystemer

1 Aksiomatisk definisjon av vanlige tallsystemer Notat XX for MAT1140 1 Aksiomatisk definisjon av vanlige tallsystemer 1.1 Aksiomer Vi betrakter en mengde R, utstyrt med to avbild- Algebraiske aksiomer. ninger: addisjon { R R R, (x, y) x + y. { R R R,

Detaljer

Call function of two parameters

Call function of two parameters Call function of two parameters APPLYUSER USER x fµ 1 x 2 eµ x 1 x 2 distinct e 1 0 0 v 1 1 1 e 2 1 1 v 2 2 2 2 e x 1 v 1 x 2 v 2 v APPLY f e 1 e 2 0 v 2 0 µ Evaluating function application The math demands

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON420 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON30/40 Matematikk : Matematisk analyse og lineær algebra Exam: ECON30/40 Mathematics : Calculus and Linear Algebra Eksamensdag: Tirsdag 0. desember

Detaljer

Periodic solutions for a class of non-autonomous differential delay equations

Periodic solutions for a class of non-autonomous differential delay equations Nonlinear Differ. Equ. Appl. 16 (2009), 793 809 c 2009 Birkhäuser Verlag Basel/Switzerland 1021-9722/09/060793-17 published online July 4, 2009 DOI 10.1007/s00030-009-0035-8 Nonlinear Differential Equations

Detaljer

Gradient. Masahiro Yamamoto. last update on February 29, 2012 (1) (2) (3) (4) (5)

Gradient. Masahiro Yamamoto. last update on February 29, 2012 (1) (2) (3) (4) (5) Gradient Masahiro Yamamoto last update on February 9, 0 definition of grad The gradient of the scalar function φr) is defined by gradφ = φr) = i φ x + j φ y + k φ ) φ= φ=0 ) ) 3) 4) 5) uphill contour downhill

Detaljer

Splitting the differential Riccati equation

Splitting the differential Riccati equation Splitting the differential Riccati equation Tony Stillfjord Numerical Analysis, Lund University Joint work with Eskil Hansen Innsbruck Okt 15, 2014 Outline Splitting methods for evolution equations The

Detaljer

5 E Lesson: Solving Monohybrid Punnett Squares with Coding

5 E Lesson: Solving Monohybrid Punnett Squares with Coding 5 E Lesson: Solving Monohybrid Punnett Squares with Coding Genetics Fill in the Brown colour Blank Options Hair texture A field of biology that studies heredity, or the passing of traits from parents to

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON20/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON20/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Fredag 2. mai

Detaljer

TMA4329 Intro til vitensk. beregn. V2017

TMA4329 Intro til vitensk. beregn. V2017 Norges teknisk naturvitenskapelige universitet Institutt for Matematiske Fag TMA439 Intro til vitensk. beregn. V17 ving 4 [S]T. Sauer, Numerical Analysis, Second International Edition, Pearson, 14 Teorioppgaver

Detaljer

On the Existence of Strong Solutions to a Fluid Structure Interaction Problem with Navier Boundary Conditions

On the Existence of Strong Solutions to a Fluid Structure Interaction Problem with Navier Boundary Conditions J. Math. Fluid Mech. 2019 21:36 c 2019 Springer Nature Switzerland AG https://doi.org/10.1007/s00021-019-0440-7 Journal of Mathematical Fluid Mechanics On the Existence of Strong Solutions to a Fluid Structure

Detaljer

Neural Network. Sensors Sorter

Neural Network. Sensors Sorter CSC 302 1.5 Neural Networks Simple Neural Nets for Pattern Recognition 1 Apple-Banana Sorter Neural Network Sensors Sorter Apples Bananas 2 Prototype Vectors Measurement vector p = [shape, texture, weight]

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 4. april 2008 Tid for eksamen: 9.00 12.00 Oppgavesettet

Detaljer

STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD

STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD 1 Bakgrunnen for dette initiativet fra SEF, er ønsket om å gjøre arbeid i høyden tryggere / sikrere. Både for stillasmontører og brukere av stillaser. 2 Reviderte

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON3120/4120 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON3120/4120 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Tirsdag

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag:

Detaljer

Solvability and Regularity for an Elliptic System Prescribing the Curl, Divergence, and Partial Trace of a Vector Field on Sobolev-Class Domains

Solvability and Regularity for an Elliptic System Prescribing the Curl, Divergence, and Partial Trace of a Vector Field on Sobolev-Class Domains J. Math. Fluid Mech. 19 (2017), 375 422 c 2016 Springer International Publishing 1422-6928/17/030375-48 DOI 10.1007/s00021-016-0289-y Journal of Mathematical Fluid Mechanics Solvability and Regularity

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON360/460 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Exam: ECON360/460 - Resource allocation and economic policy Eksamensdag: Fredag 2. november

Detaljer

Databases 1. Extended Relational Algebra

Databases 1. Extended Relational Algebra Databases 1 Extended Relational Algebra Relational Algebra What is an Algebra? Mathematical system consisting of: Operands --- variables or values from which new values can be constructed. Operators ---

Detaljer

Verifiable Secret-Sharing Schemes

Verifiable Secret-Sharing Schemes Aarhus University Verifiable Secret-Sharing Schemes Irene Giacomelli joint work with Ivan Damgård, Bernardo David and Jesper B. Nielsen Aalborg, 30th June 2014 Verifiable Secret-Sharing Schemes Aalborg,

Detaljer

Generalization of age-structured models in theory and practice

Generalization of age-structured models in theory and practice Generalization of age-structured models in theory and practice Stein Ivar Steinshamn, stein.steinshamn@snf.no 25.10.11 www.snf.no Outline How age-structured models can be generalized. What this generalization

Detaljer

Ringvorlesung Biophysik 2016

Ringvorlesung Biophysik 2016 Ringvorlesung Biophysik 2016 Born-Oppenheimer Approximation & Beyond Irene Burghardt (burghardt@chemie.uni-frankfurt.de) http://www.theochem.uni-frankfurt.de/teaching/ 1 Starting point: the molecular Hamiltonian

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag 8. desember

Detaljer

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23 UTKAST ENGLISH VERSION EKSAMEN I: MOT100A STOKASTISKE PROSESSER VARIGHET: 4 TIMER DATO: 16. februar 2006 TILLATTE HJELPEMIDLER: Kalkulator; Tabeller og formler i statistikk (Tapir forlag): Rottman: Matematisk

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230/4230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 24. mars 2006 Tid for eksamen: 13.30 16.30

Detaljer

On time splitting for NLS in the semiclassical regime

On time splitting for NLS in the semiclassical regime On time splitting for NLS in the semiclassical regime Rémi Carles CNRS & Univ. Montpellier Rémi Carles (Montpellier) Splitting for semiclassical NLS 1 / 21 Splitting for NLS i t u + 1 2 u = f ( u 2) u,

Detaljer

Speed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F.

Speed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F. September 9, 2011 Physics 131 Prof. E. F. Redish Theme Music: Speed Racer Theme Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz 1 Reading questions Are the lines on the spatial graphs representing

Detaljer

Stationary Phase Monte Carlo Methods

Stationary Phase Monte Carlo Methods Stationary Phase Monte Carlo Methods Daniel Doro Ferrante G. S. Guralnik, J. D. Doll and D. Sabo HET Physics Dept, Brown University, USA. danieldf@het.brown.edu www.het.brown.edu Introduction: Motivations

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Mathematics 2: Calculus and linear algebra Exam: ECON320/420 Mathematics 2: Calculus and linear algebra Eksamensdag: Tirsdag 30. mai 207

Detaljer

Endelig ikke-røyker for Kvinner! (Norwegian Edition)

Endelig ikke-røyker for Kvinner! (Norwegian Edition) Endelig ikke-røyker for Kvinner! (Norwegian Edition) Allen Carr Click here if your download doesn"t start automatically Endelig ikke-røyker for Kvinner! (Norwegian Edition) Allen Carr Endelig ikke-røyker

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSIEE I OSLO ØKONOMISK INSIU Eksamen i: ECON320/420 Mathematics 2: Calculus and Linear Algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag:. desember 207 Sensur kunngjøres:

Detaljer

ECON3120/4120 Mathematics 2, spring 2004 Problem solutions for the seminar on 5 May Old exam problems

ECON3120/4120 Mathematics 2, spring 2004 Problem solutions for the seminar on 5 May Old exam problems Department of Economics May 004 Arne Strøm ECON0/40 Mathematics, spring 004 Problem solutions for the seminar on 5 May 004 (For practical reasons (read laziness, most of the solutions this time are in

Detaljer

Emneevaluering GEOV272 V17

Emneevaluering GEOV272 V17 Emneevaluering GEOV272 V17 Studentenes evaluering av kurset Svarprosent: 36 % (5 av 14 studenter) Hvilket semester er du på? Hva er ditt kjønn? Er du...? Er du...? - Annet PhD Candidate Samsvaret mellom

Detaljer

Ground states for fractional Kirchhoff equations with critical nonlinearity in low dimension

Ground states for fractional Kirchhoff equations with critical nonlinearity in low dimension onlinear Differ. Equ. Appl. 07 4:50 c 07 Springer International Publishing AG DOI 0.007/s00030-07-0473-7 onlinear Differential Equations and Applications odea Ground states for fractional Kirchhoff equations

Detaljer

Hvordan føre reiseregninger i Unit4 Business World Forfatter:

Hvordan føre reiseregninger i Unit4 Business World Forfatter: Hvordan føre reiseregninger i Unit4 Business World Forfatter: dag.syversen@unit4.com Denne e-guiden beskriver hvordan du registrerer en reiseregning med ulike typer utlegg. 1. Introduksjon 2. Åpne vinduet

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON3120/4120 Mathematics 2: Calculus an linear algebra Exam: ECON3120/4120 Mathematics 2: Calculus an linear algebra Eksamensag: Tirsag 3. juni 2008

Detaljer

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger Institutt for matematiske fag Eksamensoppgave i TMA432 Introduksjon til vitenskapelige beregninger Faglig kontakt under eksamen: Anton Evgrafov Tlf: 453 163 Eksamensdato: 8. august 217 Eksamenstid (fra

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON420 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag

Detaljer

HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN

HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN EKSAMEN I FAGET STE 6243 MODERNE MATERIALER KLASSE: 5ID DATO: 7 Oktober 2005 TID: 900-200, 3 timer ANTALL SIDER: 7 (inklusiv Appendix: tabell og formler) TILLATTE

Detaljer

Uniqueness of the nonlinear Schrödinger equation driven by jump processes

Uniqueness of the nonlinear Schrödinger equation driven by jump processes Nonlinear Differ. Equ. Appl. (219) 26:22 c 219 pringer Nature witzerland AG 121-9722/19/31-31 published online June 6, 219 https://doi.org/1.17/s3-19-569-3 Nonlinear Differential Equations and Applications

Detaljer

Continuity. Subtopics

Continuity. Subtopics 0 Cotiuity Chapter 0: Cotiuity Subtopics.0 Itroductio (Revisio). Cotiuity of a Fuctio at a Poit. Discotiuity of a Fuctio. Types of Discotiuity.4 Algebra of Cotiuous Fuctios.5 Cotiuity i a Iterval.6 Cotiuity

Detaljer

Eksamen i TMA4190 Mangfoldigheter Onsdag 4 juni, Tid :

Eksamen i TMA4190 Mangfoldigheter Onsdag 4 juni, Tid : Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag SOLUTIONS Eksamen i TMA4190 Mangfoldigheter Onsdag 4 juni, 2013. Tid : 09.00 13.00 Oppgave 1 a) La U R n være enhetsdisken x

Detaljer

Løsningsførslag i Matematikk 4D, 4N, 4M

Løsningsførslag i Matematikk 4D, 4N, 4M Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 Løsningsførslag i Matematikk 4D, 4N, 4M Oppgave (Kun før 4D Vi har f(x, y x + y x y, for x y. Dette gir For (x, y

Detaljer

Solutions of nonlinear differential equations

Solutions of nonlinear differential equations Nonlinear Differ. Equ. Appl. 17 (21), 249 27 c 29 Birkhäuser Verlag Basel/Switzerland 121-9722/1/2249-22 published online December 11, 29 DOI 1.17/s3-9-52-7 Nonlinear Differential Equations and Applications

Detaljer

EN Skriving for kommunikasjon og tenkning

EN Skriving for kommunikasjon og tenkning EN-435 1 Skriving for kommunikasjon og tenkning Oppgaver Oppgavetype Vurdering 1 EN-435 16/12-15 Introduction Flervalg Automatisk poengsum 2 EN-435 16/12-15 Task 1 Skriveoppgave Manuell poengsum 3 EN-435

Detaljer

Level Set methods. Sandra Allaart-Bruin. Level Set methods p.1/24

Level Set methods. Sandra Allaart-Bruin. Level Set methods p.1/24 Level Set methods Sandra Allaart-Bruin sbruin@win.tue.nl Level Set methods p.1/24 Overview Introduction Level Set methods p.2/24 Overview Introduction Boundary Value Formulation Level Set methods p.2/24

Detaljer

32.2. Linear Multistep Methods. Introduction. Prerequisites. Learning Outcomes

32.2. Linear Multistep Methods. Introduction. Prerequisites. Learning Outcomes Linear Multistep Methods 32.2 Introduction In the previous Section we saw two methods (Euler and trapezium) for approximating the solutions of certain initial value problems. In this Section we will see

Detaljer

Den som gjør godt, er av Gud (Multilingual Edition)

Den som gjør godt, er av Gud (Multilingual Edition) Den som gjør godt, er av Gud (Multilingual Edition) Arne Jordly Click here if your download doesn"t start automatically Den som gjør godt, er av Gud (Multilingual Edition) Arne Jordly Den som gjør godt,

Detaljer

Bijective (= one-to-one and onto) Bijektiv (= en-til-en og på) Bisection principle (= lion hunting) Halveringsmetoden

Bijective (= one-to-one and onto) Bijektiv (= en-til-en og på) Bisection principle (= lion hunting) Halveringsmetoden English-Norwegian Dictionary for MAT1300 Absolutely convergent Absolutt konvergent Affine linear Affint lineær Approximation Tilnærming Bijective (= one-to-one and onto) Bijektiv (= en-til-en og på) Bisection

Detaljer

Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)

Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) Emneevaluering GEOV325 Vår 2016 Kommentarer til GEOV325 VÅR 2016 (emneansvarlig) Forelesingsrommet inneholdt ikke gode nok muligheter for å kunne skrive på tavle og samtidig ha mulighet for bruk av power

Detaljer

Concentration Compactness at the Mountain Pass Level in Semilinear Elliptic Problems

Concentration Compactness at the Mountain Pass Level in Semilinear Elliptic Problems Nonlinear differ. equ. appl. 15 (2008), 581 598 c 2008 Birhäuser Verlag Basel/Switzerland 1021-9722/040581-18 published online 26 November 2008 DOI 10.1007/s00030-008-7046-8 Nonlinear Differential Equations

Detaljer

Dean Zollman, Kansas State University Mojgan Matloob-Haghanikar, Winona State University Sytil Murphy, Shepherd University

Dean Zollman, Kansas State University Mojgan Matloob-Haghanikar, Winona State University Sytil Murphy, Shepherd University Dean Zollman, Kansas State University Mojgan Matloob-Haghanikar, Winona State University Sytil Murphy, Shepherd University Investigating Impact of types of delivery of undergraduate science content courses

Detaljer

Oppgave 1. Norges teknisk-naturvitenskapelige universitet NTNU Institutt for fysikk EKSAMEN I: MNFFY 245 INNFØRING I KVANTEMEKANIKK

Oppgave 1. Norges teknisk-naturvitenskapelige universitet NTNU Institutt for fysikk EKSAMEN I: MNFFY 245 INNFØRING I KVANTEMEKANIKK Norges teknisk-naturvitenskapelige universitet NTNU Institutt for fysikk EKSAMEN I: MNFFY 45 INNFØRING I KVANTEMEKANIKK DATO: Fredag 4 desember TID: 9 5 Antall vekttall: 4 Antall sider: 5 Tillatte hjelpemidler:

Detaljer

HONSEL process monitoring

HONSEL process monitoring 6 DMSD has stood for process monitoring in fastening technology for more than 25 years. HONSEL re- rivet processing back in 990. DMSD 2G has been continuously improved and optimised since this time. All

Detaljer

Second Order ODE's (2P) Young Won Lim 7/1/14

Second Order ODE's (2P) Young Won Lim 7/1/14 Second Order ODE's (2P) Copyright (c) 2011-2014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or

Detaljer

Exercise 1: Phase Splitter DC Operation

Exercise 1: Phase Splitter DC Operation Exercise 1: DC Operation When you have completed this exercise, you will be able to measure dc operating voltages and currents by using a typical transistor phase splitter circuit. You will verify your

Detaljer

Oppgave 1a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet.

Oppgave 1a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet. TDT445 Øving 4 Oppgave a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet. Nøkkel: Supernøkkel: Funksjonell avhengighet: Data i en database som kan unikt identifisere (et sett

Detaljer

MA2501 Numerical methods

MA2501 Numerical methods MA250 Numerical methods Solutions to problem set Problem a) The function f (x) = x 3 3x + satisfies the following relations f (0) = > 0, f () = < 0 and there must consequently be at least one zero for

Detaljer

Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)

Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) INF247 Er du? Er du? - Annet Ph.D. Student Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen,

Detaljer

GEF2200 Atmosfærefysikk 2017

GEF2200 Atmosfærefysikk 2017 GEF2200 Atmosfærefysikk 2017 Løsningsforslag til sett 3 Oppgaver hentet fra boka Wallace and Hobbs (2006) er merket WH06 WH06 3.18r Unsaturated air is lifted (adiabatically): The rst pair of quantities

Detaljer

Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX)

Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX) Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX) Peter J. Rosendahl Click here if your download doesn"t start automatically Han Ola of Han Per:

Detaljer

Exam in Quantum Mechanics (phys201), 2010, Allowed: Calculator, standard formula book and up to 5 pages of own handwritten notes.

Exam in Quantum Mechanics (phys201), 2010, Allowed: Calculator, standard formula book and up to 5 pages of own handwritten notes. Exam in Quantum Mechanics (phys01), 010, There are 3 problems, 1 3. Each problem has several sub problems. The number of points for each subproblem is marked. Allowed: Calculator, standard formula book

Detaljer

Self-improving property of nonlinear higher order parabolic systems near the boundary

Self-improving property of nonlinear higher order parabolic systems near the boundary Nonlinear Differ Equ Appl 7 200), 2 54 c 2009 Birkhäuser Verlag Basel/Switzerland 02-9722/0/0002-34 published online October 2, 2009 DOI 0007/s00030-009-0038-5 Nonlinear Differential Equations and Applications

Detaljer

Kartleggingsskjema / Survey

Kartleggingsskjema / Survey Kartleggingsskjema / Survey 1. Informasjon om opphold i Norge / Information on resident permit in Norway Hvilken oppholdstillatelse har du i Norge? / What residence permit do you have in Norway? YES No

Detaljer

GEO231 Teorier om migrasjon og utvikling

GEO231 Teorier om migrasjon og utvikling U N I V E R S I T E T E T I B E R G E N Institutt for geografi Emnerapport høsten 2013: GEO231 Teorier om migrasjon og utvikling Innhold: 1. Informasjon om emnet 2. Statistikk 3. Egenevaluering 4. Studentevaluering

Detaljer

FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt)

FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt) FYSMEK1110 Eksamensverksted 23. Mai 2018 14:15-18:00 Oppgave 1 (maks. 45 minutt) Page 1 of 9 Svar, eksempler, diskusjon og gode råd fra studenter (30 min) Hva får dere poeng for? Gode råd fra forelesere

Detaljer

TFY4170 Fysikk 2 Justin Wells

TFY4170 Fysikk 2 Justin Wells TFY4170 Fysikk 2 Justin Wells Forelesning 5: Wave Physics Interference, Diffraction, Young s double slit, many slits. Mansfield & O Sullivan: 12.6, 12.7, 19.4,19.5 Waves! Wave phenomena! Wave equation

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON1910 Poverty and distribution in developing countries Exam: ECON1910 Poverty and distribution in developing countries Eksamensdag: 1. juni 2011 Sensur

Detaljer

Maple Basics. K. Cooper

Maple Basics. K. Cooper Basics K. Cooper 2012 History History 1982 Macsyma/MIT 1988 Mathematica/Wolfram 1988 /Waterloo Others later History Why? Prevent silly mistakes Time Complexity Plots Generate LATEX This is the 21st century;

Detaljer

Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)

Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) INF234 Er du? Er du? - Annet Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) Hvor

Detaljer

Lipschitz Metrics for Non-smooth evolutions

Lipschitz Metrics for Non-smooth evolutions Lipschitz Metrics for Non-smooth evolutions Alberto Bressan Department of Mathematics, Penn State University bressan@math.psu.edu Alberto Bressan (Penn State) Nonsmooth evolutions 1 / 36 Well-posedness

Detaljer

KROPPEN LEDER STRØM. Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal.

KROPPEN LEDER STRØM. Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal. KROPPEN LEDER STRØM Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal. Hva forteller dette signalet? Gå flere sammen. Ta hverandre i hendene, og la de to ytterste personene

Detaljer

NO X -chemistry modeling for coal/biomass CFD

NO X -chemistry modeling for coal/biomass CFD NO X -chemistry modeling for coal/biomass CFD Jesper Møller Pedersen 1, Larry Baxter 2, Søren Knudsen Kær 3, Peter Glarborg 4, Søren Lovmand Hvid 1 1 DONG Energy, Denmark 2 BYU, USA 3 AAU, Denmark 4 DTU,

Detaljer

Noetherian Automorphisms of Groups

Noetherian Automorphisms of Groups Mediterr. j. math. 2 (2005), 125 135 1660-5446/020125-11, DOI 10.1007/s00009-005-0034-x c 2005 Birkhäuser Verlag Basel/Switzerland Mediterranean Journal of Mathematics Noetherian Automorphisms of Groups

Detaljer

Gir vi de resterende 2 oppgavene til én prosess vil alle sitte å vente på de to potensielt tidskrevende prosessene.

Gir vi de resterende 2 oppgavene til én prosess vil alle sitte å vente på de to potensielt tidskrevende prosessene. Figure over viser 5 arbeidsoppgaver som hver tar 0 miutter å utføre av e arbeider. (E oppgave ka ku utføres av é arbeider.) Hver pil i figure betyr at oppgave som blir pekt på ikke ka starte før oppgave

Detaljer

Approximation of the Power of Kurtosis Test for Multinormality

Approximation of the Power of Kurtosis Test for Multinormality Journal of Multivariate Analysis 65, 166180 (1998) Article No. MV97178 Approximation of the Power of Kurtosis Test for Multinormality Kanta Naito Hiroshima University, Higashi-Hiroshima, 739, Japan Received

Detaljer