2x 3 4/x dx. 2 5 x 3 + LF: Vi utfører polynomdivisjon. 2x + 1 dx = + C = 5x8/ ln 2x C 4. πx 2 e 3x3 dx = π
|
|
- Klaus Bjerke
- 8 år siden
- Visninger:
Transkript
1 Innlevering ELFE KJFE MAFE Mtemtikk HIOA Obligtorisk innlevering 5 Innleveringsfrist Mndg 6. oktober 5 før forelesningen : Antll oppgver: Løsningsforslg Finn de ubestemte integrlene ) x 4/x dx LF: x 4/x dx = x x 4 ln x + C b) c) 5 x + LF: Vi utfører polynomdivisjon 5 x + x x + dx = = x8/5 8/5 x x + dx x /5 + + / x + dx + x + ln x + + C = 5x8/5 + x 4 + ln x + + C 4 πx e x dx LF: Vi benytter substitusjon med u = x πx e x dx = π 9 ex + C d) t t + dt LF: Vi forsøker med substitusjonen u = t +. D er t = (u )/ og dt = du/. t (u )/ dt = t + u du = u / u / du 9 ( ) 9 5 u5/ u / (t + )5/ (t + )/ + C = + + C 5
2 En beholder er konstruert som rotsjonslegemet om y-ksen v grfen til funksjonen y = x / for x mellom og. Bestem volumet til en væske som fyller beholderen til en høyde h. Hint: Endringsrten til volumet med hensyn til høyden dv/dh er gitt ved tverrsnittrelet ved høyde h. Finn et uttrykk for dette som en funksjon v høyden h. Benytt så integrsjon til å nne V (h). LF: Volumet til væsken ved høyde h er en funksjon V (h). For høyden y mellom og H = / er endringsrten V (y) lik det horisontle tverrsnittrelet ved høyde h. Dette relet er lik pi gnget med rdius x(y) kvdrert. Siden y = x / så er x uttrykt ved y gitt ved x = y /. Derfor hr vi t dv dy = π(y/ ) = πy Vi kn integrere med hensyn til høyden for å nne V (h). Ved bunnen v beholderen er volumet lik så r V () =. Vi hr derfor t for h /. V (h) = V (h) V () = h dv dy dy = h πy dy = πh 4 /4 Et legeme beveger seg lngs en rett vei. Hstigheten i et gitt tidspunkt er gitt som følger ) v(x) = x x < x x 5 x < x 5 b) x x +.5 for x mellom og. Vi skiller gjerne mellom frt og hstighet. Hstigheten (eng. velocity) er vektoren med både retning og størrelse, mens frten er størrelsen til hstigheten (eng. speed). (I dgligtle skilles det gjerne ikkje mellom begrepene.) Bestem følgende i hvert v de to tilfellene: Distnse kjørt (diernsen mellom strt og sluttpunkt). Distnse tilbkelgt (hvor lng strekning bilen hr kjørt). Bestem gjennomsnitsfrten og gjennomsnithstigheten. LF: Siden vi beveger oss lngs en rett linje er det bre to retninger, represetnert ved fortegnet, til hstigheten. Frten er bsoluttverdien til hstighetsfunksjonen. (Vi benytter ikkje enheter i denne oppgven.) I del ) er hstigheten postiv eller null hele tiden så foryttingen er lik totldistnse tilbkelgt (med retning gitt ved positiv retning til koordintsystemet).
3 Distnsen tilbkelgt er lik x dx + x dx x dx = [x /] + [x ] + [5x x /] 5 = 8/ = 4/ Gjennomsnitlig frt er derfor (4/)/5 = 4/5.7. Gjennsomsnitlig hstighet er tilnærmet lik.7 i positiv retning. b) Her vil hstigheten både være positiv og negtiv. Distnsen tilbkelgt er lik Distnsen foryttet er lik x x +.5 dx x x +.5 dx Vi nner ut hvor v(x) = x x +.5 er positiv og negtiv. Nullpunktene er løsningene til likningen x x +.5 = De er x = ± 9 5 = ± Nullpunktene er x = / og x = 5/. Siden grfen til x x +.5 er en prbel som vender oppover vet vi t v(x) er positiv mellom og / smt mellom 5/ og. Mellom / og 5/ er v(x) negtiv. Vi evluerer (regner ut) integrlene x x +.5 dx = x / x / +.5x = 7/ 7/ +.75 = =.75 / x x +.5 dx 5/ / x x +.5 dx x x +.5 dx = x x +.5 dx + 5/ / 5/ x x +.5 dx = x x +.5 dx =.75 [x / x / +.5x] 5/ / =.75 [4/( 8) (/)(4/4) +.5] =.75 + / =.5 / = + / = Gjennomsnittsfrten er Gjennomsnitshstigheten er.5 (størrelsen er.5 og retningen er i negtiv retning i koordintsystemet).
4 4 I denne oppgven kn dere benytte nummeriske metoder både til å nne skjæringspunkt og til å evluere integrler (hvis nødvendig).. Bestem relet til legemet vgrenset v grfene til (x )/ og ln(x). LF: L f(x) = ln(x) (x )/. D er f (x) = /x /. Funksjonen er vtgende for < x < og økende for x >. Funksjonen er kontinuerlig, den hr derfor mksimlt to nullpunkter. Det er opplgt t x = er et nullpunkt. Vi benytter Newtons metode (eller hlveringsmetoden) til å nne end et nullpunkt til. Det er tilnærmet lik Arelet vgrenset v grfene til de to funksjonene er gitt ved integrlet v f(x) mellom de to nullpunktene. Det er tilnærmet lik ln(x) (x )/ dx = x ln(x) x (x ) / = (ln(6.7448) ) + + ( ) /6 = Bestem volumet til legemet som fremkommer ved å rotere om x-ksen regionen vgrenset v grfene til funksjonene e x og e x. LF: De to grfene skjærer hverndre når e x = e x. Dette skjer presis når eksponentene er like x = x. Så x = og x =. Området vgrenset v grfene er regionen mellom grfene fr x = til x =. I dette området er e x størst så volumet er lik π π (e x ) (e x ) dx = e 4x e x dx Det nnes ingen elementær funksjon som er ntiderivert til (ndre leddet i) integrnden. Vi benytter numerisk integrsjon og nner t volumet er tilnærmet lik Finn de bestemte integrlene (ekskt) ) x x + dx LF: Vi benytter substitusjonen u = x +. D er du = xdx. x u() x + dx = u() / u du = 5 u / du = u / 5 = 5 4
5 b) c) sin(x ) + cos (x) dx Hint: Integrlet fr til v en odde (integrerbr) funksjon er. LF: Siden sin(x ) er en odde (integrerbr) funksjon så er integrlet sin(x ) dx =. Integrlet vårt er derfor lik cos (x) dx = cos(x) + dx = sin(x) 4 + x = sin(4) Her hr vi benyttet en trigonometrisk likhet for å skrive om integrnden slik t det blir lettere å nne en ntiderivert. ln(x) dx Dette er et uegentlig integrl. Funksjonen ln(x) går mot når x nærmer seg fr positiv side. Integrlet er lik lim + ln(x) dx Delvis integrsjon med ln(x) hvor u settes lik og v = ln(x) gir Grensen ln(x) dx = x ln(x) x = ln() ln() + lim ln() = + siden ln(x) går mot mye sktere enn går mot. Integrlet er derfor lik lim ln() ln() + = ( ln()) = Finn volumet til legemet som fremkommer ved å rotere regionen mellom x-ksen og grfen til x fr x = til x =, om y-ksen. Hint: Hvordn ser legemet ut? LF: Legemet ser ut som en sylinder med rdius og høyde hvor det er freset ut en hlvkule med rdius i toppen. Volumet er derfor lik π π/ = 4π/ Vi kn og benytte skivemetoden til å nne volumet. D får vi t volume er πx ( x ) dx = π(x + ( x ) / / ) = 4π/ 5
6 . Finn buelegden til kurven gitt ved g(x) = e x fr x = til x =. Er svret du får rimelig? Bruk gjerne numerisk integrsjon. Buelengden er lik L = + e x dx Den rette linjen fr strt til slutt-punkt hr lengde + ( e + ) = Dette gir et nedre estimt for buelengden. Nummerisk integrsjon gir (her er Simpsons metode benytt med delintervller L Eg hdde opprinnelig bre tenkt t denne siste deloppgven skulle løses numerisk. Men noen v dere hr påpekt t det går nt å nne en ntiderivert som en elementær funksjon. Eg viser hvordn mn kn nne de ntideriverte. Vi benytter en generell i stede for tllet i eksponenten + e x dx Vi benytter substitusjonen u = + e x. D er u = e x = (u ). Integrlet blir omgjort til u (u ) du Vi fjerner roten ved å benytte substitusjonen v = u eller u = v. D er du = vdv og vi får v (v ) vdv = v (v ) dv = Vi benytter polynomdivisjon smt delbrøksoppsplting + v dv = ( ( + / v )) dv = v + ( ) v + / ln v v + + C Vi uttrykker v ved hjelp v x som v(x) = + e x og får + e x dx = + e x + + e ln x + e x + + C 6
BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8
Innlevering BYFE DAFE Matematikk HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 5. april 6 kl Antall oppgaver: 8 Funksjonen ft) er vist i guren over. Funksjonen F x) er denert som for x. F x)
Detaljer1 Mandag 1. mars 2010
Mndg. mrs Fundmentlteoremet sier t integrsjon og derivsjon er motstte opersjoner. Vi hr de siste ukene sett hvordn vi på ulike måter kn derivere funksjoner i flere vrible. Nå er turen kommet til den motstte
DetaljerMatematikk Øvingsoppgaver i numerikk leksjon 9 Numerisk integrasjon
Mtemtikk 1000 Øvingsoppgver i numerikk leksjon 9 Numerisk integrsjon Forståelsen v integrlet som et rel ligger til grunn når vi skl beregne integrler numerisk. Litt mer presist: Når f(x) 0 for lle x i
Detaljer2 π[r(x)] 2 dx = u 2 du = π 1 ] 2 = π u 1. V = π. V = π [R(x)] 2 [r(x)] 2 dx = π (x + 3) 2 (x 2 + 1) 2 dx = 117π 5.
NTNU Institutt for mtemtiske fg TMA Mtemtikk høsten 2 Løsningsforslg - Øving 6 Avsnitt 6. 7 Ved å bruke disk-metoden får mn t volumet er π[r(x)] 2 dx 3 Ved å bruke disk-metoden får mn t volumet er L u
Detaljer1 Mandag 18. januar 2010
Mndg 8. jnur 2 I denne første forelesningen skl vi friske opp litt rundt funksjoner i en vribel, se på hvordn de vokser/vtr, studere kritiske punkter og beskrive krumning og vendepunkter. Vi får ikke direkte
DetaljerEKSAMEN. 1. klassene, ingenørutdanning og Flexing. ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formelark)
KANDIDATNUMMER: EKSAMEN EMNENAVN: Mtemtikk EMNENUMMER: REA4 EKSAMENSDATO:. desember 9 KLASSE:. klssene, ingenørutdnning og Flexing. TID: kl. 9. 3.. FAGANSVARLIG: Hns Petter Hornæs ANTALL SIDER UTLEVERT:
DetaljerTMA4100 Matematikk1 Høst 2008
TMA4 Mtemtikk Høst 8 Norges teknisk nturvitenskpelige universitet Institutt for mtemtiske fg Løsningsforslg Øving 6 5..5 Gjennomsnittet v f(x) = x på intervllet [, ] er lik relet A under grfen dividert
Detaljerdx = 1 2y dy = dx/ x 3 y3/2 = 2x 1/2 + C 1
NTNU Institutt for mtemtiske fg TMA Mtemtikk høsten Løsningsforslg - Øving 7 Avsnitt 6.5 ) En hr t y = e, så y + 3y = e + 3e = e. b) En hr t y = e 3 e (3/), så y + 3y = e 3e (3/) + 3e + 3e (3/) = e. c)
Detaljer1 k 2 + 1, k= 5. i=1. i = k + 6 eller k = i 6. m+6. (i 6) i=1
TMA4 Høst 6 Norges teknisk nturvitenskpelige universitet Institutt for mtemtiske fg Løsningsforslg Øving 5 5..6 Vi er gitt summen og ønsker å skrive den på formen m k=5 k +, f(i). i= Strtpunktene er henholdsvis
DetaljerMAT 100A: Mappeeksamen 4
. november, MAT A: Mppeeksmen Løsningsforslg Oppgve ) Vi bruker produktregelen: f (x) x rctn x + x + x Siden x og rctn x hr smme fortegn, og x ldri er negtiv, er f (x) positiv overlt, bortsett fr t f ().
DetaljerLøsningsforslag til Eksamen i fag MA1103 Flerdimensjonal analyse
Norges teknisk nturvitenskpelige universitet Institutt for mtemtiske fg Side 1 v 5 Løsningsforslg til Eksmen i fg MA113 Flerdimensjonl nlyse 2.5.6 Oppgve 1 Vi hr f(x, y) = (4 x 2 y 2 )e x+y. ) Kritiske
DetaljerDAFE ELFE Matematikk 1000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Mandag 2. mars 2015 før forelesningen 10:30 Antall oppgaver: 17
Innlevering DAFE ELFE Matematikk 000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Mandag 2. mars 205 før forelesningen 0:0 Antall oppgaver: 7 Deriver de følgende funksjonene. 2 a) f(x) = cos(2x )
DetaljerI = (xy + z 2 ) dv. = z 2 dv. 1 1 x 1 x y z 2 dz dy dx,
TMA5 Mtemtikk Vår 7 Norges teknisk nturvitenskpelige universitet Institutt for mtemtiske fg Løsningsforslg Øving 8 Alle oppgvenummer referer til 8 utgve v Adms & Essex Clculus: A Complete Course 57: Vi
DetaljerMatematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Numerisk integrasjon
Mtemtikk 1000 Øvingsoppgver i numerikk leksjon 8 Numerisk integrsjon Som kjent kn vi regne ut (bestemte) integrler ved nti-derivsjon. Dette resulttet er et v de viktikgste innen klkulus; det heter tross
DetaljerOppfriskningskurs i matematikk 2007
Oppfriskningskurs i mtemtikk 2007 Mrte Pernille Htlo Institutt for mtemtiske fg, NTNU 6.-11. ugust 2007 Velkommen! 2 Temer Algebr Trigonometri Funksjoner og derivsjon Integrsjon Eksponensil- og logritmefunksjoner
DetaljerEKSAMEN. 1. klassene, ingenørutdanning og flexing. ANTALL SIDER UTLEVERT: 5(innkl. forside og 2 sider formelark)
KANDIDATNUMMER: EKSAMEN EMNENAVN: Mtemtikk EMNENUMMER: REA4 og REA4f EKSAMENSDATO:. ugust 9 KLASSE:. klssene, ingenørutdnning og fleing. TID: kl. 9... FAGANSVARLIG: Hns Petter Hornæs ANTALL SIDER UTLEVERT:
DetaljerPrøve i Matte 1000 ELFE KJFE MAFE 1000 Dato: 02. desember 2015 Hjelpemiddel: Kalkulator og formelark
Prøve i Matte ELFE KJFE MAFE Dato: 2. desember 25 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Gitt matrisene A = 2 2 3 5 og B = [ 5 7 2 ] Regn
DetaljerEKSAMEN. 1. klassene, ingenørutdanning og Flexing. HansPetterHornæsogLarsNilsBakken. ANTALL SIDER UTLEVERT: 7 (innkl. forside og 4 sider formelark)
KANDIDATNUMMER: EKSAMEN EMNENAVN: Mtemtikk EMNENUMMER: REA4 og REA4f EKSAMENSDATO: 9. desember 0 KLASSE:. klssene, ingenørutdnning og Flexing. TID: kl. 9.00 3.00. FAGANSVARLIG: HnsPetterHornæsogLrsNilsBkken
DetaljerIntegrasjon del 2. October 15, Department of Mathematical Sciences, NTNU, Norway. Integrasjon
Integrsjon del Deprtment of Mthemticl Sciences, NTNU, Norwy Octoer 5, 4 Integrsjon Sustitusjon for estemte integrler Husk kjærneregel d dt f (g(t)) = f (g(t)) g (t) ved fundmentlteoremet (del ) vi får
Detaljer1 Mandag 25. januar 2010
Mndg 5. jnur Vi fortsetter med å se på det bestemte integrlet, bl.. på hvordn vi kn bruke numeriske beregninger til å bestemme verdien når vi ikke nødvendigvis kn finne en nti-derivert. Videre skl vi t
DetaljerE K S A M E N. Matematikk 3MX. Elevar/Elever Privatistar/Privatister. AA6524/AA6526 8. desember 2004 UTDANNINGSDIREKTORATET
E K S A M E N UTDANNINGSDIREKTORATET Mtemtikk 3MX Elevr/Elever Privtistr/Privtister AA654/AA656 8. desember 004 Vidregånde kurs II / Videregående kurs II Studieretning for llmenne, økonomiske og dministrtive
DetaljerPrøve i Matte 1000 BYFE DAFE 1000 Dato: 03. mars 2016 Hjelpemiddel: Kalkulator og formelark. Alle svar skal grunngis. Alle deloppgaver har lik vekt.
Prøve i Matte 1 BYFE DAFE 1 Dato: 3. mars 216 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. LØSNINGSFORSLAG Oppgave 1 Gitt matrisene A = [ 8 3 6 2 ] [ og
DetaljerEKSAMEN. 1. klassene, ingenørutdanning og Flexing. ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formelark)
KANDIDATNUMMER: EKSAMEN EMNENAVN: Mtemtikk EMNENUMMER: REA42 og REA42f EKSAMENSDATO:. desember 2 KLASSE:. klssene, ingenørutdnning og Flexing. TID: kl. 9... FAGANSVARLIG: Hns Petter Hornæs ANTALL SIDER
DetaljerLøsningsforslag. og B =
Prøve i Matte EMFE DAFE ELFE BYFE Dato: august 25 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave a) Gitt matrisene A = 2 3 2 4 2 Løsningsforslag og
DetaljerSammendrag kapittel 1 - Aritmetikk og algebra
Smmendrg kpittel 1 - Aritmetikk og lgebr Regneregler for brøker Utvide brøk: Gng med smme tll i teller og nevner. b = k b k Forkorte brøk: del med smme tll i teller og nevner. b = : k b : k Summere brøker:
DetaljerM2, vår 2008 Funksjonslære Integrasjon
M, vår 008 Funksjonslære Integrsjon Avdeling for lærerutdnning, Høgskolen i Vestfold. pril 009 1 Arelet under en grf Vi begynner vår diskusjon v integrsjon, på smme måte som vi begynte med derivsjon, ved
DetaljerLøsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3
Prøve i Matematikk BYFE DAFE Dato: 27. mai 26 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Løsningsforslag Oppgave Gitt matrisene [ 2 A 4 B [ 2 og C [ 2
DetaljerTMA4100 Matematikk 1 for MTDESIG, MTIØT-PP, MTMART og MTPROD høsten 2010
TMA4100 Matematikk 1 for MTDESIG, MTIØT-PP, MTMART og MTPROD høsten 2010 Toke Meier Carlsen Institutt for matematiske fag 30. september 2010 2 Fremdriftplan I går 5.5 Ubestemte integraler og substitusjon
DetaljerI løpet av uken blir løsningsforslag lagt ut på emnesiden http://www.hig.no/toel/allmennfag/emnesider/rea1042
Ukeoppgver, uke 43, i Mtemtikk, Substitusjon. Høgskolen i Gjøvik Avdeling for ingeniørfg Mtemtikk Ukeoppgver uke 43 I løpet v uken blir løsningsforslg lgt ut på emnesiden http://www.hig.no/toel/llmennfg/emnesider/re4
Detaljerdy ycos 2 y = dx. Ved å integrere på begge sider av likhetstegnet får man ved å substituere u = y,du = dy dy ycos 2 y = 2du cos 2 u = x.
NTNU Institutt for mtemtiske fg TMA Mtemtikk høsten 2 Løsningsforslg - Øving 7 Avsnitt 6.5 ) En hr t y = e, så 2y +y = 2e +e = e. b) En hr t y = e 2 e (/2), så 2y +y = 2e e (/2) +e +e (/2) = e. c) En hr
DetaljerKapittel 4.7. Newtons metode. Kapittel 4.8.
Ekskt løsning Newtons metode - Integrsjon Forelesning i Mtemtikk TMA00 Hns Jko Rivertz Institutt for mtemtiske fg 0. septemer 0 Kpittel.7. Newtons metode Den ekskte løsningen v x x = 0er ikke særlig rukelig
Detaljer9 + 4 (kan bli endringer)
Innlevering DAFE ELFE Matematikk HIOA Obligatorisk innlevering 4 Innleveringsfrist Onsdag 29. april 25 Antall oppgaver: 9 + 4 (kan bli endringer) Finn de ubestemte integralene a) 2x 3 4/x dx b) c) 2 5
DetaljerDerivasjon. Oversikt over Matematikk 1. Derivasjon anvendelser. Sekantsetningen
3 Oversikt over Mtemtikk Induksjon Grenser og kontinuitet Skjæringssetningen Eksistens v ekstrempunkt Elementære funksjoner Derivsjon Sekntsetningen Integrsjon Differensilligninger Kurver i plnet Rekker
DetaljerEKSAMEN. 1. klassene, ingenørutdanning og Flexing. ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formelark)
KANDIDATNUMMER: EKSAMEN EMNENAVN: Mtemtikk 0 EMNENUMMER: REA04 EKSAMENSDATO:. desember 008 KLASSE:. klssene, ingenørutdnning og Flexing. TID: kl. 9.00 3.00. FAGANSVARLIG: Hns Petter Hornæs ANTALL SIDER
DetaljerLøsningsforslag Kollokvium 1
Løsningsforslg Kollokvium 1 30. jnur 015 Her finner dere et løsningsforslg for oppgvene som ble diskutert på Kollokvium 1. Oppgve 1 Regning med enheter ) Energienheten 1 ev (elektronvolt) er definert som
DetaljerLØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101)
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA0/MA60) Fredag 2. desember 202 Tid: 09:00 3:00 Hjelpemidler: Kode
DetaljerIntegrasjon Skoleprosjekt MAT4010
Integrsjon Skoleprosjekt MAT4010 Tiin K. Kristinslund, Julin F. Rossnes og Torstein Hermnsen 19. mrs 2014 1 Innhold 1 Innledning 3 2 Integrsjon 3 3 Anlysens fundmentlteorem 7 4 Refernser 10 2 1 Innledning
DetaljerForkunnskaper i matematikk for fysikkstudenter. Integrasjon.
De grunnleggende definisjonene L oss strte med følgende prolem: Gitt en ontinuerlig funsjon y = f der f for [, ] Beregn relet A som er vgrenset v grfen til f, -sen, og de to vertile linjene = og = Vi n
Detaljera 2πf(x) 1 + (f (x)) 2 dx.
MA 4: Anlyse Uke 44, http://home.hi.no/ svldl/m4 H Høgskolen i Agder Avdeling for relfg Institutt for mtemtiske fg Om lengde v kurver. Noen få formler der integrsjon brukes for å beregne lengder, reler
Detaljer1 Mandag 8. mars 2010
1 Mndg 8. mrs 21 Vi hr tidligere integrert funksjoner lngs x-ksen, og vi hr integrert funksjoner i flere vrible over begrensede områder i xy-plnet. I denne forelesningen skl vi integrere funksjoner lngs
DetaljerBYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 4 Innleveringsfrist Fredag 11. mars 2016 Antall oppgaver: Løsningsforslag
Innlevering BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 4 Innleveringsfrist Fredag 11. mars 2016 Antall oppgaver: 10 + 1 Løsningsforslag 1 Hvilken av de to funksjonene vist i guren er den deriverte
DetaljerEKSAMEN. ANTALL SIDER UTLEVERT: 7 (innkl. forside og 2 sider formelark)
KANDIDATNUMMER: EKSAMEN FAGNAVN: Mtemtikk FAGNUMMER: REA EKSAMENSDATO: 5. desember 6 KLASSE:. klssene, ingenørutdnning. TID: kl. 9... FAGLÆRER: Hns Petter Hornæs ANTALL SIDER UTLEVERT: 7 (innkl. forside
DetaljerLøsningsforslag: Eksamen i MAT111 - Grunnkurs i Matematikk I
Universitetet i Bergen Matematisk institutt Bergen, 8. desember 006. Bokmål Løsningsforslag: Eksamen i MAT - Grunnkurs i Matematikk I Mandag desember 8, 006, kl. 09-4. Oppgave Gitt funksjonen f(x) = ln(
DetaljerAlle svar skal grunngis. Alle deloppgaver har lik vekt.
Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom
DetaljerFormelsamling i matematikk
Formelsmling i mtemtikk Algebr Aritmetiske opersjoner (b + c) b + c + c b Potensregler Polynom b + c b b + c d + bc d bc b c d b d c d bc x y x+y x x / x y x y n x x /n 0 x n x n ( x ) y xy (b) x x y (
DetaljerForkurs, Avdeling for Ingeniørutdanning
Eksamen i FO99A Matematikk Ordinær Eksamen Dato 8. mai 8 Tidspunkt 9. - 14. Antall oppgaver 4 Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 Deriver følgende
DetaljerAlle svar skal grunngis. Alle deloppgaver har lik vekt.
Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom
DetaljerOPPGAVESETT MAT111-H16 UKE 47. Oppgaver til seminaret 25/11
OPPGAVESETT MAT111-H16 UKE 47 Avsn. 7.1: 1, 11 På settet: S.1, S.2, S.3, S.4 Oppgaver til seminaret 25/11 Oppgaver til gruppene uke 48 Løs disse først så disse Mer dybde Avsn. 6.6 3 Avsn. 6.7 3, 7 Avsn.
DetaljerOPPGAVE 1 NYNORSK. LØYSINGSFORSLAG Eksamen i MAT111 - Grunnkurs i matematikk I onsdag 16. mai 2012 kl. 09:00-14:00. a) La z 1 = 3 3 3i, z 2 = 4 + i,
LØYSINGSFORSLAG Eksamen i MAT - Grunnkurs i matematikk I onsdag 6. mai kl. 9:-4: NYNORSK OPPGAVE a) La z = i, z = 4 + i, finn (skriv på forma a + bi): i) z z og ii) z z. : i) z z = ( i)(4 + i) = i i =
DetaljerInnlevering i TRFE 1000 Frist: 14. april Løysingsforslag
Innlevering i TRFE 1 Frist: 14. pril Løysingsforslg Oppgve 1 ) Om to eksponentilfunksjonr med sme grunntl skl vere like, må også eksponentne vere like 1 : e x2 = e x+1 x 2 = x + 1 x 2 x 1 = x = ( 1) ±
DetaljerLøsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2
Prøve i FO929A - Matematikk Dato: 1. juni 2012 Målform: Bokmål Antall oppgaver: 5 (20 deloppgaver) Antall sider: 2 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver
DetaljerLøsningsforslag. Prøve i Matematikk 1000 BYFE DAFE 1000 Dato: 29. mai 2017 Hjelpemiddel: Kalkulator og formelark. Oppgave 1 Gitt matrisene.
Prøve i Matematikk BYFE DAFE Dato: 29. mai 27 Hjelpemiddel: Kalkulator og formelark Løsningsforslag Oppgave Gitt matrisene A = 2 2 B = [ 2 3 4 ] og C = Regn ut, om mulig, summene A + B, A + B T og A +
DetaljerLøsningsforslag til eksamen i MAT111 Vår 2013
BOKMÅL MAT - Vår Løsningsforslag til eksamen i MAT Vår Oppgave Finn polarrepresentasjonen til i. i Skriv på formen x + iy. i Løsning Finner først modulus og argument til i: i = ( ) + ( ) = 4 = arg( ( )
DetaljerEKSAMEN BOKMÅL STEMMER. DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember :00-13: FAGKODE: IR Matematikk 1
EKSAMEN BOKMÅL DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember 15 9:-13: FAGKODE: FAGNAVN: IR151 Matematikk 1 HJELPEMIDLER: Del 1: kl 9.-11. Ingen Del : kl 11.-13. Lommeregner Lærebok etter fritt valg Matematisk
DetaljerKvadratur. I(f) = f(x)dx.
Kvdrtur Når mn snkker om numerisk kvdrtur er mn interessert i pproksimere integrler v funksjoner (som representerer reler, volumer, densiteter, o.s.v.) I(f) = f(x)dx. Det klles for kvdrtur fordi i gmle
DetaljerLøsningsforslag i matematikk
Løsningsforslag i matematikk 060808 Oppgave (a) ( a b ) b 4 a (ab) = a b b 4 a a b = a b = b a = a + b + 4 a b = a + + b + 4 + (b) Omskrivning av likningen gir sin(x) + cos(x) = 0 sin(x) cos(x) = tan(x)
Detaljera) f(x) = 3 cos(2x 1) + 12 LF: Vi benytter (lineær) kjerneregel og får f (x) = (sin(7x + 1)) (sin( x) + x) sin(7x + 1)(sin( x) + x) ( sin(x) + x) 2 =
Innlevering ELFE KJFE MAFE Matematikk 1000 HIOA Obligatorisk innlevering 4 Innleveringsfrist Mandag 12. oktober 2015 før forelesningen 12:30 Antall oppgaver: 7 + 3 Løsningsforslag 1 Deriver de følgende
DetaljerR2 - Heldagsprøve våren 2013
Løsningsskisser HD R R - Heldgsprøve våren 0 Løsningsskisser Viktigste oppsummeringer: Må skrive med penn på eksmen! Slurv og regnefeil, både med tll og bokstver, er hovedproblemet. Beste måten å fikse
DetaljerVolum Lengde Areal Forelesning i Matematikk 1 TMA4100
Volum Lengde Areal Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 4. oktober 011 Kapittel 6.. Volum ved sylindriske skall 3 Skall-metoden z = g(x) 1 1 1 1 3 1 1 3 z
DetaljerFormelsamling i matematikk
Formelsmling i mtemtikk Alger Aritmetiske opersjoner ( + c) = + c + c Potensregler Polynom = + c + c d + c = d c c d = d c = d c x y = x+y x = x / x y = x y n x = x /n 0 = x n = x n ( x ) y = xy () x =
DetaljerIntegralregning. Mål. for opplæringen er at eleven skal kunne
8 Integrlregning Mål for opplæringen er t eleven skl kunne gjøre rede for definisjonen v estemt integrl som grense for en sum og uestemt integrl som ntiderivert eregne integrler v de sentrle funksjonene
DetaljerOPPGAVESETT MAT111-H17 UKE 47. Oppgaver til seminaret 24/11
OPPGAVESETT MAT111-H17 UKE 47 På settet: S.1, S.2, S.3, S.4, S.5 Oppgaver til seminaret 24/11 Oppgaver til gruppene uke 48 Løs disse først så disse Mer dybde Avsn. 6.6 3 Avsn. 6.7 3, 7 Avsn. 7.9 28, 29
Detaljer9 + 4 (kan bli endringer)
Innlevering DAFE ELFE Matematikk HIOA Obligatorisk innlevering 4 Innleveringsfrist Onsdag 9. april 5 Antall oppgaver: 9 + 4 (kan bli endringer) Finn de ubestemte integralene a) x 3 4/x dx LF: x 3 4/x dx
DetaljerHøgskolen i Oslo og Akershus. 1 (x 2 + 1) 1/2 + x 1 2 (x2 + 1) 1/2 (x 2 + 1) = x 2x 2 x = = 3 ln x sin x
Løysingsforslag til eksamen i matematikk, mai 4 Oppgåve a) i) ii) f(x) x x + x(x + ) / ( f (x) x (x + ) / + x (x + ) /) g(x) ln x sin x x (x + ) / + x (x + ) / (x + ) x + + x x x + x + + x x + x + x +
DetaljerIntegrasjon Fundamentalteoremet Substitusjon Forelesning i Matematikk 1 TMA4100
Integrsjon Fundmentlteoremet Substitusjon Forelesning i Mtemtikk 1 TMA4100 Hns Jkob Rivertz Institutt for mtemtiske fg 23. september 2011 2 Mtemtisk induksjon Alle elefnter er ros! Vil bevise P n Alle
DetaljerTFY4104 Fysikk. Institutt for fysikk, NTNU. Lsningsforslag til ving 9.
TFY44 Fysikk. Institutt for fysikk, NTNU. Lsningsforslg til ving 9. Ogve. ) C V E dl dersom dl? E b) B U e 4" r e e 4" r e :6 9 9 9 4:4 ev c) D Totl otensiell energi for et system med unktldninger er i
DetaljerLØSNINGSFORSLAG. Skriv følgende komplekse tall både på kartesisk form som a + bi og på polar form som re iθ (r 0 og 0 θ < 2π). a) 2 + 3i.
Innlevering DAFE ELFE Matematikk 000 HIOA Obligatorisk innlevering Innleveringsfrist Onsdag. februar 05 før forelesningen :30 Antall oppgaver: LØSNINGSFORSLAG Skriv følgende komplekse tall både på kartesisk
DetaljerEksempelsett R2, 2008
Eksempelsett R, 008 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave a) Deriver funksjonen f x x cosx f x cosx x s x f x cosx 6x sinx
DetaljerEksamen R2, Va ren 2014, løsning
Eksmen R, V ren 04, løsning Tid: timer Hjelpemidler: Vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler er tilltt. Oppgve ( poeng) Deriver funksjonene ) f sin Vi bruker kjerneregelen på sin,
DetaljerFag: Matematikk 1T-Y for elever og privatister. Antall sider i oppgaven: 8 inklusiv forside og opplysningsside
Loklt gitt eksmen 2012 Eksmen Fg: Mtemtikk 1T-Y for elever og privtister Fgkode: MAT1006 Eksmensdto: 25. mi Antll sider i oppgven: 8 inklusiv forside og opplysningsside Eksmenstid: Hjelpemidler under eksmen:
DetaljerLøsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 2009
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 009 Oppgave 1 Funksjonen g er definert ved g(x)
DetaljerEksempel Funksjonen f (x)=x 3 er strengt voksende. vokser på intervallet [0, ) og avtar på intervallet
Kpittel Derivsjon I det første kpitlet skl vi friske opp teorien for funksjoner i en vribel, se på hvordn de vokser/vtr, studere deres kritiske punkter og beskrive krumning og vendepunkter. For intervller
DetaljerEKSAMEN. Ingeniørstudenter som tar opp igjen eksa- men (6stp.).
KANDIDATNUMMER: EKSAMEN FAGNAVN: Matematikk FAGNUMMER: F74A EKSAMENSDATO: 6. desember 24 SENSURFRIST: 6. januar 25 Ingeniørstudenter som tar opp igjen eksa- KLASSE: men 6stp.). TID: kl. 9. 4.. FAGLÆRER:
DetaljerEKSAMEN I EMNET Løsning: Mat Grunnkurs i Matematikk I Mandag 14. desember 2015 Tid: 09:00 14:00
Universitetet i Bergen Det matematisk naturvitenskapelige fakultet Matematisk institutt Side 1 av 7 BOKMÅL EKSAMEN I EMNET Mat 111 - Grunnkurs i Matematikk I Mandag 14. desember 15 Tid: 9: 14: Tillatte
DetaljerKinematikk i to og tre dimensjoner
Kinemtikk i to og tre dimensjoner 3.1.218 Innleveringsfrist oblig 1: Mndg, 5.eb. kl.18 Innlevering kun vi: https://devilry.ifi.uio.no/ Mulig å levere som gruppe (i Devilry, N 3) Bruk gjerne Pizz ved spørsmål
DetaljerDagens program. 7.6 Numerisk integrasjon (fortsatt) 7.7 Uegentlige integraler
Dgens progrm 7.6 Numerisk integrsjon (fortstt) 7.7 Uegentlige integrler Forelesningen onsdg 28. oktober flyttes til ud. R7. Trpesmetoden Merknd side 479 Den tilnærmede verdien til integrlet f (x)dx beregnet
Detaljer6. Beregning av treghetsmoment.
Forelesningsnotter i mtemtikk Bruk v integrsjon Beregning v treghetsmoment Side 1 6 Beregning v treghetsmoment 61 Definisjoner Først de grunnleggende definisjonene: Momentkse r m en liten punktformet prtikkel
DetaljerInnlevering i matematikk Obligatorisk innlevering nr. 4 Innleveringsfrist: 21. januar 2010 kl Antall oppgaver: 4.
Innlevering i matematikk Obligatorisk innlevering nr. 4 Innleveringsfrist: 1. januar 1 kl. 14. Antall oppgaver: 4 Løsningsforslag Oppgave 1 a = [3, 1, ], b = [, 4, 7] og c = [ 4, 1, ]. a) a = 3 + ( 1)
DetaljerNumerisk Integrasjon
Numerisk Integrsjon Anne Kværnø Mrch 1, 018 1 Problemstilling Vi skl ltså finne en numerisk tilnærmelse til integrlet for en gitt funksjon f (x). I(, b) = f (x)dx Teknikken vi skl diskutere klles numeriske
DetaljerFasit, Anvendelser av integrasjon.
Ukeoppgaver, uke, i Matematikk, Anvendelser av integrasjon. 5 Fasit, Anvendelser av integrasjon. Oppgave F er en rettvinklet trekant, med begge kateter av lengde, så horisontal avgrensning er x. a) V πy
DetaljerVår 2004 Ordinær eksamen
år Ordinær eksmen. En bil kjører med en hstighet på 9 km/h lngs en rett strekning. Sjåføren tråkker plutselig på bremsene, men gjør dette med økende krft slik t (den negtive) kselersjonen (retrdsjonen)
DetaljerS1 kapittel 6 Derivasjon Løsninger til oppgavene i boka
S kpittel 6 Derivsjon Løsninger til oppgvene i ok 6. c y x y x = = = = y x 4 5 9 4 y 5 6 x 4 = = = = y x y x = = = = 7 ( 5) 6 ( ) 8 6. f( x ) f( x ) 5 7 x x ( ) 4 = = = = 6. T( x) = 0,x +,0 T T = + = (0)
DetaljerMultippel integrasjon. Geir Ellingsrud
Multippel integrsjon. Geir Ellingsrud 2. pril 24 2 NB: Dette er en midlertidig versjon dtert 2. pril 24. Den kommer til å bli utvidet og korrigert fortløpende!!. Dobbelt integrlet over rektngler og iterert
DetaljerLøsningsforslag eksamen i TMA4100 Matematikk desember Side 1 av 7
Løsningsforslag eksamen i TMA4 Matematikk 2. desember 23. Side av 7 Oppgave Løs initialverdiproblemet y (2/x)y, y() 2. Løsning: y (2/x)y er en førsteordens lineær differensialligning. Vi finner en løsning
DetaljerLøsningsforslag til Eksamen i MAT111
Universitetet i Bergen Matematisk institutt Bergen, 9. desember 25. Bokmål Løsningsforslag til Eksamen i MAT Mandag 9. desember 25, kl. 9-. Dette er kun et løsningsforslag. Oppgave a) Betrakt de to komplekse
DetaljerLøsning av utvalgte øvingsoppgaver til Sigma R2 kapittel 5
Løsning av utvalgte øvingsoppgaver til Sigma R kapittel 5 5.5 Ce kx y = kce kx Vi setter inn i y + ky og ser om vi får 0: 5.5 ax + a y = ax Vi setter inn i y 5.54 kce kx + k Ce kx = 0 x x + y: ax x(ax
DetaljerMAT 100a - LAB 4. Før vi gjør dette, skal vi for ordens skyld gjennomgå Maple-kommandoene for integrasjon (cf. GswM kap. 12).
MAT 00 - LAB 4 Denne øvelsen er i hovedsk viet til integrsjon. For mnge er integrsjon i prksis det smme som ntiderivsjon, og noe som kn rukes til å eregne relet v enkelte områder i plnet som lr seg egrense
DetaljerTFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 8. a = e m E
TFY414 Fysikk. Institutt for fysikk, NTNU. Høsten 16. Løsningsforslg til øving 8. Oppgve 1. ) C F = E = m Newtons. lov. Her er = e, så elektronets kselersjon blir = e m E ltså mot venstre. b) C Totlt elektrisk
DetaljerHøgskolen i Oslo og Akershus. a) Finn den deriverte av disse funksjonene: b) Finn disse ubestemte integralene: c) Finn disse bestemte integralene:
Oppgave 1 a) Finn den deriverte av disse funksjonene: i) f(x) = x x 2 + 1 ii) g(x) = ln x sin x x 2 b) Finn disse ubestemte integralene: i) (2x + ) dx ii) 6 cos(x) sin 5 (x) dx c) Finn disse bestemte integralene:
DetaljerR2 eksamen våren 2014. (19.05.2014)
R Eksmen V04 R eksmen våren 04. (9.05.04) Løsningsskisser (Versjon 3.0.4) Del - Uten hjelpemidler Oppgve ) fx sinu; u 3x Kjerneregel: f x f uu x cosu3 3 cos3x b) e x e x med kjerneregel som i ) Produktregel:
DetaljerArne B. Sletsjøe. Kompendium, MAT 1012
Arne B. Sletsjøe Kompendium, MAT 2 Forord Dette kompendiet dekker nlysedelen v pensum i kurset MAT 2 ved Universitetet i Oslo. Kurset bygger på MAT og legger mer vekt på nvendelser v teorien enn på dens
DetaljerMAT 1110: Løsningsforslag til obligatorisk oppgave 2, V-06
MAT : Løsningsforslg til obligtorisk oppgve, V-6 Oppgve : ) Hvis = (,,...) og = (,,...) er to vektorer, vil kommndoen >> plot(,) tegne rette forbindelseslinjer mellom punktene (, ), (, ) osv. For å plotte
DetaljerTFY4104 Fysikk. Institutt for fysikk, NTNU. Lsningsforslag til ving 8. a =
TFY414 Fysikk. Institutt for fysikk, NTNU. Lsningsforslg til ving 8. Oppgve 1. ) C F = E = m Newtons. lov. Her er = e, s elektronets kselersjon blir = e m E lts mot venstre. b) C Totlt elektrisk felt i
DetaljerLøsningsforslag. og B =
Prøve i Matte Dato: vår 5 ENDRE Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver ar lik vekt. Oppgave a Gitt matrisene A regn ut A + B, AB. Løsningsforslag 4 og B 7 5 Vi
DetaljerTMA4100 Matematikk 1, 4. august 2014 Side 1 av 12. x 2 3x +2. x 2
TMA4 Matematikk, 4. august 24 Side av 2 Oppgave Den rasjonale funksjonen p er definert som p(x) x2 3x +2 3x 2 5x +2. Finn de tre grenseverdiene lim xæ p(x), lim xæ p(x) og lim xæœ p(x). Løsning: x 2 3x
DetaljerUNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Obligatorisk innlevering 3 i emnet MAT111, høsten 2016
UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Obligatorisk innlevering 3 i emnet MAT, høsten 206 Innleveringsfrist: Mandag 2. november 206, kl. 4, i Infosenterskranken i inngangsetasjen
DetaljerIntegrasjon av trigonometriske funksjoner
Integrsjon v trigonometriske funksjoner øistein Søvik 3. november 15 I dette dokumentet skl jeg vise litt ulike integrsjonsteknikker og metoder for å utforske integrlene v (cos x) og (sin x). De bestemte
DetaljerNTNU Institutt for matematiske fag. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 8. Oppgave 1. Oppgave 2
NTNU Institutt for matematiske fag TMA4 Matematikk høsten Løsningsforslag - Øving 8 Oppgave b. Vi har at f() > og f(π/) π /6
DetaljerIR Matematikk 1. Utsatt Eksamen 8. juni 2012 Eksamenstid 4 timer
Utsatt Eksamen 8. juni 212 Eksamenstid 4 timer IR1185 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del 2 uten bruk av hjelpemidler. Du kan bare
DetaljerOppgave 2 Løs oppgavene I og II, og kryss av det alternativet (a, b eller c) som passer best. En funksjon er ikke deriverbar der:
Oppgave a) Si kort hva deriverte til en funksjon forteller oss. Hva handler deriverbarhet om? b) Er f (x) = deriverbar for alle reelle x-verdier? x Bestem deriverte til f i sin definisjonsmengde. c) Tegn
Detaljer