Fasit, Anvendelser av integrasjon.
|
|
- Tomas Tollefsen
- 8 år siden
- Visninger:
Transkript
1 Ukeoppgaver, uke, i Matematikk, Anvendelser av integrasjon. 5 Fasit, Anvendelser av integrasjon. Oppgave F er en rettvinklet trekant, med begge kateter av lengde, så horisontal avgrensning er x. a) V πy dx π ( x) dx π ( x + x dx π x x + ] x π Legemet blir en (liggende) kjegle med grunnflateradius r oghøydeh,ogvolumformlen for kjegle er πr h. b) Skiven får nå et hull med radius i midten. Ytre radius er f(x)+. Volumelementet dv kan da skrives dv π(y +) dx π dx π ( ( x +) ) dx π ( x x + ) dx, så volumet er V π ] x x +dx π x x +x π( +) π c) V πxy dx π x( x) dx π x x ) dx π x ] x π d ) Radien i sylinderskallet blir nå x, så volumelementet blir dv π( x)( x) dx, og volumet er V π( x) dx π x + x ) dx π x x + ] x π som vi geometrisk ser stemmer da legemet er en sylinder med radius og høyde, fratrukket en kjegleformet fordypning med radius og høyde. Oppgave a) V π y dx π 6 x dx b) V π 6x ] x π(6 9) 7π c) V π xy dx π x 6 x dx d ) Substituer med u 6 x, du 8xdx xdx 8 du. ØG: u 6,NG:u 6 6: V π u / du π ] 8 6 u/ π ( 6 ) 6 6π. 6 6
2 6 Ukeoppgaver, uke, i Matematikk, Anvendelser av integrasjon. Oppgave a) F er en rettvinklet trekant med koordinataksene som kateter. Hypotenusen skjærer y aksen ved y h og x aksen ved x r. b) V π πr h r xy dx π r hx h r x dx π hx h ] r r x ( π hr ) hr Dette blir en kjegle med grunnflateradius r og høyde h, og volumfomelen for en kjegle er utledet. Oppgave a) h ( h, h) F y x h b) A h h x dx hx ] h x h h ( h ) h h Ved skivemetoden har vi volumformelen for området mellom y h og y x,rotertom x aksen: V x π ( y ) y dx π ( x ) dx π ] 5 x5 π 5 d) Vedskivemetodenblirradienien dx skive x, og dermed volumet π( x ) dx: e ) f ) V y π ( x ) dx π π ( x + x ) dx x x + ] 5 x5 π ( + 5 Sylinderskallmetoden gir formelen V y h πx(y y ) dx: V y h πx(h x ) dx π h π hx x hx x dx ] h Vi har fra forrige deloppgave at V (h) πh,ogdermed dv dh dh når h 5. Det spørres etter at dv dt dt ) 8π 5 ( π h h ( ) ) h πh πh. Det er dessuten oppgitt, og vi kan ved kjerneregelen sette opp dv dt dv dh dh π 5 dh dt dt dh dt 5π (desimeter i minuttet)
3 Ukeoppgaver, uke, i Matematikk, Anvendelser av integrasjon. 7 Oppgave 5 a) Vi har y f (x) /, og dermed er lengdeelementet ds: +(y ) +(/) 6/6 + 9/6 5/6 5/ ds +(y ) dx ds 5 dx. b ) Lengden er ] 5 5 ds x dx x 5 som vi også finner fra Pytagoras, da L er hypotenusen i en rettvinklet trekant med kateter av lengde og. c) Flateelementet ds er arealet av et sylindrisk (vertikalt) bånd med bredde ds og radius y, så det er ds πy ds, og arealet er S x πy ds π x 5 dx π ] xdxπ x 5π d) Nåerradienibåndet y +,så flateelementet er ds π(y +)ds, og arealet er S x ( ) 5 5 π(y +)ds π x + dx π x + 5 ] x 5π e) Vi får nå en horisontal variant av dette båndet, og radien er avastanden x inn til y aksen, og dermed arealelement ds πxds, og overflate S x πx ds π ] 5 5 xdxπ 8 x π f) Radien i båndet er nå x, så ds π( x) ds, og S x π( x) ds π ( x) 5 dx π 5 5 xdxπ 5x 5 8 x ] π Kjeglen har akkurat samme fasong som i forrige deloppgave, men nå har den spissen ned. Oppgave 6 a) y x, så ds +(y ) dx +x dx. b) L x ds +x dx S y x πx ds πx +x dx S x x πy ds πx +x dx
4 8 Ukeoppgaver, uke, i Matematikk, Anvendelser av integrasjon. c) S y er det enkleste av disse tre integralene, da en substitusjon med u +x rakt fører til målet. du 8xdx xdx 8 du, ØG+ 5,NG + : d ) S y π 8 5 u / du π ] 5 u/ π ( 5 ) Det er viktig for bruken av formelen at det ikke står noe tall foran x. Dette oppnåes ved å sette tallet utenfor slik: ( ) +x + x + x x +. Nå kan formelen brukes, med a / (og + varianten i ±): L x + dx x x + + / ] ln x + x + ( ( )) ln + + ( + ) 8 ln( /) e ) 5 + ln( + 5/) ln(/) 5 + ln( + 5) Med Maple kommer vi fram til S x.8 med kommandoen > evalf(int(*pi*x^*sqrt(+*x^),x..)); Oppgave 7 a) f (t) (e t e t )/ så ( e f (t) t e t ) ( (e t ) e t e t + ( e t) ) et + e t Dette medfører at vi har +f (t) + et + e t et + + e t Nå kan vi innse at dette må være det samme som ( (e t + e t )/ ) påfleremåter. En mulighet er å regne sammen ( (e t + e t )/ ) (siden svaret er oppgitt er det jo mulig åse at det er dette vi skal fram til). En annen mulighet er å se at uttrykket for +f (t) er det samme som det for f (t),bortsett fra motsatt fortegn på midterste ledd. Dette tilsvarer en endring fra. til. kvadratsetning. Vi kan derfor gjøre tilsvarende omforming som ved utregning av f (t) baklengs, etter først åskrive som et e t osv. Vi har derfor at ds (e +f (t) dt t + e t ) dt et + e t dt b ) Siden L b L ln ta e t + e t ds, harvi dt e t e t ] ln ( e ln() ) ] e ln() (e e ) ( )
5 Ukeoppgaver, uke, i Matematikk, Anvendelser av integrasjon. 9 Overflatearealet er S x π ln() t yds.sidends f(t) dt er yds f(t) ds f(t) dt, ogvi har ln() ( e t + e t ) ln() S x π dt π et + + e t dt π 8 et + t ] ln() 8 e t ( π eln() +ln() ) e ln() ( e + e Siden ln() ln ln()ere ln().siden ln() ln ln(/ )ln(/) er e ln() /, og vi kan regne sammen til S x π +ln() 6 + ] ( ) 5 π 6 +ln() )] Oppgave 8 a ) Rotasjon om y aksen (sylinderskallmetoden) gir : V y π xy dx π x x dx π dx π b ) Avstanden fra en vilkårlig verdi x i mellom og, og aksen x erx i. Denne gir radien i sylinderskallet, som derfor får volumet ΔV π(x i ) f(x i )Δx. Dette integreres opp til π (x )y dxπ x dx π x ln x ] π( ln()) ( ln())] π( ln()) d ) Formel for rotasjon om x aksen (skivemetoden, kap. 6.) gir: V x π y dx π x dx π x ] π ( )] π/ Ved skivemetoden blir den vertikale skiva nå en sylinder med et sylindrisk hull. Hele sylinderen har avstanden fra y i til aksen y som radius, og dette er R i y i +. Hullet har avstanden fra omdreiningsaksen til nedre avgrensning, som er x aksen, som radius. Denne avstanden er r i. Dermed får skiva volum ΔV i πri Δx πri Δx π ( (y i +) ) Δx, og dette integreres opp til : V y π (y +) dx π y +ydx π x + x dx π ] x +ln x π ( /+ln()) ( + ln())] π(/+ln) Oppgave a ) b ) Siden x er+x >. Dermed er både teller og nevner i funksjonsuttrykket alltid større enn. Derfor er f(x) > for alle x. Integrerer funksjonen for å finne arealet: A +x dx arctan(x)] arctan() arctan() π/ π/
6 Ukeoppgaver, uke, i Matematikk, Anvendelser av integrasjon. Ved sylinderskalmetoden finner vi at dette volumet er V y π xy dx π x +x dx Dette integreres ved å substituere med nevneren: u x +,u x du/dx x du xdx du xdx. Grensene for u er + og+ : V y π u du π ln u ] π(ln() ln()) π ln() Hans Petter Hornæs
Anvendelser av integrasjon.
Ukeoppgaver, uke 44, i Matematikk, Anvendelser av integrasjon. Høgskolen i Gjøvik Avdeling for ingeniørfag Matematikk Ukeoppgaver uke 44 I løpet av uken blir løsningsforslag lagt ut på emnesiden http://www.hig.no/toel/allmennfag/emnesider/rea4
DetaljerI løpet av uken blir løsningsforslag lagt ut på emnesiden Delvis integrasjon må brukes to ganger.
Ukeoppgaver, uke 45, i Matematikk, Delvis integrasjon. Høgskolen i Gjøvik Avdeling for ingeniørfag Matematikk Ukeoppgaver uke 45 I løpet av uken blir løsningsforslag lagt ut på emnesiden http://www.hig.no/toel/allmennfag/emnesider/rea4
DetaljerEKSAMEN. Ingeniør- og Fleksibel ingeniørutdanning.
KANDIDATNUMMER: EKSAMEN EMNENAVN: Matematikk. EMNENUMMER: REA42/REA42F EKSAMENSDATO: Mandag 9. august 2 KLASSE: Ingeniør- og Fleksibel ingeniørutdanning. TID: kl. 9. 3.. FAGANSVARLIG: Hans Petter Hornæs
DetaljerVolum Lengde Areal Forelesning i Matematikk 1 TMA4100
Volum Lengde Areal Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 4. oktober 011 Kapittel 6.. Volum ved sylindriske skall 3 Skall-metoden z = g(x) 1 1 1 1 3 1 1 3 z
DetaljerEKSAMEN. Hans Petter Hornæs og Britt Rystad
KANDIDATNUMMER: EKSAMEN FAGNAVN: Matematikk. FAGNUMMER: F74A EKSAMENSDATO: Mandag. august 2 SENSURFRIST:. september 2 KLASSE:. klassene, ingenørutdanning. TID: kl. 9. 4.. FAGLÆRER: Hans Petter Hornæs og
DetaljerAreal mellom kurver Volum Forelesning i Matematikk 1 TMA4100
Areal mellom kurver Volum Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 27. september 20 Kapittel 5.6. Substitusjon og arealet mellom kurver 3 Areal mellom kurver Problem
DetaljerEKSAMEN. Ingeniørstudenter som tar opp igjen eksa- men (6stp.).
KANDIDATNUMMER: EKSAMEN FAGNAVN: Matematikk FAGNUMMER: F74A EKSAMENSDATO: 6. desember 24 SENSURFRIST: 6. januar 25 Ingeniørstudenter som tar opp igjen eksa- KLASSE: men 6stp.). TID: kl. 9. 4.. FAGLÆRER:
DetaljerLøsningsforslag, eksamen MA1101/MA
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 Løsningsforslag, eksamen MA0/MA60 07.2.09 Oppgave La f() = e 4 2 2 8. a) Finn alle ekstremalpunktene til funksjonen
DetaljerEKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. John Haugan: Formler og tabeller. Rottmanns formelsamling (tillatt som overgangsordning)
KANDIDATNUMMER: EKSAMEN FAGNAVN: Matematiske metoder 1. FAGNUMMER: JøG10 EKSAMENSDATO: 5. april 00. SENSURFRIST: 16. mai 00. KLASSE: HSIS 00-005. TID: kl. 8.00 1.00. FAGLÆRER: Hans Petter Hornæs ANTALL
DetaljerBYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8
Innlevering BYFE DAFE Matematikk HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 5. april 6 kl Antall oppgaver: 8 Funksjonen ft) er vist i guren over. Funksjonen F x) er denert som for x. F x)
DetaljerOPPGAVESETT MAT111-H16 UKE 47. Oppgaver til seminaret 25/11
OPPGAVESETT MAT111-H16 UKE 47 Avsn. 7.1: 1, 11 På settet: S.1, S.2, S.3, S.4 Oppgaver til seminaret 25/11 Oppgaver til gruppene uke 48 Løs disse først så disse Mer dybde Avsn. 6.6 3 Avsn. 6.7 3, 7 Avsn.
DetaljerEKSAMEN. ANTALL SIDER UTLEVERT: 3 sider inklusiv forside.
KANDIDATNUMMER: EKSAMEN FAGNAVN: Matematiske metoder. FAGNUMMER: JøG 0 EKSAMENSDATO: 7. desember 003 SENSURFRIST: 7. januar 004. KLASSE: HIS 003/004. TID: kl. 8.00 3.00. FAGLÆRER: Hans Petter Hornæs ANTALL
DetaljerOppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener.
NTNU Institutt for matematiske fag TMA45 Matematikk, øving, vår Løsningsforslag Notasjon og merknader Oppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener. Oppgaver fra kapittel
DetaljerUbestemt integrasjon.
Ukeoppgaver, uke 4, i Matematikk 0, Ubestemt integrasjon. Høgskolen i Gjøvik Avdeling for ingeniørfag Matematikk 0 Ukeoppgaver uke 4 I løpet av uken blir løsningsforslag lagt ut på emnesiden http://www.hig.no/toel/allmennfag/emnesider/rea04
DetaljerFasit, Separable differensiallikninger.
Ukeoppgaver, uke 46, i Matematikk 0, Separable differensiallikninger. 3 Fasit, Separable differensiallikninger. a ) Denne er ferdig på formenf(y)y = g(x) medf(y) =3y 2 og g(x) =2x: 3y 2 dy dx =2x 3y2 dy
DetaljerTMA4100 Matematikk 1 for MTDESIG, MTIØT-PP, MTMART og MTPROD høsten 2010
TMA4100 Matematikk 1 for MTDESIG, MTIØT-PP, MTMART og MTPROD høsten 2010 Toke Meier Carlsen Institutt for matematiske fag 30. september 2010 2 Fremdriftplan I går 5.5 Ubestemte integraler og substitusjon
DetaljerLøsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 2009
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 009 Oppgave 1 Funksjonen g er definert ved g(x)
DetaljerLøsningsforslag. Innlevering i FO929A - Matematikk Obligatorisk innlevering nr. 8 Innleveringsfrist 15. april 2011 kl Antall oppgaver: 4
Innlevering i FO99A - Matematikk Obligatorisk innlevering nr. 8 Innleveringsfrist 5. aril kl. 5. Antall ogaver: 4 Løsningsforslag Ogave Beregn disse ubestemte integralene a 5 cos3t dt 5 3 sin3t + C 5 sin3t
DetaljerLøsning, Trippelintegraler
Ukeoppgaver, uke 7 Matematikk, rippelintegraler Løsning, rippelintegraler Oppgave a) b) c) 6 x + + ) d d dx x + +/) d dx x) d d dx x + + /] d dx x + /+/] dx x +6)dx 8 6 d ) ) d xdx 6 ) ) ) d d xdx 6 8
DetaljerLøsningsforslag. og B =
Prøve i Matte EMFE DAFE ELFE BYFE Dato: august 25 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave a) Gitt matrisene A = 2 3 2 4 2 Løsningsforslag og
DetaljerEksamen R2 høsten 2014 løsning
Eksamen R høsten 04 løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (3 poeng) Deriver funksjonene a) f x cos3x Vi bruker kjerneregelen
DetaljerLøsningsforslag til Eksamen i MAT111
Universitetet i Bergen Matematisk institutt Bergen, 9. desember 25. Bokmål Løsningsforslag til Eksamen i MAT Mandag 9. desember 25, kl. 9-. Dette er kun et løsningsforslag. Oppgave a) Betrakt de to komplekse
DetaljerLøsning, Stokes setning
Ukeoppgaver, uke 4 Matematikk, tokes setning 1 Løsning, tokes setning Oppgave 1 a) b) c) F x y z x y z F x x + y y + z z 1+1+1 iden F er feltet konservativt. ( z y y ) ( x i z z z ) ( y x x x ) k i +k
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT Kalkulus. Eksamensdag: Fredag 9. desember 2. Tid for eksamen: 9.. Oppgavesettet er på 8 sider. Vedlegg: Tillatte hjelpemidler:
DetaljerTMA4100 Matematikk 1 Høst 2014
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4 Matematikk Høst 4 Løsningsforslag Øving 5.7.4 Vi observerer at både y = cos πx 4 og y = x er like funksjoner. Det vil si
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I MA0001 BRUKERKURS A Tirsdag 14. desember 2010
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 LØSNINGSFORSLAG TIL EKSAMEN I MA1 BRUKERKURS A Tirsdag 14. desember 1 Oppgave 1 Ligningen kan skrives 4 ln x 3 ln
Detaljereksamensoppgaver.org 4 oppgave1 a.i) Viharulikheten 2x 4 x + 5 > 0 2(x 2) x + 5 > 0 Sådaserviatløsningenpådenneulikhetenblir
eksamensoppgaver.org 4 oppgave1 a.i) Viharulikheten 2x 4 x + 5 > 0 2(x 2) x + 5 > 0 Sådaserviatløsningenpådenneulikhetenblir x, 5 2, eksamensoppgaver.org 5 a.ii) Vi har ulikheten og ordner den. 10 x 2
DetaljerLøsningsforslag. f(x) = 2/x + 12x
Prøve i FO929A - Matematikk Dato: august 212 Målform: Bokmål Antall oppgaver: 5 (2 deloppgaver) Antall sider: 3 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver
DetaljerLøsningsforslag. Alle svar skal grunngis. Alle deloppgaver teller like mye.
Eksamen i FO929A - Matematikk Dato: 2013 Målform: Bokmål Antall oppgaver: 5 (20 deloppgaver) Antall sider: 3 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver teller
DetaljerFasit til utvalgte oppgaver MAT1100, uka 15/11-19/11
Fasit til utvalgte oppgaver MAT uka 5/-9/ Øyvind Ryan oyvindry@ifi.uio.no) November Oppgave 9.. Vi skriver 5x 5 x )x ) A x B x og ser at vi må løse likningene Ax ) Bx ) x )x ) A B 5 A B 5. A B)x A B x
DetaljerAnbefalte oppgaver - Løsningsforslag
TMA45 Matematikk Anbefalte oppgaver - Løsningsforslag Uke 5.5.: Kulen er grafen til rφ, θ) asinφ) cosθ)i + sin φ sinθ)j + cosφ)k), φ π, θ < π. Vi har slik at φ θ acosφ) cosθ)i + sinφ) sinθ)j + cosφ)k)
DetaljerLærerveiledning. Oppgave 1. Hva er arealet av det grå området i figuren? Tips til veiledning:
Oppgave 1 Hva er arealet av det grå området i figuren? A 3 B 5 C 6 D 9 E 1 Hva slags geometriske figurer er det grå området er sammensatt av? Finn grå områder som er like store. Tenke dere de mørke bitene
Detaljerx=1 V = x=0 1 x x 4 dx 2 x5
TMA Høst 6 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag 7.. Lat oss først skissera området R som skal roterast om -aksen for å danna S.,) R Me startar med å bruka skivemetoden
DetaljerLøsningsforslag til eksamen i MAT 1100 H07
Løsningsforslag til eksamen i MAT H7 DEL. (3 poeng Hva er den partiellderiverte f y når f(x, y, z = xeyz? xze yz e yz xe yz e yz + xze yz e yz + xze yz + xye yz Riktig svar: a xze yz Begrunnelse: Deriver
DetaljerLøsningsforslag midtveiseksamen Mat 1100
Løsningsforslag midtveiseksamen Mat 00 Høsten 202 Oppgave : Riktig svaralternativ er C Vi får r = 2 2 +( 2 3) 2 = 4+4 3= 6 = 4. Videre ser vi (tegn figur) at argumentet til z vil være 60 mer enn 80, dvs.
DetaljerFasit, Implisitt derivasjon.
Ukeoppgaver, uke 8, i Matematikk, Implisitt derivasjon. 5 Fasit, Implisitt derivasjon. Oppgave Vi kaller den deriverte av y for y, og dette blir første ledd. Andre ledd må deriveres med kjerneregelen,
DetaljerLøsningsforslag Matematikk 2MX - AA mai 2006
Løsningsforslag Matematikk 2MX - AA6516-3. mai 2006 eksamensoppgaver.org September 21, 2008 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 2MX er gratis, og det er lastet ned på eksamensoppgaver.org.
DetaljerLøsningsforslag. Prøve i Matematikk 1000 BYFE DAFE 1000 Dato: 29. mai 2017 Hjelpemiddel: Kalkulator og formelark. Oppgave 1 Gitt matrisene.
Prøve i Matematikk BYFE DAFE Dato: 29. mai 27 Hjelpemiddel: Kalkulator og formelark Løsningsforslag Oppgave Gitt matrisene A = 2 2 B = [ 2 3 4 ] og C = Regn ut, om mulig, summene A + B, A + B T og A +
DetaljerLøsningsforslag til eksamen i MAT111 - Grunnkurs i Matematikk I
Universitetet i Bergen Matematisk institutt Bokmål Løsningsforslag til eksamen i MAT111 - Grunnkurs i Matematikk I Mandag 17. desember 2007, kl. 09-14. Oppgave 1 Gitt f(x) = x + x 2 1, 1 x 1. a) Finn og
DetaljerEKSAMEN BOKMÅL STEMMER. DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember :00-13: FAGKODE: IR Matematikk 1
EKSAMEN BOKMÅL DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember 15 9:-13: FAGKODE: FAGNAVN: IR151 Matematikk 1 HJELPEMIDLER: Del 1: kl 9.-11. Ingen Del : kl 11.-13. Lommeregner Lærebok etter fritt valg Matematisk
DetaljerLøsningsforslag til eksamen i MAT 1100, H06
Løsningsforslag til eksamen i MAT, H6 DEL. poeng Hva er den partiellderiverte f z xyz cosxyz x sinyz + xyz cosyz xy cosyz x sinyz + xz cosyz cosyz xyz sinyz når fx, y, z = xz sinyz? Riktig svar b: x sinyz
DetaljerLøsningsforslag til eksamen i fag MA1101/MA6101 Grunnkurs i analyse I Høst 2008
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 9 Løsningsforslag til eksamen i fag MA111/MA611 Grunnkurs i analyse I Høst 2 Oppgave 1 Funksjonen g er definert ved
DetaljerArne B. Sletsjøe. Oppgaver, MAT 1012
Arne B. Sletsjøe Oppgaver, MAT 101 1 En-variabel kalkulus 1.1 I de følgende oppgavene, i) finn alle kritiske punkter til f(x), ii) beskriv monotoniegenskapene til funksjonene ved å se på fortegnet til
DetaljerIR Matematikk 1. Utsatt Eksamen 8. juni 2012 Eksamenstid 4 timer
Utsatt Eksamen 8. juni 212 Eksamenstid 4 timer IR1185 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del 2 uten bruk av hjelpemidler. Du kan bare
DetaljerIR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer
Eksamen 8. desember 16 Eksamenstid 4 timer IR151 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del uten bruk av hjelpemidler. Du kan bare bruke
DetaljerLøsningsforslag AA6524 Matematikk 3MX Elever AA6526 Matematikk 3MX Privatister eksamensoppgaver.org
Løsningsforslag AA6524 Matematikk MX Elever - 05.12.2007 AA6526 Matematikk MX Privatister - 05.12.2007 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk
DetaljerMA1101 Grunnkurs Analyse I Høst 2017
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA Grunnkurs Analyse I Høst 7 9.5. a) Har at + x b arctan b = π + x [arctan x]b (arctan b arctan ) f) La oss først finne en
Detaljeru 4 du = 1 5 u5 + C = 1 5 (x2 +4) 5 + C u 1/2 du = 1 2 u1/2 + C = 1 2
4 Ukeoppgaver, ke 4, i Matematikk, Sbstitsjon. Fasit, Sbstitsjon. Oppgave a) Med = +4er = slik at d d = d =d. Dermed kan faktorene d i integralet erstattes med d, mens + 4 inne i parentesen erstattes med
DetaljerInnlevering Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Onsdag 15. november 2017 kl 14:30 Antall oppgaver: 8
Innlevering Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Onsdag 15. november 017 kl 14:30 Antall oppgaver: 8 1 Deriver følgende funksjoner a) ( x) b) (3 5x) 6 c) x x + 3 d) x ln
DetaljerSeparable differensiallikninger.
Ukeoppgaver, uke 46, i Matematikk 0, Separable differensiallikninger. Høgskolen i Gjøvik Avdeling for ingeniørfag Matematikk 0 Ukeoppgaver uke 46 I løpet av uken blir løsningsforslag lagt ut på emnesiden
Detaljer5 z ds = x 2 +4y 2 4
TMA45 Matematikk 2 Vår 25 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving Alle oppgavenummer referer til 8. utgave av Adams & Essex Calculus: A Complete
Detaljer2 π[r(x)] 2 dx = u 2 du = π 1 ] 2 = π u 1. V = π. V = π [R(x)] 2 [r(x)] 2 dx = π (x + 3) 2 (x 2 + 1) 2 dx = 117π 5.
NTNU Institutt for mtemtiske fg TMA Mtemtikk høsten 2 Løsningsforslg - Øving 6 Avsnitt 6. 7 Ved å bruke disk-metoden får mn t volumet er π[r(x)] 2 dx 3 Ved å bruke disk-metoden får mn t volumet er L u
Detaljer2x 3 4/x dx. 2 5 x 3 + LF: Vi utfører polynomdivisjon. 2x + 1 dx = + C = 5x8/ ln 2x C 4. πx 2 e 3x3 dx = π
Innlevering ELFE KJFE MAFE Mtemtikk HIOA Obligtorisk innlevering 5 Innleveringsfrist Mndg 6. oktober 5 før forelesningen : Antll oppgver: Løsningsforslg Finn de ubestemte integrlene ) x 4/x dx LF: x 4/x
DetaljerPrøve i Matte 1000 BYFE DAFE 1000 Dato: 03. mars 2016 Hjelpemiddel: Kalkulator og formelark. Alle svar skal grunngis. Alle deloppgaver har lik vekt.
Prøve i Matte 1 BYFE DAFE 1 Dato: 3. mars 216 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. LØSNINGSFORSLAG Oppgave 1 Gitt matrisene A = [ 8 3 6 2 ] [ og
DetaljerINNHOLD SAMMENDRAG GEOMETRI
INNHOLD GEOMETRI... 3 LINJE, STRÅLE OG LINJESTYKKE... 3 VINKEL... 3 STUMP, SPISS OG RETT VINKEL... 3 TOPPVINKLER... 4 NABOVINKLER... 4 SAMSVARENDE VINKLER... 4 OPPREISE EN NORMAL FRA ET PUNKT PÅ EN LINJE...
DetaljerPrøveeksamen i MAT 1100, H-03 Løsningsforslag
Prøveeksamen i MAT, H- Løsningsforslag. Integralet cos x dx er lik: +sin x Riktig svar: c) arctan(sin x) + C. Begrunnelse: Sett u = sin x, da er du = cos x dx og vi får: cos x + sin x dx = du du = arctan
DetaljerSIF5005 Matematikk 2, 13. mai 2002 Løsningsforslag
SIF55 Matematikk, 3. mai Oppgave Alternativ : At de to ligningene skjærer hverandre vil si at det finnes parameterverdier u og v som, innsatt i de to parametriseringene, gir samme punkt: Vi løser hver
DetaljerLøsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3
Prøve i Matematikk BYFE DAFE Dato: 27. mai 26 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Løsningsforslag Oppgave Gitt matrisene [ 2 A 4 B [ 2 og C [ 2
DetaljerEKSAMEN. TILLATTE HJELPEMIDLER: John Haugan: Formler og tabeller. Rottmanns formelsamling (tillatt som overgangsordning)
KANDIDATNUMMER: EKSAMEN FAGNAVN: Matematikk FAGNUMMER: REA4 EKSAMENSDATO: 6. desember 24 SENSURFRIST: 6. januar 25 KLASSE:. klassene, ingenørutdanning. TID: kl. 9. 3.. FAGLÆRER: Hans Petter Hornæs ANTALL
DetaljerLøsning, Oppsummering av kapittel 10.
Ukeoppgaver, uke 36 Matematikk 3, Oppsummering av kapittel. Løsning, Oppsummering av kapittel. Oppgave a) = +, = + z og z =z +. b) f(,, z) = +, + z,z + så (f(, 3, ) = +3, 3+, +3=7, 3, 5 c ) Gradienten
DetaljerLØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101)
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA0/MA60) Fredag 2. desember 202 Tid: 09:00 3:00 Hjelpemidler: Kode
DetaljerNTNU. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 5. Avsnitt Vi vil finne dx ( cos t dt).
NTNU Instittt for matematiske fag TMA4 Matematikk høsten Løsningsforslag - Øving 5 Avsnitt 5.4 ( + cos x)dx = dx + cos xdx = π + [sin x] π = π + (sin π sin) = π. 44 Vi vil finne d x dx ( cos t dt). Merk
DetaljerOPPGAVESETT MAT111-H17 UKE 45. Oppgaver til seminaret 10/11. Oppgaver til gruppene uke 46
OPPGAVESETT MAT111-H17 UKE 45 Avsn. 7.1: 3, 4 Avsn. 7.9: 22 På settet: S.1, S.2 Oppgaver til seminaret 10/11 Oppgaver til gruppene uke 46 Løs disse først så disse Mer dybde Avsn. 7.1 1, 2, 6, 7, 18 Avsn.
DetaljerUNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Obligatorisk innlevering 3 i emnet MAT111, høsten 2016
UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Obligatorisk innlevering 3 i emnet MAT, høsten 206 Innleveringsfrist: Mandag 2. november 206, kl. 4, i Infosenterskranken i inngangsetasjen
DetaljerRandkurva C til flata S orienteres positivt sett ovenfra, og kan parametriseres ved: r (t) = [ sin t, cos t, sin t] dt, 0 t 2π.
Ma - Løsningsforslag til uke 17 i 7 Eks. mai 1999 oppgave 4 ylinderen x + y = 1 skjærer ut ei flate av planet z = x + 1 dvs. x + z = 1 med enhetsnormal i positiv z-retning lik n= 1 [ 1 1]. Flata blir en
DetaljerKapittel 20 GEOMETRI. Hvilke figurer har vi her? Kunne bonden brukt en oppdeling med færre figurer?
Kapittel 0 GEOMETRI Hvilke figurer har vi her? Kunne bonden brukt en oppdeling med færre figurer? Kapittel 0 GEOMETRI Rektangler b Areal = l b l m m = m m = 6 m Kvadrat s Areal = s s = s s m m = m = 9
DetaljerTFY4115: Løsningsforslag til oppgaver gitt
Institutt for fysikk, NTNU. Høsten. TFY45: Løsningsforslag til oppgaver gitt 6.8.9. OPPGAVER 6.8. Vi skal estemme Taylorrekkene til noen kjente funksjoner: a c d sin x sin + x cos x sin 3 x3 cos +... x
DetaljerAreal - difflikninger - arbeid Forelesning i Matematikk 1 TMA4100
Areal - difflikninger - arbeid Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 7. oktober 2011 Kapittel 6.4. Areal til omdreiningslegemer 3 Overflate-areal av en rotasjonsflate
DetaljerBasisoppgaver til 1P kap. 3 Geometri
Basisoppgaver til 1P kap. Geometri.1 Lengde og areal. Formlikhet. Areal og omkrets av plane figurer.4 Rettvinklede trekanter. Pytagorassetningen.5 Areidstegninger og kart.6 Volum og volumenheter.7 Overflate
DetaljerTest, Geometri (1P) 2.1 Lengde og vinkler. 1) Hvor mange grader er en rett vinkel?
Test, Geometri (1P) 2.1 Lengde og vinkler 1) Hvor mange grader er en rett vinkel? 90 120 180 2) Hva menes med en spiss vinkel? En vinkel som er større enn 90 En vinkel som er større enn 180 En vinkel som
DetaljerPrøve i Matte 1000 ELFE KJFE MAFE 1000 Dato: 02. desember 2015 Hjelpemiddel: Kalkulator og formelark
Prøve i Matte ELFE KJFE MAFE Dato: 2. desember 25 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Gitt matrisene A = 2 2 3 5 og B = [ 5 7 2 ] Regn
DetaljerLineære differensiallikninger.
Ukeoppgaver, uke 47, i Matematikk 0, Lineære differensiallikninger. Høgskolen i Gjøvik Avdeling for teknologi, økonomi og ledelse Matematikk 0 Ukeoppgaver uke 47 Lineære differensiallikninger. Oppgave
DetaljerSAMMENDRAG OG FORMLER. Nye Mega 10A og 10B
SAMMENDRAG OG FORMLER Nye Mega 10A og 10B 1 Sammendrag og formler Nye Mega 10A Kapittel A GEOMETRI Oversikt over vinkelkonstruksjoner 90 45 60 30 120 135 67 1 2 75 Den pytagoreiske læresetningen I en rettvinklet
DetaljerR2 kapittel 8 Eksamenstrening
R kapittel 8 Eksamenstrening Løsninger til oppgavene i boka Uten hjelpemidler Oppgave E a F (4) = f (4) = 4 4 b f x x [ F x ] F F ( ) Oppgave E5 ( )d = ( ) = (4) () = 6 = 7 Grafen til f ligger over x-aksen
DetaljerOPPGAVESETT MAT111-H17 UKE 47. Oppgaver til seminaret 24/11
OPPGAVESETT MAT111-H17 UKE 47 På settet: S.1, S.2, S.3, S.4, S.5 Oppgaver til seminaret 24/11 Oppgaver til gruppene uke 48 Løs disse først så disse Mer dybde Avsn. 6.6 3 Avsn. 6.7 3, 7 Avsn. 7.9 28, 29
DetaljerEksamen, høsten 13 i Matematikk 3 Løsningsforslag
Eksamen, høsten 3 i Matematikk 3 Løsningsforslag Oppgave. a) Fra ligningen x 5 + y 3 kan vi lese ut store og lille halvakse a 5 og b 3. Fokus til senter avstanden er da gitt ved c a b 5 3 5 9 6 4. ermed
Detaljera 2 x 2 dy dx = e r r dr dθ =
NTNU Institutt for matematiske fag TMA4 Matematikk, øving, vår Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon, språk
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT1100 Kalkulus. Eksamensdag: Fredag 9. desember 011. Tid for eksamen: 09.00 1.00. Oppgavesettet er på 5 sider. Vedlegg: Tillatte
DetaljerLøsningsforslag Eksamen R1 - REA3022-28.05.2008
Løsningsforslag Eksamen R1 - REA3022-28.05.2008 eksamensoppgaver.org September 14, 2008 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i R1 er gratis, og det er lastet ned på eksamensoppgaver.org.
DetaljerJULETENTAMEN, 9. KLASSE, 2015. FASIT
JULETENTAMEN, 9. KLASSE, 2015. FASIT DELPRØVE 1. OPPGAVE 1.1: 367 + 254 = 621 c: 67. 88 536 536 = 5896 e: 18,4-9,06 = 9,34 24,8 + 7,53 = 32,33 d: 3,2 : 0,8 = 32 : 8 = 4 32 f: 12 2. 5 2 = 12 2. 25 = 12
DetaljerR2 - kapittel 5 EF og 6 ABCD
R2 - kapittel 5 EF og 6 ABCD Løsningsskisser Oppgave Løs differensialligningene: a) y x cosx b) y yx x c) y y x a) Eksakt DL, løses direkte: y cosx x y cosx x dx sin x 2 x2 C b) Lineær: y xy x (Kan løse
DetaljerDEL 1. Uten hjelpemidler. Oppgave 1 (3 poeng) Oppgave 2 (3 poeng) Oppgave 3 (4 poeng) Oppgave 4 (4 poeng) Deriver funksjonene. b) g( x) 5e sin(2 x)
DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) Deriver funksjonene a) f( x) cos(3 x) x b) g( x) 5e sin( x) Oppgave (3 poeng) Bestem integralene a) b) 3 ( )d e 1 x x x x ln x dx Oppgave 3 (4 poeng) a) Løs
DetaljerMatematikk R1 Forslag til besvarelse
Matematikk R1 Forslag til besvarelse NITH 4. mars 014 Oppgave 1 a) Regn ut p x) når px) = x 3 3x + 6x 1. p x) = x 3 ) 3x ) + 6x) 0 = 3x ) 3x) + 6 1 = 6x 6x + 6 b) Regn ut p x) når px) = ax + bx + c. Her
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i Eksamensdag: 9. april,. Tid for eksamen: : :. Oppgavesettet er på 9 sider. Vedlegg: Tillatte hjelpemidler: MAT Kalkulus og
DetaljerLøsningsforslag, eksamen MA1103 Flerdimensjonal analyse, 8.juni 2010
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Løsningsforslag, eksamen MA11 Flerdimensjonal analyse, 8.juni 21 Oppgave 1 a) Finn og klassifiser alle kritiske
DetaljerEksamen R2 høsten 2014
Eksamen R høsten 014 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (3 poeng) Deriver funksjonene a) f x cos3x b) gx 5e x sinx Oppgave
DetaljerKap : Derivasjon 1.
Ukeoppgaver, uke 36, i Matematikk 0, Kap. 3.-3.4: Derivasjon. Høgskolen i Gjøvik Avdeling for ingeniørfag Matematikk 0 Ukeoppgaver uke 36 I løpet av uken blir løsningsforslag lagt ut på emnesiden http://www.hig.no/ing/allmennfag/emnesider/rea042
DetaljerLøsningsforslag for eksamen i brukerkurs i matematikk A (MA0001)
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 8 Løsningsforslag for eksamen i brukerkurs i matematikk A (MA1) Bokmål Tirsdag 1. desember 11 Tid: 9: 1: (4 timer)
DetaljerHøgskolen i Oslo og Akershus. 1 (x 2 + 1) 1/2 + x 1 2 (x2 + 1) 1/2 (x 2 + 1) = x 2x 2 x = = 3 ln x sin x
Løysingsforslag til eksamen i matematikk, mai 4 Oppgåve a) i) ii) f(x) x x + x(x + ) / ( f (x) x (x + ) / + x (x + ) /) g(x) ln x sin x x (x + ) / + x (x + ) / (x + ) x + + x x x + x + + x x + x + x +
DetaljerOppgavesettet har 10 punkter 1, 2ab, 3ab, 4ab, 5abc som teller likt ved bedømmelsen.
NTNU Institutt for matematiske fag SIF55 Matematikk 2 4. mai 999 Løsningsforslag Oppgavesettet har punkter, 2ab, 3ab, 4ab, 5abc som teller likt ved bedømmelsen. i alternativ (3, ii alternativ (2. 2 a For
DetaljerP(x, y) ) x. Dette er sirkellikningen. Et punkt P(x, y) ligger på denne sirkelen hvis og bare hvis koordinatene passer i likningen.
5.9 Sirkellikningen Fra kapittel 4.3 vet vi at sirkelen er det geometriske stedet for de punktene som har en bestemt avstand r fra et fast punkt S. Avstanden r kaller vi radien, og punktet S kaller vi
DetaljerTMA4100 Matematikk 1 Høst 2014
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA Matematikk Høst Løsningsforslag Øving Review Exercise 6, side 86 Vi lar fx sin x. Taylor-polynomet av grad 6 til f om x
DetaljerKul geometri - overflateareal og volum av kuler
Kul geometri - overflateareal og volum av kuler Helmer Aslaksen Institutt for lærerutdanning og skoleforskning/matematisk institutt Universitetet i Oslo helmer.aslaksen@gmail.com www.math.nus.edu.sg/aslaksen/
DetaljerLøsning, funksjoner av flere variable.
Ukeoppgaver, uke 3 Matematikk 3, funksjoner av flere variable 1 Løsning, funksjoner av flere variable Oppgave 1 a) = +=, b) =, =y3 d ) e ) = 3+= 3 Selv om ikke x er med kan det betraktes som funksjon av
DetaljerR2 kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka
R kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka E Bruker formelen cos 36 cos( 8 ) E sin 8 v og sin8 5 cos v sin sin8 5 5 6 5 5 8 5 5 8 6 5 8 6 5 8 8 3 5 5 5 a f ( ) sin 5 cos f ( ) 5cos
DetaljerTMA4100 Matematikk 1, 4. august 2014 Side 1 av 12. x 2 3x +2. x 2
TMA4 Matematikk, 4. august 24 Side av 2 Oppgave Den rasjonale funksjonen p er definert som p(x) x2 3x +2 3x 2 5x +2. Finn de tre grenseverdiene lim xæ p(x), lim xæ p(x) og lim xæœ p(x). Løsning: x 2 3x
DetaljerKul geometri - overflateareal og volum av kuler
Kul geometri - overflateareal og volum av kuler Helmer Aslaksen Institutt for lærerutdanning og skoleforskning/matematisk institutt Universitetet i Oslo helmer.aslaksen@gmail.com www.math.nus.edu.sg/aslaksen/
DetaljerTMA4100 Matematikk 1, høst 2013
TMA4100 Matematikk 1, høst 2013 Forelesning 9 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 9 Derivasjon I dagens forelesning skal vi se på følgende: 1 Tilnærminger til små endringer. 2 Vekstfart.
DetaljerMAT jan jan jan MAT Våren 2010
MAT 1012 Våren 2010 Mandag 18. januar 2010 Forelesning I denne første forelesningen skal vi friske opp litt rundt funksjoner i en variabel, se på hvordan de vokser/avtar, studere kritiske punkter og beskrive
DetaljerFigur 1: Volumet vi er ute etter ligger innenfor de blå linjene. Planet som de røde linjene ligger i deler volumet opp i to pyramider.
TMA415 Matematikk Vår 15 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Alle oppgavenummer referer til 8. utgave av Adams & Esse alculus: A omplete ourse. 5 Eercise 14.1.6
Detaljer