5 z ds = x 2 +4y 2 4
|
|
- Olaf Eriksen
- 6 år siden
- Visninger:
Transkript
1 TMA45 Matematikk 2 Vår 25 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving Alle oppgavenummer referer til 8. utgave av Adams & Essex Calculus: A Complete Course. 5 Exercise Ved å derivere likningen for planet finner vi og derfor ds 5 z x 3, + 2 dx dy. ( ) z y 4, ( ) 4 2 dx dy 5 Hvis vi kaller flaten for R har vi at arealet til R blir ds 2 dx dy R x 2 +4y π 2 2 2π, der vi har brukt at en ellipse med halvakser a og b har areal πab (det er selvsagt også mulig å regne dobbeltintegralet med et iterert integral). Merk at likningen x 2 +4y 2 4 kan skrives som ( x ) 2 ( y ) 2 +, 2 slik at halvaksene blir 2 og. 6 Exercise På grunn av symmetri må vi ha x ȳ, slik at det bare gjenstår å beregne z. Dette gjøres enklest ved å benytte sylinderkoordinater. Vi finner først at V 2π 2π e (x2 +y 2) dx dy re r2 dr dθ re r2 dr 3. mars 25 Side av 8
2 Løsningsforslag Øving gir volumet til legemet. Substitusjonen u r 2 gir V π π. Vi finner nå z V π e u du e (x 2 +y 2 ) 2π e r 2 4 4, re 2r2 dr e u du hvor vi har brukt substitusjonen u 2r 2. z dz dx dy zr dz dr dθ 7 Exercise Denne oppgaven er skreddersydd for sylinderkoordinater, da D r og sylindrene er konsentriske. Vi kan beskrive legemet som Treghetsmomentet blir dermed mens massen blir {[r, θ, z] : z c, θ < 2π, a r b}. I c 2π b c 2π ρ a b a πρc 2 (b4 a 4 ), m c 2π b c 2π ρ a b a r 2 ρr dr dθ dz r 3 dr πρc(b 2 a 2 ). ρr dr dθ dz r dr dθ Ved å bruke treghetsmomentet og massen finner vi treghetsradien I D m b 2 + a 2, 2 hvor vi ser at a D b, slik man kan forvente. 3. mars 25 Side 2 av 8
3 Løsningsforslag Øving 8 Exercise Kulen er grafen til r(φ, θ) a(sin(φ) cos(θ)i + sin φ sin(θ)j + cos(φ)k), φ π, θ < 2π. Vi har r a(cos(φ) cos(θ)i + sin(φ) sin(θ)j + cos(φ)k) φ r a( sin(φ) sin(θ)i + sin(φ) cos(θ)j) θ slik at r φ r θ i j k a cos(φ) cos(θ) a sin(φ) sin(θ) a cos(φ) a sin(φ) sin(θ) a sin(φ) cos(θ) a 2 ( sin(φ) 2 cos(θ)i + sin(φ) 2 sin(θ)j + cos(φ) sin(φ)k). Vi finner nå ds r φ r θ dφ dθ a 2 sin(φ) 4 cos(θ) 2 + sin(φ) 4 sin(θ) 2 + cos(φ) 2 sin(φ) 2 dφ dθ a 2 sin(φ) sin(φ) 2 (cos(θ) 2 + sin(θ) 2 ) + cos(φ) 2 dφ dθ a 2 sin(φ) dφ dθ, som var det vi skulle vise. 9 Exercise Merk at kulen har radius 2a og at likningen for sylinderen kan skrives som x 2 + (y a) 2 a 2, slik at denne har radius a og har akse som er parallell med z-aksen og krysser xy-planet i (, a). Dette er illustrert i Figur. Fordi vi arbeider på en kule er det nyttig å gå over til kulekoordinater. Da blir kulen og sylinderen blir eller R 2a, R 2 sin(φ) 2 cos(θ) 2 + R 2 sin(φ) 2 sin(θ) 2 2aR sin(φ) sin(θ), R sin(φ) 2a sin(θ). Innsiden av sylinderen oppfyller derfor ulikheten R sin(φ) 2a sin(θ), 3. mars 25 Side 3 av 8
4 Løsningsforslag Øving z y.5.5 x Figur : Kulen og sylinderen i Exercise 5.5.4, med a /2. og spesielt er dette ekvivalent med sin(φ) sin(θ) på kulen. Hvis vi ytterligere begrenser oss til den delen av kulen som også ligger i første oktant er dette ekvivalent med ulikheten φ θ. På grunn av symmetri må arealet til den delen av kulen som ligger innenfor sylinderen være fire ganger arealet til den som i tillegg ligger i første oktant (se figuren). Det ønskede arealet blir nå S 4 π/2 θ (2a) 2 sin(φ) dφ dθ π/2 6a 2 ( cos(θ)) dθ 8a 2 (π 2). Exercise mars 25 Side 4 av 8
5 Løsningsforslag Øving Vi finner først arealelementet. Siden z x 2 beskriver løsningene til likningen G(x, y, z) x 2 z har vi ds G G z dx dy (2x) ( ) 2 dx dy + 4x 2 dx dy. Paraboloiden skjærer flaten slik at skjæringskurven har projeksjon x 2 3x 2 y 2, eller 4x 2 + y 2 i xy-planet. Likningen beskriver en ellipse. Vi må derfor integrere over {(x, y) : x /2, y 4x 2 } siden vi befinner oss i første oktant. Vi finner S xz ds /2 4x 2 /2 / , x x 2 + 4x 2 dy dx x 3 + 4x 2 4x 2 dx x 3 6x 4 dx u du der vi har brukt substitusjonen u 6x 4. Chapter Review 4.2 Den første ulikheten, z x 2 + y 2, beskriver det som ligger på utsiden av kjeglen z x 2 + y 2. I sylinderkoordinater er dette ekvivalent med z r. Den andre ulikheten, x 2 + y 2 2ay, () 3. mars 25 Side 5 av 8
6 Løsningsforslag Øving.5 z y.5.5 x Figur 2: Legemet vi skal finne treghetsmomentet til i Chapter Review 4.2 ligger innenfor sylinderen og utenfor kjeglen. I figuren er a /2. eller x 2 + (y a) 2 a 2, beskriver det som ligger innenfor den sirkulær sylinderen med radius a og akse som er parallell med z-aksen og skjærer xy-planet i (, a). Om vi går over til sylinderkoordinater i Likning () finner vi r 2 2ar sin(θ), eller r 2a sin(θ). Vi kan derfor beskrive V som V {[r, θ, z] : θ π, r 2a sin(θ), z r} i sylinderkoordinater. Se gjerne Figur 2. Merk at vi bare behøver å inklude θ opp til π fordi sin(θ) er negativ for θ (π, 2π), som gjør at det er ingen r som oppfyller r 2a sin(θ). Dette er spesielt viktig når vi setter opp integralet, ellers vil treghetsmomentet bli feil. 3. mars 25 Side 6 av 8
7 Løsningsforslag Øving Treghetsmomentet til V om z-aksen blir nå I ρ ρ π 2a sin(θ) r π 2a sin(θ) π r 2 ρr dz dr dθ r 4 dr dθ 5 (2a sin(θ))5 dθ 32 π 5 ρa5 sin(θ)( cos(θ) 2 ) 2 dθ, der vi har brukt at sin(θ) 2 cos(θ) 2. Benytter vi nå substitusjonen u cos(θ) ender vi opp med I 32 5 ρa ρa ρa5. ( u 2 ) 2 du ( 2u 2 + u 4 ) du 2 Chapter Review 5.4 Planet beskriver løsningene til likningen G(x, y, z) x + y + z, slik at arealelementet blir ds G G z dx dy dx dy 3 dx dy. Vi må nå finne projeksjonen av flaten ned i xy-planet for å finne ut hva vi skal integrere over. (Det kan være til hjelp å lage en skisse her.) Setter vi z i likningen for planet finner vi x + y, slik at projeksjonen ned i xy-planet er den rettvinklede trekanten begrenset av x- og y-aksen samt linjen y x for x. 3. mars 25 Side 7 av 8
8 Løsningsforslag Øving Vi kan nå regne ut integralet. Vi finner S xyz ds x x xy( x y) 3 dy dx x(( x)y y 2 ) dy dx x (( x) 2 ( x)2 3 ) ( x)3 dx 4 3, x( x) 3 dx ( u)u 3 du ) ( 4 5 der vi har brukt substitusjonen u x. 3. mars 25 Side 8 av 8
Anbefalte oppgaver - Løsningsforslag
TMA45 Matematikk Anbefalte oppgaver - Løsningsforslag Uke 5.5.: Kulen er grafen til rφ, θ) asinφ) cosθ)i + sin φ sinθ)j + cosφ)k), φ π, θ < π. Vi har slik at φ θ acosφ) cosθ)i + sinφ) sinθ)j + cosφ)k)
DetaljerF = x F 1 + y F 2 + z F 3 = y 2 z 2 + x 2. i j k F = xy 2 yz 2 zx 2 = i(0 ( 2yz)) j(2xz 0) + k(0 2xy) = 2yzi 2xzj 2xyk.
TMA415 Matematikk 2 Vår 215 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 12 Alle oppgavenummer referer til 8. utgave av Adams & Essex alculus: A omplete
DetaljerAnbefalte oppgaver - Løsningsforslag
TMA415 Matematikk 2 Anbefalte oppgaver - Løsningsforslag Uke 14 1.4.5: Vi skal finne fluksen ut overflaten til den solide ballen B med sentrum = (2,, 3) og radius r = 3, av vektorfeltet F = x 2 i + y 2
DetaljerMatematikk 4, ALM304V Løsningsforslag eksamen mars da 1 er arealet av en sirkel med radius 2. F = y x = t t r = t t v = r = t t
Oppgave r( t) v( t) dt t dt, t dt, t dt t +, t +, t +. d d d a( t) v '( t) t, t, t,6 t,t dt dt dt F ma m t t Gitt en hastighetsvektor v( t) t, t, t.,6, Oppgave Greens setning: δq δ P I ( Pdx + Qdy) ( )
Detaljera 2 x 2 dy dx = e r r dr dθ =
NTNU Institutt for matematiske fag TMA4 Matematikk, øving, vår Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon, språk
DetaljerLØSNINGSFORSLAG TIL ØVING 11, TMA4105, V2008. x = r cos θ, y = r sin θ, z = 2r for 0 θ 2π, 2 2r 6. i j k. 5 r dr dθ = 8
LØNINGFORLAG TIL ØVING, TMA45, V8 Oppgave 4.5.9. Parametrisering: x = r cos θ, y = r sin θ, z = r for θ π, r 6. r(r, θ) = r cos θ, r sin θ, r. N = r r r θ = cos θ sin θ = r cos θ, r sin θ, r. r sin θ r
DetaljerNTNU. MA1103 Flerdimensjonal Analyse våren Maple-øving 2. Viktig informasjon. Institutt for matematiske fag. maple02 28.
NTNU Institutt for matematiske fag MA1103 Flerdimensjonal Analyse våren 2011 Maple-øving 2 Fyll inn studieprogram: Fyll inn navn: 1. 2. 3. 4. Viktig informasjon Besvarelsen kan leveres som gruppearbeid
Detaljery = x y, y 2 x 2 = c,
TMA415 Matematikk Vår 17 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 9 Alle oppgavenummer referer til 8. utgave av Adams & Essex alculus: A omplete
DetaljerOppgavesettet har 10 punkter 1, 2ab, 3ab, 4ab, 5abc som teller likt ved bedømmelsen.
NTNU Institutt for matematiske fag SIF55 Matematikk 2 4. mai 999 Løsningsforslag Oppgavesettet har punkter, 2ab, 3ab, 4ab, 5abc som teller likt ved bedømmelsen. i alternativ (3, ii alternativ (2. 2 a For
DetaljerVi regner først ut de nødvendige partiellderiverte for å se om vektorfeltet er konservativt. z = 2z, F 2 F 2 z = 2y, F 3. x = 2x, F 3.
TMA415 Matematikk Vår 15 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 7 Alle oppgavenummer refererer til 8. utgave av Adams & Essex alculus: A omplete
DetaljerVår TMA4105 Matematikk 2. Løsningsforslag Øving 6. 5 Exercise Exercise
TMA405 Matematikk 2 Vår 205 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 6 Alle oppgavenummer referer til 8. utgave av Adams & Essex Calculus: A Complete
DetaljerOppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener.
NTNU Institutt for matematiske fag TMA45 Matematikk, øving, vår Løsningsforslag Notasjon og merknader Oppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener. Oppgaver fra kapittel
DetaljerEksamensoppgave i MA1103 Flerdimensjonal analyse
Institutt for matematiske fag Eksamensoppgave i MA113 Flerdimensjonal analyse Faglig kontakt under eksamen: Tlf: Eksamensdato: 5. Juni 19 Eksamenstid (fra til): 9: 13: Hjelpemiddelkode/Tillatte hjelpemidler:
DetaljerI = (xy + z 2 ) dv. = z 2 dv. 1 1 x 1 x y z 2 dz dy dx,
TMA5 Mtemtikk Vår 7 Norges teknisk nturvitenskpelige universitet Institutt for mtemtiske fg Løsningsforslg Øving 8 Alle oppgvenummer referer til 8 utgve v Adms & Essex Clculus: A Complete Course 57: Vi
DetaljerLøsning IM
Løsning IM 6 Oppgave x + y Grensen lim er ubestemt da både teller og nevner blir Vi skal vise at grensen ( xy, ) (,) x + y ikke eksisterer og bruker rette linjer inn mot origo De enkleste linjene er koordinataksene
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 11. juni 21. Tid for eksamen: 14.3 17.3. Oppgavesettet er på 7 sider. Vedlegg: Tillatte hjelpemidler: MAT111 Kalkulus
DetaljerEksamensoppgave i MA1103 Flerdimensjonal analyse
Institutt for matematiske fag Eksamensoppgave i MA1103 Flerdimensjonal analyse Faglig kontakt under eksamen: Mats Ehrnstrøm Tlf: 735 917 44 Eksamensdato: 22. mai 2018 Eksamenstid (fra til): 09:00 13:00
DetaljerSIF5005 MATEMATIKK 2 VÅR r5 drdθ = 1 m. zrdzdrdθ = 1 m. zrdzdrdθ =
SIF55 MAEMAIKK Å 3 Løsningsforslag Hjemmeøving 5 Oppgave. Ser at massen fordeler seg symetrisk om z-aksen, derfor vil tyngdepunktet ligge på z-aksen. Det eneste vi da trenger å regne ut er z. zδd = m π
DetaljerOppgaver og fasit til kapittel 6
1 Oppgaver og fasit til kapittel 6 Mange av oppgavene i dette kapitlet brukes for første gang, og det er sannsynligvis flere fasitfeil enn normalt. Finner du en feil, så send en melding til lindstro@math.uio.no.
Detaljer= (2 6y) da. = πa 2 3
TMA45 Matematikk Vår 7 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving Alle oppgavenummer referer til 8. utgave av Adams & Essex alculus: A omplete ourse.
DetaljerEksamensoppgave i MA1103 Flerdimensjonal analyse
Institutt for matematiske fag Eksamensoppgave i MA3 Flerdimensjonal analyse Faglig kontakt under eksamen: Mats Ehrnstrøm Tlf: 735 97 44 Eksamensdato: 22. mai 28 Eksamenstid (fra til): 9: 3: Hjelpemiddelkode/Tillatte
DetaljerFigur 1: Volumet vi er ute etter ligger innenfor de blå linjene. Planet som de røde linjene ligger i deler volumet opp i to pyramider.
TMA415 Matematikk Vår 15 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Alle oppgavenummer referer til 8. utgave av Adams & Esse alculus: A omplete ourse. 5 Eercise 14.1.6
DetaljerEKSAMEN I FAG SIF5005 MATEMATIKK 2
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 3 Faglig kontakt under eksamen: Trond Digernes 7359357 Berner Larsen 73 59 35 5 Lisa Lorentzen 73 59 35 48 Vigdis Petersen
Detaljerr(t) = 3 cos t i + 4 cos t j + 5 sin t k. Hastigheten er simpelthen den tidsderiverte av posisjonen: r(t) = 2t i + t j + 4t 2 k.
TMA415 Matematikk 2 Vår 215 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 3 Alle oppgavenummer refererer til 8. utgave av Adams & Essex Calculus: A
DetaljerLØSNINGSFORSLAG TMA4105 Matematikk 2 8. August 2005
LØSNINGSFORSLAG TMA45 Matematikk 8. August 5 Oppgave Vi introduserer funksjonen g(x, y, z) x +y z slik at flaten z x + y er gitt ved g(x, y, z). I dette tilfellet utgjør gradienten til g en normalvektor
DetaljerLøsningsforslag, eksamen MA1103 Flerdimensjonal analyse, 8.juni 2010
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Løsningsforslag, eksamen MA11 Flerdimensjonal analyse, 8.juni 21 Oppgave 1 a) Finn og klassifiser alle kritiske
DetaljerLøsningsforslag til eksamen i TMA4105 matematikk 2,
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av Løsningsforslag til eksamen i TMA45 matematikk, 9.5.4 Oppgave La fx, y, z) xy + arctanxz). La P være punktet,, ). a)
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: MAT Kalkulus og lineær algebra Eksamensdag: Fredag. mars Tid for eksamen: 5. 7. Oppgavesettet er på 8 sider. Vedlegg: Tillatte
DetaljerTMA4100 Matematikk 1 Høst 2014
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA Matematikk Høst Løsningsforslag Øving Review Exercise 6, side 86 Vi lar fx sin x. Taylor-polynomet av grad 6 til f om x
Detaljerx 2 + y 2 z 2 = c 2 x 2 + y 2 = c 2 z 2,
TMA45 Matematikk 2 Vår 25 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 4 Alle oppgavenummer referer til 8. utgave av Adams & Esse Calculus: A Complete
DetaljerSIF 5005 Matematikk 2 våren 2001
IF 55 Matematikk våren Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Diverse løsningsforslag 75 Matematikk B, mai 994 (side 77 79) 6 a) Vi finner en potensialfunksjon φ(x,
DetaljerØving 3. Oppgave 1 (oppvarming med noen enkle oppgaver fra tidligere midtsemesterprøver)
Institutt for fysikk, NTNU TFY455/FY003: Elektrisitet og magnetisme Vår 2008 Veiledning: Fredag 25. og mandag 28. januar Innleveringsfrist: Fredag. februar kl 2.00 Øving 3 Oppgave (oppvarming med noen
Detaljerx t + f y y t + f z , og t = k. + k , partiellderiverer vi begge sider av ligningen x = r cos θ med hensyn på x. Da får vi = 1 sin 2 θ r sin(θ)θ x
TMA4105 Matematikk 2 Vår 2015 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 5 Alle oppgavenummer refererer til 8. utgave av Adams & Essex Calculus:
Detaljerdx = 1 1 )dx = 3 y= x . Tangentplanet til hyperboloiden i (2, 1, 3) er derfor gitt ved x 2, y 1, z 3 = 0 x 2 + 2(y 1) 2 (z 3) = 0 x + 2y 2z 3 = 2
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA415 Matematikk vår 9 øsningsforslag til eksamen 15. august 9 1 Treghetsmoment med hensyn på x-aksen er gitt ved x [ ] y I
DetaljerNTNU. MA1103 Flerdimensjonal analyse våren Maple/Matlab-øving 2. Viktig informasjon. Institutt for matematiske fag
NTNU Institutt for matematiske fag MA1103 Flerdimensjonal analyse våren 2012 Maple/Matlab-øving 2 Fyll inn studieprogram: Fyll inn navn: 1. 2. 3. 4. Viktig informasjon Besvarelsen kan leveres som gruppearbeid
DetaljerLøsningsforslag, eksamen MA1103 Flerdimensjonal analyse, vår 2009
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 8 Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, vår 2009 Oppgave 1 Avgjør om grenseverdiene eksisterer:
DetaljerSIF5005 Matematikk 2, 13. mai 2002 Løsningsforslag
SIF55 Matematikk, 3. mai Oppgave Alternativ : At de to ligningene skjærer hverandre vil si at det finnes parameterverdier u og v som, innsatt i de to parametriseringene, gir samme punkt: Vi løser hver
DetaljerMa Flerdimensjonal Analyse II Øving 9
Ma23 - Flerdimensjonal Analyse II Øving 9 Øistein Søvik 2.3.22 Oppgaver 4.5 Evaluate the triple integrals over the indicated region. Be alert for simplifications and auspicious orders of integration 3.
Detaljer( 6z + 3z 2 ) dz = = 4. (xi + zj) 3 i + 2 ) 3 x x 4 9 y. 3 (6 2y) (6 2y)2 4 y(6 2y)
TMA415 Matematikk 2 Vå 215 Noges teknisk natuvitenskapelige univesitet Institutt fo matematiske fag Løsningsfoslag Øving 11 Alle oppgavenumme efeee til 8. utgave av Adams & Essex Calculus: A Complete Couse.
DetaljerLøsning, Trippelintegraler
Ukeoppgaver, uke 7 Matematikk, rippelintegraler Løsning, rippelintegraler Oppgave a) b) c) 6 x + + ) d d dx x + +/) d dx x) d d dx x + + /] d dx x + /+/] dx x +6)dx 8 6 d ) ) d xdx 6 ) ) ) d d xdx 6 8
DetaljerEKSAMEN i MATEMATIKK 30
Eksamen i Matematikk 3 3. mai Høgskolen i Gjøvik Avdeling for teknologi EKSAMEN i MATEMATIKK 3 Onsdag 3. mai kl. 9 4 agnummer: V39A aglærer: Hans Petter Hornæs Tillatte hjelpemidler: Godkjent kalkulator
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I FAGET 5005/7 MATEMATIKK 2 1. august der k er et vilkårlig heltall. Det gir
LØNINGFOLAG IL EKAMEN I FAGE 55/7 MAEMAIKK. august Oppgave. (i Ja. (ii Ja. (iii Nei. Alternativt: (i Ja. (ii Ja. (iii Ja. Oppgave. curlf (x, y F i j k (x, y / x / y / z e y + ye x +x xe y + e x + Altså
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MEK 11 Feltteori og vektoranalyse. Eksamensdag: Torsdag 1 desember 29. Tid for eksamen: 14:3 17:3. Oppgavesettet er på 7 sider.
Detaljere y + ye x +2x xe y + e x +1 0 = 0
LØNINGFORLAG TIL EKAMEN I FAGET 55/7 MATEMATIKK. august Oppgave. (i) Ja. (ii) Ja. (iii) Nei. Alternativt: (i) Ja. (ii) Ja. (iii) Ja. Oppgave. a) curlf (x, y) F i j k (x, y) / x / y / z e y + ye x +x xe
DetaljerRandkurva C til flata S orienteres positivt sett ovenfra, og kan parametriseres ved: r (t) = [ sin t, cos t, sin t] dt, 0 t 2π.
Ma - Løsningsforslag til uke 17 i 7 Eks. mai 1999 oppgave 4 ylinderen x + y = 1 skjærer ut ei flate av planet z = x + 1 dvs. x + z = 1 med enhetsnormal i positiv z-retning lik n= 1 [ 1 1]. Flata blir en
Detaljer(1 + x 2 + y 2 ) 2 = 1 x2 + y 2. (1 + x 2 + y 2 ) 2, x 2y
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA45 Matematikk vår 9 Løsningsforslag til eksamen.5.9 Gitt f(, y) = + +y. a) Vi regner ut f = f y = + + y ( + + y ) = + + y
DetaljerTMA4105 Matematikk 2 vår 2013
TMA4105 Matematikk vår 013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving Alle oppgavene er fra læreboka Merk: I løsningene til alle oppgavene fra seksjon
DetaljerSom vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon, språk og stil variere noe fra oppgave til oppgave.
NTNU Institutt for matematiske fag TMA4105 Matematikk, øving 7, vår 011 Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon,
DetaljerNavn/kursparallell skrives her (ved gruppearbeid er det viktig at alle fyller ut):
MA1103 vår 2008 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Øving 10M Navn/kursparallell skrives her (ved gruppearbeid er det viktig at alle fyller ut): 1. 2. 3. 4. 5.
DetaljerEKSAMENSOPPGAVE. KRAFT I og II Hall del 2 Kraft sportssenter Ingen
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: MAT-1003 Kalkulus 3 Dato: 11.12.2018 Klokkeslett: 09.00-13.00 Sted: Tillatte hjelpemidler: KRAFT I og II Hall del 2 Kraft sportssenter
DetaljerAnbefalte oppgaver - Løsningsforslag
TMA405 Matematikk Anbefalte oppgaver - Løsningsforslag Uke 6 3..9: Vi starter med å finne de kritiske punktene. De deriverte blir T x (x, y) = ( x xy)e x y T y (x, y) = ( y xy)e x y, slik at de kritiske
DetaljerLØSNINGSFORSLAG EKSAMEN TMA4105 MATEMATIKK 2 Lørdag 14. aug 2004
Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag ide av LØNINGFOLAG EKAMEN TMA4 MATEMATIKK 2 Lørdag 4. aug 24 Oppgave Grenseverdien eksisterer ikke. For eksempel er grenseverdien
DetaljerEksamensoppgaver og Matematikk 1B
Eksamensoppgaver 7500 og 750 Matematikk B Samlet for SIF5005 Matematikk våren 00 Samlingen inneholder utvalgte oppgaver gitt i 7500 og 750 Matematikk B ved NTH/NTNU i tiden 993 997. Oppgaver eller punkter
DetaljerI = (x 2 2x)e kx dx. U dv = UV V du. = x 1 1. k ekx x 1 ) = x k ekx 2x dx. = x2 k ekx 2 k. k ekx 2 k I 2. k ekx 2 k 1
TMA4 Høst 6 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 6 6..4 Vi skal evaluere det ubestemte integralet I = ( e k. Vi starter med å dele opp integralet
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: Eksamensdag: Fredag 1. april 2011 Tid for eksamen: 15.00 17.00 Oppgavesettet er på 7 sider. Vedlegg: Tillatte hjelpemidler:
DetaljerEKSAMEN I FAG SIF5005 MATEMATIKK 2
Norges teknisk naturvitenskapelige universitet Trond Digernes 75957 Berner Larsen 7 59 5 5 Lisa Lorenten 7 59 5 8 Vigdis Petersen 75965 ide av Vedlegg: Formelliste IF55 Matematikk ide av Oppgave Et plant
DetaljerEksamen, høsten 13 i Matematikk 3 Løsningsforslag
Eksamen, høsten 3 i Matematikk 3 Løsningsforslag Oppgave. a) Fra ligningen x 5 + y 3 kan vi lese ut store og lille halvakse a 5 og b 3. Fokus til senter avstanden er da gitt ved c a b 5 3 5 9 6 4. ermed
DetaljerLøsning, Stokes setning
Ukeoppgaver, uke 4 Matematikk, tokes setning 1 Løsning, tokes setning Oppgave 1 a) b) c) F x y z x y z F x x + y y + z z 1+1+1 iden F er feltet konservativt. ( z y y ) ( x i z z z ) ( y x x x ) k i +k
DetaljerVår TMA4105 Matematikk 2. Løsningsforslag Øving 2. Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag
TMA415 Matematikk 2 Vår 217 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 2 11.1.9: Den aktuelle kurven er gitt ved r(t) (3 cos t, 4 cos t, 5 sin t).
DetaljerMandag qq 4πε 0 r 2 ˆr F = Elektrisk felt fra punktladning q (følger av definisjonen kraft pr ladningsenhet ): F dl
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke 6 Mandag 05.02.07 Oppsummering til nå, og møte med Maxwell-ligning nr 1 Coulombs lov (empirisk lov for kraft mellom to
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i Eksamensdag: 9. april,. Tid for eksamen: : :. Oppgavesettet er på 9 sider. Vedlegg: Tillatte hjelpemidler: MAT Kalkulus og
DetaljerLøsning til utvalgte oppgaver fra kapittel 12 (15).
Løsning til utvalgte oppgaver fra kapittel (5) Oppgave 7 ( 5) Vi skal btte integrasjonsrekkefølgen i integralet dd Når vi btter integrasjons- rekkefølgen må integrasjonsområdet beskrives på ntt Dobbelintegralet
DetaljerAnbefalte oppgaver - Løsningsforslag
Anbefalte oppgaver - Løsningsforslag Uke 6 12.6.4: Vi finner først lineariseringen i punktet (2, 2). Vi har at Lineariseringen er derfor 2x + y f x (x, y) = 24 (x 2 + xy + y 2 ) 2 2y + x f y (x, y) = 24
DetaljerLøsningsforslag til øving 3
Institutt for fysikk, NTNU TFY455/FY003 Elektromagnetisme Vår 2009 Løsningsforslag til øving 3 Oppgave a) C V = E dl = 0 dersom dl E b) B På samme måte som et legeme med null starthastighet faller i gravitasjonsfeltet
DetaljerAnbefalte oppgaver - Løsningsforslag
TMA415 Matematikk 2 Anbefalte oppgaver - Løsningsforslag Uke 7 15.1.3: Siden vektorfeltet er gitt ved F(x, y) = yi + xj må feltlinjene tilfredstille differensiallikningen eller y = x y, ( ) 1 2 y2 = x.
DetaljerEksamen IRF30014, våren 16 i Matematikk 3 Løsningsforslag
Oppgave 1. Eksamen IRF314, våren 16 i Matematikk 3 Løsningsforslag Ellipsen vil skal finne er på standardform x a + y b 1 der a > b for styrelinjene er vertikale linjer. Formelen for styrelinjene er x
Detaljerdg = ( g P0 u)ds = ( ) = 0
NTNU Institutt for matematiske fag TMA4105 Matematikk 2, øving 8, vår 2011 Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon,
DetaljerTMA4100 Matematikk 1 Høst 2014
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4 Matematikk Høst 4 Løsningsforslag Øving 5.7.4 Vi observerer at både y = cos πx 4 og y = x er like funksjoner. Det vil si
DetaljerMa Flerdimensjonal Analyse Øving 1
Ma1203 - Flerdimensjonal Analyse Øving 1 Øistein Søvik Brukernavn: Oistes 23.01.2012 Oppgaver 10.1 6. Show that the triangle with verticies (1, 2, 3), (4, 0, 5) and (3, 6, 4) has a right angle. z y x Utifra
DetaljerMAT Vår Oblig 2. Innleveringsfrist: Fredag 23.april kl. 1430
MAT 00 Vår 00 Oblig Innleveringsfrist: Fredag 3.april kl. 430 Oppgaven leveres stiftet med forsideark på ekspedisjonskontoret til Matematisk institutt i 7. etg. i Niels Henrik Abels hus innen fristen.
DetaljerAreal mellom kurver Volum Forelesning i Matematikk 1 TMA4100
Areal mellom kurver Volum Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 27. september 20 Kapittel 5.6. Substitusjon og arealet mellom kurver 3 Areal mellom kurver Problem
DetaljerLøsningsforslag til øving 4
Institutt for fysikk, NTNU TFY455/FY003 Elektrisitet og magnetisme Vår 2007 Veiledning uke 5 Løsningsforslag til øving 4 Oppgave a) Vi benytter oss av tipsene gitt i oppgaveteksten og tar utgangspunkt
DetaljerTMA4120 Matematikk 4K Høst 2015
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA41 Matematikk 4K Høst 15 Løsningsforslag Øving 9 hapter 13.7 La z. Logaritmen til z, ln z, er definert som tallene ln z ln
DetaljerEKSAMEN. 3. klassene, ingenørutdanning. ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formler.)
KANDIDATNUMME: EKAMEN FAGNAVN: Matematikk 3 FAGNUMME: EA32 EKAMENDATO: 25. mars 29 KLAE: 3. klassene, ingenørutdanning. TID: kl. 9. 13.. FAGLÆE: Hans Petter Hornæs ANTALL IDE UTLEVET: 5 (innkl. forside
DetaljerKapittel 11: Integrasjon i flere variable
.. Kurveintegraler Kapittel : Integrasjon i flere variable... Kurveintegraler. Oppgave.: a Her er fx, y, z xyz og slik at C rt t, π, t, r t r t + + t t t, fx, y, z ds t t frt r t dt,, t, t t π t dt π t
DetaljerLøsningsforslag eksamen TMA4105 matematikk 2, 25. mai 2005
Løsningsforslag eksamen TMA5 matematikk, 5. mai 5 Oppgave Vi finner de partiellderiverte av første og annen orden av f, ) = sin : f = sin, f = cos, f =, f = cos, f = sin. Finner de kritiske punktene ved
DetaljerLøsningsforslag, midtsemesterprøve MA1103, 2.mars 2010
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 5 Løsningsforslag, midtsemesterprøve MA03,.mars 00 Oppgave Tegn figur og finn en parametrisering for skjæringskurven
DetaljerEksamen, høsten 14 i Matematikk 3 Løsningsforslag
Oppgave 1. Fra ligningen Eksamen, høsten 14 i Matematikk 3 Løsningsforslag x 2 64 y2 36 1 finner vi a 64 8 og b 36 6. Fokus til senter avstanden er da gitt ved c a 2 + b 2 64 + 36 1 1. Dermed er fokuspunktene
DetaljerEKSAMEN i MATEMATIKK 30
Eksamen i Matematikk 3 1. desember 1999 1 Høgskolen i Gjøvik Avdeling for teknologi EKAMEN i MATEMATIKK 3 1 desember 1999 kl. 9 14 Fagnummer: V139A Faglærer: Hans Petter Hornæs Tillatte hjelpemidler: Godkjent
DetaljerTMA4105 Matematikk 2 Vår 2014
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4105 Matematikk 2 Vår 2014 Løsningsforslag Øving 7 10.4.7 Vi skal finne likningen til et plan gitt to punkter P = (1, 1,
DetaljerOnsdag og fredag
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2009, uke 4 Onsdag 21.01.09 og fredag 23.01.09 Elektrisk felt fra punktladning [FGT 22.1; YF 21.4; TM 21.4; AF 21.6; LHL 19.5;
DetaljerKap. 22. Gauss lov. Vi skal se på: Fluksen til elektrisk felt E Gauss lov. Elektrisk ledere. Integralform og differensialform
Kap. 22. Gauss lov Vi skal se på: Fluksen til elektrisk felt E Gauss lov Integralform og differensialform Elektrisk ledere. E-felt fra Coulombs lov: E k q r 2 r E k n q r n 2 0n r 0n dq E k r 2 r tot.
DetaljerTMA4105 Matematikk2 Vår 2008
TMA4105 Matematikk2 Vår 2008 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 5 11.4.1 Vi ser på kurven i xy-planet gitt ved r(t) ti + (ln(cos t))j π/2
DetaljerTegn en skisse som tydelig viser integrasjonsområdet og grensene: = 1 3. dy = 1 3
Integral y x Vi har integralet e x dxdy yx y Tegn en skisse som tydelig iser integrasjonsområdet og grensene: Integrassjonsområdet bestemmes a øre og nedre grenser i integralene Integranten har ingen betydning
DetaljerFYS1120 Elektromagnetisme
Det matematisk-naturvitenskapelige fakultet Universitetet i Oslo FY112 Elektromagnetisme Løsningsforslag til ukesoppgave 1 Oppgave 1 a i Her er alternativ 1 riktig. Hvis massetettheten er F, vil et linjestykke
DetaljerEksamen i V139A Matematikk 30
Høgskolen i Gjøvik Avdeling for teknologi Eksamen i V139A Matematikk 3 4. juni 22 9. 14. Fagnummer: V139A Faglærere: Hans Petter Hornæs. Tillatte hjelpemidler: Godkjent kalkulator, Formelsamling. Oppgavesettet
Detaljer2 n+2 er konvergent eller divergent. Observer først at; 2n+2 2 n+2 = n=1. n=1. 2 n > for alle n N. Denne summen er.
MA2 Vår 28 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag 9.2.9 Ønsker å finne ut om 3+ 2 n+2 er konvergent eller divergent. Observer først at; 3 + 2 n 2 n+2 = ( 3 ) + +2
DetaljerEksamen i V139A Matematikk 30
Høgskolen i Gjøvik Avdeling for teknologi Eksamen i V139A Matematikk 3 21. desember 21 9. 14. Fagnummer: V139A Faglærer: Hans Petter Hornæs Tillatte hjelpemidler: Godkjent kalkulator ottmanns formelsamling
DetaljerNTNU Institutt for matematiske fag. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 8. Oppgave 1. Oppgave 2
NTNU Institutt for matematiske fag TMA4 Matematikk høsten Løsningsforslag - Øving 8 Oppgave b. Vi har at f() > og f(π/) π /6
DetaljerTillegg om flateintegraler
Kapittel 6 Tillegg om flateintegraler 6.1 Litt ekstra om flateintegraler I kompendiet har vi definert flateintegraler som grenseoverganger for diskretiseringer. Har vi en flate kan vi representere den
DetaljerEksamensoppgavehefte 1. MAT1012 Matematikk 2: Mer funksjonsteori i en og flere variabler
Eksamensoppgavehefte 1 MAT1012 Matematikk 2: Mer funksjonsteori i en og flere variabler Matematisk institutt, UiO, våren 2010 I dette heftet er det samlet et utvalg av tidligere eksamensoppgaver innenfor
DetaljerKurve-, flate- og volumintegraler, beregning av trykkraft
Kapittel 6 Kurve-, flate- og volumintegraler, beregning av trykkraft Oppgave 1 Vi skal regne ut kurveintegralet λ v dr langs kurven λ: y x3 når 1 x 2 og v xyi+x 2 j. Vi kan parametrisere med x som parameter,
DetaljerLøsningsforslag til Eksamen i MAT111
Universitetet i Bergen Matematisk institutt Bergen, 9. desember 25. Bokmål Løsningsforslag til Eksamen i MAT Mandag 9. desember 25, kl. 9-. Dette er kun et løsningsforslag. Oppgave a) Betrakt de to komplekse
DetaljerLøsningsforslag til prøveeksamen i MAT 1110, våren 2006
Løsningsforslag til prøveeksamen i MAT, våren 6 Oppgave : a) Vi har C 5 3 II+( )I a + 3a 3a III+I 3 II 3 3 3 3 a + 3a 3a 3 a + 3a 3a III+II I+( ))II 3 3 3 a + 3a 3a 3 3 3 a + 3a 4 3 3a a + 3a 4 3 3a b)
DetaljerOppgaver og fasit til seksjon
1 Oppgaver og fasit til seksjon 3.4-3.6 Oppgaver til seksjon 3.4 1. Anta at f(x, y) = x 2 y 3 og r(t) = t 2 i + 3t j. Regn ut g (t) når g(t) = f(r(t)). 2. Anta at f(x, y) = x 2 e xy2 og r(t) = sin t i+cos
DetaljerVolum Lengde Areal Forelesning i Matematikk 1 TMA4100
Volum Lengde Areal Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 4. oktober 011 Kapittel 6.. Volum ved sylindriske skall 3 Skall-metoden z = g(x) 1 1 1 1 3 1 1 3 z
DetaljerOversigt [S] 12.4, 12.5, 12.7
Oversigt [S] 12.4, 12.5, 12.7 Nøgleord og begreber Repetition: Polære koordinater Lagkagestykker Koordinatskift Type II varianten August 22, opgave 1 Populære anvendelser Flyv højere... Koordinatskift
DetaljerKurve-, flate- og volumintegraler, beregning av trykkraft
Kapittel 6 Kurve-, flate- og volumintegraler, beregning av trykkraft Oppgave 1 Vi skal regne ut kurveintegralet λ v dr langs kurven λ: y x3 når 1 x 2 og v xyi+x 2 j. Vi kan parametrisere med x som parameter,
DetaljerLøsningsforslag for eksamen i brukerkurs i matematikk A (MA0001)
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 8 Løsningsforslag for eksamen i brukerkurs i matematikk A (MA1) Bokmål Tirsdag 1. desember 11 Tid: 9: 1: (4 timer)
DetaljerLøsningsforslag til prøveeksamen i MAT1050, vår 2019
Løsningsforslag til prøveeksamen i MT15, vår 19 Oppgave 1. a) Vi har sinx + y) d R cosx + y) sinx + π) + sin x siden alle fire leddene er. yπ y π dx sinx + y) dy dx cosx + π) + cos x) dx sin π + sin π)
Detaljer