EKSAMEN. 3. klassene, ingenørutdanning. ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formler.)
|
|
- Sidsel Caspersen
- 8 år siden
- Visninger:
Transkript
1 KANDIDATNUMME: EKAMEN FAGNAVN: Matematikk 3 FAGNUMME: EA32 EKAMENDATO: 25. mars 29 KLAE: 3. klassene, ingenørutdanning. TID: kl FAGLÆE: Hans Petter Hornæs ANTALL IDE UTLEVET: 5 (innkl. forside og 2 sider formler. TILLATTE HJELPEMIDLE: John Haugan: Formler og tabeller. Kalkulator. INNFØING MED PENN, evt. trykkblyant som gir gjennomslag. Ved innlevering skilles hvit og gul besvarelse og legges i hvert sitt omslag. Oppgavetekst, kladd og blå kopi beholder kandidaten. Husk kandidatnummer på alle ark.
2 Eksamen i Matematikk mars 29 1 Hvert bokstavpunkt teller likt ved bedømmelsen, oppgaver uten bokstavpunkter teller som et bokstavpunkt. Oppgave 1 La funksjonen f : 3 3 være definert ved f(x, y, z =xye z a Finn f(2, 1,, gradienten i punktet med koordinater (2, 1,. b La være nivåflaten til f gjennom punktet med koordinater (2, 1,. Finn en likning for tangentplanet til i dette punktet. Oppgave 2 La T være den delen kula med sentrum i origo og radius 1 som ligger i første oktant (dvs. x, y ogz. La være overflaten til T og n være enhetsnormalvektor på som peker ut av T. La I være trippelintegralet I = xdv. La feltet F være definert på 3 ved F (x, y, z =[xe y,z e y,xz]. T a ettoppi som uttrykk med rektangulære koordinater (dvs. med dx, dy og dz, der integranden og grensene settes opp eksplisitt, men integralet skal (foreløbig ikke regnes ut. b ett på tilsvarende måte opp I som uttrykk med kulekoordinater (dvs. med dρ, dφ og dθ. c egn ut fluksen Oppgave 3 F n d. En flate er parametrisert ved r(u, v =[5cos(u, 4v 3sin(u, 3v +4sin(u], u π, v 2 Videre er n oppadrettet enhetsnormalvektor på (dvs. den med z koordinat, og er randen til, positivt orientert i fohold til n. Vektorfeltet G er definert på hele 3 ved G(x, y, z = [ x 3,x 3 + y 3,z 3 x ] 3 a egn ut curlen G og avgjør om G er et konservativt felt. b egn ut arealet av. c egn ut arbeidsintegralet G T ds
3 Eksamen i Matematikk mars 29 2 Oppgave 4 I en 4 meter lang varmeisolert jernstang holdes temperaturen i begge endepunkter konstant lik elcius. Vi plasserer x aksen (med enhet meter langs staven, med origo i venstre endepunkt. Ved tidspunktet t = er temperaturfordelinga gitt ved for x 1 f(x = 1 for 1 <x<3 for 3 x 4 Dette gir følgende varmeledningsproblem: α 2 u xx = u t (1 u(,t = (2 u(4,t = (3 u(x, = f(x (4 Den termiske diffusjonskoeffisienten for denne type jern er α 2 =.6 (meter 2 per time. Ved separasjon av variable finnes funksjoner påformen ( u n (x, t =sin 4 x e n2 π 2 α t som oppfyller betingelsene (1, (2 og (3 (dette behøver ikke vises i denne oppgaven. a Finn løsningen u(x, t på dette problemet. varet må angis som en uendelig sum, men du behøver ikke i denne deloppgaven sette inn tall for α 2. Det vil være med faktorer av formen k n =cos(/4 cos(3/4. Disse kan i løsningen bare kalles k n. Mønsteret for k n er: for n =2, 4, 6,... dvs. n partall k n =cos(/4 cos(3/4 = 2 for n =1, 7, 9, 15, 17, 23, 25,... 2 for n =3, 5, 11, 13, 19, 21, 27,... b Hva er temperaturen i midtpunktet x = 2 etter 6 timer (t =6? varet skal angis med en desimal. Tamedetkortoguformeltargumentforatduharmedakkuratpasseligmange ledd i rekkeløsningen for åfådenne nøyaktigheten. Lykke til.
4 Eksamen i Matematikk mars 29 3 HØGKOLEN I GJØVIK FOMELAMLING FO BUK VED EKAMEN I MATEMATIKK 3 Koordinatskifte i multiple integraler: } x = x(u, v Dobbeltintegral, generelt: y = y(u, v f(x, y dx dy = f(x(u, v,y(u, v J(u, v du dv der J(u, v =x u y v x v y u. Dobbeltintegral, polarkoordinater: } x = r cos θ f(x, y dx dy = f(r cos θ, r sin θ rdrdθ y = r sin θ x = x(u, v, w Trippelintegral, generelt: y = y(u, v, w z = z(u, v, w f(x, y, z dx dy dz = f(x(u, v, w,y(u, v, w,z(u, v, w J(u, v, w du dv dw Trippelintegral, sylinderkoordinater: x = r cos θ y = r sin θ f(x, y, z dx dy dz = z = z Trippelintegral, kulekoordinater: f(x, y, z dx dy dz = Gradient, divergens og curl : grad(f = f = f x ı + f y j + f z k x = ρ sin φ cos θ y = ρ sin φ sin θ z = ρ cos φ der J(u, v, w = x u x v x w y u y v y w z u z v z w f(r cos θ, r sin θ, z rdzdrdθ f(ρ sin φ cos θ, ρ sin φ sin θ, ρ cos φ ρ 2 sin φdρdφdθ div( F = F = P x + Q y + z, der F = P ı + Q j + k curl( F = F ı j k = x y z P Q =( y Q z ı ( x P z j +(Q x P y k.
5 Eksamen i Matematikk mars 29 4 To viktige setninger: Divergenssetningen (Gauss setning: F n d = F dv T dersom T er et begrenset legeme, er overflaten til T og er stykkevis glatt, n er den overalt utadrettede enhetsnormalvektor på og F er et vektorfelt hvis komponenter er definert og kontinuerlig deriverbare i hele T og påhele. tokes setning: F T ds = ( F n d dersom er en lukket, begrenset og stykkevis glatt flate, n er en orientering av, er randkurven til positivt orientert m.h.p. n, ogf er et vektorfelt hvis komponenter er definert og kontinuerlig deriverbare i en åpen del av rommet som inneholder. Ordinære differensiallikninger: 1.-ordens lineære, homogene, med konstante koeffisienter: Allmenn løsning av F (t+af (t = er F (t =e at. 2.-ordens lineære, homogene, med konstante koeffisienter: Allmenn løsning av af (t+bf (t+cf (t = (dera avhengerava, b og c, slik: (1 Hvis ar 2 + br + c = har to forskjellige reelle røtter, r 1 og r 2 : F (t = 1 e r1t + 2 e r2t. (2 Hvis ar 2 + br + c =harbareén (reell rot, r: F (t =( 1 t + 2 e rt. (3 Hvis ar 2 + br + c = har to komplekse røtter, α ± βi: F (t =e αt ( 1 cos βt + 2 sin βt. Partielle differensiallikninger, d Alemberts løsning av bølgelikningen c 2 u xx = u tt : Allmenn løsning kan skrives slik: F (x + ct+g(x ct. Løsninger som oppfyller randbetingelsen u t (x, = kan skrives slik: F (x+ct+f(x ct. Fourierrekker, halvperiodiske utvidelser: Hvis f(x er definert og stykkevis kontinuerlig og begrenset på [,L], da gjelder følgende for de x [,L]derf er kontinuerlig: ( f(x =a + a n cos L x, der og: f(x = a = 1 L L f(x dx og a n = 2 L L ( b n sin L x, der b n = 2 L ( f(xsin L L x dx. ( f(xcos L x dx,
6 Løsning, eksamen i Matematikk mars 29 1 Oppgave 1 a f(x, y, z =[ye z,xe z,xye z ]. f(2, 1, = [ 1e, 2e, 1 2e ] =[1, 2, 2]. b Likningen for et plan gjennom punktet med koordinater (x,y,z og med normalvektor [a, b, c] era(x x +b(y y +c(z z =. Gradienten er normalvektor til (tangentplaet til nivåflaten, så vihardermed Oppgave 2 a 1(x 2 + 2(y 1 + 2(z = x +2y +2z =4 Likningen for kuleflaten i rektangulære koordinater er x 2 + y 2 + z 2 = 1. Dette kan løses ut med hensyn på z til z 2 =1 x 2 y 2 z = 1 x 2 y 2 (plussroten brukes da z. For z =får vi = 1 x 2 y 2 x 2 + y 2 = 1, slik at avgrensningen sett ovenifra er en sirkel i xy planet med sentrum i origo og radius 4. Vi kan dermed beskrive T med ulikhetene slik at z 1 x 2 y 2 y 1 x 2, x 1 I = 1 1 x 2 1 x 2 y 2 xdzdydx b Med kulekoordinater er kuleflaten gitt ved ρ =1.Atvibareskalhadendelenoverxy planet gir φ π/2. At vi bare skal den 4-delen av halvkulen som ligger over 1. kvadrant i xy planet gir θ π/2. iden dv = ρ 2 sin(φ dρ dφ dθ og x = ρ sin(φcos(θ får vi da I = 1 1 ρ sin(φcos(θ ρ 2 sin(φ dρ dφ dθ = ρ 3 sin 2 (φcos(θ dρ dφ dθ c Ved divergensetningen har vi F n d = T F dv. Divergensen er n = e y e y +x = x slik at integralet blir som tidligere i denne oppgaven. Det er enklest å regne det ut med kulekoordinater: F n d = 1 [ ρ 4 /4 ] 1 sin2 (φcos(θ dφ dθ = 1 4 ρ 3 sin 2 (φcos(θ dρ dφ dθ = sin 2 (φcos(θ dφ dθ
7 Løsning, eksamen i Matematikk mars 29 2 Integralet av sin 2 (φ kan løses ved omformingen sin 2 (φ =1/2 cos(2φ/2, eller ved å hente fra formelsamlinga sin 2 (x dx = 1 2 x 1 4 sin(2x+ som gir...= 1 [ φ 1 ] π/2 4 sin(2φ cos(θ dθ = 1 (( π sin(π ( sin( cos(θ dθ 4 = π 16 cos(θ dθ = π 16 [sin(θ]π/2 = π 16 Oppgave 3 a i j k G = x y z x 3 x 3 + y 3 z 3 x 3 = y z x 3 + y 3 z 3 x 3 i x z x 3 z 3 x 3 j + x y x 3 x 3 + y 3 k = ( i ( 3x 2 j +(3x 2 k =[, 3x 2, 3x 2 ] b iden curlen ikke er konstant lik er feltet ikke konservativt. Arealet er gitt ved flateintegralet d der d = r u r v du dv. i j k r u r v = 5sin(u 3cos(u 4cos(u 4 3 = 3cos(u 4cos(u 4 3 i 5sin(u 4cos(u 3 j + 5sin(u 3cos(u 4 k = [ 9cos(u 16 cos(u, ( 15 sin(u, 2 sin(u ] = [ 25 cos(u, 15 sin(u, 2 sin(u] = 5 [ 5cos(u, 3sin(u, 4sin(u] r u r v =5 [ 5cos(u, 3sin(u, 4sin(u] =5 25 cos 2 (u+9sin 2 (u+16sin 2 (u =5 25(cos 2 (u+sin 2 (u = 5 25 = 25 Dermed er arealet π 25 du dv =25 π 2=5π Kommentar: Flaten er halvparten av en sylinder med radius 5 og høyde 1, oppgaven er konstruert ved å dreie denne sylinderen fra en stilling med z aksen som symmetriakse. Om noen skulle oppdage dette og løse oppgaven geometrisk er det selvfølgelig godtatt som løsning.
8 Løsning, eksamen i Matematikk mars 29 3 c Ved tokes setning kan integralet omformes til G T ds = G n d r u r v er en normalvektor til flaten, men merk at 3. koordinaten i r u r v er 2 sin(u for u π, slik at retningen må snues. iden vi må dividere med r u r v for åfå dette til en em enhetsnormalvektor, og multipliserer med r u r v i d forkortes dette bort, og integralet er G T ds = G (r u r v du dv G er regnet ut i oppgave a, og x =5cos(u settes inn fra parametriseringa av. r u r v er regnet ut i oppgave b, så inegralet er π [...=, 3 (5 cos(u 2, 3 (5 cos(u 2] 5[ 5cos(u, 3sin(u, 4sin(u] du dv = 5 π 75(3 cos 2 (usin(u 4cos 2 (usin(u du dv =75 5 π cos 2 (usin(u du dv Det innerste integralet løses ved substitusjonen w =cos(u som gir dw = sin(u dw. Da blir nedre grense w =cos(=1ogøvregrensew =cos(π = 1, så 1 G T ds =75 5 w 2 [ dw dv = 25 5 w 3 ] 1 1 dv = 125 (( dv = dv =( 125 ( 4 = 5 Oppgave 4 a Løsninger som fortsatt oppfyller (1, (2 og (3 kan bygges opp som uendelige konvergente summer u(x, t = n u n (x, t Ved å sette inn t =, slik at alle eksponetialleddene blir 1, vil vi da få ( u(x, = n sin 4 x Det gjelder dermed å bestemme konstantene n slik at dette blir funksjonen f(x forå finne den entydige løsningen. Dette får vi til ved å uttrykke den odde halvperiodiske utvidelsen av f(x somenfourierrekke. Vi har fra formelsamlinga at da er Fourierkoeffisientene b n = 2 L ( f(xsin L L x dx = 2 4 ( f(xsin 4 4 x dx Ved å sette inn funksjonsuttrykket for f(x blir integralet på intervallene [, 1] og [3, 4], såvistår igjen med intervallet [1, 3] der f(x = 1: b n = 1 2 L ( f(xsin L x dx = ( 1 sin 4 x dx
9 Løsning, eksamen i Matematikk mars 29 4 Dette løses ved substitusjonen z = 4 x, som gir dz/dx = 4 dx = 4 dz. Øvregrense er z = 4 3ognedregrensez = 4 1: b n =5 4 3/4 /4 sin(z dz = 2 [ cos(z]3/4 /4 = 2 ( ( ( 3 cos cos 4 4 Ved å sette inn b n for n i rekkeuttrykket for u(x, t har vi løsningen. I første omgang kan vi komprimere uttrykket litt ved å sette k n =cos ( ( 4 cos 3 4,ogfår u(x, t = 2k n sin ( 4 x e n2 π 2 α t b For x =2ersin ( 4 x =sin ( n π 2. Dette er for n partall, og ( 1 n (alternerende fortegn med pluss for n =1. fortegnsvariasjon som k n, slik at k n sin ( n π 2 = kn = 2 for oddetall. Dermed er koeffisientene ( 1 n 2 k n = ±9.3/n for n oddetall ( for partall. Inspeksjon av lista i oppgavetesten for fortegnsvariasjonen på k n er vel lettere åbrukeenn å finne en formel for denne. Eksponentene er n2 π 2 α2 16 t = n2 π =.222n 2 u(2, 1 = Vi regner ut leddene i starten så langt vi trenger: ( 1 n 2 k n e.222n2 n n u n n =1: 9.3 e.222 = n =3: 3 e = 4.6 n =5: e =.7 Vi ser at siste ledd maksimum bidrar med 1 i første desimal. Dessuten avtar leddene i rekka svært raskt, så vigår ut fra at summen av de resterende leddene blir ubetydelig i forhold til første desimal. u(2, 6 = = 76.9 = 76.1 Et mer formelt argument for nøyaktigheten (som ikke avkreves i besvarelsen kan gies ved å observere at ved åtatoogtoleddfår vi en alternerende rekke der leddene avtar i absoluttverdi. Da er feilen mindre enn absoluttverdien av første utelatte ledd, som i dette tilfellet er 7 u 7 (2, u 9 (2, 6 = e e =.2 slik at vi faktisk har med tilstrekkelig antall ledd til å ha 3 desimaler. Fra en praktisk synsvinkel er det nok ikke grunnlag for så stor nøyaktighet da nøyaktigheten på andre deler av uttrykket (f.eks på α 2 neppe er så stor.
EKSAMEN. 3. klassene, ingenørutdanning. ANTALL SIDER UTLEVERT: 5 (innkl. forside og formelark)
KANDIDATNUMME: EKAMEN EMNENAVN: Matematikk 3 EMNENUMME: EA32 EKAMENDATO: 8.desember 28 KLAE: 3. klassene, ingenørutdanning. TID: kl. 9. 13.. EMNEANVALIG: Hans Petter Hornæs ANTALL IDE UTLEVET: 5 (innkl.
DetaljerEKSAMEN. Valgfag, ingeniørutdanning (3. klasse). ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formelark.)
KANDIDANUMME: EKAMEN FAGNAVN: Matematikk 3 FAGNUMME: EA32 EKAMENDAO: 1. desember 26 KLAE: Valgfag, ingeniørutdanning (3. klasse). ID: kl. 9. 13.. FAGLÆE: Hans Petter Hornæs ANALL IDE ULEVE: 5 (innkl. forside
DetaljerEKSAMEN i MATEMATIKK 30
Eksamen i Matematikk 3 1. desember 1999 1 Høgskolen i Gjøvik Avdeling for teknologi EKAMEN i MATEMATIKK 3 1 desember 1999 kl. 9 14 Fagnummer: V139A Faglærer: Hans Petter Hornæs Tillatte hjelpemidler: Godkjent
DetaljerEKSAMEN. 3. klassene, ingenørutdanning. ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formelark.)
KANDIDATNUMME: EKAMEN FAGNAVN: Matematikk 3 FAGNUMME: EA32 EKAMENDATO: 13. desember 25 ENUFIT: 3. januar 26 KLAE: 3. klassene, ingenørutdanning. TID: kl. 9. 13.. FAGLÆE: Hans Petter Hornæs ANTALL IDE UTLEVET:
DetaljerEKSAMEN. 3. klassene, ingenørutdanning. ANTALL SIDER UTLEVERT: 5 (innkl. forside og formelark)
KANDIDANUMME: EKAMEN EMNENAVN: Matematikk 3 EMNENUMME: EA32 EKAMENDAO: 5.desember 27 KLAE: 3. klassene, ingenørutdanning. ID: kl. 9. 13.. EMNEANVALIG: Hans Petter Hornæs ANALL IDE ULEVE: 5 (innkl. forside
DetaljerEksamen i V139A Matematikk 30
Høgskolen i Gjøvik Avdeling for teknologi Eksamen i V139A Matematikk 3 21. desember 21 9. 14. Fagnummer: V139A Faglærer: Hans Petter Hornæs Tillatte hjelpemidler: Godkjent kalkulator ottmanns formelsamling
DetaljerEksamen i V139A Matematikk 30
Høgskolen i Gjøvik Avdeling for teknologi Eksamen i V139A Matematikk 3 4. juni 22 9. 14. Fagnummer: V139A Faglærere: Hans Petter Hornæs. Tillatte hjelpemidler: Godkjent kalkulator, Formelsamling. Oppgavesettet
DetaljerEKSAMEN i MATEMATIKK 30
Eksamen i Matematikk 3 3. mai Høgskolen i Gjøvik Avdeling for teknologi EKSAMEN i MATEMATIKK 3 Onsdag 3. mai kl. 9 4 agnummer: V39A aglærer: Hans Petter Hornæs Tillatte hjelpemidler: Godkjent kalkulator
DetaljerOppgavesettet har 10 punkter 1, 2ab, 3ab, 4ab, 5abc som teller likt ved bedømmelsen.
NTNU Institutt for matematiske fag SIF55 Matematikk 2 4. mai 999 Løsningsforslag Oppgavesettet har punkter, 2ab, 3ab, 4ab, 5abc som teller likt ved bedømmelsen. i alternativ (3, ii alternativ (2. 2 a For
DetaljerMatematikk 4, ALM304V Løsningsforslag eksamen mars da 1 er arealet av en sirkel med radius 2. F = y x = t t r = t t v = r = t t
Oppgave r( t) v( t) dt t dt, t dt, t dt t +, t +, t +. d d d a( t) v '( t) t, t, t,6 t,t dt dt dt F ma m t t Gitt en hastighetsvektor v( t) t, t, t.,6, Oppgave Greens setning: δq δ P I ( Pdx + Qdy) ( )
DetaljerLØSNINGSFORSLAG TIL ØVING 11, TMA4105, V2008. x = r cos θ, y = r sin θ, z = 2r for 0 θ 2π, 2 2r 6. i j k. 5 r dr dθ = 8
LØNINGFORLAG TIL ØVING, TMA45, V8 Oppgave 4.5.9. Parametrisering: x = r cos θ, y = r sin θ, z = r for θ π, r 6. r(r, θ) = r cos θ, r sin θ, r. N = r r r θ = cos θ sin θ = r cos θ, r sin θ, r. r sin θ r
DetaljerEKSAMEN. Ingeniørstudenter som tar opp igjen eksa- men (6stp.).
KANDIDATNUMMER: EKSAMEN FAGNAVN: Matematikk FAGNUMMER: F74A EKSAMENSDATO: 6. desember 24 SENSURFRIST: 6. januar 25 Ingeniørstudenter som tar opp igjen eksa- KLASSE: men 6stp.). TID: kl. 9. 4.. FAGLÆRER:
DetaljerLøsningsforslag til eksamen i TMA4105 matematikk 2,
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av Løsningsforslag til eksamen i TMA45 matematikk, 9.5.4 Oppgave La fx, y, z) xy + arctanxz). La P være punktet,, ). a)
DetaljerLøsningsforslag, eksamen MA1103 Flerdimensjonal analyse, vår 2009
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 8 Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, vår 2009 Oppgave 1 Avgjør om grenseverdiene eksisterer:
DetaljerEksamensoppgave i MA1103 Flerdimensjonal analyse
Institutt for matematiske fag Eksamensoppgave i MA3 Flerdimensjonal analyse Faglig kontakt under eksamen: Mats Ehrnstrøm Tlf: 735 97 44 Eksamensdato: 22. mai 28 Eksamenstid (fra til): 9: 3: Hjelpemiddelkode/Tillatte
DetaljerEKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. John Haugan: Formler og tabeller. Rottmanns formelsamling (tillatt som overgangsordning)
KANDIDATNUMMER: EKSAMEN FAGNAVN: Matematiske metoder 1. FAGNUMMER: JøG10 EKSAMENSDATO: 5. april 00. SENSURFRIST: 16. mai 00. KLASSE: HSIS 00-005. TID: kl. 8.00 1.00. FAGLÆRER: Hans Petter Hornæs ANTALL
DetaljerEKSAMEN. ANTALL SIDER UTLEVERT: 3 sider inklusiv forside.
KANDIDATNUMMER: EKSAMEN FAGNAVN: Matematiske metoder. FAGNUMMER: JøG 0 EKSAMENSDATO: 7. desember 003 SENSURFRIST: 7. januar 004. KLASSE: HIS 003/004. TID: kl. 8.00 3.00. FAGLÆRER: Hans Petter Hornæs ANTALL
DetaljerEKSAMEN. Ingeniør- og Fleksibel ingeniørutdanning.
KANDIDATNUMMER: EKSAMEN EMNENAVN: Matematikk. EMNENUMMER: REA42/REA42F EKSAMENSDATO: Mandag 9. august 2 KLASSE: Ingeniør- og Fleksibel ingeniørutdanning. TID: kl. 9. 3.. FAGANSVARLIG: Hans Petter Hornæs
DetaljerEKSAMEN I FAG SIF5005 MATEMATIKK 2
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 3 Faglig kontakt under eksamen: Trond Digernes 7359357 Berner Larsen 73 59 35 5 Lisa Lorentzen 73 59 35 48 Vigdis Petersen
DetaljerOppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener.
NTNU Institutt for matematiske fag TMA45 Matematikk, øving, vår Løsningsforslag Notasjon og merknader Oppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener. Oppgaver fra kapittel
DetaljerNTNU. MA1103 Flerdimensjonal Analyse våren Maple-øving 2. Viktig informasjon. Institutt for matematiske fag. maple02 28.
NTNU Institutt for matematiske fag MA1103 Flerdimensjonal Analyse våren 2011 Maple-øving 2 Fyll inn studieprogram: Fyll inn navn: 1. 2. 3. 4. Viktig informasjon Besvarelsen kan leveres som gruppearbeid
DetaljerEKSAMEN. TILLATTE HJELPEMIDLER: John Haugan: Formler og tabeller. Rottmanns formelsamling (tillatt som overgangsordning)
KANDIDATNUMMER: EKSAMEN FAGNAVN: Matematikk FAGNUMMER: REA4 EKSAMENSDATO: 6. desember 24 SENSURFRIST: 6. januar 25 KLASSE:. klassene, ingenørutdanning. TID: kl. 9. 3.. FAGLÆRER: Hans Petter Hornæs ANTALL
DetaljerThe full and long title of the presentation
The full and long title of the presentation Subtitle if you want Øistein Søvik Mai 207 Ø. Søvik Short title Mai 207 / 4 Innholdsfortegnelse Introduksjon Nyttige tips før eksamen Nyttige tips under eksamen
DetaljerLøsning, Trippelintegraler
Ukeoppgaver, uke 7 Matematikk, rippelintegraler Løsning, rippelintegraler Oppgave a) b) c) 6 x + + ) d d dx x + +/) d dx x) d d dx x + + /] d dx x + /+/] dx x +6)dx 8 6 d ) ) d xdx 6 ) ) ) d d xdx 6 8
Detaljerdx = 1 1 )dx = 3 y= x . Tangentplanet til hyperboloiden i (2, 1, 3) er derfor gitt ved x 2, y 1, z 3 = 0 x 2 + 2(y 1) 2 (z 3) = 0 x + 2y 2z 3 = 2
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA415 Matematikk vår 9 øsningsforslag til eksamen 15. august 9 1 Treghetsmoment med hensyn på x-aksen er gitt ved x [ ] y I
DetaljerEksamensoppgave i MA1103 Flerdimensjonal analyse
Institutt for matematiske fag Eksamensoppgave i MA113 Flerdimensjonal analyse Faglig kontakt under eksamen: Tlf: Eksamensdato: 5. Juni 19 Eksamenstid (fra til): 9: 13: Hjelpemiddelkode/Tillatte hjelpemidler:
DetaljerAnbefalte oppgaver - Løsningsforslag
TMA45 Matematikk Anbefalte oppgaver - Løsningsforslag Uke 5.5.: Kulen er grafen til rφ, θ) asinφ) cosθ)i + sin φ sinθ)j + cosφ)k), φ π, θ < π. Vi har slik at φ θ acosφ) cosθ)i + sinφ) sinθ)j + cosφ)k)
DetaljerLøsning, Stokes setning
Ukeoppgaver, uke 4 Matematikk, tokes setning 1 Løsning, tokes setning Oppgave 1 a) b) c) F x y z x y z F x x + y y + z z 1+1+1 iden F er feltet konservativt. ( z y y ) ( x i z z z ) ( y x x x ) k i +k
DetaljerEksamensoppgave i MA1103 Flerdimensjonal analyse
Institutt for matematiske fag Eksamensoppgave i MA1103 Flerdimensjonal analyse Faglig kontakt under eksamen: Mats Ehrnstrøm Tlf: 735 917 44 Eksamensdato: 22. mai 2018 Eksamenstid (fra til): 09:00 13:00
DetaljerAnbefalte oppgaver - Løsningsforslag
TMA415 Matematikk 2 Anbefalte oppgaver - Løsningsforslag Uke 14 1.4.5: Vi skal finne fluksen ut overflaten til den solide ballen B med sentrum = (2,, 3) og radius r = 3, av vektorfeltet F = x 2 i + y 2
DetaljerLøsningsforslag, eksamen MA1103 Flerdimensjonal analyse, 8.juni 2010
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Løsningsforslag, eksamen MA11 Flerdimensjonal analyse, 8.juni 21 Oppgave 1 a) Finn og klassifiser alle kritiske
DetaljerLøsning IM
Løsning IM 6 Oppgave x + y Grensen lim er ubestemt da både teller og nevner blir Vi skal vise at grensen ( xy, ) (,) x + y ikke eksisterer og bruker rette linjer inn mot origo De enkleste linjene er koordinataksene
DetaljerRandkurva C til flata S orienteres positivt sett ovenfra, og kan parametriseres ved: r (t) = [ sin t, cos t, sin t] dt, 0 t 2π.
Ma - Løsningsforslag til uke 17 i 7 Eks. mai 1999 oppgave 4 ylinderen x + y = 1 skjærer ut ei flate av planet z = x + 1 dvs. x + z = 1 med enhetsnormal i positiv z-retning lik n= 1 [ 1 1]. Flata blir en
DetaljerSIF5005 Matematikk 2, 13. mai 2002 Løsningsforslag
SIF55 Matematikk, 3. mai Oppgave Alternativ : At de to ligningene skjærer hverandre vil si at det finnes parameterverdier u og v som, innsatt i de to parametriseringene, gir samme punkt: Vi løser hver
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I FAGET 5005/7 MATEMATIKK 2 1. august der k er et vilkårlig heltall. Det gir
LØNINGFOLAG IL EKAMEN I FAGE 55/7 MAEMAIKK. august Oppgave. (i Ja. (ii Ja. (iii Nei. Alternativt: (i Ja. (ii Ja. (iii Ja. Oppgave. curlf (x, y F i j k (x, y / x / y / z e y + ye x +x xe y + e x + Altså
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: Eksamensdag: Fredag 1. april 2011 Tid for eksamen: 15.00 17.00 Oppgavesettet er på 7 sider. Vedlegg: Tillatte hjelpemidler:
DetaljerEKSAMEN. Hans Petter Hornæs og Britt Rystad
KANDIDATNUMMER: EKSAMEN FAGNAVN: Matematikk. FAGNUMMER: F74A EKSAMENSDATO: Mandag. august 2 SENSURFRIST:. september 2 KLASSE:. klassene, ingenørutdanning. TID: kl. 9. 4.. FAGLÆRER: Hans Petter Hornæs og
DetaljerEKSAMENSOPPGAVE. KRAFT I og II Hall del 2 Kraft sportssenter Ingen
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: MAT-1003 Kalkulus 3 Dato: 11.12.2018 Klokkeslett: 09.00-13.00 Sted: Tillatte hjelpemidler: KRAFT I og II Hall del 2 Kraft sportssenter
Detaljere y + ye x +2x xe y + e x +1 0 = 0
LØNINGFORLAG TIL EKAMEN I FAGET 55/7 MATEMATIKK. august Oppgave. (i) Ja. (ii) Ja. (iii) Nei. Alternativt: (i) Ja. (ii) Ja. (iii) Ja. Oppgave. a) curlf (x, y) F i j k (x, y) / x / y / z e y + ye x +x xe
DetaljerSIF 5005 Matematikk 2 våren 2001
IF 55 Matematikk våren Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Diverse løsningsforslag 75 Matematikk B, mai 994 (side 77 79) 6 a) Vi finner en potensialfunksjon φ(x,
DetaljerEKSAMEN I FAG SIF5005 MATEMATIKK 2
Norges teknisk naturvitenskapelige universitet Trond Digernes 75957 Berner Larsen 7 59 5 5 Lisa Lorenten 7 59 5 8 Vigdis Petersen 75965 ide av Vedlegg: Formelliste IF55 Matematikk ide av Oppgave Et plant
Detaljer(t) = [ 2 cos t, 2 sin t, 0] = 4. Da z = 2(1 + t) blir kurva C en helix/ei skruelinje på denne flata (se fig side 392).
Ma - Løsningsforslag til uke 5 i 7 Eks. mai 994 oppgave Romkurva er parametrisert for t [, π] ved r (t) = [ + cos t, + sin t, + t ] Hastighets- og akselerasjonsvektorene blir v = r (t) = [ sin t, cos t,
DetaljerOppgaver og fasit til kapittel 6
1 Oppgaver og fasit til kapittel 6 Mange av oppgavene i dette kapitlet brukes for første gang, og det er sannsynligvis flere fasitfeil enn normalt. Finner du en feil, så send en melding til lindstro@math.uio.no.
DetaljerLøsning til eksamen i ingeniørmatematikk
Løsning til eksamen i ingeniørmatematikk 3 78 Oppgave Vektorfeltet har komponenter og er funksjon av variable Jacobimatrisen er av type ( xy) ( xy) x y ( yx) ( yx) xy x y xy Innsatt finner vi JF ( x, y)
DetaljerEKSAMEN KANDIDATNUMMER: EKSAMENSDATO: 10. juni Ingeniørutdanning. TID: kl EMNEANSVARLIG: Hans Petter Hornæs
KANDIDATNUMMER: EKSAMEN EMNENAVN: EMNENUMMER: Statistikk. Rea181 EKSAMENSDATO: 1. juni 28 KLASSE: Ingeniørutdanning. TID: kl. 9. 13.. EMNEANSVARLIG: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 3 (innkl.
Detaljer5 z ds = x 2 +4y 2 4
TMA45 Matematikk 2 Vår 25 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving Alle oppgavenummer referer til 8. utgave av Adams & Essex Calculus: A Complete
DetaljerEKSAMEN. Flexibel ingeniørutdanning, 2kl. Bygg.
KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. REA 1081F REA1081) EKSAMENSDATO: 1. juni 2010. KLASSE: Flexibel ingeniørutdanning, 2kl. Bygg. TID: kl. 9.00 12.00. FAGLÆRER: Hans Petter Hornæs ANTALL
DetaljerTMA Representasjoner. Funksjoner. Operasjoner
TMA 4105 Representasjoner Funksjoner Operasjoner Funksjoner f : D R m! f(d) R n reelle funksjoner kurver flater vektorfelt Funksjoner i) f : D R n! R reell funksjon av n variabler, f(x), f(x,y) eller f(x,y,z)
DetaljerEksamensoppgaver og Matematikk 1B
Eksamensoppgaver 7500 og 750 Matematikk B Samlet for SIF5005 Matematikk våren 00 Samlingen inneholder utvalgte oppgaver gitt i 7500 og 750 Matematikk B ved NTH/NTNU i tiden 993 997. Oppgaver eller punkter
DetaljerLØSNINGSFORSLAG TMA4105 Matematikk 2 8. August 2005
LØSNINGSFORSLAG TMA45 Matematikk 8. August 5 Oppgave Vi introduserer funksjonen g(x, y, z) x +y z slik at flaten z x + y er gitt ved g(x, y, z). I dette tilfellet utgjør gradienten til g en normalvektor
DetaljerEksamen, høsten 14 i Matematikk 3 Løsningsforslag
Oppgave 1. Fra ligningen Eksamen, høsten 14 i Matematikk 3 Løsningsforslag x 2 64 y2 36 1 finner vi a 64 8 og b 36 6. Fokus til senter avstanden er da gitt ved c a 2 + b 2 64 + 36 1 1. Dermed er fokuspunktene
DetaljerEKSAMENSOPPGAVE. Eksamen i: MAT-1003 Dato: Tirsdag 15. desember 2015 Tid: Kl 15:00 19:00 Sted: Åsgårdvegen 9
EKSAMENSOPPGAVE Eksamen i: MAT-13 Dato: Tirsdag 15. desember 215 Tid: Kl 15: 19: Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Pedersen et al.: Teknisk formelsamling med tabeller, Rottmanns formelsamling,
DetaljerLøsningsforslag til prøveeksamen i MAT 1110, våren 2006
Løsningsforslag til prøveeksamen i MAT, våren 6 Oppgave : a) Vi har C 5 3 II+( )I a + 3a 3a III+I 3 II 3 3 3 3 a + 3a 3a 3 a + 3a 3a III+II I+( ))II 3 3 3 a + 3a 3a 3 3 3 a + 3a 4 3 3a a + 3a 4 3 3a b)
DetaljerEKSAMEN KANDIDATNUMMER: EKSAMENSDATO: 11. juni HiS Jørstadmoen. TID: kl EMNEANSVARLIG: Hans Petter Hornæs
KANDIDATNUMMER: EKSAMEN EMNENAVN: EMNENUMMER: Statistikk. BtG27 EKSAMENSDATO: 11. juni 28 KLASSE: HiS 6-9 Jørstadmoen. TID: kl. 8. 13.. EMNEANSVARLIG: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 4 (innkl.
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 11. juni 21. Tid for eksamen: 14.3 17.3. Oppgavesettet er på 7 sider. Vedlegg: Tillatte hjelpemidler: MAT111 Kalkulus
DetaljerLøsning, funksjoner av flere variable.
Ukeoppgaver, uke 3 Matematikk 3, funksjoner av flere variable 1 Løsning, funksjoner av flere variable Oppgave 1 a) = +=, b) =, =y3 d ) e ) = 3+= 3 Selv om ikke x er med kan det betraktes som funksjon av
DetaljerLØSNINGSFORSLAG EKSAMEN TMA4105 MATEMATIKK 2 Lørdag 14. aug 2004
Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag ide av LØNINGFOLAG EKAMEN TMA4 MATEMATIKK 2 Lørdag 4. aug 24 Oppgave Grenseverdien eksisterer ikke. For eksempel er grenseverdien
DetaljerEKSAMEN 07HBINEA, 07HBINET, 07HBINDA, 07HBINDT
KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Fysikk REA2041 EKSAMENSDATO: 14. mai 2008 KLASSE: 07HBINBPL, 07HBINBLAN, 0HBINBK, 07HBINEA, 07HBINET, 07HBINDA, 07HBINDT TID: kl. 9.00 13.00 FAGLÆRER: Are Strandlie
DetaljerLøsning IM
Løsning IM Oppgave Den retningsderiverte er D f ( a) u f ( a), når funksjonen er deriverbar i punktet u f f ( y ) ( y ) Innsatt f,, ( y, y ) Den derivertes verdi i punktet er f (,) ( ( ),( ) ) (,) (,)
Detaljera 2 x 2 dy dx = e r r dr dθ =
NTNU Institutt for matematiske fag TMA4 Matematikk, øving, vår Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon, språk
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: MAT Kalkulus og lineær algebra Eksamensdag: Fredag. mars Tid for eksamen: 5. 7. Oppgavesettet er på 8 sider. Vedlegg: Tillatte
Detaljer= (2 6y) da. = πa 2 3
TMA45 Matematikk Vår 7 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving Alle oppgavenummer referer til 8. utgave av Adams & Essex alculus: A omplete ourse.
Detaljer(1 + x 2 + y 2 ) 2 = 1 x2 + y 2. (1 + x 2 + y 2 ) 2, x 2y
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA45 Matematikk vår 9 Løsningsforslag til eksamen.5.9 Gitt f(, y) = + +y. a) Vi regner ut f = f y = + + y ( + + y ) = + + y
DetaljerEksamen, høsten 13 i Matematikk 3 Løsningsforslag
Eksamen, høsten 3 i Matematikk 3 Løsningsforslag Oppgave. a) Fra ligningen x 5 + y 3 kan vi lese ut store og lille halvakse a 5 og b 3. Fokus til senter avstanden er da gitt ved c a b 5 3 5 9 6 4. ermed
DetaljerVi regner først ut de nødvendige partiellderiverte for å se om vektorfeltet er konservativt. z = 2z, F 2 F 2 z = 2y, F 3. x = 2x, F 3.
TMA415 Matematikk Vår 15 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 7 Alle oppgavenummer refererer til 8. utgave av Adams & Essex alculus: A omplete
DetaljerLøsning IM3 15.06.2011.
Løsning IM 15611 1 Oppgave 1 Innsetting viser at både teller og nevner er i origo, så uttrykket er ubestemt Siden det ikke er noen umiddelbar omskriving som forenkler uttrykket satser vi på å vise at grensen
DetaljerObligatorisk oppgave 2
MEK Obligatorisk oppgave 2 Nicolai Kristen Solheim Obligatorisk oppgave 2 Oppgave a) Vi kan beregne vektorfluksen Q = F ndσ gjennom en kuleflate σ gitt vektorfeltet σ F = xi + 2y + z j + z + x 2 k. Ved
DetaljerNavn/kursparallell skrives her (ved gruppearbeid er det viktig at alle fyller ut):
MA1103 vår 2008 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Øving 10M Navn/kursparallell skrives her (ved gruppearbeid er det viktig at alle fyller ut): 1. 2. 3. 4. 5.
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i Eksamensdag: 9. april,. Tid for eksamen: : :. Oppgavesettet er på 9 sider. Vedlegg: Tillatte hjelpemidler: MAT Kalkulus og
DetaljerAnbefalte oppgaver - Løsningsforslag
TMA405 Matematikk Anbefalte oppgaver - Løsningsforslag Uke 6 3..9: Vi starter med å finne de kritiske punktene. De deriverte blir T x (x, y) = ( x xy)e x y T y (x, y) = ( y xy)e x y, slik at de kritiske
DetaljerSIF5005 MATEMATIKK 2 VÅR r5 drdθ = 1 m. zrdzdrdθ = 1 m. zrdzdrdθ =
SIF55 MAEMAIKK Å 3 Løsningsforslag Hjemmeøving 5 Oppgave. Ser at massen fordeler seg symetrisk om z-aksen, derfor vil tyngdepunktet ligge på z-aksen. Det eneste vi da trenger å regne ut er z. zδd = m π
DetaljerAnbefalte oppgaver - Løsningsforslag
TMA415 Matematikk 2 Anbefalte oppgaver - Løsningsforslag Uke 7 15.1.3: Siden vektorfeltet er gitt ved F(x, y) = yi + xj må feltlinjene tilfredstille differensiallikningen eller y = x y, ( ) 1 2 y2 = x.
DetaljerEKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.
KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG207 EKSAMENSDATO: 16. juni 2009. KLASSE: HIS 07 10. TID: kl. 8.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 3 innkl. forside)
DetaljerEKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.
KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG207 EKSAMENSDATO: 1. juni 2010. KLASSE: HIS 08 11. TID: kl. 8.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 3 (innkl. forside)
DetaljerTMA4105 Matematikk 2 Vår 2014
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4105 Matematikk 2 Vår 2014 Løsningsforslag Øving 7 10.4.7 Vi skal finne likningen til et plan gitt to punkter P = (1, 1,
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT Kalkulus og lineær algebra Eksamensdag: Onsdag 9 mai 9 Tid for eksamen: 4:3 8:3 Oppgavesettet er på 7 sider Vedlegg: Tillatte
DetaljerNTNU. MA1103 Flerdimensjonal analyse våren Maple/Matlab-øving 2. Viktig informasjon. Institutt for matematiske fag
NTNU Institutt for matematiske fag MA1103 Flerdimensjonal analyse våren 2012 Maple/Matlab-øving 2 Fyll inn studieprogram: Fyll inn navn: 1. 2. 3. 4. Viktig informasjon Besvarelsen kan leveres som gruppearbeid
DetaljerEKSAMEN. Flexibel ingeniørutdanning, 2kl. Bygg m.fl.
KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. REA 1081 og REA1081F EKSAMENSDATO: 1. juni 2011. KLASSE: Flexibel ingeniørutdanning, 2kl. Bygg m.fl. TID: kl. 9.00 12.00. FAGLÆRER: Hans Petter Hornæs
DetaljerFasit, Separable differensiallikninger.
Ukeoppgaver, uke 46, i Matematikk 0, Separable differensiallikninger. 3 Fasit, Separable differensiallikninger. a ) Denne er ferdig på formenf(y)y = g(x) medf(y) =3y 2 og g(x) =2x: 3y 2 dy dx =2x 3y2 dy
DetaljerVelkommen til Eksamenskurs matematikk 2
Velkommen til Eksamenskurs matematikk 2 Haakon C. Bakka Institutt for matematiske fag 12.-13. mai 2010 Introduksjon Begin with the end in mind - The 7 Habits of Highly Effective People (Stephen R. Covey)
DetaljerF = x F 1 + y F 2 + z F 3 = y 2 z 2 + x 2. i j k F = xy 2 yz 2 zx 2 = i(0 ( 2yz)) j(2xz 0) + k(0 2xy) = 2yzi 2xzj 2xyk.
TMA415 Matematikk 2 Vår 215 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 12 Alle oppgavenummer referer til 8. utgave av Adams & Essex alculus: A omplete
DetaljerEKSAMEN I EMNET Løsning: Mat Grunnkurs i Matematikk I Mandag 14. desember 2015 Tid: 09:00 14:00
Universitetet i Bergen Det matematisk naturvitenskapelige fakultet Matematisk institutt Side 1 av 7 BOKMÅL EKSAMEN I EMNET Mat 111 - Grunnkurs i Matematikk I Mandag 14. desember 15 Tid: 9: 14: Tillatte
DetaljerObligatorisk oppgåve 1
FYS112 Elektromagnetisme 214 Obligatorisk oppgåve 1 Innleveringsfrist 19. september kl. 23.59 Lars Kristian Henriksen 21. oktober 214 Obligar i FYS112 leverast elektronisk på Devilry http://devilry.ifi.uio.no/.
Detaljery = x y, y 2 x 2 = c,
TMA415 Matematikk Vår 17 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 9 Alle oppgavenummer referer til 8. utgave av Adams & Essex alculus: A omplete
DetaljerOppgaver og fasit til seksjon
1 Oppgaver og fasit til seksjon 3.4-3.6 Oppgaver til seksjon 3.4 1. Anta at f(x, y) = x 2 y 3 og r(t) = t 2 i + 3t j. Regn ut g (t) når g(t) = f(r(t)). 2. Anta at f(x, y) = x 2 e xy2 og r(t) = sin t i+cos
DetaljerIntegralsatser: Green, Stokes og Gauss
Kapittel 7 Integralsatser: Green, tokes og Gauss Oppgave 1 Vi har gitt strømfeltet v = ωyi+ωxj der ω er en konstant. a) trømfarten: v = ω 2 y 2 +ω 2 x 2 = ωr, r = x 2 +y 2. Langs sirkelen r 2 = x 2 +y
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MEK 11 Feltteori og vektoranalyse. Eksamensdag: Torsdag 1 desember 29. Tid for eksamen: 14:3 17:3. Oppgavesettet er på 7 sider.
DetaljerSeparable differensiallikninger.
Ukeoppgaver, uke 46, i Matematikk 0, Separable differensiallikninger. Høgskolen i Gjøvik Avdeling for ingeniørfag Matematikk 0 Ukeoppgaver uke 46 I løpet av uken blir løsningsforslag lagt ut på emnesiden
Detaljerf =< 2x + z/x, 2y, 4z + ln(x) >.
MA 40: Analyse Uke 48, 00 http://home.hia.no/ aasvaldl/ma40 H0 Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag Oppgave.5: 5. Vi har gitt funksjon f(x, y) = x + y z + z ln(x) og punkt
DetaljerKurve-, flate- og volumintegraler, beregning av trykkraft
Kapittel 6 Kurve-, flate- og volumintegraler, beregning av trykkraft Oppgave 1 Vi skal regne ut kurveintegralet λ v dr langs kurven λ: y x3 når 1 x 2 og v xyi+x 2 j. Vi kan parametrisere med x som parameter,
DetaljerMAT Vår Oblig 2. Innleveringsfrist: Fredag 23.april kl. 1430
MAT 00 Vår 00 Oblig Innleveringsfrist: Fredag 3.april kl. 430 Oppgaven leveres stiftet med forsideark på ekspedisjonskontoret til Matematisk institutt i 7. etg. i Niels Henrik Abels hus innen fristen.
DetaljerR2 eksamen høsten 2017 løsningsforslag
R eksamen høsten 017 løsningsforslag DEL 1 Uten hjelpemidler Oppgave 1 (5 poeng) Deriver funksjonene a) f x sin3x f x cos3x 3 6cos3x sin x x sin x x sin x x x cos x sin x g x x x b) gx h x x cos x c) h
DetaljerLøsningsforslag. Alle svar skal grunngis. Alle deloppgaver teller like mye.
Eksamen i FO929A - Matematikk Dato: 2013 Målform: Bokmål Antall oppgaver: 5 (20 deloppgaver) Antall sider: 3 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver teller
DetaljerEKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.
KANDIDATNUMMER: EKSAMEN FAGNAVN: Statistikk. FAGNUMMER: Rea 1082 EKSAMENSDATO: 14. mai 2009. KLASSE: Ing. TID: kl. 9.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 3 (innkl. forside) TILLATTE
DetaljerEKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.
KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG27 EKSAMENSDATO: 27. mai 211. KLASSE: HIS 8 11. TID: kl. 8. 13.. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 3 innkl. forside) TILLATTE
DetaljerArne B. Sletsjøe. Oppgaver, MAT 1012
Arne B. Sletsjøe Oppgaver, MAT 101 1 En-variabel kalkulus 1.1 I de følgende oppgavene, i) finn alle kritiske punkter til f(x), ii) beskriv monotoniegenskapene til funksjonene ved å se på fortegnet til
DetaljerDifflikninger med løsningsforslag.
Repetisjon i Matematikk : Difflikninger med løsningsforslag. Høgskolen i Gjøvik Avdeling TØL Eksamensrepetisjon REA4 Matematikk Difflikninger med løsningsforslag. Difflikninger med løsningsforslag. Dette
DetaljerØving 3. Oppgave 1 (oppvarming med noen enkle oppgaver fra tidligere midtsemesterprøver)
Institutt for fysikk, NTNU TFY455/FY003: Elektrisitet og magnetisme Vår 2008 Veiledning: Fredag 25. og mandag 28. januar Innleveringsfrist: Fredag. februar kl 2.00 Øving 3 Oppgave (oppvarming med noen
DetaljerTillegg om flateintegraler
Kapittel 6 Tillegg om flateintegraler 6.1 Litt ekstra om flateintegraler I kompendiet har vi definert flateintegraler som grenseoverganger for diskretiseringer. Har vi en flate kan vi representere den
Detaljer