GeoGebra 4.2 for Sinus 1P. av Sigbjørn Hals
|
|
|
- Espen Holt
- 9 år siden
- Visninger:
Transkript
1 GeoGebra 4.2 for Sinus 1P av Sigbjørn Hals
2 Innhold Litt om GeoGebra... 3 GeoGebra som kalkulator. Eksempel side Omforming av formler. Side 82 i læreboka... 4 Rette linjer. Side 89 i læreboka... 4 Digital løsning av likninger. Side 97 i læreboka... 5 Digital løsning av likningssett. Side 97 i læreboka... 6 Omvendt proporsjonalitet. Oppgave 4.82, side 126 i læreboka... 8 Flislegging med ulike fliser. Oppgave 5.60, side 154 i læreboka Forsøk og simuleringer. Side 240 i læreboka Rette linjer. Løsning av oppgave 9.21, side 241 i læreboka Rette linjer. Løsning av oppgave 9.22, side 245 i læreboka Andregradsfunksjoner. Side 245 i læreboka Nullpunkt, toppunkt og bunnpunkt. Side 247 i læreboka Vekstfart. Side 265 i læreboka Vekstfart. Løsning av oppgåve 9.82, side 271 i læreboka
3 Litt om GeoGebra Bak i læreboka står det forklart hvordan vi kan finne Iøsninger på noen oppgaver og eksempler med grafiske kalkulatorer. I dette heftet blir det forklart hvordan utvalgte oppgaver og eksempler i læreboka kan løses ved hjelp av GeoGebra. GeoGebra 4.2 kan lastes ned fra GeoGebra som kalkulator. Eksempel side 55 I slike oppgaver er det raskest å bruke en enkel kalkulator. Vi viser her likevel hvordan du kan gå fram for å finne svaret med GeoGebra. Skriv i inntastingsfeltet: 2 * (3 + 1) + 4 * 2 For å få fram eksponenten 3, holder du nede Alt-tasten og trykker 3. Trykk Enter. Svaret vises i algebrafeltet: 3 GeoGebra gir navn til resultatene og starter med første bokstav i alfabetet. (GeoGebra bruker store bokstaver for punkt.) Du kan også bruke dette tegnet ^ for å få eksponenter. Tegnet ^ vises vanligvis ikke før du har trykket inn neste tegn. Oppgaven kan også løses i CAS-delen av GeoGebra. Skriv da inn uttrykket der, og trykk på verktøyikonet valgt på verktøylinja., eller trykk Enter dersom dette ikonet er 3
4 Omforming av formler. Side 82 i læreboka Her viser vi hvordan vi kan omforme formelen U = 1.39x + 50, slik at vi får x alene på venstre side. I læreboka er det vist hvordan vi kan gjøre dette med vanlig regning. Skriv inn Løs(U = 1.39x + 50, x) i CAS-vinduet i GeoGebra. Husk punktum som desimaltegn. Trykk Enter. Rette linjer. Side 89 i læreboka Her viser vi hvordan vi tegner linja som er beskrevet i oppgave 3.62 i læreboka. For en familie er strømutgiftene i kroner per år gitt ved y = 0,42x der x er tallet på kilowattimer. Tegn linja digitalt når x er mellom 0 og Skriv Funksjon[0.42x , 0, 30000] i inntastingsfeltet i GeoGebra, og trykk Enter. Husk å bruke punktum som desimaltegn. Bruk dette verktøyet til å dra i aksene, slik at hele grafen viser. 4
5 Noen tips: o For å vise x og y langs aksene, høyreklikker vi et sted på grafikkfeltet, velger Grafikkfelt 1, velger fanen x-akse, og skriver x bak Navn på aksen. Deretter gjør vi tilsvarende for y-aksen. o Dersom vi ønsker å vise f(x) = 0.42x på grafikkfeltet, høyreklikker vi på grafen og velger Navn og verdi bak Vis. Digital løsning av likninger. Side 97 i læreboka Her vil vi vise hvordan vi kan løse likninger grafisk og ved hjelp av CAS-verktøyet i GeoGebra 4.2. CAS står for Computer Algebra System, og er et verktøy som kan regne med både tall og bokstavuttrykk. Et CAS-verktøy er godt egnet til å løse likninger raskt og effektivt. Vi velger oppgave 3.83 d som eksempel. Løs likningen digitalt. 3 x 1 = Grafisk løsning: Skriv y = 3/4x - 1/6 i inntastingsfeltet og trykk Enter. Skriv y = 7/2 i inntastingsfeltet. Bruk dette verktøyet til å stille inn aksene, slik at vi tydelig ser skjæringspunktet for grafene. Velg verktøyet Skjæring mellom to objekt, og klikk en gang på hver av de to grafene. 5
6 8 4, = 4 = CAS-løsning: Løsning av likningen: x = 9 Vi kan kontrollere dette i CAS-delen til GeoGebra 4.2. Skriv inn 3/4x - 1/6 = 7/2 og klikk på dette verktøyet for å løse likningen. Løsning av likningen: x = 44 9 Digital løsning av likningssett. Side 97 i læreboka VI vil her vise hvordan vi løser et likningssett grafisk og ved hjelp av CAS-verktøyet i GeoGebra 4.2. y = 0,89x y = 1.39x + 50 Likningssett av typen som står på side i læreboka kan løses på nøyaktig tilsvarende måte. 6
7 Grafisk løsning: Skriv inn y = 0.89x i inntastingsfeltet og trykk Enter. Husk punktum som desimaltegn. Skriv inn y = 1.39x + 50 i inntastingsfeltet og trykk Enter. Still inn aksene med dette verktøyet. Velg Skjæring mellom to objekt og klikk først på den ene og så på den andre grafen. De to abonnementene koster like mye dersom Mari ringer i 200 minutter hver måned. Begge abonnementene koster da 328 kr. CAS-løsning: Klikk på dette ikonet for å kontrollere og beholde inntastinger. Skriv inn y = 0.89x i linje 1 i CAS-verktøyet i GeoGebra 4.2. Skriv inn y = 1.39x + 50 i linje 2 i CAS-verktøyet. Merk begge de grå feltene 1 og 2 til venstre for inntastingene. 7
8 Klikk på dette ikonet for å løse likningssettet. De to abonnementene koster like mye dersom Mari ringer i 200 minutter hver måned. Begge abonnementene koster da 328 kr. Omvendt proporsjonalitet. Oppgave 4.82, side 126 i læreboka Åpne GeoGebra, vis regnearket og skriv inn verdiene fra oppgaven, slik figuren nedenfor viser. Klikk i celle C1 og skriv inn A1*B1 og trykk Enter. Kopier celle C1 nedover til og med celle C4. Når produktet blir det samme, viser dette at tallet på barnebarn er omvendt proporsjonalt med timetallet. Merk tallene i tabellen i oppgaven, høyreklikk på det merkede området og velg Lag liste med punkt. 8
9 Ut fra tabellen vet vi nå at likningen blir y 84 = x Skriv inn denne likningen i inntastingsfeltet og trykk Enter. Plasser et punkt i origo, høyreklikk på grafikkfeltet og velg Vis alle objekt. (Poenget med å plassere et punkt i origo, er å få vist begge aksene når vi velger Vis alle objekt.) Med seks barnebarn som arbeider, bruker hver av dem 84 6 timer = 14 timer. 9
10 Flislegging med ulike fliser. Oppgave 5.60, side 154 i læreboka Åpne GeoGebra. Bruk hurtigmenyen som du får fram ved å klikke på den lille trekanten øverst i grafikkfeltet til å fjerne akser og rutenett. Høyreklikk på grafikkfeltet og la forholdet mellom x-akse og y-akse være 1:1. Klikk på Innstillinger og velg Navn på objekt og Ikke på nye objekt. Fordelen med dette er at en slipper å se navn på alle nye punkt og linjestykker i de regulære mangekantene vi skal lage. Velg verktøyet Regulær mangekant. Lag en regulær åttekant ved å klikke på to punkt på grafikkfeltet og å skrive 8 i feltet som dukker opp. Klikk OK. Lag dette mønsteret av regulære åttekanter og kvadrater. Pass på at du klikker først på punktet til venstre og deretter punktet til høyre, når du tenker deg at du står på grunnlinja til det som skal bli åttekanten eller kvadratet. 10
11 Klikk på et punkt, høyreklikk på dette punktet og velg Egenskaper. Merk overskriften Punkt slik at alle punktene blir merket. Fjern avmerkingen for Vis objekt. Nå skjules alle punktene. Merk overskriften Mangekant. Velg arkfanen Farge og velg for eksempel en farge som likner på gulfargen på noen av flisene på side 155. Sett Fyllgrad til
12 Merk de mangekantene som er firkanter. Sett Fyllgrad til 100 og velg en passende grønnfarge under arkfanen Farge. Klikk slik at du nå bare merker overskriften Linjestykke. Velg svart som farge for disse. Klikk Lukk. Figuren skal nå se omtrent slik ut: Dersom du ønsker å lime dette mønsteret inn i et Word-dokument, eller et annet dokument, kan du dra et rektangel over mønsteret med dette verktøyet. Hold så nede Ctrl og Shift samtidig og trykk C. Nå kan du lime inn dette i et annet dokument ved å trykke Ctrl og V. 12
13 Forsøk og simuleringer. Side 215 i læreboka Vi vil her vise hvordan vi kan simulere et selvvalgt antall kast med en terning, og oppsummere resultatene for dette. Vi vil også vise hvordan vi kan simulere to kast med to terninger, og vise en fordeling av summen av disse kastene. På Sinussidene finnes også flere interaktive simuleringer i Flash. Last ned GeoGebra-fila Kast med en terning.ggb. Denne finner du på Sinussidene. Still inn antall kast ved å dra i glideren for n, eller ved å skrive for eksempel n = 200 i inntastingsfeltet. Trykk F9 for å oppdatere resultatene. Last ned GeoGebra-fila Sum av to terninger.ggb fra Sinussidene. Still inn antall kast, og trykk F9 for å oppdatere resultatene. 13
14 Rette linjer. Løsning av oppgave 9.21, side 241 i læreboka Skriv i inntastingsfeltet: P(x) = Funksjon[3x + 59, 0, 200]. Still inn aksene omtrent slik figuren viser. Skriv i inntastingsfeltet: P(120). Skriv y = 200 og trykk Enter. (200 står for 200 øre = 2 kr.) Finn skjæringspunktet mellom grafene. På denne grafen har vi også tegnet inn punktet (120,P(120)). Vi får vist verdien i stedet for navnet på punktet ved å klikke på punktet, høyreklikke, velge Egenskaper og så skifte fra Navn til Verdi på Vis navn. Det viser at det koster 419 øre = 4 kroner og 19 øre å ringe i 120 sekunder. Det er det samme resultatet som vi fikk ved å skrive inn P(120). Grafen viser at du kan ringe i 47 sekunder for 2 kroner. Rette linjer. Løsning av oppgave 9.22, side 245 i læreboka Skriv i inntastingsfeltet: f(x) = -3x 2. Skriv deretter: f(2), f(1), f(0), f(-1), f(-2). Trykk Enter for hver inntasting. En alternativ og raskere måte å gjøre dette på er å skrive: f({2,1,0,-1,-2}) og så trykke Enter. Du får da svarene ut som ei liste. Du får { og } ved å holde nede Alt Gr og trykke 7 og 0 på tastaturet. 14
15 Andregradsfunksjoner. Side 245 i læreboka Vi vil her vise hvordan vi avgrenser grafen til funksjonen f, gitt ved for x-verdier mellom -1 og 5, og hvordan vi lager en verditabell digitalt med GeoGebra. 2 f( x) = x 4x+ 3, Skriv inn Funksjon[x 2-4x + 3, -1, 5] og trykk Enter. Det var tilsvarende måte vi avgrenset lineære grafer i kapittel 3. Tips: Du får eksponenten 2 ved å holde nede Alt-tasten og trykke 2. Klikk på Vis og merk av for Regneark. Skriv inn x-verdiene i kolonne A. (Her kan vi spare litt arbeid ved å skrive inn de to første x-verdiene, merke disse og så dra nedover med musetasten til vi har fått med 5.) Skriv f(a1) i celle B1, trykk Enter og kopiere denne nedover til og med celle B7. 15
16 Nullpunkt, toppunkt og bunnpunkt. Side 247 i læreboka Her skal vi vise hvordan vi kan finne nullpunktene og bunnpunktet til funksjonen f gitt ved f(x) = x 2-4x + 3. Skriv inn f(x) = x 2-4x + 3 og trykk Enter. Skriv Nullpunkt[f] og trykk Enter. Skriv Ekstremalpunkt[f] og trykk Enter. Dersom vi ønsker å vise koordinatene til disse punktene, i stedet for navnene, høyreklikker vi på et punkt, velger Egenskaper, merker overskriften Punkt, og skifter fra Navn til Verdi. Da får vi viste koordinatene til alle punktene samtidig. Disse koordinatene vises nå både i algebrafeltet og på figuren i grafikkfeltet. I GeoGebra 4.2, kan vi også finne nullpunktene i CAS-delen. Det gjør vi slik: Skriv inn Nullpunkt[x 2-4x + 3] i CAS-delen, og trykk Enter. 16
17 Nullpunkt: x = 1 og x = 3 Vekstfart. Side 265 i læreboka Her vil vi vise hvordan vi finner den momentane vekstfarten når x = 2 for funksjonen f gitt ved f(x) = x 2-2x + 4. Den momentane vekstfarten er det samme som stigningstallet til tangenten i et bestemt punkt. Dette er også det samme som den deriverte til funksjonen i det bestemte punktet. I dette kurset skal vi ikke lære om den deriverte, men vi kan likevel benytte oss av denne sammenhengen for å finne den momentane vekstfarten digitalt. (Dette eksempelet står ikke i læreboka.) Vi viser både hvordan vi finner stigningstallet til tangenten i et punkt, og en mer direkte måte for å finne den deriverte i det aktuelle punktet. Vi skriver den deriverte av funksjonen f som f '( x) og den deriverte når x = 2 som f '(2). Stigningstallet til tangenten: Skriv inn f(x) = x 2-2x + 4 i inntastingsfeltet og trykk Enter. Still inn aksene slik at et passende utsnitt av grafen viser. Skriv deretter Tangent[2, f] og trykk Enter. Stigningstallet til tangenten er 2 når x = 2. Vekstfarten er 2 når x = 2 17
18 Den deriverte i punktet: Skriv inn f(x) = x 2-2x + 4 i inntastingsfeltet og trykk Enter. Skriv f '(2) og trykk Enter. Vi får svaret i algebrafeltet som a = 2. (GeoGebra starter fremst i alfabetet når programmet gir navn til resultat i form av tallverdier.) Vekstfarten er 2 når x = 2 Vekstfart. Løsning av oppgåve 9.82, side 271 i læreboka Skriv: T(x)=Funksjon[-3/8x /2 x - 50, 8, 20]. Still inn aksene omtrent slik figuren nedenfor viser. Skriv i inntastingsfeltet: (10, T(10)) og trykk Enter. Skriv i inntastingsfeltet: (17,T(17)) og trykk Enter. Lag en tangent til grafen i hvert av disse punktene. Vekstfarten er lik stigningstallet til tangentene. Vekstfarten klokka 10 var 3 grader/time. Vekstfarten klokka 17 var -2,25 grader/time. 18
GeoGebra 4.2 for Sinus 1T. av Sigbjørn Hals
GeoGebra 4.2 for Sinus 1T av Sigbjørn Hals Innhold Litt om GeoGebra... 3 Faktorisering. Side 55 i læreboka... 3 Rette linjer. Side 73 i læreboka... 3 Digital løsning av likninger. Side 77 i læreboka...
Sigbjørn Hals, Cappelen Damm Undervisning. Sinus 1P. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy
Sinus 1P Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy GeoGebra 4.0 og 4.2 wxmaxima Microsoft Mathematics WordMat TI-Nspire CAS 1 Innhold Litt om programmene... 4 GeoGebra
GeoGebra 4.2 for Sinus Påbyggingsboka P. av Sigbjørn Hals
GeoGebra 4.2 for Sinus Påbyggingsboka P av Sigbjørn Hals Innhold Litt om GeoGebra... 3 Eksponentiell vekst. Side 45 i læreboka... 3 Søylediagram. Side 50-52 i læreboka... 4 Kurvediagram. Side 55-56 i læreboka...
GeoGebra 4.2 for Sinus Påbyggingsboka T. av Sigbjørn Hals
GeoGebra 4.2 for Sinus Påbyggingsboka T av Sigbjørn Hals Innhold Litt om GeoGebra... 3 Nullpunkt. Side 11 i læreboka... 3 Andregradslikninger. Side 18 i læreboka... 3 Momentan vekstfart. Side 47 i læreboka...
Plotting av grafer og funksjonsanalyse
Opplæringshefte i GeoGebra Innholdsfortegnelse: Plotting av grafer og funksjonsanalyse... 2 Oppgave 1... 2 Oppgave 2... 4 Oppgave 3... 8 Å plassere et bilde i GeoGebra... 8 Oppgave 4... 8 Vektorregning
SIGBJØRN HALS TORE OLDERVOLL. GeoGebra 6 for Sinus 2P
SIGBJØRN HALS TORE OLDERVOLL GeoGebra 6 for Sinus 2P Sinus 2P ble skrevet med utgangspunkt i GeoGebra 5. I boka er det også lagt opp til at elevene har en enkel lommeregner i tillegg til datamaskin. I
GeoGebra i 1T. Grafer. Å tegne grafen til en funksjon. GeoGebra tegner grafen til f(x) = 0,5x 2 for 0 x 10.
2 Grafer Å tegne grafen til en funksjon Akser Rutenett Avrunding GeoGebra tegner grafen til f(x) = 0,5x 2 for 0 x 10. Funksjonen får automatisk navnet f. Hvis grafen ikke vises, kan du høyreklikke i grafikkfeltet
GeoGebra. brukt på eksamensoppgaver i 10. kl. Sigbjørn Hals
GeoGebra brukt på eksamensoppgaver i 10. kl. Sigbjørn Hals Innhold Hva er GeoGebra?... 2 Hvilken nytte har elevene av å bruke GeoGebra?... 2 Hvor finner vi GeoGebra?... 2 Oppbyggingen av programmet...
GeoGebra-opplæring i Matematikk S1
GeoGebra-opplæring i Matematikk S1 Emne Underkapittel Utregning av algebraiske uttrykk 1.4 Forenkle uttrykk 1.5 Faktorisering 1.5 Kvadratsetningene 1.6 Grafisk løsning av eksponentiallikninger 1.8 Grafisk
GeoGebra 6 for Sinus 1P
SIGBJØRN HALS TORE OLDERVOLL GeoGebra 6 for Sinus 1P SINUS 1P ble skrevet med utgangspunkt i GeoGebra 5. I boka er det også lagt opp til at elevene har en enkel lommeregner i tillegg til datamaskin. I
SIGBJØRN HALS TORE OLDERVOLL. GeoGebra 6 for Sinus 2PY
SIGBJØRN HALS TORE OLDERVOLL GeoGebra 6 for Sinus 2PY Sinus 2PY ble skrevet med utgangspunkt i GeoGebra 5. I boka er det også lagt opp til at elevene har en enkel lommeregner i tillegg til datamaskin.
GeoGebra-opplæring i Matematikk 1T
GeoGebra-opplæring i Matematikk 1T Emne Underkapittel Rettvinklede trekanter 2.4 Ikke-rettvinklede trekanter I 2.6 Ikke-rettvinklede trekanter II 2.7 Graftegning 3.2 Graftegning med definisjonsmengde 3.2
2.1 Regnerekkefølge. 2.4 Brøkregning. 3.6 Rette linjer 2(3 + 1) (6+ 2):4+ 42
Dette dokumentet oversetter kapittelet Lommeregnerstoff i Sinus 1P boka til Cappelen Damm til Excel- og GeoGebrastoff. Se brukerveiledningen i Lokus for perspektivtegning med GeoGebra..1 Regnerekkefølge
GeoGebra 6 for Sinus 1T
SIGBJØRN HALS TORE OLDERVOLL GeoGebra 6 for Sinus 1T Sinus 1T ble skrevet med utgangspunkt i GeoGebra 5. I boka er det også lagt opp til at elevene har en enkel lommeregner i tillegg til datamaskin. I
GeoGebra-opplæring i Matematikk 1P
GeoGebra-opplæring i Matematikk 1P Emne Underkapittel Perspektivtegning I 3.8 Perspektivtegning II 3.8 Regulære mangekanter 3.9 Flislegging I 3.9 Flislegging II 3.9 Flislegging III 3.9 Terningkast 4.1
Funksjoner, likningssett og regning i CAS
Funksjoner, likningssett og regning i CAS MKH, TUS 2014, GeoGebra 4.4 Innholdsfortegnelse Funksjoner og likningssett i GeoGebra... 2 Introduksjon til lineære funksjoner... 2 Oppgave om mobilabonnement...
Sigbjørn Hals. Øving i bruk av GeoGebra på eksamensoppgaver for 10. Klasse. Eksamensoppgave, Utdanningsdirektoratet V-2011
Øving i bruk av GeoGebra på eksamensoppgaver for 10. Klasse Eksamensoppgave, Utdanningsdirektoratet V-2011 1 Framgangsmåten med GeoGebra Vi vil her bare se på løsningen av oppgavene c og d. Åpne GeoGebra.
GeoGebra 4.2 for Sinus 2P. av Sigbjørn Hals
GeoGebra 4.2 for Sinus 2P av Sigbjørn Hals Innhold Litt om GeoGebra... 3 Linjediagram. Side 46 i læreboka... 3 Søylediagram. Side 57 i Læreboka... 5 Histogram. Side 81 i læreboka... 6 Lineær regresjon.
GeoGebra-opplæring i Matematikk S2
GeoGebra-opplæring i Matematikk S Emne Underkapittel Faktorisering.1 Grafisk løsning av likningssett I.3 Størst mulig overskudd 3. Vendepunkter 3.4 Den naturlige eksponentialfunksjonen 3.5 3.6 Den naturlige
GeoGebra-opplæring i Matematikk 1P
GeoGebra-opplæring i Matematikk 1P Emne Underkapittel Perspektivtegning I 3.8 Perspektivtegning II 3.8 Terningkast 4.1 Valgtre I 4.3 Valgtre II 4.7 Graftegning 5.2 Linje gjennom to punkter 5.2 Nullpunkter
GeoGebra-opplæring i 2P-Y
GeoGebra-opplæring i 2P-Y Emne Underkapittel Terningkast 2.1 Valgtre I 2.3 Valgtre II 2.7 Graftegning 3.2 Nullpunkter 3.3 Å finne y- og x-verdier 3.4 Andregradsfunksjoner 3.5 Grafisk løsning 3.5 Tredjegradsfunksjoner
GeoGebra for Sinus 2T
GeoGebra for Sinus 2T Innhold Vektorer med GeoGebra Skalarproduktet med GeoGebra Parameterframstilling med GeoGebra Ordnede utvalg eksempelet på side 89 med GeoGebra Uordnede utvalg eksempelet på side
GeoGebra-opplæring i Matematikk 2T
GeoGebra-opplæring i Matematikk 2T Emne Underkapittel Vektorer 1.4 Lengden av vektorer 1.5 Skalarprodukt. Vinkel mellom to vektorer 1.6 Parameterframstilling 1.8 Binomialkoeffisient I 2.7 Binomialkoeffisient
Lineære funksjoner. Skjermbildet
Lineære funksjoner I dette opplæringsløpet lærer du å tegne funksjoner i GeoGebra samt å bruke verktøy til å løse oppgaver som dreier seg om funksjoner. Alle oppgavene handler om lineære funksjoner. I
3 GeoGebra 1. Fartsdiagrammer 2. Likningsett 3. Funksjoner Maks og min punkter
3 GeoGebra 1. Fartsdiagrammer 2. Likningsett 3. Funksjoner Maks og min punkter MKH Innholdsfortegnelse 1. Graftegner - GeoGebra... 2 1.1 Introduksjon GeoGebra... 2 1.2 Endre innstillinger på aksene...
1 Introduksjon GeoGebra 2 Speiling, rotasjon og parallellforskyvning 3 Perspektivtegning 4 Symmetriakser
1 Geometri i kunsten: 1 Introduksjon GeoGebra 2 Speiling, rotasjon og parallellforskyvning 3 Perspektivtegning 4 Symmetriakser MKH GeoGebra - Geometri i kunsten Innhold 1 Introduksjon GeoGebra... 1 1.1
Hurtigstart. Hva er GeoGebra? Noen fakta
Hurtigstart Hva er GeoGebra? En dynamisk matematisk programvare som er lett å ta i bruk Er egnet til læring og undervisning på alle utdanningsnivå Binder interaktivt sammen geometri, algebra, tabeller,
GeoGebra 3.2. for. ungdomstrinnet
GeoGebra 3.2 for ungdomstrinnet av Sigbjørn Hals 1 Innhold: Hva er GeoGebra?... 3 Hvor kan jeg få tak i dette programmet?... 3 Hvordan kommer jeg i gang med å bruke programmet?... 4 Å hente og legge til
Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Geogebra
Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 1.1 Menyer..................................... 4 2 Regning 5 2.1 Tallregning...................................
Funksjoner med GeoGebra
Funksjoner med GeoGebra Wallace Anne Karin 2015 G e o G e b r a 5. 0 Innhold Oppsett for arbeid med funksjoner... 2 Flytte tegneflaten, endre enheter på aksene... 4 Flytt inntastingsfeltet øverst... 4
GEOGEBRA (Versjon 5.0.150.12.september 2015)
1 INNFØRING GEOGEBRA (Versjon 5.0.150.12.september 2015) Østerås 12. september 2015 Odd Heir 2 Innhold Side 3-10 Innføring i GeoGebra 10-12 Utskrift 12-13 Overføring til Word 13-15 Nyttige tips 15-16 Stolpediagram
Hvordan forandrer jeg på innstillingene langs aksene, slik at hele grafen viser? Dette kan du gjøre på seks ulike måter:
Spørsmål og svar om GeoGebra, versjon 3.0 bokmål. Jeg har lastet ned en installasjonsfil fra www.geogebra.org og installert programmet, men får det ikke til å fungere. Hva kan dette skyldes? Den vanligste
SINUS R1, kapittel 5-8
Løsning av noen oppgaver i SINUS R1, kapittel 5-8 Digital pakke B TI-Nspire Enkel kalkulator (Sharp EL-506, TI 30XIIB eller Casio fx-82es) Oppgaver og sidetall i læreboka: 5.43 c side 168 5.52 side 173
GeoGebra-opplæring i Matematikk 2P
GeoGebra-opplæring i Matematikk 2P Emne Underkapittel Graftegning 2.1 Linje gjennom to punkter 2.1 Å finne y- og x-verdier 2.1 Lineær regresjon 2.3 Andregradsfunksjoner 2.4 Polynomregresjon 2.4 Eksponential-
Hva er nytt i GeoGebra 3.0? Sigbjørn Hals
Hva er nytt i GeoGebra 3.0? Sigbjørn Hals 1 Dersom du vil ha en fullstendig oversikt over det som er nytt i versjon 3.0, kan du gå til denne nettsida: http://www.geogebra.org/static/geogebra_release_notes_prerelease.txt
Innhold. Matematikk for ungdomstrinnet
Innhold FUNKSJONSTEGNER... 3 Skjermbildet i GeoGebra... 3 Verktøylinja... 4 Verktøyet Flytt eller velg objekt... 4 Oppsett av skjermbildet... 5 Flytte tegneflaten, endre enheter på aksene... 5 Mer øving
Del 1. Generelle tips
Innhold Del 1. Generelle tips... 2 Bruk en "offline installer"... 2 Øk skriftstørrelsen... 3 Sett navn på koordinataksene... 3 Vis koordinater til skjæringspunkt, ekstremalpunkt m.m.... 4 Svar på spørsmålene
2.1 Regnerekkefølge. 3.4 Rette linjer med digitale verktøy 2(3 + 1) (6+ 2):4+ 42
Sinus T uten grafisk kalkulator Dette dokumentet oversetter kapittelet Lommeregnerstoff i Sinus T boka til Cappelen Damm til Excel- og GeoGebrastoff.. Regnerekkefølge ( + ) (6+ ):+ CTRL+J Bytter mellom
Lineær optimering med GeoGebra
Lineær optimering med GeoGebra av Sigbjørn Hals Eksempler fra læreboka Sinus S1 Cappelen, 2007 1 Før vi viser fremgangsmåten for lineær optimering, vil vi vise noen nyttige kommandoer og menyvalg i GeoGebra,
Innhold. Matematikk for ungdomstrinnet
Innhold FUNKSJONSTEGNER... 3 Skjermbildet i GeoGebra... 3 Verktøylinja... 4 Verktøyet Flytt eller velg objekt... 4 Oppsett av skjermbildet... 5 Flytte tegneflaten, endre enheter på aksene... 5 Mer øving
Kurs. Kapittel 2. Bokmål
Kurs 9 Kapittel 2 Bokmål 1 av 9 Kurs i GeoGebra Funksjoner og grafer I dette kurset skal vi se nærmere på hvordan vi kan bruke GeoGebra som en graftegner. Grunnleggende innstillinger Når vi skal bruke
Grafisk løsning av ligninger i GeoGebra
Grafisk løsning av ligninger i GeoGebra Arbeidskrav 2 Læring med digitale medier 2013 Magne Svendsen, Universitetet i Nordland Innholdsfortegnelse INNLEDNING... 3 GRAFISK LØSNING AV LIGNINGER I GEOGEBRA...
GeoGebra. Menylinje Angreknapp. Verktøylinje. Aktivt verktøy med mørkeblå kant. Innstillinger. Algebrafelt. Velge oppsett.
GeoGebra Menylinje Angreknapp Verktøylinje Aktivt verktøy med mørkeblå kant Innstillinger Algebrafelt Grafikkfelt Inntastingsfelt Velge oppsett GEOGEBRA SOM FUNKSJONSTEGNER OPPSETT FLYTTE TEGNE- FLATEN,
Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Geogebra
Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra 1 Geogebra for Sigma matematikk 2P Innledning Denne bruksanvisningen er ment som en beskrivelse av dataprogrammet
GeoGebra 6. GeoGebra 6 kan lastes ned fra:
GeoGebra 6 Den vanlige GeoGebra brukeren må bruke litt tid til å sette seg inn i GeoGebra 6. Noen viktige endringer blir vist i dette dokumentet. Tema er valgt spesielt med tanke på arbeid med elever.
Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra
Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra Geogebra for Sigma matematikk 1P Innledning Denne bruksanvisningen er ment som en beskrivelse av dataprogrammet
Sigbjørn Hals, Cappelen Damm Undervisning. Sinus 2P. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy
Sinus 2P Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy GeoGebra 4.0 og 4.2 wxmaxima Microsoft Mathematics WordMat TI-Nspire CAS 1 Innhold Litt om programmene... 4 GeoGebra
03.10.2013 Manual til. GeoGebra. Ungdomstrinnet. Ressurs til. Grunntall 8 10. Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS
03.10.2013 Manual til GeoGebra Ungdomstrinnet Ressurs til Grunntall 8 10 Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS Innhold Verktøy... 4 Hva vinduet i GeoGebra består av...
Lær å bruke GeoGebra 4.0
Lær å bruke GeoGebra 4.0 av Sigbjørn Hals Innhold: Generelt om GeoGebra... 2 Innstillinger... 2 Likninger og ulikheter... 5 Implisitte likninger... 5 Ulikheter... 9 Statistikkberegninger i regnearket...
5.A Digitale hjelpemidler i geometri
5.A Digitale hjelpemidler i geometri Geometri handler om egenskapene til punkter, linjer og figurer i planet og i rommet. I alle tider har blyant og papir samt passer og linjal vært de viktigst hjelpemidlene
Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Geogebra
Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 2 Regning 4 2.1 Tallet e...................................... 4 3 Sannsynlighetsregning
Sinus 1T. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy
Sinus 1T Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy GeoGebra 4.2 wxmaxima Microsoft Mathematics WordMat TI-Nspire CAS Innhold Litt om programmene... 5 GeoGebra 4.2...
Opplæringshefte i GeoGebra. for mellomtrinnet og. ungdomstrinnet
Opplæringshefte i GeoGebra for mellomtrinnet og ungdomstrinnet av Sigbjørn Hals Bokmål 1 Innhold: Del 1. Generell informasjon om GeoGebra...3 Kva er GeoGebra?...3 Kvar kan eg få tak i dette programmet?...3
GEOGEBRA (Versjon 5.0.233.0 6. mai 2016)
1 KURSHEFTE INNFØRING GEOGEBRA (Versjon 5.0.233.0 6. mai 2016) Østerås 8. mai 2016 Odd Heir 2 Innhold Side 3-13 Innføring i GeoGebra 13-14 Funksjonsanalyse 14-16 Utskrift 17-18 Overføring til Word 18-20
GeoGebra-opplæring i Matematikk R1
GeoGebra-opplæring i Matematikk R1 Emne Underkapittel Vektorer 1.4 Lengden av vektorer 1.5 Skalarprodukt og vinkel mellom to vektorer 1.6 Forenkle uttrykk 2.1 Faktorisering 2.1 Grafisk løsning av eksponentiallikninger
Innhold. Matematikk for ungdomstrinnet
Innhold Funksjonstegner... 3 Skjermbildet i GeoGebra... 3 Verktøylinja... 3 Verktøyet Flytt eller velg objekt... 4 Oppsett av skjermbildet... 4 Flytte tegneflaten, endre enheter på aksene... 5 Mer øving
Innhold. Matematikk for ungdomstrinnet
Innhold FUNKSJONSTEGNER... 3 Skjermbildet i GeoGebra... 3 Verktøylinja... 4 Verktøyet Flytt eller velg objekt... 4 Oppsett av skjermbildet... 5 Flytte tegneflaten, endre enheter på aksene... 5 Flytt inntastingsfeltet
GEOGEBRA. 1 Tegn figurer. Fremgangsmåte: 1 Klikk bort Algebrafeltet.
GEOGEBRA 1 Tegn figurer. 1 Klikk bort Algebrafeltet. 2 Klikk bort Rutenett og Akser. 3 Klikk på tegnet for Mangekant. 4 Velg Regulær Mangekant. Sett av 2 punkter. Du får spørsmål om hvor mange sider. Velg
Spørsmål og svar om GeoGebra, versjon 2.7 nynorsk
Spørsmål og svar om GeoGebra, versjon 2.7 nynorsk Eg har lasta ned ei installasjonsfil frå www.geogebra.org og installert programmet, men får det ikkje til å fungere. Kva kan dette skuldast? Den mest vanlege
Løsning eksamen S1 våren 2010
Løsning eksamen S1 våren 010 Oppgave 1 a) 1) f ( x) x x f (1) 1 1 1 1 f ( x) 6x x f (1) 6 1 1 6 4 ) Grafen går gjennom punktet (1, 1) og har vekstfarten 4. Det betyr at tangenten i punktet har stigningstallet
GEOGEBRA (Versjon desember 2016)
1 MANUAL 1P 2P 2PY GEOGEBRA (Versjon 5.0.303.0 10. desember 2016) Østerås 14. desember 2016 Odd Heir 2 Innhold Side 3-12 Innføring i GeoGebra 12-15 Utskrift 16-17 Overføring til Word 17-18 Regneark i GeoGebra
S1 eksamen våren 2017 løsningsforslag
S1 eksamen våren 017 løsningsforslag Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Løs likningene a) x 5x 0 xx ( 5) 0 x 0 x 5 0
1T eksamen våren 2018 løsningsforslag
1T eksamen våren 018 løsningsforslag DEL 1 Uten hjelpemidler Tid: Del 1 skal leveres inn etter timer. Hjelpemidler: Del 1 Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1
Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra
Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 1.1 Innstillinger................................... 5 2 Regning 5 2.1 Tallregning...................................
Nyttige tilleggsverktøy i GeoGebra
Nyttige tilleggsverktøy i GeoGebra Her er en omtale av noen GeoGebra-verktøy som kan være nyttige og arbeidssparende. Ei vanlig GeoGebra-fil har etternavnet ggb, mens et GeoGebraverktøy har etternavnet
Spørsmål og svar om GeoGebra, versjon 2.7 bokmål
Spørsmål og svar om GeoGebra, versjon 2.7 bokmål Jeg har lastet ned en installasjonsfil fra www.geogebra.org og installert programmet, men får det ikke til å fungere. Hva kan dette skyldes? Den vanligste
Sinus Påbyggingsboka T
Sinus Påbyggingsboka T Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy GeoGebra 4.2 wxmaxima Microsoft Mathematics WordMat TI-Nspire CAS Innhold Litt om programmene... 4
Løsninger. Innhold. Funksjoner Vg1P
Løsninger Innhold Innhold... 1 Modul 1. Funksjonsbegrepet... Modul. Lineære funksjoner... 9 Modul 3. Mer om lineær vekst... 16 Modul 4. Andregradsfunksjoner... 5 Modul 5. Andre funksjoner... 30 Polynomfunksjoner...
Basisoppgaver til 1P kap. 5 Funksjoner
Basisoppgaver til 1P kap. 5 Funksjoner 5.1 Funksjoner og grafer 5.2 Førstegradsfunksjoner 5.3 Lineær vekst 5.4 Proporsjonalitet 5.5 Andregradsfunksjoner 5.6 Mer om funksjoner Basisoppgaver 5.1 Funksjoner
Innføring i GeoGebra (2 uv-timer)
09/29/19 1/6 Innføring i GeoGebra (2 uv-timer) Innføring i GeoGebra (2 uv-timer) GeoGebra er et dynamisk matematikkprogram for skolebruk som forener geometri, algebra og funksjonslære. Programmet er utviklet
KORT INNFØRING I GEOGEBRA
Innhold INNLEDNING... 3 KORT INNFØRING I GEOGEBRA... 4 ØVELSE 1. TEGNE GRAFER... 9 ØVELSE 2. TEGNE GRAFER TIL RASJONALE FUNKSJONER... 11 ØVELSE 3. LIKNINGSLØSNING... 15 ØVELSE 4. TANGENTER OG MAKS OG MIN
Kurs. Kapittel 2. Bokmål
Kurs 8 Kapittel 2 Bokmål D.8.2.1 1 av 4 Introduksjon til dynamisk geometri med GeoGebra Med et dynamisk geometriprogram kan du tegne og konstruere figurer som du kan trekke og dra i. I noen slike programmer
1.7 Digitale hjelpemidler i geometri
1.7 Digitale hjelpemidler i geometri Geometri handler om egenskapene til punkter, linjer og figurer i planet og i rommet. I alle tider har blyant og papir samt passer og linjal vært de viktigst hjelpemidlene
Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1008 Matematikk 2T Eksamen 30.11.2009. Bokmål
Eksempel på løsning 010 Sentralt gitt skriftlig eksamen MAT1008 Matematikk T Eksamen 30.11.009 Bokmål MAT1008 Matematikk T HØSTEN 009 Eksempel på løsning med vekt på bruk av digitale verktøy Hva er en
S1 eksamen våren 2016 løsningsforslag
S1 eksamen våren 016 løsningsforslag Tid: timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (4 poeng) Løs likningene a) x x 0 4 1 x 1 9 8 x 1 x x 1
Eksamen vår 2009 Løsning Del 1
S Eksamen, våren 009 Løsning Eksamen vår 009 Løsning Del Oppgave a) Deriver funksjonene: ) f f f 3 3 f f 4 ) g e 3 g e g e e g e b) ) Gitt rekka 468 Finn ledd nummer 0 og summen av de 0 første leddene.
Eksempel på løsning 2011 MAT1013 Matematikk 1T Sentralt gitt skriftlig eksamen Høsten 2010 Bokmål
Eksempel på løsning 011 MAT1013 Matematikk 1T Sentralt gitt skriftlig eksamen Høsten 010 Bokmål MAT1013 Matematikk 1T, Høst 010 Del 1 Uten hjelpemidler Kun vanlige skrivesaker, passer, linjal med centimetermål
a) Tegn grafen til T b) Når på dagen var temperaturen 0 o C c) Når på dagen var temperaturen høyest? Hva var temperaturen da?
Oppgaver 1 Geogebra med fasit Oppgave 1 Funksjonen f er gitt ved: f(x) = x 2 2x 3 a) Tegn grafen digitalt b) Finn bunnpunktet til f Oppgave 2 En modell for temperaturen i celsiusgrader x timer etter midnatt
QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 1 og 2. GeoGebra-øvelser i funksjonslære. Av Peer Sverre Andersen
QED 5 10 Matematikk for grunnskolelærerutdanningen Bind 1 og 2 GeoGebra-øvelser i funksjonslære Av Peer Sverre Andersen Innhold INNLEDNING... 3 KORT INNFØRING I GEOGEBRA... 4 ØVELSE 1. TEGNE GRAFER...
Funksjoner 1T, Prøve 1 løsning
Funksjoner 1T, Prøve 1 løsning Del 1 Tid: 60 min Hjelpemidler: Skrivesaker Oppgave 1 Figuren viser utviklingen i en populasjon av harer på en øy fra 1880 til 000. a) Hvor mange harer var det på øya i 1880?
Lær å bruke GeoGebra 4.0
Lær å bruke GeoGebra 4.0 av Sigbjørn Hals Innhold: Generelt om GeoGebra... 2 Innstillinger... 2 Statistikkberegninger i regnearket... 5 Nye muligheter for funksjonsanalyse... 8 Nullpunkt og ekstremalpunkt...
GeoGebra. Menylinjer og de vanligste funksjonene. GeoGebra
1 er et dynamisk geometriprogram. Ved hjelp av dette programmet kan du framstille forskjellige geometriske figurer, forskjellige likninger (likningssett) og ulike funksjonsuttrykk, og du kan gjøre endringer
5 Matematiske modeller
Løsning til KONTROLLOPPGAVER 5 Matematiske modeller OPPGAVE 1 a) Endringen i lengden på lyset i løpet av de 100 minuttene er 12 cm 27 cm = 15 cm Endringen per minutt blir da 15 cm 0,15cm/ min 100 min Når
Eksamen MAT1013 Matematikk 1T Va ren 2014
Eksamen MAT1013 Matematikk 1T Va ren 014 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform,5 10 3,0 10 15 5 15 ( 5) 10,5 3,0 10 7,5 10 Oppgave ( poeng) Regn ut og skriv svaret så enkelt som mulig
Lokal læreplan i matematikk Trysil ungdomsskole 1
Lokal læreplan i matematikk Trysil ungdomsskole 1 Lokal læreplan i matematikk Trysil ungdomsskole 2 Lokal læreplan i matematikk Trysil ungdomsskole 3 Lokal læreplan i matematikk Trysil ungdomsskole 4 Lokal
Eksamen våren 2015 Løsninger
DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 For et utvalg der antall observasjoner er et partall, slik som her, er medianen gjennomsnittet
Løsning eksamen 2T våren 2008
Løsning eksamen 2T våren 2008 Del 2 løst med pc Noen gode grunner til å lære å utnytte pc-en effektivt på eksamen: I eksamensinformasjonen står det: Der oppgaveteksten ikke sier noe annet, kan du fritt
S1 eksamen høsten 2016 løsningsforslag
S1 eksamen høsten 016 løsningsforslag Oppgave 1 (4 poeng) Løs likningene a) x 1 3 x 5 3 4 6 Fellesnevner blir 1 x1 3x 5 1 1 1 3 4 6 (x 1)4 (3x )3 5 8x 4 9x 6 10 x 10 6 4 0 x 0 b) lg(x 6) 10 10 lg(x6) x
Introduksjon og installasjon Tegninger i motsetning til geometriske konstruksjoner
Introduksjon og installasjon Tegninger i motsetning til geometriske konstruksjoner GeoGebra arbeidsark 1 Judith og Marcus Hohenwarter www.geogebra.org Oversatt av Anders Sanne og Jostein Våge Tilpasset
CAS GeoGebra. Innhold. Matematikk for ungdomstrinnet
CAS GeoGebra Innhold CAS GeoGebra... 1 REGNING MED CAS-VERKTØYET... 2 Rette opp feil, slette linjer... 3 Regneuttrykk... 4 FAKTORISERE TALL... 4 BRØK... 4 Blandet tall... 5 Regneuttrykk med brøk... 5 POTENSER...
Løsning av typeoppgaver og eksamensoppgaver med Microsoft Mathematics, WordMat og GeoGebra. Av Sigbjørn Hals
Løsning av typeoppgaver og eksamensoppgaver med Microsoft Mathematics, WordMat og GeoGebra Av Sigbjørn Hals 1 Innhold Innledning... 3 Typeoppgave 1... 3 Oppgaven... 3 Fremgangsmåten... 4 Løsningen... 4
Eksamen MAT1013 Matematikk 1T Høsten 2014
Eksamen MAT1013 Matematikk 1T Høsten 01 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 50000000000,0005 10 10 ( ) 6 7,510 5,010,55,010 1,510 1,510 Oppgave (1 poeng) Løs likningen 16 lg lg16
MATEMATISK MODELLERING Modellering med pendel
MATEMATISK MODELLERING Modellering med pendel Utstyr: Mynter, hyssing, tape, stoppeklokke Mål: 1. Hva påvirker svingtiden til en pendel? Lag hypoteser a. Lengden på hyssingen? b. Antall mynter (vekt)?
Geometri med GeoGebra Del 2
Geometri med GeoGebra Del 2 Å endre linjestil eller farge, og vise navn på objekt Vi kan endre farge og stil på hjelpelinjer for å framheve det objektet vi egentlig skal lage. Ved hjelp av ikonene på stilmenyen
Innføring i GeoGebra (2 uv-timer)
03/06/17 1/5 Innføring i GeoGebra (2 uv-timer) Innføring i GeoGebra (2 uv-timer) GeoGebra er et dynamisk matematikkprogram for skolebruk som forener geometri, algebra og funksjonslære. Programmet er utviklet
GeoGebra. brukt på eksamensoppgåver i 10. kl. Sigbjørn Hals
GeoGebra brukt på eksamensoppgåver i 10. kl. Sigbjørn Hals Innhald Kva er GeoGebra?... 2 Kva nytte har elevane av å bruke GeoGebra?... 2 Kvar finn vi GeoGebra?... 2 Oppbygginga av programmet... 3 Løysing
Menylinje og de vanligste funksjonene. Her gjør du de tilpasningene du trenger.
GeoGebra GeoGebra 1 GeoGebra er et dynamisk geometriprogram. Ved hjelp av dette programmet kan du framstille forskjellige geometriske figurer, forskjellige likninger (likningssett) og ulike funksjonsuttrykk,
Matematisk visualisering
02/01/17 1/5 Matematisk visualisering Matematisk visualisering GLU 1.-7. trinn: Matematisk visualisering og konstruksjon - GeoGebra Innføring i GeoGebra (2 uv-timer) Denne delen er direkte knyttet til
Fasit. Funksjoner Vg1T. Innhold
Fasit Innhold 4.1 Funksjonsbegrepet... 4. Lineære funksjoner... 6 4.3 Andre funksjoner... 15 Andregradsfunksjoner... 15 Polynomfunksjoner... 18 Rasjonale funksjoner... 19 Potensfunksjoner og eksponentialfunksjoner...
Eksempeloppgave 1T, Høsten 2009
Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne
