SIGBJØRN HALS TORE OLDERVOLL. GeoGebra 6 for Sinus 2PY

Størrelse: px
Begynne med side:

Download "SIGBJØRN HALS TORE OLDERVOLL. GeoGebra 6 for Sinus 2PY"

Transkript

1 SIGBJØRN HALS TORE OLDERVOLL GeoGebra 6 for Sinus 2PY

2 Sinus 2PY ble skrevet med utgangspunkt i GeoGebra 5. I boka er det også lagt opp til at elevene har en enkel lommeregner i tillegg til datamaskin. I dag er det mange lærere og elever som bruker GeoGebra 6, og i flere klasser ønsker de ikke å bruke lommeregner i timene. I dette heftet har vi derfor forklart hvordan en kan bruke CAS som lommeregner og hvordan vi bruker GeoGebra 6, der det i boka er beskrevet fremgangsmåter med GeoGebra 5. CAS er ikke et obligatorisk verktøy i 2PY, men det gir mange fordeler for elevene å beherske dette verktøyet. Det er derfor viktig at elevene blir fortrolige med CAS ved hyppig og systematisk bruk gjennom hele skoleåret. Disse forklaringene er både samlet her i et eget hefte, og lagt ut under de aktuelle delkapitlene på de gratis nettsidene til Sinus Sigbjørn Hals og Tore Oldervoll Materialet i denne publikasjonen er omfattet av åndsverklovens bestemmelser. Uten særskilt avtale med Cappelen Damm AS er enhver eksemplarframstilling og tilgjengeliggjøring bare tillatt i den utstrekning det er hjemlet i lov eller tillatt gjennom avtale med Kopinor, interesseorgan for rettighetshavere til åndsverk. Utnyttelse i strid med lov eller avtale kan medføre erstatningsansvar og inndragning, og kan straffes med bøter eller fengsel.

3 Innhold Tall på standardform Sinus 2PY, side Prosentvis endring i flere perioder Sinus 2PY, side Histogram - Sinus 2PY side Digital graftegning - Sinus 2PY side Digital graftegning - Sinus 2PY side Konstantledd og stigningstall Sinus 2PY, side Digital løsning av likninger Sinus 2PY, side Digital løsning av likninger Sinus 2PY, side Digital løsning av likninger Sinus 2PY, side Funksjonsverdier Sinus 2PY, side Lineær regresjon - Sinus 2PY side Nullpunkt og ekstremalpunkt for polynomfunksjoner - Sinus 2PY side Andre typer regresjon - Sinus 2PY, side 148, 155 og Rotfunksjoner Sinus 2PY, side Gjennomsnittlig vekstfart - Sinus 2PY side Momentan vekstfart - Sinus 2PY side Simulering av terningkast, Sinus 2PY side

4 Tall på standardform Sinus 2PY, side 18 Bruk CAS til å skrive tallene og 0, på standardform med tre gjeldende siffer. Klikk på dette ikonet oppe i høyre hjørne:. Klikk på Vis og merk av for CAS. Klikk på Innstillinger og Lagre innstillinger for å ha CAS oppe neste gang du bruker GeoGebra. Skriv Standardform(230000, 3) og Standardform( , 3) i hver sin linje i CAS og trykk Enter. Bruk punktum som desimaltegn. Prosentvis endring i flere perioder Sinus 2PY, side 33 Folketallet i en by øker i gjennomsnitt med 2 % per år i årene etter januar 2010 var folketallet a) Finn folketallet 1. januar b) Finn folketallet 1. januar Her er vekstfaktoren 1,02. a) 1. januar 2013 er 3 år fram i tid fra Skriv 48500*1.02^3 og klikk på. 1. januar 2013 var folketallet ca b) 1. januar 2005 er 5 år bakover i tid fra Skriv 48500*1.02^-5 og klikk på. 1. januar 2005 var folketallet ca

5 Histogram - Sinus 2PY side 84 På de gratis nettsidene til Sinus finner du en film som viser trinn for trinn hvordan du kan lage et histogram med GeoGebra 6. I eksempelet nedenfor forklarer vi kort de ulike trinnene i fremgangsmåten for å lage et histogram. Tabellen nedenfor viser fordelingen av høydene til 218 elever. Lag et histogram som viser denne fordelingen. Høyde Frekvens 150, , , , , , , , N = Åpne regnearket i GeoGebra ved å klikke på dette ikonet oppe i høyre hjørne:. Velg Vis og merk av for Regneark. 2. Skriv inn klassegrensene i kolonne A. 3. Regn ut klassebreddene ved å skrive A2 - A1 i celle B2. Merk denne cellen og kopier nedover ved å klikke på den lille firkanten nede i høyre hjørne på celle B2, holde nede venstre musetast og dra nedover til og med celle B9. 4. Skriv inn frekvensene i kolonne C. 5. Regn ut høydene i histogrammet ved å skrive C2/B2 i celle D2. Kopier nedover på samme måte som for klassebreddene i kolonne B. 5

6 6. Lag ei liste av klassegrensene ved å merke cellene A1 - A9, høyreklikke, velge Lag og Liste. Denne lista får navnet L Lag ei liste av høydene i celle D2 - D9. Denne lista får navnet L Skriv Histogram(L 1, L 2) i algebrafeltet. Du får fram L 1 ved å skrive L_1 og L 2 ved å skrive L_2. 9. Plasser et punkt i origo. Dette er bare et hjelpeobjekt som du kam slette senere. Det gjør det lettere å få vist både aksene og histogrammet samtidig når vi velger Vis alle objekter. 10. Høyreklikk på grafikkfeltet og velg Vis alle objekter. 11. Slett punktet i origo og juster litt på aksene om nødvendig. Vi ser at det vil være bedre om y-aksen ikke går gjennom origo, men gjennom punktet (140, 0). Det får vi til på denne måten: Høyreklikk på grafikkfeltet, velg Grafikkfelt, og yakse. Endre Kryss ved 0 til Kryss ved 140. Husk å tilbakestille y-aksen til å krysse ved x = 0 etter at du har tatt en skjermdump av histogrammet. En rask måte å ta skjermdump på er å trykke CTRL, Shift og C samtidig.

7 Digital graftegning - Sinus 2PY side 104 Vi kan bruke digitale hjelpemidler til å tegne rette linjer og andre grafer. Her viser vi hvordan vi kan bruke GeoGebra 6 til slik tegning. Tegn linja y 1,5 x 2 Vi åpnet programmet og klikker inne i grafikkfeltet. Hvis vi ikke får fram koordinatsystemet eller rutenettet, klikker vi på dette symbolet oppe i høyre hjørne av programvinduet. Da får vi fram denne menyen, der vi mellom annet kan vise eller skjule aksene og rutenettet: Nå skriver vi inn likningen for linja i algebrafeltet. Bruk desimalpunktum. I GeoGebra 6 fungerer algebrafeltet også som et inntastingsfelt. Når vi trykker Enter får vi dette bildet i algebrafeltet. Da får vi fram linja nedenfor. Du får kanskje et helt annet utsnitt og andre tall langs aksene enn det vi har fått. For å endre på koordinatsystemet trykker vi på symbolet. Hvis vi nå plasserer musepekeren inne i koordinatsystemet og holder inne venstre musetast, kan vi flytte koordinatsystemet. Hvis vi vil endre på en av aksene, plasserer vi musepekeren på en av aksene og holder inne venstre musetast. Da kan vi dra i aksen og få den slik vi vil. Vi kan også bruke dette verktøyet for å flytte på grafikkfeltet: Shift-tasten og venstre musetast for å endre på aksene.. Da må vi holde nede 7

8 Digital graftegning - Sinus 2PY side 106 Noen ganger kan det være vanskelig å finne ut hvilke verdier vi skal ha langs aksene. Ofte står det i oppgaven hvilke x-verdier vi skal bruke. Men vi må selv finne ut hvilke verdier vi trenger langs y-aksen. Da kan i gå fram som i dette eksemplet. Tanken på en bil inneholder 60 liter bensin. Bilen bruker 0,55 liter bensin per mil. Etter x mil er bensinmengden y i liter gitt ved y = 60 0,55x Tegn digitalt ei linje som viser hvor mye bensin det er igjen på tanken helt til vi har kjørt 100 mil. Vi bruker GeoGebra og skriver først inn likningen slik i algebrafeltet: Bruk punktum og ikke komma som desimaltegn. For å kunne se grafen, må vi forandre på verdiene langs aksene. Høyreklikk inne i koordinatsystemet, velg Grafikkfelt, xakse og fyll ut skjermbildet slik det er vist nedenfor. Gjenta det samme for yakse. Legg merke til at vi har merket av for Avstand, og satt denne til 10 langs begge aksene. Vi har også tatt med enheten mil langs x-aksen og liter langs y-aksen. Dette er veldig viktig i slike tekstoppgaver. I oppgaver uten enheter er det nok å bare ha navnet på aksene. Det mest vanlige er å bruke x og y. Vi bruker nå dette verktøyet figuren nedenfor. og drar i aksene til vi får en graf som ligner på grafen på

9 Konstantledd og stigningstall Sinus 2PY, side 111 Vi kan finne stigningstallet og konstantleddet til ei rett linje gjennom to punkter ut fra opplysningene i algebrafeltet i GeoGebra. Finn stigningstallet og konstantleddet til linja som går gjennom punktene ( 1, 2) og (3,10). Skriv inn ( 1, 2) i algebrafeltet og trykk Enter. Punktet får automatisk navnet A. Skriv deretter inn (3,10) og trykk Enter. Dette punktet får navnet B. Dra i aksene slik at begge punktene er synlige. Skriv Linje(A, B) i algebrafeltet og trykk Enter. Du kan også velge dette verktøyet: og klikke etter tur på punktene A og B. Likningen er ikke slik vi pleier å skrive den. Hvis vi vil ha likningen på formen y ax b, høyreklikker vi på likningen og velger Likning y = ax + b. Det gir dette resultatet: Likningen er y 2x 4 Dermed er stigningstallet 2 og konstantleddet 4. Dersom vi ønsker at linjer alltid skal vises på formen y ax b, klikker vi på dette symbolet oppe i høyre hjørne:. Deretter klikker vi på firkanten som er innringer i figuren nedenfor, velger Algebra og formen y ax b for likninger. Etterpå må vi velge Innstillinger og Lagre innstillinger. 9

10 Digital løsning av likninger Sinus 2PY, side 119 Fredrik kjører fra Trondheim til Oslo med farten 70 km/h. Vi kaller antall timer han har kjørt for x og antall kilometer han har kjørt for y. Etter x timer er kjørelengden y, målt i km, gitt ved y 70x Finn grafisk hvor langt Fredrik har kjørt etter 3 timer. Vi tilpasser først aksene slik at x går fra 0 til 10 og y fra 0 til 500, slik vi lærte i kapittel 7.5. Deretter skriver vi y 70x i algebrafeltet og får fram linja l. Så skriver vi x 3 i algebrafeltet og får fram ei vertikal linje gjennom x 3. Deretter bruker vi verktøyet Skjæring mellom to objekt:. Dette verktøyet finner vi ved å klikke på dette ikonet:. Vi klikker deretter nær skjæringspunktet mellom de to linjene, slik at begge linjene blir markert. Vi har tatt med enhetene timer og km langs aksene. Vi får da dette resultatet: Vi kan bruke dette verktøyet og dra tekstene x = 3 og y = 70x inn i grafikkfeltet. For å få resultatet i figuren ovenfor, må vi høyreklikke på hver av tekstene, velge Innstillinger og så fjerne en av «true»-oppføringene under Basis og Definisjon. Her har vi i tillegg høyreklikket på skjæringspunktet, valgt Innstillinger og deretter Verdi. Vi ser av grafen at Fredrik har kjørt 210 km på 3 timer.

11 Digital løsning av likninger Sinus 2PY, side 119 Her jobber vi videre med eksempelet på forrige side. Fredrik kjører fra Trondheim til Oslo med farten 70 km/h. Vi kaller antall timer han har kjørt for x og antall kilometer han har kjørt for y. Etter x timer er kjørelengden y, målt i km, gitt ved y 70x Finn grafisk hvor lang tid Fredrik bruker på å kjøre 385 km. Vi bruker den samme grafen som i forrige eksempel og skriver y = 385 i algebrafeltet. Så bruker vi verktøyet Skjæring mellom to objekt, og får vist koordinatene til det nye skjæringspunktet på samme måte som i forrige eksempel. Vi ser av grafen at Fredrik bruker 5,5 timer på å kjøre 385 km. Digital løsning av likninger Sinus 2PY, side 120 Vi jobber også her videre med eksemplene med Fredrik som kjørte fra Trondheim til Oslo. Vanja kjører skuter til Oslo. Hun kjører med farten 40 km/h og har et forsprang på 120 km da Fredrik startet. Vi kaller antall timer Vanja har kjørt for x, og antall kilometer hun har kjørt for y. Etter x timer er kjørelengden hennes y, målt i km, gitt ved y 40x 120 Finn grafisk når Fredrik tar igjen Vanja. Vi sletter linjene for x = 3 og y = 385 i algebrafeltet. Så skriver vi inn y 40x 120 og bruker verktøyet Skjæring mellom to objekt. Da får vi resultatet som er vist på neste side. 11

12 Vi ser av grafen at Fredrik tar igjen Vanja etter 4 timer. De er da 280 km fra Trondheim. Funksjonsverdier Sinus 2PY, side 124 Finn funksjonsverdiene f (0) og f (2) digitalt når f ( x) 2x 3 Det er lett å regne ut funksjonsverdiene uten hjelpemiddel: f (0) f (2) Når vi skal regne dette ut digitalt må vi passe på at funksjonen f er definert. Det kan vi gjøre ved å skrive funksjonsuttrykket inn i algebrafeltet. Vi kan også definere funksjonen i CAS. Da må vi bruke :=, slik det er vist nedenfor: Det er bedre å finne funksjonsverdiene i CAS enn i algebrafeltet. Det er fordi vi da ser hva som er regnet ut, og ikke bare får a = -3 og b = 1, slik vi vil få i algebrafeltet.

13 Lineær regresjon - Sinus 2PY side 137 I Statistisk årbok finner vi folketallet i Norge 1. januar hvert år fra Nedenfor er et utdrag av statistikken. Her er y folketallet i millioner og x antallet år etter Årstall x (år) y (millioner) 2,22 2,62 2,96 3,57 4,08 4,48 4,86 a) Finn ved regresjon den rette linja som passer best til dataene i tabellen, og tegn linja sammen med punktene i et koordinatsystem. b) Finn folketallet i 1980 ifølge modellen fra oppgave a. c) Når vil folketallet etter dette passere 5,5 millioner? a) Vi åpner GeoGebra og merker av for Regneark på Vis-menyen. Vi legger inn verdien for x og folketallet i millioner som vist her: Nå markerer vi punktene i tabellen ved hjelp av musa og høyreklikker. Vi velger der Lag og Liste med punkt. Nå finner vi punktene i algebrafeltet med navnene A, B osv. Punktene finner vi også i en liste med navnet L 1: Vi ser ikke punktene i koordinatsystemet. Plasser et punkt i origo. Høyreklikk så på grafikkfeltet og velg Vis alle objekter. Da får vi fram alle punktene. Nå kan vi slette punktet i origo. Det er bare et helpepunkt for at aksene skal vise når vi velger Vis alle objekter. Vi ønsker ikke å vise navn og verdi for punktene i grafikkfeltet. Vi ordner derfor objektene i algebravinduet etter objekttype, klikker på overskriften Punkt, høyreklikker på ett av punktene og tar bort merkingen foran Vis navn. 13

14 Ei rett linje er grafen til en førstegradsfunksjon. Vi sier at det er en polynomfunksjon av grad 1, og skriver funksjonsuttrykket på formen f ( x) a x b. Du kan lære om polynomfunksjoner av høyere grad på side 236. Vi skriver nå RegPoly(L_1, 1) i algebrafeltet, og trykker Enter. Vi får fram L 1 ved å skrive L_1. Da får vi tegnet den linja som passer best med punktene. Den linja som passer best best med opplysningene i tabeller er gitt ved funksjonsuttrykket nedenfor. Vi finner funksjonsuttrykket i algebrafeltet : b) Med denne modellen var folketallet i 1980 f (80) 0, ,14 4,06 Dette kan vi også finne i CAS. Vi skriver da f(80) og klikker på:. Folketallet i 1980 var 4,06 millioner i Det stemmer godt med den riktige verdien, som er 4,08 millioner.

15 c) For å finne når folketallet passerer 5,5 millioner, skriver vi f(x) = 5.5 i CAS og klikker på. Vi ser at folketallet er 5,5 millioner etter vel 140 år. Folketallet passerer 5,5 millioner i løpet av Vi kan også løse oppgave c grafisk ved å skrive y = 5.5 i algebrafeltet. Da får vi fram ei horisontal linje. Vi bruker så Skjæring mellom to objekt og finner skjæringspunktet som vist nedenfor: Vi får det samme svaret som i CAS. 15

16 Nullpunkt og ekstremalpunkt for polynomfunksjoner - Sinus 2PY side 146 Finn nullpunktene og ekstremalpunktene til funksjonen f gitt ved 3 f ( x) x 3x Vi velger her å definere funksjonen f i CAS slik det er vist nedenfor. Deretter skriver vi Nullpunkt(f) og Ekstremalpunkt(f). OBS! Når vi definerer noe i CAS, må vi bruke :=. Funksjonen f har nullpunktene x 3, x 0 og x 3. Ekstremalpunktene er ( 1,2) og (1, 2). Andre typer regresjon - Sinus 2PY, side 148, 155 og 163 Polynomregresjon I eksempelet med lineær regresjon brukte vi kommandoen RegPoly(L 1, 1), der L 1 er navnet på lista med punkt og 1-tallet står for at vi ønsker en polynomfunksjon av grad 1. Ønsker vi en andregradsfunksjon som er best mulig tilpasset punktene i liste L 1, skriver vi RegPoly(L 1, 2). Vi får fram L 1 ved å skrive L_1. Det er greit å bruke CAS til å finne funksjonsverdier, slik det er vist i løsningen av oppgave c i eksempelet om lineær regresjon. Potensregresjon Ønsker vi en potensfunksjon som er best mulig tilpasset punktene i liste L 1, skriver vi RegPot(L 1). Eksponentialregresjon Ønsker vi en eksponentialfunksjon som er best mulig tilpasset punktene i liste L 1, skriver vi RegEksp(L 1).

17 Rotfunksjoner Sinus 2PY, side 153 En funksjon f er gitt ved f x x 2 ( ) 5 3 a) Tegn grafen til f digitalt. b) Finn ekstremalpunktet til f. c) Finn nullpunktene til f. a) Vi definerer funksjonen i CAS og justerer aksene. Trykk Alt og r samtidig for å få rottegnet. b) Ønsker vi en eksakt verdi for ekstremalpunktet, skriver Ekstremalpunkt(f) i CAS og klikker på. For å få en tilnærmingsverdi for koordinatene til ekstremalpunktet, kan vi enten skrive Ekstremalpunkt(f) i CAS og klikke på eller skrive Ekstremalpunkt(f) i algebravinduet. Med den siste metoden får vi også tegnet ekstremalpunktet i grafikkfeltet. Funksjonen f har et bunnpunkt i (0, 0,76). c) For å finne nullpunktene til f, skriver vi Nullpunkt(f) i CAS og klikker på. Funksjonen f har nullpunktene x 2 og x 2. 17

18 Gjennomsnittlig vekstfart - Sinus 2PY side 174 En sommerdag var temperaturen i celsiusgrader x timer etter midnatt gitt ved 3 21 T x x x x ( ) 50, 8, 20 a) Finn temperaturen kl. 10, kl. 12, kl. 17 og kl..19. b) Finn digitalt den gjennomsnittlige vekstfarten i perioden fra kl. 10 til kl. 14 og i perioden fra kl. 17 til kl. 19. a) Definer funksjonen i CAS uten å avgrense funksjonen. Skriv deretter T(10), T(12), T(17) og T(19). Bruk. Temperaturen var 17,5 C kl. 10, 22 C kl. 10, 20,1 C kl. 17 og 14,1 C kl. 19. b) Det er to timer mellom kl. 10 og kl. 12 og to timer mellom kl. 17 og kl. 19. Vi finner de gjennomsnittlige vekstfarten i de to periodene i CAS: Bruk. Den gjennomsnittlige vekstfarten fra kl. 10 til kl. 12 er 2,25 grader per time. Den gjennomsnittlige vekstfarten fra kl. 17 til kl. 19 er 3 grader per time.

19 Momentan vekstfart - Sinus 2PY side 178 Finn den momentane vekstfarten til funksjonen f er gitt ved f x x x når x = 2. 2 ( ) 2 4 Vi definerer først funksjonen i algebrafeltet. Deretter skriver vi Tangent(2, f) og trykker Enter. Tangenten til f i punktet (2, f(2)) har fått navnet g. Til slutt skriver vi Stigning(g) og trykker Enter. Den momentane vekstfarten til f når x = 2 er 2. 19

20 Simulering av terningkast, Sinus 2PY side 187 Vi kan bruke CAS i GeoGebra til å simulere terningkast. a) La GeoGebra lage et tilfeldig tall mellom 1 og 6. b) La GeoGebra lage 600 tilfeldige tall mellom 1 og 6, og telle opp hvor mange av disse som er 6. a) Åpne CAS og skriv inn TilfeldigMellom(1,6). Her fikk vi 5. Hvis vi klikker på uttrykket og trykker på Enter, får vi på nytt et tilfeldig valgt tall mellom 1 og 6. b) Fordelen med simuleringer er at det går raskere enn å gjennomføre mange virkelige hendelser. Det er for eksempel tungvint å kaste 600 terninger og så telle opp hvor mange seksere vi får. Dersom vi skriver Sum(Dersom(TilfeldigMellom(1,6) == 6, 1, 0), teller GeoGebra opp hvor mange seksere vi får på 600 kast. Legg merke til at vi har skriver to = etter hverandre. Da får vi dette tegnet i CAS:. Her er x en variabel som skal gå fra 1 til 600. Den forteller oss at forsøket blir gjentatt 600 ganger. Når vi får en sekser, får x verdien 1. Ellers får x verdien 0. Funksjonen Sum legger sammen alle de 600 verdiene x har fått. Det blir da antall seksere på 600 kast. Sannsynligheten for å få en sekser når vi kaster en terning er 1. Vi kan derfor forvente at 6 omtrent 1 6 av de 600 kastene blir seksere. Vi kan altså forvente å få 100 seksere. Vi fikk 101 seksere, som er omtrent som forventet. Om vi gjentar forsøket får vi gjerne andre tall.

SIGBJØRN HALS TORE OLDERVOLL. GeoGebra 6 for Sinus 2P

SIGBJØRN HALS TORE OLDERVOLL. GeoGebra 6 for Sinus 2P SIGBJØRN HALS TORE OLDERVOLL GeoGebra 6 for Sinus 2P Sinus 2P ble skrevet med utgangspunkt i GeoGebra 5. I boka er det også lagt opp til at elevene har en enkel lommeregner i tillegg til datamaskin. I

Detaljer

GeoGebra 6 for Sinus 1P

GeoGebra 6 for Sinus 1P SIGBJØRN HALS TORE OLDERVOLL GeoGebra 6 for Sinus 1P SINUS 1P ble skrevet med utgangspunkt i GeoGebra 5. I boka er det også lagt opp til at elevene har en enkel lommeregner i tillegg til datamaskin. I

Detaljer

GeoGebra 6 for Sinus 1T

GeoGebra 6 for Sinus 1T SIGBJØRN HALS TORE OLDERVOLL GeoGebra 6 for Sinus 1T Sinus 1T ble skrevet med utgangspunkt i GeoGebra 5. I boka er det også lagt opp til at elevene har en enkel lommeregner i tillegg til datamaskin. I

Detaljer

GeoGebra-opplæring i 2P-Y

GeoGebra-opplæring i 2P-Y GeoGebra-opplæring i 2P-Y Emne Underkapittel Terningkast 2.1 Valgtre I 2.3 Valgtre II 2.7 Graftegning 3.2 Nullpunkter 3.3 Å finne y- og x-verdier 3.4 Andregradsfunksjoner 3.5 Grafisk løsning 3.5 Tredjegradsfunksjoner

Detaljer

GeoGebra for Sinus 2T

GeoGebra for Sinus 2T GeoGebra for Sinus 2T Innhold Vektorer med GeoGebra Skalarproduktet med GeoGebra Parameterframstilling med GeoGebra Ordnede utvalg eksempelet på side 89 med GeoGebra Uordnede utvalg eksempelet på side

Detaljer

GeoGebra 4.2 for Sinus 1P. av Sigbjørn Hals

GeoGebra 4.2 for Sinus 1P. av Sigbjørn Hals GeoGebra 4.2 for Sinus 1P av Sigbjørn Hals Innhold Litt om GeoGebra... 3 GeoGebra som kalkulator. Eksempel side 55... 3 Omforming av formler. Side 82 i læreboka... 4 Rette linjer. Side 89 i læreboka...

Detaljer

GeoGebra 4.2 for Sinus 1T. av Sigbjørn Hals

GeoGebra 4.2 for Sinus 1T. av Sigbjørn Hals GeoGebra 4.2 for Sinus 1T av Sigbjørn Hals Innhold Litt om GeoGebra... 3 Faktorisering. Side 55 i læreboka... 3 Rette linjer. Side 73 i læreboka... 3 Digital løsning av likninger. Side 77 i læreboka...

Detaljer

GeoGebra 4.2 for Sinus 2P. av Sigbjørn Hals

GeoGebra 4.2 for Sinus 2P. av Sigbjørn Hals GeoGebra 4.2 for Sinus 2P av Sigbjørn Hals Innhold Litt om GeoGebra... 3 Linjediagram. Side 46 i læreboka... 3 Søylediagram. Side 57 i Læreboka... 5 Histogram. Side 81 i læreboka... 6 Lineær regresjon.

Detaljer

GeoGebra 4.2 for Sinus Påbyggingsboka T. av Sigbjørn Hals

GeoGebra 4.2 for Sinus Påbyggingsboka T. av Sigbjørn Hals GeoGebra 4.2 for Sinus Påbyggingsboka T av Sigbjørn Hals Innhold Litt om GeoGebra... 3 Nullpunkt. Side 11 i læreboka... 3 Andregradslikninger. Side 18 i læreboka... 3 Momentan vekstfart. Side 47 i læreboka...

Detaljer

GeoGebra i 1T. Grafer. Å tegne grafen til en funksjon. GeoGebra tegner grafen til f(x) = 0,5x 2 for 0 x 10.

GeoGebra i 1T. Grafer. Å tegne grafen til en funksjon. GeoGebra tegner grafen til f(x) = 0,5x 2 for 0 x 10. 2 Grafer Å tegne grafen til en funksjon Akser Rutenett Avrunding GeoGebra tegner grafen til f(x) = 0,5x 2 for 0 x 10. Funksjonen får automatisk navnet f. Hvis grafen ikke vises, kan du høyreklikke i grafikkfeltet

Detaljer

GeoGebra-opplæring i Matematikk 2T

GeoGebra-opplæring i Matematikk 2T GeoGebra-opplæring i Matematikk 2T Emne Underkapittel Vektorer 1.4 Lengden av vektorer 1.5 Skalarprodukt. Vinkel mellom to vektorer 1.6 Parameterframstilling 1.8 Binomialkoeffisient I 2.7 Binomialkoeffisient

Detaljer

GeoGebra 4.2 for Sinus Påbyggingsboka P. av Sigbjørn Hals

GeoGebra 4.2 for Sinus Påbyggingsboka P. av Sigbjørn Hals GeoGebra 4.2 for Sinus Påbyggingsboka P av Sigbjørn Hals Innhold Litt om GeoGebra... 3 Eksponentiell vekst. Side 45 i læreboka... 3 Søylediagram. Side 50-52 i læreboka... 4 Kurvediagram. Side 55-56 i læreboka...

Detaljer

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Geogebra

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Geogebra Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra 1 Geogebra for Sigma matematikk 2P Innledning Denne bruksanvisningen er ment som en beskrivelse av dataprogrammet

Detaljer

GeoGebra-opplæring i Matematikk 1P

GeoGebra-opplæring i Matematikk 1P GeoGebra-opplæring i Matematikk 1P Emne Underkapittel Perspektivtegning I 3.8 Perspektivtegning II 3.8 Terningkast 4.1 Valgtre I 4.3 Valgtre II 4.7 Graftegning 5.2 Linje gjennom to punkter 5.2 Nullpunkter

Detaljer

Sigbjørn Hals, Cappelen Damm Undervisning. Sinus 1P. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy

Sigbjørn Hals, Cappelen Damm Undervisning. Sinus 1P. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy Sinus 1P Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy GeoGebra 4.0 og 4.2 wxmaxima Microsoft Mathematics WordMat TI-Nspire CAS 1 Innhold Litt om programmene... 4 GeoGebra

Detaljer

f (x) = a x k der tallet a og eksponenten k kan være både positive og negative tall. Et eksempel på en potensfunksjon med negativ eksponent er

f (x) = a x k der tallet a og eksponenten k kan være både positive og negative tall. Et eksempel på en potensfunksjon med negativ eksponent er 7.5 Potensfunksjoner Funksjonen f gitt ved f () = 3 er et eksempel på en potensfunksjon. For alle potensfunksjoner er funksjonsuttrykket på formen f () = a k der tallet a og eksponenten k kan være både

Detaljer

GeoGebra-opplæring i Matematikk S1

GeoGebra-opplæring i Matematikk S1 GeoGebra-opplæring i Matematikk S1 Emne Underkapittel Utregning av algebraiske uttrykk 1.4 Forenkle uttrykk 1.5 Faktorisering 1.5 Kvadratsetningene 1.6 Grafisk løsning av eksponentiallikninger 1.8 Grafisk

Detaljer

Sigbjørn Hals. Øving i bruk av GeoGebra på eksamensoppgaver for 10. Klasse. Eksamensoppgave, Utdanningsdirektoratet V-2011

Sigbjørn Hals. Øving i bruk av GeoGebra på eksamensoppgaver for 10. Klasse. Eksamensoppgave, Utdanningsdirektoratet V-2011 Øving i bruk av GeoGebra på eksamensoppgaver for 10. Klasse Eksamensoppgave, Utdanningsdirektoratet V-2011 1 Framgangsmåten med GeoGebra Vi vil her bare se på løsningen av oppgavene c og d. Åpne GeoGebra.

Detaljer

Plotting av grafer og funksjonsanalyse

Plotting av grafer og funksjonsanalyse Opplæringshefte i GeoGebra Innholdsfortegnelse: Plotting av grafer og funksjonsanalyse... 2 Oppgave 1... 2 Oppgave 2... 4 Oppgave 3... 8 Å plassere et bilde i GeoGebra... 8 Oppgave 4... 8 Vektorregning

Detaljer

GeoGebra-opplæring i Matematikk 1P

GeoGebra-opplæring i Matematikk 1P GeoGebra-opplæring i Matematikk 1P Emne Underkapittel Perspektivtegning I 3.8 Perspektivtegning II 3.8 Regulære mangekanter 3.9 Flislegging I 3.9 Flislegging II 3.9 Flislegging III 3.9 Terningkast 4.1

Detaljer

Lær å bruke GeoGebra 4.0

Lær å bruke GeoGebra 4.0 Lær å bruke GeoGebra 4.0 av Sigbjørn Hals Innhold: Generelt om GeoGebra... 2 Innstillinger... 2 Likninger og ulikheter... 5 Implisitte likninger... 5 Ulikheter... 9 Statistikkberegninger i regnearket...

Detaljer

TORE OLDERVOLL SIGBJØRN HALS. GeoGebra 6 for Sinus R2

TORE OLDERVOLL SIGBJØRN HALS. GeoGebra 6 for Sinus R2 TORE OLDERVOLL SIGBJØRN HALS GeoGebra 6 for Sinus R2 Sinus R2 ble skrevet med utgangspunkt i GeoGebra 5. I boka er det også lagt opp til at elevene har en enkel lommeregner i tillegg til datamaskin. I

Detaljer

Sigbjørn Hals, Cappelen Damm Undervisning. Sinus 2P. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy

Sigbjørn Hals, Cappelen Damm Undervisning. Sinus 2P. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy Sinus 2P Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy GeoGebra 4.0 og 4.2 wxmaxima Microsoft Mathematics WordMat TI-Nspire CAS 1 Innhold Litt om programmene... 4 GeoGebra

Detaljer

Hurtigstart. Hva er GeoGebra? Noen fakta

Hurtigstart. Hva er GeoGebra? Noen fakta Hurtigstart Hva er GeoGebra? En dynamisk matematisk programvare som er lett å ta i bruk Er egnet til læring og undervisning på alle utdanningsnivå Binder interaktivt sammen geometri, algebra, tabeller,

Detaljer

GeoGebra-opplæring i Matematikk 2P

GeoGebra-opplæring i Matematikk 2P GeoGebra-opplæring i Matematikk 2P Emne Underkapittel Graftegning 2.1 Linje gjennom to punkter 2.1 Å finne y- og x-verdier 2.1 Lineær regresjon 2.3 Andregradsfunksjoner 2.4 Polynomregresjon 2.4 Eksponential-

Detaljer

GeoGebra. brukt på eksamensoppgaver i 10. kl. Sigbjørn Hals

GeoGebra. brukt på eksamensoppgaver i 10. kl. Sigbjørn Hals GeoGebra brukt på eksamensoppgaver i 10. kl. Sigbjørn Hals Innhold Hva er GeoGebra?... 2 Hvilken nytte har elevene av å bruke GeoGebra?... 2 Hvor finner vi GeoGebra?... 2 Oppbyggingen av programmet...

Detaljer

GeoGebra-opplæring i Matematikk 1T

GeoGebra-opplæring i Matematikk 1T GeoGebra-opplæring i Matematikk 1T Emne Underkapittel Rettvinklede trekanter 2.4 Ikke-rettvinklede trekanter I 2.6 Ikke-rettvinklede trekanter II 2.7 Graftegning 3.2 Graftegning med definisjonsmengde 3.2

Detaljer

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra Geogebra for Sigma matematikk 1P Innledning Denne bruksanvisningen er ment som en beskrivelse av dataprogrammet

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Geogebra

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Geogebra Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 1.1 Menyer..................................... 4 2 Regning 5 2.1 Tallregning...................................

Detaljer

Lineære funksjoner. Skjermbildet

Lineære funksjoner. Skjermbildet Lineære funksjoner I dette opplæringsløpet lærer du å tegne funksjoner i GeoGebra samt å bruke verktøy til å løse oppgaver som dreier seg om funksjoner. Alle oppgavene handler om lineære funksjoner. I

Detaljer

Hjelpehefte til eksamen

Hjelpehefte til eksamen Hjelpehefte til eksamen side 1 Innhold Formler som forventes kjent Vg1P-Y:... 3 Formler som forventes kjent: 1P... 4 Formler som forventes kjent: 2P... 5 Formler som forventes kjent: 2P-Y... 6 Formler

Detaljer

GeoGebra. Menylinje Angreknapp. Verktøylinje. Aktivt verktøy med mørkeblå kant. Innstillinger. Algebrafelt. Velge oppsett.

GeoGebra. Menylinje Angreknapp. Verktøylinje. Aktivt verktøy med mørkeblå kant. Innstillinger. Algebrafelt. Velge oppsett. GeoGebra Menylinje Angreknapp Verktøylinje Aktivt verktøy med mørkeblå kant Innstillinger Algebrafelt Grafikkfelt Inntastingsfelt Velge oppsett GEOGEBRA SOM FUNKSJONSTEGNER OPPSETT FLYTTE TEGNE- FLATEN,

Detaljer

2.1 Regnerekkefølge. 2.4 Brøkregning. 3.6 Rette linjer 2(3 + 1) (6+ 2):4+ 42

2.1 Regnerekkefølge. 2.4 Brøkregning. 3.6 Rette linjer 2(3 + 1) (6+ 2):4+ 42 Dette dokumentet oversetter kapittelet Lommeregnerstoff i Sinus 1P boka til Cappelen Damm til Excel- og GeoGebrastoff. Se brukerveiledningen i Lokus for perspektivtegning med GeoGebra..1 Regnerekkefølge

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 1.1 Innstillinger................................... 5 2 Regning 5 2.1 Tallregning...................................

Detaljer

Hvordan forandrer jeg på innstillingene langs aksene, slik at hele grafen viser? Dette kan du gjøre på seks ulike måter:

Hvordan forandrer jeg på innstillingene langs aksene, slik at hele grafen viser? Dette kan du gjøre på seks ulike måter: Spørsmål og svar om GeoGebra, versjon 3.0 bokmål. Jeg har lastet ned en installasjonsfil fra www.geogebra.org og installert programmet, men får det ikke til å fungere. Hva kan dette skyldes? Den vanligste

Detaljer

GeoGebra-opplæring i Matematikk S2

GeoGebra-opplæring i Matematikk S2 GeoGebra-opplæring i Matematikk S Emne Underkapittel Faktorisering.1 Grafisk løsning av likningssett I.3 Størst mulig overskudd 3. Vendepunkter 3.4 Den naturlige eksponentialfunksjonen 3.5 3.6 Den naturlige

Detaljer

Eksamen våren 2015 Løsninger

Eksamen våren 2015 Løsninger DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 For et utvalg der antall observasjoner er et partall, slik som her, er medianen gjennomsnittet

Detaljer

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1008 Matematikk 2T Eksamen 30.11.2009. Bokmål

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1008 Matematikk 2T Eksamen 30.11.2009. Bokmål Eksempel på løsning 010 Sentralt gitt skriftlig eksamen MAT1008 Matematikk T Eksamen 30.11.009 Bokmål MAT1008 Matematikk T HØSTEN 009 Eksempel på løsning med vekt på bruk av digitale verktøy Hva er en

Detaljer

Funksjoner med GeoGebra

Funksjoner med GeoGebra Funksjoner med GeoGebra Wallace Anne Karin 2015 G e o G e b r a 5. 0 Innhold Oppsett for arbeid med funksjoner... 2 Flytte tegneflaten, endre enheter på aksene... 4 Flytt inntastingsfeltet øverst... 4

Detaljer

Innhold. Matematikk for ungdomstrinnet

Innhold. Matematikk for ungdomstrinnet Innhold FUNKSJONSTEGNER... 3 Skjermbildet i GeoGebra... 3 Verktøylinja... 4 Verktøyet Flytt eller velg objekt... 4 Oppsett av skjermbildet... 5 Flytte tegneflaten, endre enheter på aksene... 5 Mer øving

Detaljer

3 GeoGebra 1. Fartsdiagrammer 2. Likningsett 3. Funksjoner Maks og min punkter

3 GeoGebra 1. Fartsdiagrammer 2. Likningsett 3. Funksjoner Maks og min punkter 3 GeoGebra 1. Fartsdiagrammer 2. Likningsett 3. Funksjoner Maks og min punkter MKH Innholdsfortegnelse 1. Graftegner - GeoGebra... 2 1.1 Introduksjon GeoGebra... 2 1.2 Endre innstillinger på aksene...

Detaljer

Funksjoner S1, Prøve 1 løsning

Funksjoner S1, Prøve 1 løsning Funksjoner S1, Prøve 1 løsning Del 1 Tid: 60 min Hjelpemidler: Skrivesaker, passer og linjal. Oppgave 1 Gitt funksjonen 3 f 3. a) Bestem koordinatene til skjæringspunktet mellom grafen til f og y-aksen.

Detaljer

Lær å bruke GeoGebra 4.0

Lær å bruke GeoGebra 4.0 Lær å bruke GeoGebra 4.0 av Sigbjørn Hals Innhold: Generelt om GeoGebra... 2 Innstillinger... 2 Statistikkberegninger i regnearket... 5 Nye muligheter for funksjonsanalyse... 8 Nullpunkt og ekstremalpunkt...

Detaljer

Innhold. Matematikk for ungdomstrinnet

Innhold. Matematikk for ungdomstrinnet Innhold Funksjonstegner... 3 Skjermbildet i GeoGebra... 3 Verktøylinja... 3 Verktøyet Flytt eller velg objekt... 4 Oppsett av skjermbildet... 4 Flytte tegneflaten, endre enheter på aksene... 5 Mer øving

Detaljer

Del 1. Generelle tips

Del 1. Generelle tips Innhold Del 1. Generelle tips... 2 Bruk en "offline installer"... 2 Øk skriftstørrelsen... 3 Sett navn på koordinataksene... 3 Vis koordinater til skjæringspunkt, ekstremalpunkt m.m.... 4 Svar på spørsmålene

Detaljer

Løsninger. Innhold. Funksjoner Vg1P

Løsninger. Innhold. Funksjoner Vg1P Løsninger Innhold Innhold... 1 Modul 1. Funksjonsbegrepet... Modul. Lineære funksjoner... 9 Modul 3. Mer om lineær vekst... 16 Modul 4. Andregradsfunksjoner... 5 Modul 5. Andre funksjoner... 30 Polynomfunksjoner...

Detaljer

2.1 Regnerekkefølge. 3.4 Rette linjer med digitale verktøy 2(3 + 1) (6+ 2):4+ 42

2.1 Regnerekkefølge. 3.4 Rette linjer med digitale verktøy 2(3 + 1) (6+ 2):4+ 42 Sinus T uten grafisk kalkulator Dette dokumentet oversetter kapittelet Lommeregnerstoff i Sinus T boka til Cappelen Damm til Excel- og GeoGebrastoff.. Regnerekkefølge ( + ) (6+ ):+ CTRL+J Bytter mellom

Detaljer

Hva er nytt i GeoGebra 3.0? Sigbjørn Hals

Hva er nytt i GeoGebra 3.0? Sigbjørn Hals Hva er nytt i GeoGebra 3.0? Sigbjørn Hals 1 Dersom du vil ha en fullstendig oversikt over det som er nytt i versjon 3.0, kan du gå til denne nettsida: http://www.geogebra.org/static/geogebra_release_notes_prerelease.txt

Detaljer

Lineær optimering med GeoGebra

Lineær optimering med GeoGebra Lineær optimering med GeoGebra av Sigbjørn Hals Eksempler fra læreboka Sinus S1 Cappelen, 2007 1 Før vi viser fremgangsmåten for lineær optimering, vil vi vise noen nyttige kommandoer og menyvalg i GeoGebra,

Detaljer

Innhold. Matematikk for ungdomstrinnet

Innhold. Matematikk for ungdomstrinnet Innhold FUNKSJONSTEGNER... 3 Skjermbildet i GeoGebra... 3 Verktøylinja... 4 Verktøyet Flytt eller velg objekt... 4 Oppsett av skjermbildet... 5 Flytte tegneflaten, endre enheter på aksene... 5 Flytt inntastingsfeltet

Detaljer

Eksamen MAT1015 Matematikk 2P Va ren 2015

Eksamen MAT1015 Matematikk 2P Va ren 2015 Eksamen MAT1015 Matematikk P Va ren 015 Oppgave 1 ( poeng) Dag Temperatur Mandag 4 C Tirsdag 10 C Onsdag 1 C Torsdag 5 C Fredag 6 C Lørdag Tabellen ovenfor viser hvordan temperaturen har variert i løpet

Detaljer

Eksamen MAT1005 Matematikk 2P-Y Høsten 2014

Eksamen MAT1005 Matematikk 2P-Y Høsten 2014 Eksamen MAT1005 Matematikk P-Y Høsten 014 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 0,0003 500000000 0,00,0 10,0 4 8 3,0 10 5,0 10 3,0 5,0 4 8 ( 3) 7 3 10 7,5 10 Oppgave (1 poeng) Prisen

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. TI-Nspire

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. TI-Nspire Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for TI-Nspire Innhold 1 Om TI-Nspire 4 2 Regning 4 2.1 Tallregning................................... 4 2.2 Potenser.....................................

Detaljer

Løsning eksamen 2T våren 2008

Løsning eksamen 2T våren 2008 Løsning eksamen 2T våren 2008 Del 2 løst med pc Noen gode grunner til å lære å utnytte pc-en effektivt på eksamen: I eksamensinformasjonen står det: Der oppgaveteksten ikke sier noe annet, kan du fritt

Detaljer

S1 kapittel 5 Funksjoner Løsninger til oppgavene i boka

S1 kapittel 5 Funksjoner Løsninger til oppgavene i boka S1 kapittel 5 Funksjoner Løsninger til oppgavene i boka 5.1 a f( x) = 4x+ 0 I GeoGebra skriver vi f(x)=funksjon[-4x+0,-5,5]. Grafen viser at [ 0, 40] V =. f b gx ( ) =,5x+ 10 I GeoGebra skriver vi f(x)=funksjon[,5x+10,-10,4].

Detaljer

S1 eksamen våren 2016 løsningsforslag

S1 eksamen våren 2016 løsningsforslag S1 eksamen våren 016 løsningsforslag Tid: timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (4 poeng) Løs likningene a) x x 0 4 1 x 1 9 8 x 1 x x 1

Detaljer

Karakter 2: 10p Karakter 3: 16p Karakter 4: 22p Karakter 5: 28p Karakter 6: 34p

Karakter 2: 10p Karakter 3: 16p Karakter 4: 22p Karakter 5: 28p Karakter 6: 34p 13.03.2017 MATEMATIKK (MAT1005) Funksjoner og vekst DEL 1 (UTEN HJELPEMIDLER) 40 minutter DEL 2 (MED HJELPEMIDLER) 50 minutter (Del 1 leveres inn etter nøyaktig 40 minutter og før hjelpemidlene kan benyttes)

Detaljer

Regresjon med GeoGebra 4.0

Regresjon med GeoGebra 4.0 Regresjon med GeoGebra 4.0 av Sigbjørn Hals Innhold Liste over kommandoene... 2 Lineær regresjon... 3 Potensregresjon... 5 Eksponentiell regresjon... 5 Logaritmisk regresjon... 6 Logistisk regresjon...

Detaljer

Kapittel 7. Funksjoner

Kapittel 7. Funksjoner Kapittel 7. Funksjoner Mål for kapittel 7: Kompetansemål Mål for opplæringen er at eleven skal kunne redegjøre for begrepet lineær vekst, vise gangen i slik vekst og bruke dette i praktiske eksempler,

Detaljer

5.A Digitale hjelpemidler i geometri

5.A Digitale hjelpemidler i geometri 5.A Digitale hjelpemidler i geometri Geometri handler om egenskapene til punkter, linjer og figurer i planet og i rommet. I alle tider har blyant og papir samt passer og linjal vært de viktigst hjelpemidlene

Detaljer

GEOGEBRA (Versjon desember 2016)

GEOGEBRA (Versjon desember 2016) 1 MANUAL 1P 2P 2PY GEOGEBRA (Versjon 5.0.303.0 10. desember 2016) Østerås 14. desember 2016 Odd Heir 2 Innhold Side 3-12 Innføring i GeoGebra 12-15 Utskrift 16-17 Overføring til Word 17-18 Regneark i GeoGebra

Detaljer

SINUS R1, kapittel 5-8

SINUS R1, kapittel 5-8 Løsning av noen oppgaver i SINUS R1, kapittel 5-8 Digital pakke B TI-Nspire Enkel kalkulator (Sharp EL-506, TI 30XIIB eller Casio fx-82es) Oppgaver og sidetall i læreboka: 5.43 c side 168 5.52 side 173

Detaljer

S1 eksamen våren 2017 løsningsforslag

S1 eksamen våren 2017 løsningsforslag S1 eksamen våren 017 løsningsforslag Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Løs likningene a) x 5x 0 xx ( 5) 0 x 0 x 5 0

Detaljer

Løsningsforslag for 2P våren 2015

Løsningsforslag for 2P våren 2015 Del 1 Oppgave 1 Sortert i stigende rekkefølge blir det: 4 5 6? 10 12 Medianen, som er 7, skal ligge midt mellom de to midterste tallene 6 og det ukjente tallet, som derfor må være 8. Oppgave 2 Opprinnelig

Detaljer

Kurs. Kapittel 2. Bokmål

Kurs. Kapittel 2. Bokmål Kurs 9 Kapittel 2 Bokmål 1 av 9 Kurs i GeoGebra Funksjoner og grafer I dette kurset skal vi se nærmere på hvordan vi kan bruke GeoGebra som en graftegner. Grunnleggende innstillinger Når vi skal bruke

Detaljer

Eksamen MAT1005 Matematikk 2P-Y Høsten 2013

Eksamen MAT1005 Matematikk 2P-Y Høsten 2013 Eksamen MAT1005 Matematikk 2P-Y Høsten 2013 DEL 1 Uten hjelpemidler Oppgave 1 (2 poeng) I en klasse er det 20 elever. Nedenfor ser du hvor mange dager hver av elevene var borte fra skolen i løpet av et

Detaljer

Funksjoner og vekst. Læreplanmål for 2P-Y

Funksjoner og vekst. Læreplanmål for 2P-Y Funksjoner og vekst 3.1 Læreplanmål 1 5.1 Polynomfunksjoner 2 5.2 Polynomregresjon 8 5.3 Potensfunksjoner og rotfunksjoner 12 5.4 Potensregresjon 16 5.5 Eksponentialfunksjoner 19 5.6 Eksponentialregresjon

Detaljer

Rette linjer og lineære funksjoner

Rette linjer og lineære funksjoner Rette linjer og lineære funksjoner 3.1 Læreplanmål 1 4.1 Rette linjer 2 4.2 Digital graftegning 6 4.3 Konstantledd og stigningstall 13 4.4 Grafisk avlesning 19 4.5 Digital løsning av likninger 26 4.6 Funksjonsbegrepet

Detaljer

5 Matematiske modeller

5 Matematiske modeller Løsning til KONTROLLOPPGAVER 5 Matematiske modeller OPPGAVE 1 a) Endringen i lengden på lyset i løpet av de 100 minuttene er 12 cm 27 cm = 15 cm Endringen per minutt blir da 15 cm 0,15cm/ min 100 min Når

Detaljer

Innhold. Matematikk for ungdomstrinnet

Innhold. Matematikk for ungdomstrinnet Innhold FUNKSJONSTEGNER... 3 Skjermbildet i GeoGebra... 3 Verktøylinja... 4 Verktøyet Flytt eller velg objekt... 4 Oppsett av skjermbildet... 5 Flytte tegneflaten, endre enheter på aksene... 5 Mer øving

Detaljer

Når du har arbeidet deg gjennom dette kapittelet, er målet at du skal kunne

Når du har arbeidet deg gjennom dette kapittelet, er målet at du skal kunne Funksjoner i praksis Innhold Kompetansemål Funksjoner i praksis, Vg2P... 1 Modul 1: Lineære funksjoner... 2 Modul 2: Andregradsfunksjoner... 8 Modul 3 Tredjegradsfunksjoner... 12 Modul 4: Potensfunksjoner...

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Microsoft Excel

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Microsoft Excel Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Microsoft Excel Innhold 1 Om Excel 4 2 Regning 4 2.1 Tallregning................................... 4 2.2

Detaljer

Ny, GeoGebra til forkurset ved HiOA sommeren 2016

Ny, GeoGebra til forkurset ved HiOA sommeren 2016 Ny, GeoGebra til forkurset ved HiOA sommeren 2016 Fra Prøveveiledning, Matematikk 1P + 2P, Sentralt gitt skriftlig prøve etter forkurs i lærerutdanningene, 2016 1.6.2.1 Graftegner (programvare på datamaskin).

Detaljer

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 1 og 2. GeoGebra-øvelser i funksjonslære. Av Peer Sverre Andersen

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 1 og 2. GeoGebra-øvelser i funksjonslære. Av Peer Sverre Andersen QED 5 10 Matematikk for grunnskolelærerutdanningen Bind 1 og 2 GeoGebra-øvelser i funksjonslære Av Peer Sverre Andersen Innhold INNLEDNING... 3 KORT INNFØRING I GEOGEBRA... 4 ØVELSE 1. TEGNE GRAFER...

Detaljer

Eksamen høsten 2016 Løsninger

Eksamen høsten 2016 Løsninger DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 6,3 millioner 6,3 1 000 000 6,3 10,63 10 10 6,63 10 7 6 16,5 10 1,65 10 10 8 8 1,65

Detaljer

Funksjoner, likningssett og regning i CAS

Funksjoner, likningssett og regning i CAS Funksjoner, likningssett og regning i CAS MKH, TUS 2014, GeoGebra 4.4 Innholdsfortegnelse Funksjoner og likningssett i GeoGebra... 2 Introduksjon til lineære funksjoner... 2 Oppgave om mobilabonnement...

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 Variasjonsredden: 6 C ( 6 C) = 6 C+ 6 C= 12 C Gjennomsnittet: 2 C+ 0 C + ( 4 C) + (

Detaljer

Eksempeloppgave 1T, Høsten 2009

Eksempeloppgave 1T, Høsten 2009 Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne

Detaljer

QED Matematikk for grunnskolelærerutdanningen. Bind 1 og 2. GeoGebra-øvelser i funksjonslære. Av Peer Sverre Andersen

QED Matematikk for grunnskolelærerutdanningen. Bind 1 og 2. GeoGebra-øvelser i funksjonslære. Av Peer Sverre Andersen QED 5 10 Matematikk for grunnskolelærerutdanningen Bind 1 og 2 GeoGebra-øvelser i funksjonslære Av Peer Sverre Andersen Innhold INNLEDNING... 3 KORT INNFØRING I GEOGEBRA... 4 ØVELSE 1. TEGNE GRAFER...

Detaljer

GeoGebra finner nullpunktene til en innlagt polynomfunksjon f. GeoGebra finner nullpunktene til en innlagt funksjon f i intervallet [1, 8].

GeoGebra finner nullpunktene til en innlagt polynomfunksjon f. GeoGebra finner nullpunktene til en innlagt funksjon f i intervallet [1, 8]. 413 GeoGebra i S2 Grafer Nullpunkter GeoGebra finner nullpunktene til en innlagt polynomfunksjon f. Topp- og bunnpunkter GeoGebra finner nullpunktene til en innlagt funksjon f i intervallet [1, 8]. GeoGebra

Detaljer

Eksamen høsten 2016 Løsninger

Eksamen høsten 2016 Løsninger DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 6,3 millioner 6,3 1 000 000 6,3 10,63 10 10 6,63 10 7 6 16,5 10 1,65 10 10 8 8 1,65

Detaljer

Basisoppgaver til 1P kap. 5 Funksjoner

Basisoppgaver til 1P kap. 5 Funksjoner Basisoppgaver til 1P kap. 5 Funksjoner 5.1 Funksjoner og grafer 5.2 Førstegradsfunksjoner 5.3 Lineær vekst 5.4 Proporsjonalitet 5.5 Andregradsfunksjoner 5.6 Mer om funksjoner Basisoppgaver 5.1 Funksjoner

Detaljer

1.7 Digitale hjelpemidler i geometri

1.7 Digitale hjelpemidler i geometri 1.7 Digitale hjelpemidler i geometri Geometri handler om egenskapene til punkter, linjer og figurer i planet og i rommet. I alle tider har blyant og papir samt passer og linjal vært de viktigst hjelpemidlene

Detaljer

Kapittel 7. Funksjoner

Kapittel 7. Funksjoner Kapittel 7. Funksjoner Mål for kapittel 7, funksjoner. Kompetansemål Mål for opplæringen er at eleven skal kunne redegjøre for begrepet lineær vekst, vise gangen i slik vekst og bruke dette i praktiske

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 88 4 Funksjoner og andregradsuttrykk Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder løse likninger, ulikheter

Detaljer

2P eksamen høsten 2017 Løsningsforslag

2P eksamen høsten 2017 Løsningsforslag 2P eksamen høsten 2017 Løsningsforslag Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Tabellen nedenfor viser karakterfordelingen

Detaljer

KORT INNFØRING I GEOGEBRA

KORT INNFØRING I GEOGEBRA Innhold INNLEDNING... 3 KORT INNFØRING I GEOGEBRA... 4 ØVELSE 1. TEGNE GRAFER... 9 ØVELSE 2. TEGNE GRAFER TIL RASJONALE FUNKSJONER... 11 ØVELSE 3. LIKNINGSLØSNING... 15 ØVELSE 4. TANGENTER OG MAKS OG MIN

Detaljer

Funksjoner med og uten hjelpemidler

Funksjoner med og uten hjelpemidler Funksjoner med og uten hjelpemidler Plan for i dag og i morgen Dag 1: 09.00-11.45 Del 1: teori. 11.45-12.30 Lunsj 12.30-13.15 Del 2: bruk av GeoGebra. 13.15-15.15 Oppgaveregning, del 1. Dag 2: 09.00-10.45

Detaljer

Løsningsforslag. Innhold. Funksjoner i praksis Vg2P

Løsningsforslag. Innhold. Funksjoner i praksis Vg2P Løsningsforslag Innhold Modul 1: Lineære funksjoner... Modul : Andregradsfunksjoner... 1 Modul 3: Tredjegradsfunksjoner... 6 Modul 4: Potensfunksjoner og rotfunksjoner... 3 Modul 5: Eksponentialfunksjoner...

Detaljer

Utforsking av funksjonsuttrykk og de tilhørende grafene ved hjelp av GeoGebra

Utforsking av funksjonsuttrykk og de tilhørende grafene ved hjelp av GeoGebra Anne-Mari Jensen Utforsking av funksjonsuttrykk og de tilhørende grafene ved hjelp av GeoGebra Innledning I ungdomsskolen kommer funksjoner inn som et av hovedområdene i læreplanen i matematikk. Arbeidet

Detaljer

Fasit. Funksjoner Vg1T. Innhold

Fasit. Funksjoner Vg1T. Innhold Fasit Innhold 4.1 Funksjonsbegrepet... 4. Lineære funksjoner... 6 4.3 Andre funksjoner... 15 Andregradsfunksjoner... 15 Polynomfunksjoner... 18 Rasjonale funksjoner... 19 Potensfunksjoner og eksponentialfunksjoner...

Detaljer

Oppgaver. Innhold. Funksjoner i praksis Vg2P

Oppgaver. Innhold. Funksjoner i praksis Vg2P Oppgaver Innhold Modul 1: Lineære funksjoner... Modul : Andregradsfunksjoner... 10 Modul 3: Tredjegradsfunksjoner... 1 Modul 4: Potensfunksjoner og rotfunksjoner... 14 Modul 5: Eksponentialfunksjoner...

Detaljer

Funksjoner 1T, Prøve 2 løsning

Funksjoner 1T, Prøve 2 løsning Funksjoner 1T, Prøve løsning Del 1 Tid: 60 min Hjelpemidler: Skrivesaker Oppgave 1 I koordinatsystemet ovenfor er det tegnet fire rette linjer, j, k, m og n. Finn likningen for hver av de fire linjene.

Detaljer

1T eksamen høsten 2017 løsning

1T eksamen høsten 2017 løsning 1T eksamen høsten 017 løsning Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Regn ut og skriv svaret på standardform. 105000 0,15

Detaljer

Eksamen våren 2016 Løsninger

Eksamen våren 2016 Løsninger DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 Variasjonsbredde = 6 C ( 6 C) = 1 C Gjennomsnitt: + 0 + ( 4) + ( 6) + + 6 0 x = = =

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Casio fx-9860

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Casio fx-9860 Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Casio fx-9860 Innhold 1 Om lommeregneren 4 2 Regning 4 2.1 Tallregning...................................

Detaljer

Kurvetilpasning (regresjon) med GeoGebra 4.0

Kurvetilpasning (regresjon) med GeoGebra 4.0 Kurvetilpasning (regresjon) med GeoGebra 4.0 av Sigbjørn Hals Innhold Liste over kommandoene... 2 Lineær regresjon... 3 Potensregresjon... 5 Eksponentiell regresjon... 5 Logaritmisk regresjon... 6 Logistisk

Detaljer

S1 eksamen høsten 2016 løsningsforslag

S1 eksamen høsten 2016 løsningsforslag S1 eksamen høsten 016 løsningsforslag Oppgave 1 (4 poeng) Løs likningene a) x 1 3 x 5 3 4 6 Fellesnevner blir 1 x1 3x 5 1 1 1 3 4 6 (x 1)4 (3x )3 5 8x 4 9x 6 10 x 10 6 4 0 x 0 b) lg(x 6) 10 10 lg(x6) x

Detaljer

Funksjoner og vekst. Læreplanmål for 2P-Y

Funksjoner og vekst. Læreplanmål for 2P-Y Funksjoner og vekst 3.1 Læreplanmål 1 5.1 Polynomfunksjoner 2 5.2 Polynomregresjon 8 5.3 Potensfunksjoner og rotfunksjoner 12 5.4 Potensregresjon 16 5.5 Eksponentialfunksjoner 19 5.6 Eksponentialregresjon

Detaljer