Fagdag 5-3MX. Kommentarer

Størrelse: px
Begynne med side:

Download "Fagdag 5-3MX. Kommentarer"

Transkript

1 Fagdag 5-3MX Kommentarer 4 - Ogaver I) En sesiell sannsynlighetsfordeling. 7-10, 30, 40 (Samme roblemstilling følges o gjennom 3 ogaver) (50 og 51 bruker formler fra 7.5 side 272) Stokastisk variabel: Verdi av gevinst: X Utfallsrom: U 0,50,200,600,1200 Sannsynlighetsmodell: x (x) P X P X 0 P X P X 50 P X 200 X 600 X og 7.40: 933 E X U x x Var X U x x Standardavvik: Var X Utregningene med lommeregner: {0,50,200,600,1200} STO L1 {933/1000,1/20,1/200,1/} STO L2 og 1-Var Stats L1,L2 gir: 1 av 8 fd5_kom.tex

2 x 9.9 (E X ) x (Var X 2 x ) 7.50: Pris r. lodd: 20 kroner Overskudd ved kjø av et lodd: Y X 20 a) y (y) E Y y y Var Y y y b) Formler i kaittel 7.5 side 272: E ax b ae X b gir: Var ax b a 2 Var X E Y E X 20 E X Var Y Var X 20 Var X : Z 2X a) Ogaven mener vel X og ikke Y her... Kan bruke modellen over, bare bytte ut X : 0,50,200,600,1200 med Z : 0,100,400,1200,2400 og gjøre det samme som i 7.30 og 7.40 om igjen. Men, det er for mye arbeid, når man isteden kan gjøre: b) E Z E 2X 2E X Var Z Var 2X 2 2 Var X Var X c) Husk at risen r. lodd er 20 kroner (ogave 7.50) Da får vi en ny stokastisk variabel: Forventet gevinst ved kjø av ett lodd: Z 20 med forventning E Z 20 E Z Dette betyr at loddkjøere kan forvente å tae 20 øre r. lodd i gjennomsnitt. Selger de alle loddene kan de derfor forvente å tjene: av 8 fd5_kom.tex

3 II) Binomisk fordeling En tilfeldig valgt artikkel i en roduksjon har en feilsannsynlighet (Høres mye ut, men ikke uvanlig ifm. mobiltelefoner og c-er...) Vi trekker ut n 0 tilfeldige artikler og lar den stokastiske variabelen være X : Antall artikler av de n med feil a) Sett o den binomiske fordelingen P X x b x som gjelder i dette ekserimentet. ("Trekke ut n tilfeldige artikler og observere antall med feil") Regn ut sannsynligheten for å få 5 artikler med feil. b x n x x 1 n x 10 x 0.15 x x P X 5 b Eller: Y1 binomdf(10,0.15,x) Y1(5) gir da b) Sett o en tabell (sannsynlighetsmodell) over fordelingen. Y1 binomdf(10,0.15,x) seq(y1,x,0,10) STO L1 STAT, EDIT viser da tabellverdiene: (Kan også bruke TABLE-funksjonen.) x : b x : c) Bruk tabellen og ostillinger som å side 267 til å gjøre: Sjekk at 0 x 0 b x 0 x 0 b x Finn forventningen vha. definisjonen: E X 0 x 0 xb x 0 x 0 xb x Finn standardavviket vha. definisjonen: Var X 0 x 0 x 2 b x (Obs: var trykkfeil med rottegn i ogaven her, men det så dere vel...) Var X 0 x 0 x 2 b x 3 av 8 fd5_kom.tex

4 d) Legg inn Y1 binomdf(10,0.15,x) Bruk sum(seq( til å kontrollere det du gjorde i c) E X 0 x 0 xb x sum(seq(x*y1,x,0,10)) 1.5 e) Var X 0 x 0 x 2 b x sum(seq((x-1.5) ^2*Y1,X,0,10)) Det finnes ferdige formler for binomisk fordeling: E X n Var X n 1 Bruk disse til å kontrollere det du gjorde i c) og d) E X n Var X n Kunne du kommet frem til E X n ved et enkelt resonnement? Når vi trekker 10 stykker og sannsynligheten for å trekke en med feil er 0.15 for hver av dem, forventer vi å få ca i gjennomsnitt! III) Geometrisk fordeling Vi har samme feilrosent som i II: 0.15 Den såkalte geometriske fordeling ser slik ut: g x 1 x 1, x 1,2,... Den stokastiske variabelen er her: X : Første artikkel med feil kommer i x te trekning, hvis vi trekker ut en og en artikkel til vi finner en med feil a) Forklaring: Dette er sannsynligheten for å trekke x i rekkefølge uten feil; 1 x 1 og deretter den x te med feil;, altså: 1 x 1 Finn sannsynligheten for at du må teste 15 artikler før du finner en feil. 4 av 8 fd5_kom.tex

5 P X 5 g Lommeregner: Y1 geometdf(0.15,x) P X 5 Y1(15) b) Visatvikanskriveg x 1 x 1 g x 1 x 1 1 x x 1 x 1 I dette tilfelle: g x x x Bruk a) til å vise at x 1 g x (Tis: Geometrisk rekke!) x 1 g x g 1 g Altså en geometrisk rekke med a 1 1 og k 1 S a 1 1 k c) Finn E X og Var X ved tabell og regning. (Se ogave II) g x x (eller geometdf(0.15,x) ) gir: x g x Egentlig skal vi summere uendelig mange, så dette blir litt mye arbeid... vi går videre og bruker lommeregner :-) d) Finn E X og Var X ved å bruke Y1 geometdf(0.15,x) og sum(seq(. e) Vi tar 100 ledd og regner med at dette gir en nokså god tilnærming: E X x 1 xg x sum(seq(x*y1,x,0,100)) Var X x 1 x 2 b x sum(seq((x-6.667) ^2*Y1,X,0,100)) Det kan vises at E X. Kan du resonnere deg frem til at dette må være riktig? 5 av 8 fd5_kom.tex

6 Hvis vi trekker og trekker feks. n 000 ganger vil vi forvente at ca. n av disse har feil I gjennomsnitt vil det være ca uten feil mellom hver med feil, 150 altså: n Det kan også vises at Var X Sjekk om disse formlene gir samme svar som i c) og d). 1 E X f) Var X Ogave er en geometrisk fordeling, selv om dette ikke sies i ogaven. Gjør ogaven. a) P X x g x a 3 x For å være ssh-fordeling må vi ha: x 0 g x g 0 g 1 g 2... a a a a Altså en geometrisk rekke med a 1 a og k 3 S a 1 1 k a 1 3 3a 2 S a 2 3 b) Y1 2/3*(1/3) ^X seq(y1,x,1,10) STO L1 gir: x : g x : Finn deretter a i ogave a) å nytt direkte ut fra sammenhengen g x 1 x 1 Først må vi korrigere for at ogaven starter utfallsrommet å 0 istedenfor 1! Vi må derfor sammenligne: 1 x med a 3 x 1 3a 3 x (ikke a 3 x ). 1 3 og 3a og a IV) Poisson fordelingen Denne fordelingen otrer ifm. kø-roblematikk. Løs ogavene 7.306, og (Trykkfeil i nummerering, men det så dere vel...) P X x x 3x x! e 3 6 av 8 fd5_kom.tex

7 Som er Poisson-fordelingen kx x! e k med arameter k 3, som kan legges inn å lommeregner som Y1 oissondf(3,x) a) P X ! e (Y1(2) 0.224) b) P X ! e (Y1(3) 0.224) c) seq(y1,x,0,10) STO L1, og STAT,EDIT viser verdiene: x : x : d) E X x 0 x x sum(seq(x*y1,x,0,10)) 3.00 Var X x 0 x 3 2 b x sum(seq((x-3) ^2*Y1,X,0,10)) Som 306 med k 6 Vi ser fra 306 og 307 at for Poissonfordelingen har vi den enkle sammenhengen: E X Var X k I 307 har vi da: E X Var X 6og Som 306 og 307, her med k 5 Med Y1 oissondf(5,x) får vi: a) P X 4 Y1(4) P X 5 Y1(5) P X x 0 x sum(seq(y1,x,0,5) Obs., for både binomdf og oissondf har lommeregneren tilsvarende binomcdf og oissoncdf som regner ut summer fra laveste verdi og oover til en bestemt verdi. 5 Vi kan gjøre: x 0 x oissoncdf(5,5) P X 4 P X 4 x 0 x sum(seq(y1,x,0,4) eller med oissoncdf: 1 x 0 x 1-oissoncdf(5,4) Vi får vite av vår gamle venn David Aune at gjennomsnittlig kø-lengde i kassen hans å Rema er 7 av 8 fd5_kom.tex

8 3. Sett o en Poissonfordeling for Aunes kasse hvis du ankommer å et tilfeldig tidsunkt. Da Aune sier at gjennomsnittlig kø-lengde er 3, betyr det at forventet kølengde er 3! Altså er E X 3 Da vi vet at E X k for oissonfordelingen har vi altså for Aunes kasse: x kx x! e k 3x x! e 3 altså den samme som køen å ostkontoret i av 8 fd5_kom.tex

2 Om å lære matematikk og litt om vurdering av måloppnåelse/kompetanse

2 Om å lære matematikk og litt om vurdering av måloppnåelse/kompetanse Fagdag 5-3MX Innhold: 1. Tilbakemelding på første termin 2. Om å lære matematikk og vurdering 3. Sannsynlighetsfordelinger (7.2), forventning og varians (7.3, 7.4): Gjennomgåelse 4. Oppgaver 1 Tilbakemelding

Detaljer

Kap. 7 - Sannsynlighetsfordelinger

Kap. 7 - Sannsynlighetsfordelinger Oppgaver: Kap. 7 - Sannsynlighetsfordelinger Oppgaver fra kapitlet Lærebok: 7.0-0-0-,7.--7, 7.-, 7., 7., 7.7 Oppgavesamling: 7.00, 7.0, 7.09, 7., 7.9, 7., 7.0, 7.0, 7.0 7.0-0-0-0- Stokastisk variabel:

Detaljer

S2 - Eksamen V Løsningsskisser. Del 1

S2 - Eksamen V Løsningsskisser. Del 1 Litt foreløpige, si ifra hvis dere finner feil! Oppgave 1 S - Eksamen V10-6.06.10 Løsningsskisser Del 1 1) Produktregel: f x x lnx x 1 x x lnx x x lnx 1 ) Kjerneregel: f x 3e x 3e u, u x f x 3e u x 6xe

Detaljer

Bernoulli forsøksrekke og binomisk fordeling

Bernoulli forsøksrekke og binomisk fordeling Bernoulli forsøksrekke og binomisk fordeling Bernoulli forsøksrekke i) gjentar et forsøk n ganger ii) hvert forsøk gir enten suksess eller fiasko iii) sannsynligheten for suksess er p i alle forsøkene

Detaljer

Oppgaver fra 8.3, 8.4, , 8.51, 8.52, 8.231, 8.232, 8.250, 8.252

Oppgaver fra 8.3, 8.4, , 8.51, 8.52, 8.231, 8.232, 8.250, 8.252 Oppgaver fra 8.3, 8.4, 8.5 8.41, 8.51, 8.52, 8.231, 8.232, 8.250, 8.252 8.41 Populasjon: Tilfeldig variabel X : Trekke en tilfeldig flaske og måle volumet Ukjent sannsynlighetsfordeling, men forventning

Detaljer

Løsningskisse seminaroppgaver uke 11 ( mars)

Løsningskisse seminaroppgaver uke 11 ( mars) HG Mars 008 Løsningskisse seminaroppgaver uke (0.-4. mars) ECON 0 EKSAMEN 004 VÅR Oppgave En gitt prøve er laget som en flervalgsprøve ( multiple choice test ). Prøven består av tre spørsmål. For hvert

Detaljer

Løsningsforslag Eksamen S2, høsten 2017 Laget av Tommy O. Sist oppdatert: 26. november 2017

Løsningsforslag Eksamen S2, høsten 2017 Laget av Tommy O. Sist oppdatert: 26. november 2017 Løsningsforslag Eksamen S, høsten 017 Laget av Tommy O. Sist oppdatert: 6. november 017 Del 1 - uten hjelpemidler Oppgave 1 a) Vi skal derivere f(x) = x 4x 3. Vi bruker regelen samt regelen (x n ) = nx

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 Kapittel 5: Diskrete sannsynlighetsfordelinger 5.5-5.6: Negativ binomisk, geometrisk, Poisson Mette Langaas Foreleses mandag 20. september 2010 2 Kabel En kabel består av mange

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>. 1 ECON130: EKSAMEN 014 VÅR - UTSATT PRØVE TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variason i vanskelighetsgrad. Svarene er gitt i >. Oppgave 1 Fra en eldre

Detaljer

, men det blir svært tungvindt her.) 3 xe3x 1 9 e3x C 1 9 e3x 3x 1 C

, men det blir svært tungvindt her.) 3 xe3x 1 9 e3x C 1 9 e3x 3x 1 C Oppgave a) Deriver funksjonene: ) fx x sinx uv u v uv gir: f x x sinx x cosx x sinx x cosx ) gx sinx sinxcosx sinx, x k cosx cosx g x cosx (x k) (Kan også bruke u v u vuv, men det blir svært tungvindt

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 3 Diskrete tilfeldige variable. Diskrete tilfeldige variable, varians (kp. 3.

ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 3 Diskrete tilfeldige variable. Diskrete tilfeldige variable, varians (kp. 3. ÅMA Sannsynlighetsregning med statistikk, våren 8 Kp. Diskrete tilfeldige variable Kp. Diskrete tilfeldige variable Har sett på (tidligere: begrep/definisjoner; tilfeldig (stokastisk variabel sannsynlighetsfordeling

Detaljer

Løsningsforslag Eksamen S2, våren 2017 Laget av Tommy O. Sist oppdatert: 25. mai 2017

Løsningsforslag Eksamen S2, våren 2017 Laget av Tommy O. Sist oppdatert: 25. mai 2017 Løsningsforslag Eksamen S, våren 17 Laget av Tommy O. Sist oppdatert: 5. mai 17 Del 1 - uten hjelpemidler Oppgave 1 a) Vi skal derivere f(x) = x /x = x x 1. Den eneste regelen vi trenger her er (kx n )

Detaljer

Diskrete sannsynlighetsfordelinger.

Diskrete sannsynlighetsfordelinger. Diskrete sannsynlighetsfordelinger. Dekkes av kapittel 5 i læreboka. Husk: f(x) er punktsannsynligheten til en diskret X dersom: 1. f(x) 0 2. x f(x) =1 3. f(x) =P (X = x) Vi skal nå sepå situasjoner der

Detaljer

Eksamen REA3028 S2, Våren 2013

Eksamen REA3028 S2, Våren 2013 Eksamen REA308 S, Våren 013 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (3 poeng) Deriver funksjonene x a) f x x e b) gx x 1 x 3 Oppgave

Detaljer

A) B) 400 C) 120 D) 60 E) 10. Rett svar: C. Fasit: ( 5 6 = 60. Hvis A, B, C er en partisjon av utfallsrommet S, så er P (A B) lik.

A) B) 400 C) 120 D) 60 E) 10. Rett svar: C. Fasit: ( 5 6 = 60. Hvis A, B, C er en partisjon av utfallsrommet S, så er P (A B) lik. Oppgave 1 Det skal velges en komité bestående av 2 menn og 1 kvinne. Komitéen skal velges fra totalt 5 menn og 6 kvinner. Hvor mange ulike komitéer kan dannes? A) 86400 B) 400 C) 120 D) 60 E) 10 Rett svar:

Detaljer

SIF5072 Stokastiske prosesser Side 2 av 7 Gitt at en pasient er symptomfri ved tidspunkt t, hva er sannsynligheten for at han er symptomfri i hele per

SIF5072 Stokastiske prosesser Side 2 av 7 Gitt at en pasient er symptomfri ved tidspunkt t, hva er sannsynligheten for at han er symptomfri i hele per Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Faglig kontakt under eksamen: Bo Lindqvist 73 59 35 20 EKSAMEN I FAG SIF5072 STOKASTISKE PROSESSER Tirsdag 22. mai

Detaljer

TMA4240 Statistikk H2015

TMA4240 Statistikk H2015 TMA4240 Statistikk H2015 Kapittel 5: Noen diskrete sannsynlighetsfordelinger 5.4 Geometrisk og negativ binomisk fordeling 5.5 Poisson-prosess og -fordeling Mette Langaas Institutt for matematiske fag,

Detaljer

Løsningsforslag Eksamen S2, våren 2014 Laget av Tommy O. Sist oppdatert: 1. september 2018 Antall sider: 11

Løsningsforslag Eksamen S2, våren 2014 Laget av Tommy O. Sist oppdatert: 1. september 2018 Antall sider: 11 Løsningsforslag Eksamen S, våren 014 Laget av Tommy O. Sist oppdatert: 1. september 018 Antall sider: 11 Finner du matematiske feil, skrivefeil, eller andre typer feil? Dette dokumentet er open-source,

Detaljer

Diskrete sannsynlighetsfordelinger.

Diskrete sannsynlighetsfordelinger. Diskrete sannsynlighetsfordelinger. Dekkes av kapittel 5 i læreboka. Husk: f() er punktsannsynligheten til en diskret X dersom: 1. f() 0 2. f() =1 3. f() =P (X = ) Vi skal nå sepå situasjoner der vi har

Detaljer

Oppgave 1 Vi lar X være antall tankskip som ankommer havnen i løpet av en dag. Vi har fått oppgitt at X poisson(λ) med

Oppgave 1 Vi lar X være antall tankskip som ankommer havnen i løpet av en dag. Vi har fått oppgitt at X poisson(λ) med Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalte oppgaver 5, blokk I Løsningsskisse Oppgave 1 Vi lar X være antall tankskip som ankommer havnen i løpet av en dag.

Detaljer

Matematikk 3MX AA6524 og AA6526 Elever og privatister 8. desember 2003

Matematikk 3MX AA6524 og AA6526 Elever og privatister 8. desember 2003 E K S A M E N LÆRINGSSENTERET Matematikk 3MX AA6524 og AA6526 Elever og privatister Bokmål 8. desember 2003 Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag Les opplysningene

Detaljer

Eksamen S2 høsten 2014

Eksamen S2 høsten 2014 Eksamen S2 høsten 2014 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (3 poeng) Deriver funksjonene a) f x 3ln x 2 b) gx x ln3x Oppgave 2 (2

Detaljer

OPPGAVEHEFTE I STK1000 TIL KAPITTEL 5 OG 6. a b

OPPGAVEHEFTE I STK1000 TIL KAPITTEL 5 OG 6. a b OPPGAVEHEFTE I STK1000 TIL KAPITTEL 5 OG 6 1. Regneoppgaver til kapittel 5 6 Oppgave 1. Mange som kommer til STK1000 med dårlige erfaringer fra tidligere mattefag er livredd ulikheter, selv om man har

Detaljer

Eksponensielle klasser og GLM

Eksponensielle klasser og GLM !! 3 ksponensielle klasser, Dobson, Kap 3 ksponensielle klasser GLM n stokastisk variabel sies å ha fordeling i den eksponensielle fordelingsklasse som tettheten pktsannsh til kan skrives på formen STK3-3

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. ÅMA110 Sannsynlighetsregning med statistikk, våren 2010

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 ÅMA Sannsynlighetsregning med statistikk, våren Kp. Diskrete tilfeldige variable ÅMA Sannsynlighetsregning med statistikk, våren Kp. Diskrete tilfeldige variable Diskrete tilfeldige variable, innledning

Detaljer

Brukerveiledning. Natur og Fritid AS -

Brukerveiledning. Natur og Fritid AS - Brukerveiledning Natur og Fritid AS - www.naturogfritid.no En kort brukerveiledning på hvordan du får sender våre IP-kameraer live på YouTube. Denne bruksanvisningen viser deg hvordan du kopler opp ditt

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON2130 - Statistikk 1 Eksamensdag: 19.06.2014 Tid for eksamen: kl. 09:00 12:00 Oppgavesettet er på 4 sider UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Tillatte hjelpemidler: Alle trykte

Detaljer

Eksamen REA3028 Matematikk S2. Nynorsk/Bokmål

Eksamen REA3028 Matematikk S2. Nynorsk/Bokmål Eksamen 6.05.010 REA308 Matematikk S Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på del 1: Hjelpemidler på del : Vedlegg: Framgangsmåte: Veiledning om vurderingen: 5 timer: Del

Detaljer

Kapittel 4.3: Tilfeldige/stokastiske variable

Kapittel 4.3: Tilfeldige/stokastiske variable Kapittel 4.3: Tilfeldige/stokastiske variable Litt repetisjon: Sannsynlighetsteori Stokastisk forsøk og sannsynlighet Tilfeldig fenomen Individuelle utfall er usikre, men likevel et regulært mønster for

Detaljer

ECON Statistikk 1 Forelesning 4: Stokastiske variable, fordelinger. Jo Thori Lind

ECON Statistikk 1 Forelesning 4: Stokastiske variable, fordelinger. Jo Thori Lind ECON2130 - Statistikk 1 Forelesning 4: Stokastiske variable, fordelinger Jo Thori Lind j.t.lind@econ.uio.no Oversikt 1. Betinget sannsynlighet 2. Stokastiske variable 3. Forventning og varians 4. Regneregler

Detaljer

Løsningsskisse eksamen 3MX

Løsningsskisse eksamen 3MX Løsningsskisse eksamen 3MX.6.6 Ikke sjekket, kan være feil. a) f 5tan 5 sincos 5 cos cos Eller: f 5tan 5tan 5 tan 5tan 5 (Produktregel) b) g u 3, u cos g 3u sin 3 cos sin (Kjerneregel. Kan multipliseres

Detaljer

HØGSKOLEN I STAVANGER

HØGSKOLEN I STAVANGER HØGSKOLEN I STAVANGER Avdeling for TEKNISK NATURVITEN- EKSAMEN I: TE199 SANNSYNLIGHETSREGNING MED STATISTIKK SKAPELIGE FAG VARIGHET: 4 TIMER DATO: 5. JUNI 2003 TILLATTE HJELPEMIDLER: KALKULATOR OPPGAVESETTET

Detaljer

x + y z = 0 2x + y z = 2 4x + y 2z = 1 b) Vis at summen av de n første leddene kan skrives som S n = 3 n(n + 1)

x + y z = 0 2x + y z = 2 4x + y 2z = 1 b) Vis at summen av de n første leddene kan skrives som S n = 3 n(n + 1) Eksamen S2, våren 2017 Laget av Tommy O. Sist oppdatert: 17. september 2017 Kommentar: Dette er en innskriving av S2 eksamen, basert på scan av dokumentet lastet opp av matematikk.net-bruker Viks. Det

Detaljer

TMA4240 Statistikk 2014

TMA4240 Statistikk 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 5, blokk I Løsningsskisse Oppgave 1 X og Y er uavhengige Poisson-fordelte stokastiske variable, X p(x;5 og Y p(y;1.

Detaljer

Heldagsprøve i matematikk. Svar og løsningsforslag

Heldagsprøve i matematikk. Svar og løsningsforslag Heldagsprøve i matematikk Svar og løsningsforslag Mandag 19. desember 005 Forkurset, Høgskolen i Oslo Tillatte hjelpemidler: Lommeregner. Formelsamling i matematikk. Tid: 5 klokketimer Alle svar må være

Detaljer

Regneregler for forventning og varians

Regneregler for forventning og varians Regneregler for forventning og varians Det fins regneregler som er til hjelp når du skal finne forventningsverdier og varianser. Vi skal her se nærmere på disse reglene. Vi viser deg også hvordan reglene

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA0 Sannsynlighetsregning med statistikk, våren 0 Kp. 3 Diskrete tilfeldige variable Noen viktige sannsynlighetsmodeller Noen viktige sannsynlighetsmodeller ( Sanns.modell : nå betyr det klasse/type sanns.fordeling.

Detaljer

1 Section 4-1: Introduksjon til sannsynlighet. 2 Section 4-2: Enkel sannsynlighetsregning. 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger

1 Section 4-1: Introduksjon til sannsynlighet. 2 Section 4-2: Enkel sannsynlighetsregning. 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger 1 Section 4-1: Introduksjon til sannsynlighet 2 Section 4-2: Enkel sannsynlighetsregning 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger 4 Section 5-2: Tilfeldige variable 5 Section 5-3: Binomisk

Detaljer

R2 - Kapittel 2 - Algebra. I a) Hvilken av disse tallfølgene er aritmetiske, geometriske eller ingen av delene?

R2 - Kapittel 2 - Algebra. I a) Hvilken av disse tallfølgene er aritmetiske, geometriske eller ingen av delene? R2 - Kapittel 2 - Algebra I Hvilen av disse tallfølgene er aritmetise, geometrise eller ingen av delene?.,,,,... 2 4 2. 2,6,8,54,.... 2,6,0,4,... 4.,, 2, 4,... 2 9 5., 5, 7, 9,... 4 9 6 Sriv opp uttryet

Detaljer

HØGSKOLEN I STAVANGER

HØGSKOLEN I STAVANGER HØGSKOLEN I STAVANGER Avdeling for TEKNISK NATURVITEN- EKSAMEN I: TE199 SANNSYNLIGHETSREGNING MED STATISTIKK SKAPELIGE FAG VARIGHET: 4 TIMER DATO: 30. AUGUST 2003 TILLATTE HJELPEMIDLER: KALKULATOR OPPGAVESETTET

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON30 Statistikk UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 03.06.06 Sensur kunngjøres: 4.06.06 Tid for eksamen: kl. 09:00 :00 Oppgavesettet er på 5 sider Tillatte hjelpemidler:

Detaljer

Statistikk og dataanalyse

Statistikk og dataanalyse Njål Foldnes, Steffen Grønneberg og Gudmund Horn Hermansen Statistikk og dataanalyse En moderne innføring Kapitteloversikt del 1 INTRODUKSJON TIL STATISTIKK Kapittel 1 Populasjon og utvalg 19 Kapittel

Detaljer

Observatorer. STK Observatorer - Kap 6. Utgangspunkt. Eksempel høyde Oxford studenter

Observatorer. STK Observatorer - Kap 6. Utgangspunkt. Eksempel høyde Oxford studenter Observatorer STK00 - Observatorer - Kap 6 Geir Storvik 4. april 206 Så langt: Sannsynlighetsteori Stokastiske modeller Nå: Data Knytte data til stokastiske modeller Utgangspunkt Eksempel høyde Oxford studenter

Detaljer

Eksamen S2 va r 2017 løsning

Eksamen S2 va r 2017 løsning Eksamen S va r 017 løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (5 poeng) Deriver funksjonene a) f 1 f b) g ln 1 g h 1 e c) h e e e Oppgave

Detaljer

Læreplan i matematikk for samfunnsfag - programfag i studiespesialiserende program

Læreplan i matematikk for samfunnsfag - programfag i studiespesialiserende program Læreplan i matematikk for samfunnsfag - programfag i studiespesialiserende program Fastsatt som forskrift av Utdanningsdirektoratet 27. mars 2006 etter delegasjon i brev 26. september 2005 fra Utdannings-

Detaljer

Kapittel 3. Kort og godt om markedet. Løsninger. Oppgave 3.1 Tilbudskurven er stigende i et pris-mengde diagram.

Kapittel 3. Kort og godt om markedet. Løsninger. Oppgave 3.1 Tilbudskurven er stigende i et pris-mengde diagram. Kaittel 3 Kort og godt om markedet Løsninger Ogave 3.1 Tilbudskurven er stigende i et ris-mengde diagram. T Den ositive helningen (stigende kurve) kan begrunnes å to måter. (i) Når risen å en vare øker,

Detaljer

Mer om hypotesetesting

Mer om hypotesetesting Mer om hypotesetesting I underkapittel 36 i læreboka gir vi en kort innføring i tankegangen ved hypotesetesting Vi gir her en grundigere framstilling av temaet Problemstilling Vi forklarer problemstillingen

Detaljer

Forslag til obligatoriske oppgaver i ECON 2200 våren For å lette lesingen er den opprinnelige oppgave teksten satt i kursiv.

Forslag til obligatoriske oppgaver i ECON 2200 våren For å lette lesingen er den opprinnelige oppgave teksten satt i kursiv. Eric Nævdal og Jon Vislie; 2. aril 27 Forslag til obligatoriske ogaver i ECON 22 våren 27. For å lette lesingen er den orinnelige ogave teksten satt i kursiv. Ogave. 3 2 a) Hvis f( K) = ( K + ), finn f

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Noen viktige sannsynlighetsmodeller. Binomisk modell. Kp. 3 Diskrete tilfeldige variable

ÅMA110 Sannsynlighetsregning med statistikk, våren Noen viktige sannsynlighetsmodeller. Binomisk modell. Kp. 3 Diskrete tilfeldige variable ÅMA Sannsynlighetsregning med statistikk, våren 006. 3 Diskrete tilfeldige variable Noen viktige sannsynlighetsmodeller Noen viktige sannsynlighetsmodeller (k. 3.6 Hyergeometrisk modell (k. 3.7 Geometrisk

Detaljer

Fagdag 5-08.01.09. 2) Du skal fylle ut en tippekupong. På hvor mange måter kan dette gjøres?

Fagdag 5-08.01.09. 2) Du skal fylle ut en tippekupong. På hvor mange måter kan dette gjøres? Fagdag Plan Fagdag - 08.01.0 1,2 time: Repetisjon kapittel 3 - Sannsynlighet Oppgaver Teori (lesestoff) 3, time: Arbeide med.1 og.2: 16, 17, 18, 1 3, time: Ekstra vurdering før terminoppgjør Repetisjon

Detaljer

Heldagsprøve. Matematikk - S2. 6 Mai 2010

Heldagsprøve. Matematikk - S2. 6 Mai 2010 S2 -Heldagsprøve V0 Heldagsprøve Matematikk - S2 6 Mai 200 Løsningsskisser Del Oppgave a) En rekke er gitt ved 7 3 9... ) Finn ledd nummer 25 i rekken. a 25 a d n 6 25 45 2) Finn summen av de første 50

Detaljer

Eksamen S2 høsten 2017 løsninger

Eksamen S2 høsten 2017 løsninger Eksamen S høsten 017 løsninger Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (5 poeng) Deriver funksjonene a) 3 f x x 4x 4 1 f x x x g x x e b)

Detaljer

Hypotesetesting. Hvorfor og hvordan? Gardermoen 21. april 2016 Ørnulf Borgan. H. Aschehoug & Co Sehesteds gate 3, 0102 Oslo Tlf:

Hypotesetesting. Hvorfor og hvordan? Gardermoen 21. april 2016 Ørnulf Borgan. H. Aschehoug & Co Sehesteds gate 3, 0102 Oslo Tlf: Hypotesetesting Hvorfor og hvordan? Gardermoen 21. april 2016 Ørnulf Borgan H. Aschehoug & Co Sehesteds gate 3, 0102 Oslo Tlf: 22 400 400 www.aschehoug.no 1 Oversikt Sannsynlighetsregning og statistikk

Detaljer

Bokmål. Eksamensinformasjon

Bokmål. Eksamensinformasjon Eksamen 05.12.2008 AA6524/AA6526 Matematikk 3MX Elevar og privatistar / Elever og privatister Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler: Vedlegg: Andre opplysninger: Framgangsmåte

Detaljer

Test, 3 Sannsynlighet og statistikk

Test, 3 Sannsynlighet og statistikk Test, 3 Sannsynlighet og statistikk Innhold 3. Stokastiske variabler og sannsynlighetsfordelinger... 3. Forventningsverdi, varians og standardavvik... 5 3.3 Normalfordelingen... 4 3.4 Sentralgrensesetningen...

Detaljer

Løsningsforslag AA6526 Matematikk 3MX - 5. mai 2004. eksamensoppgaver.org

Løsningsforslag AA6526 Matematikk 3MX - 5. mai 2004. eksamensoppgaver.org Løsningsforslag AA6526 Matematikk 3MX - 5. mai 2004 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

betyr begivenheten at det blir trukket en rød kule i første trekning og en hvit i andre, mens B1 B2

betyr begivenheten at det blir trukket en rød kule i første trekning og en hvit i andre, mens B1 B2 ECON30: EKSAMEN 06v SENSORVEILEDNING. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i

Detaljer

Eksamen S2 va r Oppgave 1 (5 poeng) Oppgave 2 (2 poeng) Oppgave 3 (6 poeng)

Eksamen S2 va r Oppgave 1 (5 poeng) Oppgave 2 (2 poeng) Oppgave 3 (6 poeng) Eksamen S va r 017 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (5 poeng) Deriver funksjonene a) f x x x b) g x lnx 1 h x x e c) x Oppgave (

Detaljer

Samfunnsøkonomisk overskudd

Samfunnsøkonomisk overskudd Kaittel 13 Samfunnsøkonomisk overskudd Løsninger Ogave 13.1 Betalingsvillighet uttrykker hvor mye konsumenten er villig til å betale for en bestemt mengde av et gode. For eksemel kan du være villig til

Detaljer

Heldagsprøve 3MX - Onsdag

Heldagsprøve 3MX - Onsdag m HD V Oppgave 1 Heldagsprøve MX - Onsdag.. Løsningsskisse 1) cos 1 k l 6 k 6 l L,, 7, 11 6 6 6 6 ) cos sin 1 sin sin sin 1 sin 1 sin 1.61 k.61 l.61 m.61 n L.61,. b) 1) cos sin d sin ) I 1 d cos 1 1 Substitusjon:

Detaljer

STK1000 Uke 36, Studentene forventes å lese Ch 1.4 ( ) i læreboka (MMC). Tetthetskurver. Eksempel: Drivstofforbruk hos 32 biler

STK1000 Uke 36, Studentene forventes å lese Ch 1.4 ( ) i læreboka (MMC). Tetthetskurver. Eksempel: Drivstofforbruk hos 32 biler STK1000 Uke 36, 2016. Studentene forventes å lese Ch 1.4 (+ 3.1-3.3 + 3.5) i læreboka (MMC). Tetthetskurver Eksempel: Drivstofforbruk hos 32 biler Fra histogram til tetthetskurver Anta at vi har kontinuerlige

Detaljer

Oppgaven består av 10 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<, >>, Oppgave 1

Oppgaven består av 10 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<, >>, Oppgave 1 ECON 130 EKSAMEN 005 VÅR SENSORVEILEDNING Oppgaven består av 10 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom , Oppgave 1 I denne oppgaven kan du anta at

Detaljer

Forelesning 5: Kontinuerlige fordelinger, normalfordelingen. Jo Thori Lind

Forelesning 5: Kontinuerlige fordelinger, normalfordelingen. Jo Thori Lind Forelesning 5: Kontinuerlige fordelinger, normalfordelingen Jo Thori Lind j.t.lind@econ.uio.no Oversikt 1. Kontinuerlige fordelinger 2. Uniform fordeling 3. Normal-fordelingen 1. Kontinuerlige fordelinger

Detaljer

Eksamen vår 2009 Løsning Del 1

Eksamen vår 2009 Løsning Del 1 S Eksamen, våren 009 Løsning Eksamen vår 009 Løsning Del Oppgave a) Deriver funksjonene: ) f f f 3 3 f f 4 ) g e 3 g e g e e g e b) ) Gitt rekka 468 Finn ledd nummer 0 og summen av de 0 første leddene.

Detaljer

Forelening 1, kapittel 4 Stokastiske variable

Forelening 1, kapittel 4 Stokastiske variable Forelening 1, kapittel 4 Stokastiske variable Eksempel X = "antall kron på kast med to mynter (før de er kastet)" Uniformt utfallsrom {MM, MK, KM, KK}. X = x beskriver hendelsen "antall kron på kast med

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (5 poeng) Deriver funksjonene a) b) c) f( x) g x x x ( ) ln( x 1) h x ( ) x e x Oppgave ( poeng) Løs likningssystemet x y z 0 x y z 4x y z 1 Oppgave 3 (6 poeng) I en aritmetisk

Detaljer

Sannsynlighetsregning og kombinatorikk

Sannsynlighetsregning og kombinatorikk Sannsynlighetsregning og kombinatorikk Introduksjon Formålet med sannsynlighet og kombinatorikk er å kunne løse problemer i statistikk, somoftegårutpååfattebeslutninger i situasjoner der tilfeldighet rår.

Detaljer

Høgskolen i Telemark. Institutt for økonomi og informatikk FORMELSAMLING Statistikk I. Til bruk ved eksamen. Per Chr. Hagen

Høgskolen i Telemark. Institutt for økonomi og informatikk FORMELSAMLING Statistikk I. Til bruk ved eksamen. Per Chr. Hagen Høgskolen i Telemark Institutt for økonomi og informatikk FORMELSAMLING 6005 Statistikk I Til bruk ved eksamen Per Chr. Hagen . Sannsynlighetsregning. Regneregler Komplementsetningen: Addisjonssetningen:

Detaljer

Løsningsforslag Eksamen S2, våren 2016 Laget av Tommy Odland Dato: 29. januar 2017

Løsningsforslag Eksamen S2, våren 2016 Laget av Tommy Odland Dato: 29. januar 2017 Løsningsforslag Eksamen S, våren 016 Laget av Tommy Odland Dato: 9. januar 017 Del 1 - uten hjelpemidler Oppgave 1 a) Vi skal derivere f(x) = e x. Den generelle regelen er at (e ax ) = ae ax, i vårt tilfelle

Detaljer

Løsningskisse seminaroppgaver uke 15

Løsningskisse seminaroppgaver uke 15 HG April 0 Løsningskisse seminaroppgaver uke 5 Oppg. 5.6 La X = antall barn i utvalget som har lærevansker. Andel barn med lærevansker i populasjonen av barn antas å være p = 0,5. Utvalgsstørrelsen er

Detaljer

Diskrete sannsynlighetsfordelinger som histogram. Varians. Histogram og kumulativ sannsynlighet. Forventning (gjennomsnitt) (X=antall mynt i tre kast)

Diskrete sannsynlighetsfordelinger som histogram. Varians. Histogram og kumulativ sannsynlighet. Forventning (gjennomsnitt) (X=antall mynt i tre kast) Diskret sannsynlighetsfordeling (kap 1.1-1.6) Oversikt Utfallsrom (sample space) Sannsynlighetsfordeling Forventning (expectation), E(X), populasjonsgjennomsnitt Bruk av figurer og histogram Binomialfordelingen

Detaljer

Et lite notat om og rundt normalfordelingen.

Et lite notat om og rundt normalfordelingen. Et lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver? Observasjoner Histogram Viser fordelingen av faktiske observerte

Detaljer

Oppgavesett nr. 5. MAT110 Statistikk 1, Et transportfirma har et varemottak for lastebiler med spesialgods, se figur 1.

Oppgavesett nr. 5. MAT110 Statistikk 1, Et transportfirma har et varemottak for lastebiler med spesialgods, se figur 1. Innleveringsfrist: mandag 19. mars kl. 16:00 (version 01) Oppgavesett nr. 5 MAT110 Statistikk 1, 2018 Oppgave 1: ( logistikk ) Et transportfirma har et varemottak for lastebiler med spesialgods, se figur

Detaljer

Del 1 skal leveres inn etter 3 timer. Del 2 skal leveres inn senest etter 5 timer.

Del 1 skal leveres inn etter 3 timer. Del 2 skal leveres inn senest etter 5 timer. Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på del 1: Hjelpemidler på del : Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 3 timer. Del skal leveres inn senest etter 5 timer. Vanlige skrivesaker,

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>. 1 ECON213: EKSAMEN 217 VÅR - UTSATT PRØVE TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i

Detaljer

Anne Berit Fuglestad Elektroniske arbeidsark i Excel

Anne Berit Fuglestad Elektroniske arbeidsark i Excel Anne Berit Fuglestad Elektroniske arbeidsark i Excel Regnearkene nevnt i denne artikkelen kan du hente via www.caspar.no/tangenten/ 2003/anneberit103.html Regneark er et av de verktøyprogram som gir mange

Detaljer

To-dimensjonale kontinuerlige fordelinger

To-dimensjonale kontinuerlige fordelinger To-dimensjonale kontinuerlige fordelinger Noen resultater for diskrete fordelinger Vi har tidligere definert punktsannsynligheten p(x, y) for en todimensjonal variabel (X, Y ) som p(x, y) = P ({X = x}

Detaljer

S2 - Kapittel 6. Løsningsskisser

S2 - Kapittel 6. Løsningsskisser S2 - Kapittel 6 Løsningsskisser I a) Hva kan man si om overskuddet når grenseinntekten er lik grensekostnaden? b) Hva kan man si om produksjonsmengden når enhetskostnaden er lik grensekostnaden? c) Hva

Detaljer

DEL 1. Uten hjelpemidler. Forklar hvordan vi kan avgjøre om brøken nedenfor kan forkortes, uten å utføre forkortingen. 2 2 2 n

DEL 1. Uten hjelpemidler. Forklar hvordan vi kan avgjøre om brøken nedenfor kan forkortes, uten å utføre forkortingen. 2 2 2 n DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) Deriver funksjonene a) f( x) 3ln( x ) b) g( x) x ln(3 x ) Oppgave ( poeng) Forklar hvordan vi kan avgjøre om brøken nedenfor kan forkortes, uten å utføre forkortingen.

Detaljer

Løsningskisse for oppgaver til undervisningsfri uke 8 ( februar 2012)

Løsningskisse for oppgaver til undervisningsfri uke 8 ( februar 2012) 1 ECON 130 HG - februar 01 Løsningskisse for oppgaver til undervisningsfri uke 8 (0.-. februar 01) Oppg..1. Variabel: x = antall kundehenvendelser pr. dag 1. Antall observasjoner: n = 100 dager. I Excel

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren

ÅMA110 Sannsynlighetsregning med statistikk, våren ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Oppsummering Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 24. april Bjørn H. Auestad Oppsummering våren

Detaljer

Sannsynlighetsregning

Sannsynlighetsregning Sannsynlighetsregning 1 Sannsynlighet Mål for opplæringa er at eleven skal kunne formulere, eksperimentere med og drøfte enkle uniforme og ikkje-uniforme sannsynsmodellar berekne sannsyn ved hjelp av systematiske

Detaljer

Eksempel: kast med to terninger

Eksempel: kast med to terninger Kapittel 3 TMA4245 V2007: Eirik Mo 2 Eksempel: kast med to terninger I et eksperiment kaster vi to terninger og registerer antall øyne på hver terning. Utfallsrom S={(,),(,2),(,3),...,(,), (2,),...,(2,),...,(,)}

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 3.3: Kontinuerlige sannsynlighetsfordelinger 4.1: Matematisk forventing (univariat del) Mette Langaas Foreleses mandag 6. september 2010 2 3.1 Stokastisk variabel (repetisjon)

Detaljer

3.1 Stokastisk variabel (repetisjon)

3.1 Stokastisk variabel (repetisjon) TMA4240 Statistikk H2010 3.3: Kontinuerlige sannsynlighetsfordelinger 4.1: Matematisk forventing (univariat del) Mette Langaas Foreleses mandag 6. september 2010 2 3.1 Stokastisk variabel (repetisjon)

Detaljer

Oppgaven består av 10 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom <<. >>. Oppgave 1

Oppgaven består av 10 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom <<. >>. Oppgave 1 ECON 0 EKSAMEN 004 VÅR SENSORVEILEDNING Oppgaven består av 0 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom

Detaljer

Eksamen S2, Høsten 2013

Eksamen S2, Høsten 2013 Eksamen S, Høsten 0 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave (4 poeng) Deriver funksjonene x a) fx f x x x x b) 5 g x 5 x 5 5 5 4 4 g x x x

Detaljer

Fasit for tilleggsoppgaver

Fasit for tilleggsoppgaver Fasit for tilleggsoppgaver Uke 5 Oppgave: Gitt en rekke med observasjoner x i (i = 1,, 3,, n), definerer vi variansen til x i som gjennomsnittlig kvadratavvik fra gjennomsnittet, m.a.o. Var(x i ) = (x

Detaljer

Kapittel 5: Tilfeldige variable, forventning og varians.

Kapittel 5: Tilfeldige variable, forventning og varians. Kapittel 5: Tilfeldige variable, forventning og varians. Tilfeldige variable Tilfeldige variable kalles også stokastiske variable. En tilfeldig variabel er en variabel som får sin numeriske verdi bestemt

Detaljer

Løsningsforslag Eksamen S2, høsten 2016 Laget av Tommy Odland Dato: 27. januar 2017

Løsningsforslag Eksamen S2, høsten 2016 Laget av Tommy Odland Dato: 27. januar 2017 Løsningsforslag Eksamen S, høsten 016 Laget av Tommy Odland Dato: 7. januar 017 Del 1 - uten hjelpemidler Oppgave 1 a) Vi skal derivere f(x) = x 3 5x, og vi kommer til å få bruk for reglene (ax n ) = anx

Detaljer

Eksamen S2, Va ren 2013

Eksamen S2, Va ren 2013 Eksamen S, Va ren 0 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave ( poeng) Deriver funksjonene f x x e a) x x x f x x e x e x x e x e e x x

Detaljer

Kapittel 4.4: Forventning og varians til stokastiske variable

Kapittel 4.4: Forventning og varians til stokastiske variable Kapittel 4.4: Forventning og varians til stokastiske variable Forventning og varians til stokastiske variable Histogrammer for observerte data: Sannsynlighets-histogrammer og tetthetskurver for stokastiske

Detaljer

DEL 1. Uten hjelpemidler. Oppgave 1 (5 poeng) Oppgave 2 (4 poeng) Oppgave 3 (2 poeng) Oppgave 4 (2 poeng) Deriver funksjonene a) ( ) x e x

DEL 1. Uten hjelpemidler. Oppgave 1 (5 poeng) Oppgave 2 (4 poeng) Oppgave 3 (2 poeng) Oppgave 4 (2 poeng) Deriver funksjonene a) ( ) x e x DEL 1 Uten hjelpemidler Oppgave 1 (5 poeng) Deriver funksjonene a) b) c) f( x) 2x 4x g x 2 ( ) x e x 2 3 h x x x 3 ( ) ln( 3 1) Oppgave 2 (4 poeng) a) Utfør divisjonen 3 2 ( x 5x 4x 20) : ( x 5) b) Bestem

Detaljer

Et lite notat om og rundt normalfordelingen.

Et lite notat om og rundt normalfordelingen. Et lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver? Observasjoner Histogram Viser fordelingen av faktiske observerte

Detaljer

Denne uken: Kapittel 4.3 og 4.4

Denne uken: Kapittel 4.3 og 4.4 Sist: Kapittel 4.1, 4.2, 4.5 Tilfeldighet Sannsynlighetsmodeller Regler for sannsynlighet Denne uken: Kapittel 4.3 og 4.4 Tilfeldige variable Forventning og varians til tilfeldige variable Litt repetisjon:

Detaljer

Sannsynlighetsregning og Statistikk

Sannsynlighetsregning og Statistikk Sannsynlighetsregning og Statistikk Leksjon 2. Leksjon 2 omhandler begreper og regneregler for sannsynligheter. Dette er behandlet i kapittel 3.1 og 3.2 i læreboka. Du bør når du har fullført leksjon 2

Detaljer

Eksamen i. MAT110 Statistikk 1

Eksamen i. MAT110 Statistikk 1 Avdeling for logistikk Eksamen i MAT110 Statistikk 1 Eksamensdag : Torsdag 28. mai 2015 Tid : 09:00 13:00 (4 timer) Faglærer/telefonnummer : Molde: Per Kristian Rekdal / 924 97 051 Kristiansund: Terje

Detaljer

Løsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår

Løsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår Løsningsforslag ECON 130 Obligatorisk semesteroppgave 017 vår Andreas Myhre Oppgave 1 1. (i) Siden X og Z er uavhengige, vil den simultane fordelingen mellom X og Z kunne skrives som: f(x, z) = P(X = x

Detaljer

DEL 1. Uten hjelpemidler. Oppgave 1 (5 poeng) Oppgave 2 (2 poeng) Oppgave 3 (4 poeng) Deriver funksjonene. b) g( x) Løs likningssystemet.

DEL 1. Uten hjelpemidler. Oppgave 1 (5 poeng) Oppgave 2 (2 poeng) Oppgave 3 (4 poeng) Deriver funksjonene. b) g( x) Løs likningssystemet. DEL 1 Uten hjelpemidler Oppgave 1 (5 poeng) Deriver funksjonene a) f x x x 3 ( ) 2 4 1 b) g( x) x e x c) h x x x 2 ( ) ln( 4 ) Oppgave 2 (2 poeng) Løs likningssystemet 5x y 2z 0 2x 3y z 3 3x 2y z 3 Oppgave

Detaljer

Fagdag 4 - R

Fagdag 4 - R Innhold: Gjennomgå Algebraprøve Begreper i sannsynlighetsregning Bevis Fagdag 4 - R1-27.11.08 Vi arbeider og samarbeider i grupper som vanlig. I Sannsynlighetsregning Begreper: Diskuter og prøv å forstå

Detaljer