48 Praktisk reguleringsteknikk

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "48 Praktisk reguleringsteknikk"

Transkript

1 48 Praktisk reguleringsteknikk Figur 2.18: Simulering av nivåreguleringssystemet for flistanken. Regulatoren er en PI-regulator. (Resten av frontpanelet for simulatoren er som vist i figur 2.14.) Kompenseringsegenskaper: Det statiske reguleringsavviket blir null etter spranget i forstyrrelsen (til tross for at u 0 har feil verdi pga. spranget). [Slutt på eksempel 10] PID-regulator Vi kan være fornøyde med PI-regulatoren, siden den gir null statisk reguleringsavvik. Men i noen tilfeller er det fordelaktig med hurtigere regulering enn hva PI-regulatoren gir. Dette kan oppnås ved å inkludere et

2 Praktisk reguleringsteknikk 49 ledd i pådragsberegningen som er proporsjonalt med den deriverte eller endringsraten av avviket e. I PID-regulatoren (proporsjonal + integral + derivat) beregnes da pådraget ihht. (2.12) slik: u e z Z } { K t p de u = u 0 + K p e + edτ + K p T d (2.31) {z} T i 0 u p {z } {z } u i u d u d betegnes derivatleddet. K p er proporsjonalforsterkningen. T i [sek] eller [min] er integraltiden. T d [sek] eller [min] er derivattiden (engelsk: derivative time). I noen kommersielle regulatorer benyttes derivatforsterkningen K d for K p T d. PID-regulatoren virker slik: Anta at reguleringsavviket er økende. Da er avvikets deriverte positiv, og derivatleddet vil bidra positivt til pådraget. Dette kan gi hurtigere regulering. Alle kommersielle regulatorer implementerer en PID-regulator. Men ingen implementerer (2.31)! Den er nemlig en ideell PID-regulator der D-leddet må modifiseres for at den skal virke i praksis.vi kommer inn på dette nedenfor. Eksempel 11 PID-regulering av flisnivå i flistank Figur 2.19 viser simulerte forløp av pådrag, referanse, nivå (prosessutgang) og utstrømning (forstyrrelse) for nivåreguleringssystemet for flistanken med PID-regulator (inkl. lavpassfilter i D-leddet). Regulatorparametrene er K p =1, 86, T i =9, 0 min og T d =2, 25 min (verdiene er funnet vha. Ziegler-Nichols lukket-sløyfe-metode, jf. underkap. 4). Forholdene for simuleringen ellers stort sett som i eksempel 9. Simuleringen viser følgende: Følgeenskaper: Nivået svinger seg inn til den nye referanseverdien uten statisk reguleringsavvik, som for PI-regulatoren, jf. eksempel 10. Innsvingningen skjer litt raskere enn med PI-regulatoren. Kompenseringsegenskaper: Det statiske reguleringsavviket blir null etter spranget i forstyrrelsen, som for PI-regulatoren, og innsvingningen skjer litt raskere enn med PI-regulatoren. La oss se hvordan de enkelte pådragsleddene i PID-regulatoren virker. Figur 2.20 viser diverse tidsresponser etter et sprang i utstrømningen w ut

3 50 Praktisk reguleringsteknikk Figur 2.19: Simulering av nivåreguleringssystemet for flistanken. Regulatoren er en PID-regulator. (Simulatorens frontpanel er ellers som i figur 2.14.) (forstyrrelsen). Regulatorparametrene er som angitt ovenfor. Vi ser at D-leddet u d reagerer brått og at dens verdi går mot null stasjonært (den deriverte av et avvik som er konstant, er null). I-leddet u i reagerer relativt tregt, men endrer verdi så lenge avviket, som er differansen mellom h r og h er forskjellig fra null. I-leddet går mot en (ny) konstant verdi etter spranget i w ut. P-leddet u p reagerer raskere enn I-leddet, men tregere enn D-leddet, og dens verdi går mot null, hvilket skyldes at K p e går mot null når e går mot null, hvilket skjer takket være I-leddet. [Slutt på eksempel 11]

4 Praktisk reguleringsteknikk 51 Figur 2.20: Tidsresponser i bl.a. pådragsleddene og i nivået etter et sprang i utstrømningen w ut (forstyrrelsen) Målestøy og lavpassfilter i D-leddet Det er en ulempe ved PID-regulatoren: Den kan gi uakseptabelt urolig pådrag ved høyfrekvent støy i prosessmålingen, og det er alltid slik målestøy i større eller mindre grad. Støyen kan stamme fra elektroniske støykilder eller fra selve måleprinsippet, som ved ultralydbasert nivåmåling av en overflate med bølger. Det urolige pådraget skyldes D-leddet, som deriverer ikke bare referansen og prosessmålingen, men også støy i prosessmålingen. Vi kan se problemet slik: Anta at støyen w inngår i det fysiske målesignalet y m slik: y m = y + w, dery er det støyfrie eller ideelle målesignalet. Se figur Anta at y r y m er det fysiske avvikssignalet

5 52 Praktisk reguleringsteknikk v y r Reg. u Prosess y Målestøy w y m y (målt) Måleelement Figur 2.21: Målestøy i reguleringssløyfen som skal inngå i D-leddet. Da er u d = K p T d d(y r y m ) = K p T d d [y r (y + w)] = K p T d d(y r y) {z } de +K p T d dw (2.32) Støyens deriverte dw/ vil altså inngå i pådraget. Hvis støyen er høyfrekvent, vil dens deriverte kunne få meget store verdier, og pådraget vil kunne bli (svært) urolig. Det kan vi se ved å anta at w er sinusformet: w(t) =W sin(ωt) (2.33) Den deriverte av w er dw = {z} ωw sin(ωt) (2.34) A w Hvis frekvensen ω er stor, blir den derivertes amplitude A w = ωw stor, og leddet K p T d dw/ i D-leddet kan da bli stort. En god del forbedring mht. målestøyens virkning på pådraget kan oppnås ved å lavpassfiltrere reguleringsavviket før det deriveres, og dette er en standard løsning. Hvis vi bruker betegnelsen e f om det filtrerte avviket, kan vi skrive den modifiserte PID-regulatoren slik: u = u 0 + K p e {z} Z K t p + T i 0 u p {z } u i de f edτ + K p T d (2.35) {z } u d Filteret kan være et 1. ordens lavpassfilter. Det er hensiktsmessig å representere filteret med sin Laplace-transferfunksjon. Sammenhengen mellom e f og e kan da skrives e f (s) = 1 e(s) (2.36) T f s +1

6 Praktisk reguleringsteknikk 53 der T f er filterets tidskonstant, som vanligvis gis verdi slik: T f = at d (2.37) der T d er derivattiden og a er en konstant som oftest velges mellom 0,05 og 0,2. I utgangspunktet kan vi sette a =0, 1. Figur 2.22 viser simuleringer av et reguleringssystem (ikke flistanken denne gang). Både referansen y r, prosessmålingen y m og pådraget u er vist. Figur 2.22: Simulering av reguleringssystem med PID-regulator og målest øy for 3 forskjellige situasjoner, se teksten. Regulatoren er en PID-regulator der K p og T i har konstante verdier i simuleringen. Referansen er konstant. Det er simulert med random (tilfeldig) målestøy w uniformt fordelt mellom ±0, 2%. Simuleringen viser tre situasjoner: Fra t = 120 til 140 sek: Intet D-ledd, dvs. PI-regulator (T d er satt lik null i PID-regulatoren). Simuleringen viser naturlig nok noe støy i pådraget. Støyen forplanter seg til pådraget via særlig P-leddet, men også litt via I-leddet. Fra t = 140 til 160 sek: Ordinær PID-regulator med lavpassfilter med a-verdi lik 0,1. Støyens utslag i pådraget er større enn ved PI-regulator pga. støyens forsterkning gjennom D-leddet. Dette demonstrerer at PID-regulatoren gir mer støyfylt pådrag enn PI-regulatoren.

7 54 Praktisk reguleringsteknikk Fra t = 160 til 180 sek: PID-regulator med (tilnærmet) ideelt D-ledd, dvs. at lavpassfilteret i D-leddet er (tilnærmet) fjernet. Støyens utslag i pådraget er nå meget stort. Dette demonstrerer at lavpassfilteret i D-leddet er viktig for dempning av målestøyens utslag i pådraget. Ovenfor var målestøyen et random signal med null middelverdi. Hvis middelverdien, m w, er forskjellig fra null, oppstår et stasjonært reguleringsavvik forskjellig fra null, siden m w vil arte seg som et tillegg til referansen, og PID-regulatoren vil sørge for at prosessutgangen y vil følge denne falske referansen. Hvordan få P og PI og PD fra PID? Kommersielle regulatorer implementerer en PID-regulatorfunksjon. De andre regulatorfunksjonene kan fås fra PID-regulatoren (2.35) slik: P-regulator fås ved å sette T i så stor som mulig (jeg pleier å sette ) og T d =0. I noen kommersielle regulatorer kan du angi tallet 0 7 i parameterfeltet for T i som en kode for at integralleddet er fjernet. PI-regulator fås ved å sette T d =0. PD-regulator (lite brukt, riktignok) fås ved å fjerne I-leddet, jf. punktet for P-regulator ovenfor. Blokkdiagram for PID-regulatoren Figur 2.23 viser et blokkdiagram for PID-regulatoren gitt ved (2.35). Transferfunksjon for PID-regulatoren I noen sammenhenger trengs en transferfunksjonsmodell av PID-regulatoren (2.35). Det er tilfelle ved frekvensresponsanalyse av en reguleringssløyfe (frekvensresponsen finnes gjerne på basis av transferfunksjonsmodellen for systemet), ved analytisk beregning av tidsresponser vha. Laplaceregning og ved simulering når det er tilstrekkelig 7 litt merkelig

KYBERNETIKKLABORATORIET. FAG: Kybernetikk DATO: 01.13 OPPG. NR.: R134 TEMPERATURREGULERING

KYBERNETIKKLABORATORIET. FAG: Kybernetikk DATO: 01.13 OPPG. NR.: R134 TEMPERATURREGULERING KYBERNETIKKLABORATORIET FAG: Kybernetikk DATO: 01.13 OPPG. NR.: R134 TEMPERATURREGULERING Denne øvelsen inneholder følgende momenter: a) En prosess, styring av luft - temperatur, skal undersøkes, og en

Detaljer

Høgskolen i Østfold Avdeling for informasjonsteknologi. Fag ITD 30005 Industriell IT. Laboppgave 2. Del 1. Temperatur-regulering

Høgskolen i Østfold Avdeling for informasjonsteknologi. Fag ITD 30005 Industriell IT. Laboppgave 2. Del 1. Temperatur-regulering Høgskolen i Østfold Avdeling for informasjonsteknologi Fag ITD 30005 Industriell IT Laboppgave 2. Del 1. Temperatur-regulering Frist for innlevering: Tirsdag 20.okt 2015 Remmen 01.10.2015 00 Sept 10 Temperaturregulering

Detaljer

Foroverkopling. Kapittel Innledning

Foroverkopling. Kapittel Innledning Kapittel 10 Foroverkopling 10.1 Innledning Vi vet fra tidligere kapitler at tilbakekoplet regulering vil kunne bringe prosessutgangen tilstrekkelig nær referansen. I de fleste tilfeller er dette en tilstrekkelig

Detaljer

Spørretime / Oppsummering

Spørretime / Oppsummering MAS107 Reguleringsteknikk Spørretime / Oppsummering AUD F 29. mai kl. 10:00 12:00 Generell bakgrunnsmateriale Gjennomgang av eksamen 2006 MAS107 Reguleringsteknikk, 2007: Side 1 G. Hovland Presentasjon

Detaljer

EMAR2101 Reguleringssystemer 1: Øving 3

EMAR2101 Reguleringssystemer 1: Øving 3 Høgskolen i Buskerud Finn Haugen (finn.haugen@hibu.no) 6.10 2008 EMAR2101 Reguleringssystemer 1: Øving 3 Oppgave 1 I underkapittel 1.1 i læreboken er det listet opp syv forskjellige formål for reguleringsteknikken,

Detaljer

Eksperimentell innstilling av PID-regulator

Eksperimentell innstilling av PID-regulator Kapittel 4 Eksperimentell innstilling av PID-regulator 4.1 Innledning Dette kapitlet beskriver noen tradisjonelle metoder for eksperimentell innstilling av regulatorparametre i P-, PI- og PID-regulatorer,

Detaljer

SIMULERINGSNOTAT. Prosjekt i emnet «Styresystemer og reguleringsteknikk» Gruppe 01. Laget av Torbjørn Morken Øyvind Eklo

SIMULERINGSNOTAT. Prosjekt i emnet «Styresystemer og reguleringsteknikk» Gruppe 01. Laget av Torbjørn Morken Øyvind Eklo SIMULERINGSNOTAT Prosjekt i emnet «Styresystemer og reguleringsteknikk» Gruppe 01 Laget av Torbjørn Morken Øyvind Eklo Høgskolen i Sør-Trøndelag 2015 Sammendrag Simulering av nivåregulering av tank ved

Detaljer

Regulatoren. Gjennomgang av regulatorens parameter og konfigurasjon

Regulatoren. Gjennomgang av regulatorens parameter og konfigurasjon Regulatoren Fagstoff ODD STÅLE VIKENE Gjennomgang av regulatorens parameter og konfigurasjon Listen [1] Regulatoren sammenligner er-verdi (PV) og skalverdi (SV), og behandler avviket vha P-,I- og D-ledd.

Detaljer

1 Tidsdiskret PID-regulering

1 Tidsdiskret PID-regulering Finn Haugen (finn@techteach.no), TechTeach (techteach.no) 16.2.02 1 Tidsdiskret PID-regulering 1.1 Innledning Dette notatet gir en kortfattet beskrivelse av analyse av tidsdiskrete PID-reguleringssystemer.

Detaljer

Utledning av Skogestads PID-regler

Utledning av Skogestads PID-regler Utledning av Skogestads PID-regler + +?!?!! (This version: August 0, 1998) 1 Approksimasjon av dynamikk (Skogestads halveringsregel) Vi ønsker å approksimere høyre ordens dynamikk som dødtid. Merk at rene

Detaljer

Finn Haugen. Oppgaver i reguleringsteknikk 1. Nevn 5 variable som du vet eller antar kan være gjenstand for regulering i industrianlegg.

Finn Haugen. Oppgaver i reguleringsteknikk 1. Nevn 5 variable som du vet eller antar kan være gjenstand for regulering i industrianlegg. Finn Haugen. Oppgaver i reguleringsteknikk 1 Oppgave 0.1 Hvilke variable skal reguleres? Nevn 5 variable som du vet eller antar kan være gjenstand for regulering i industrianlegg. Oppgave 0.2 Blokkdiagram

Detaljer

Reguleringsstrukturer

Reguleringsstrukturer Kapittel 11 Reguleringsstrukturer Dette kapitlet beskriver diverse reguleringsstrukturer for industrielle anvendelser. I strukturene inngår én eller flere PID-reguleringssløyfer. 11.1 Kaskaderegulering

Detaljer

KYBERNETIKKLABORATORIET. FAG: Dynamiske systemer DATO: 09.13 OPPG.NR.: DS3 MOTOR GENERATOROPPGAVE I

KYBERNETIKKLABORATORIET. FAG: Dynamiske systemer DATO: 09.13 OPPG.NR.: DS3 MOTOR GENERATOROPPGAVE I KYBERNETIKKLABORATORIET FAG: Dynamiske systemer DATO: 09.13 OPPG.NR.: DS3 MOTOR GENERATOROPPGAVE I Et reguleringssystem består av en svitsjstyrt (PWM) motor-generatorenhet og en mikrokontroller (MCU) som

Detaljer

Løsningsforslag til sluttprøven i emne IA3112 Automatiseringsteknikk

Løsningsforslag til sluttprøven i emne IA3112 Automatiseringsteknikk Høgskolen i Telemark. Emneansvarlig: Finn Aakre Haugen (finn.haugen@hit.no). Løsningsforslag til sluttprøven i emne IA3 Automatiseringsteknikk Sluttprøvens dato: 5. desember 04. Varighet 5 timer. Vekt

Detaljer

Eksperimentell innstilling av PID-regulator

Eksperimentell innstilling av PID-regulator Kapittel 4 Eksperimentell innstilling av PID-regulator 4.1 Innledning Dette kapitlet beskriver noen tradisjonelle metoder for eksperimentell innstilling av regulatorparametre i P-, PI- og PID-regulatorer,

Detaljer

Reguleringsteknikk. Finn Aakre Haugen. 16. juni 2014

Reguleringsteknikk. Finn Aakre Haugen. 16. juni 2014 Reguleringsteknikk Finn Aakre Haugen 16. juni 2014 1 2 F. Haugen: Reguleringsteknikk Innhold 1 Innledning til reguleringsteknikk 15 1.1 Grunnleggende begreper..................... 15 1.2 Hvaerreguleringgodtfor?...

Detaljer

,QQOHGQLQJ 3-1/ )DJ 67( 6W\ULQJ DY URPIDUW \ / VQLQJVIRUVODJ WLO YLQJ

,QQOHGQLQJ 3-1/ )DJ 67( 6W\ULQJ DY URPIDUW \ / VQLQJVIRUVODJ WLO YLQJ 3-1/ )DJ 67( 6W\ULQJ DY URPIDUW \ / VQLQJVIRUVODJ WLO YLQJ,QQOHGQLQJ Der det er angitt referanser, er det underforstått at dette er til sider, figurer, ligninger, tabeller etc., i læreboken, dersom andre

Detaljer

Reguleringsteknikken kan ha stor (ofte avgjørende) betydning for blant annet følgende forhold:

Reguleringsteknikken kan ha stor (ofte avgjørende) betydning for blant annet følgende forhold: Kapittel 1 Innledning 1.1 Reguleringsteknikkens betydning Reguleringsteknikk er metoder og teknikker for automatisk styring en fysisk prosess slik at verdien av en gitt prosessvariabel er tilstrekkelig

Detaljer

Løsning til sluttprøve i IA3112 Automatiseringsteknikk ved Høgskolen i Telemark

Løsning til sluttprøve i IA3112 Automatiseringsteknikk ved Høgskolen i Telemark Løsning til sluttprøve i IA3 Automatiseringsteknikk ved Høgskolen i Telemark Sluttprøvens dato:. 05. Varighet 5 timer. Vekt i sluttkarakteren: 00%. Emneansvarlig: Finn Aakre Haugen (finn.haugen@hit.no).

Detaljer

Slik skal du tune dine PID-regulatorer

Slik skal du tune dine PID-regulatorer Slik skal du tune dine PID-regulatorer Ivar J. Halvorsen SINTEF, Reguleringsteknikk PROST temadag Tirsdag 22. januar 2002 Granfos Konferansesenter, Oslo 1 Innhold Hva er regulering og tuning Enkle regler

Detaljer

TTK 4140 Reguleringsteknikk m/elektriske kretser Dataøving 2

TTK 4140 Reguleringsteknikk m/elektriske kretser Dataøving 2 NTNU Norges teknisknaturvitenskapelige universitet Institutt for teknisk kybernetikk vårsemesteret 2004 TTK 4140 Reguleringsteknikk m/elektriske kretser Dataøving 2 Fiskelabben G-116/G-118 Uke 16: Onsdag

Detaljer

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE AVDELING FOR INGENIØRUTDANNING ESAMENSOPPGAVE Emne: Gruppe(r): Eksamensoppgaven består av: ybernetikk I 2E Antall sider (inkl. forsiden): Emnekode: SO 318E Dato: Antall oppgaver: 6 Faglig veileder: Veslemøy

Detaljer

Løsning til sluttprøve i EK3114 Automatisering og vannkraftregulering ved Høgskolen i Telemark

Løsning til sluttprøve i EK3114 Automatisering og vannkraftregulering ved Høgskolen i Telemark Løsning til sluttprøve i EK34 Automatisering og vannkraftregulering ved Høgskolen i Telemark Sluttprøvens dato:. 05. Varighet 5 timer. Vekt i sluttkarakteren: 00%. Emneansvarlig: Finn Aakre Haugen (finn.haugen@hit.no).

Detaljer

Artikkelserien Reguleringsteknikk

Artikkelserien Reguleringsteknikk Finn Haugen (finn@techteach.no) 18. november, 2008 Artikkelserien Reguleringsteknikk Dette er artikkel nr. 7 i artikkelserien Reguleringsteknikk: Artikkel 1: Reguleringsteknikkens betydning og grunnprinsipp.

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi C:\Per\Fag\Regtek\Eksamen\Eksamen11\LX2011DesEDT212T.wpd HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Eksamensdato Fag 20.desember 2011 LØSNINGSFORSLAG EDT212T Reguleringsteknikk grunnkurs Dato: 11.11.12

Detaljer

Formelliste til boken Reguleringsteknikk

Formelliste til boken Reguleringsteknikk Formelliste til boken Reguleringsteknikk Finn Haugen 14. februar 013 Nedenfor er de mest aktuelle formlene i boken. Formlene står i samme rekkefølge som i boken. IEA-indeksen (Integral of Absolute value

Detaljer

NB! Vedlegg 2 skal benyttes i forbindelse med oppgave 3a), og vedlegges besvarelsen.

NB! Vedlegg 2 skal benyttes i forbindelse med oppgave 3a), og vedlegges besvarelsen. SLUTTPRØVE EMNE: EE407 Kybernetikk videregående LÆRER Kjell Erik Wolden KLASSE(R): IA, EL DATO: 0..0 PRØVETID, fra - til (kl.): 9.00.00 Oppgavesettet består av følgende: Antall sider (inkl. vedlegg): 0

Detaljer

Sammenlikningav simuleringsverktøyfor reguleringsteknikk

Sammenlikningav simuleringsverktøyfor reguleringsteknikk Presentasjon ved NFA-dagene 28.-29.4 2010 Sammenlikningav simuleringsverktøyfor reguleringsteknikk Av Finn Haugen (finn.haugen@hit.no) Høgskolen i Telemark Innhold: Eksempler på min egen bruk av simuleringsverktøy

Detaljer

Forord. Theo A. Olsen Safin Menmi Daniel M. Coll. Fredrikstad, Norge, juni 2012. HiØ H12E01

Forord. Theo A. Olsen Safin Menmi Daniel M. Coll. Fredrikstad, Norge, juni 2012. HiØ H12E01 Forord Som avslutning for bachelorstudiet ved Høgskolen i Østfold, gjennomføres det en avsluttende prosjektoppgave. Oppgaven vil gå over en periode på to måneder, hvor det avsluttes med et foredrag og

Detaljer

HØGSKOLEN I SØR-TRØNDELAG

HØGSKOLEN I SØR-TRØNDELAG Eksamensdato Fag Dato: 11.12.14 \\hjem.hist.no\pgis\mine dokumenter\backup\fag\reguleringsteknikk\2014\eksamen\lx2014des_korrigert.wpd HØGSKOLEN I SØR-TRØNDELAG AVD. FOR INGENIØR OG NÆRINGSMIDDELFAG INSTITUTT

Detaljer

HØGSKOLEN I SØR-TRØNDELAG

HØGSKOLEN I SØR-TRØNDELAG Eksamensdato Fag Dato: 17.11.10 C:\Per\Fag\Regtek\Eksamen\Eksamen10\LX2011jan.wpd HØGSKOLEN I SØR-TRØNDELAG AVD. FOR INGENIØR OG NÆRINGSMIDDELFAG INSTITUTT FOR ELEKTROTEKNIKK 7. januar 2011 LØSNINGSFORSLAG

Detaljer

MAT 1001, Høsten 2009 Oblig 2, Løsningsforslag

MAT 1001, Høsten 2009 Oblig 2, Løsningsforslag MAT 1001, Høsten 009 Oblig, sforslag a) En harmonisk svingning er gitt som en sum av tre delsvingninger H(x) = cos ( π x) + cos (π (x 1)) + cos (π (x )) Skriv H(x) på formen A cos (ω(x x 0 )). siden H(x)

Detaljer

EMAR2101 Reguleringssystemer 1: Løsning til øving 3

EMAR2101 Reguleringssystemer 1: Løsning til øving 3 Høgskolen i Buskerud Finn Haugen (finn.haugen@hibu.no) 6.10 2008 EMAR2101 Reguleringssystemer 1: Løsning til øving 3 Løsning til oppgave 1 Eksempler på anvendelser: Produktkvalitet: Regulering av slipekraft

Detaljer

Modellbasert regulering: Foroverkopling

Modellbasert regulering: Foroverkopling 36 Generelt Dette er artikkel nr. 5 i artikkelserien Reguleringsteknikk som publiseres i AMNYTT. Artiklene er/blir som følger: Artikkel 1: Reguleringsteknikkens betydning og grunnprinsipp. (Publisert i

Detaljer

Lineær analyse i SIMULINK

Lineær analyse i SIMULINK Lineær analyse i SIMULINK Av Finn Haugen (finn@techteach.no) TechTeach (http://techteach.no) 20.12 2002 1 2 Lineær analyse i SIMULINK Innhold 1 Innledning 7 2 Kommandobasert linearisering av modeller 9

Detaljer

ù [rad/sek] h O [db] o o o o o o o o o o o

ù [rad/sek] h O [db] o o o o o o o o o o o D:\Per\Fag\Regtek\Oppgavebok\4 Løsning på øving\reglov6_2014.wpd Fag TELE2001 Reguleringsteknikk HIST,EDT Juni -14 PHv Løsningsforslag oppgavene 24 og 25 (Øving 6) Oppgave 24 Innjustering i frekvensplanet.

Detaljer

INF1411 Obligatorisk oppgave nr. 4

INF1411 Obligatorisk oppgave nr. 4 INF1411 Obligatorisk oppgave nr. 4 Fyll inn navn på alle som leverer sammen, 2 per gruppe (1 eller 3 i unntakstilfeller): 1 2 3 Informasjon og orientering I denne oppgaven skal du lære litt om responsen

Detaljer

EKSAMENSOPPGAVE. Høgskolen i Telemark. EMNE: IA3112 Automatiseringsteknikk. EMNEANSVARLIG: Finn Haugen (tlf ). EKSAMENSTID: 5 timer

EKSAMENSOPPGAVE. Høgskolen i Telemark. EMNE: IA3112 Automatiseringsteknikk. EMNEANSVARLIG: Finn Haugen (tlf ). EKSAMENSTID: 5 timer Høgskolen i Telemark Avdeling for teknologiske fag EKSAMENSOPPGAVE EMNE: IA311 Automatiseringsteknikk. EMNEANSVARLIG: Finn Haugen (tlf. 9701915). KLASSE(R): DATO: 18.1.013 EKSAMENSTID: 5 timer Eksamensoppgaven

Detaljer

1.2 Programvare for analyse og design av reguleringsystemer. Fagmiljøerpåweb

1.2 Programvare for analyse og design av reguleringsystemer. Fagmiljøerpåweb Innhold I Oppgaver 9 1 Innledning 11 1.1 Reguleringsteknikkensbetydning... 11 1.2 Programvare for analyse og design av reguleringsystemer. Fagmiljøerpåweb... 11 1.3 Littreguleringstekniskhistorie... 12

Detaljer

EKSAMENSOPPGAVE. Høgskolen i Telemark. EMNE: EK3112 Automatiseringsteknikk for elkraft. EMNEANSVARLIG: Finn Haugen (tlf ).

EKSAMENSOPPGAVE. Høgskolen i Telemark. EMNE: EK3112 Automatiseringsteknikk for elkraft. EMNEANSVARLIG: Finn Haugen (tlf ). Høgskolen i Telemark Avdeling for teknologiske fag EKSAMENSOPPGAVE EMNE: EK311 Automatiseringsteknikk for elkraft. EMNEANSVARLIG: Finn Haugen (tlf. 9701915). KLASSE(R): DATO: 18.1.013 EKSAMENSTID: 5 timer

Detaljer

KONTINUASJONSEKSAMEN Tirsdag 07.05.2002 STE 6159 Styring av romfartøy Løsningsforslag

KONTINUASJONSEKSAMEN Tirsdag 07.05.2002 STE 6159 Styring av romfartøy Løsningsforslag + *6.2/(1, 1$59,. Institutt for data-, elektro-, og romteknologi Sivilingeniørstudiet RT KONTINUASJONSEKSAMEN Tirsdag 7.5.22 STE 6159 Styring av romfartøy Løsningsforslag 2SSJDYH (%) D) Kvaternioner benyttes

Detaljer

Inst. for elektrofag og fornybar energi

Inst. for elektrofag og fornybar energi Inst. for elektrofag og fornybar energi Fag TELE2001 Reguleringsteknikk Simulink øving 3 Utarbeidet: PHv Revidert sist Fredrik Dessen 2015-09-11 Hensikten med denne oppgaven er at du skal bli bedre kjent

Detaljer

Tilstandsestimering Oppgaver

Tilstandsestimering Oppgaver Telemark University College Department of Electrical Engineering, Information Technology and Cybernetics Tilstandsestimering Oppgaver HANS-PETTER HALVORSEN, 2012.01.27 Faculty of Technology, Postboks 203,

Detaljer

Løsningsforslag øving 8

Løsningsforslag øving 8 K405 Reguleringsteknikk, Vår 206 Oppgave Løsningsforslag øving 8 a Vi begynner med å finne M 2 s fra figur 2 i oppgaveteksten. M 2 s ω r 2 ω h m sh a sh R2 sr 2 ω K v ω 2 h m sh a sh R2 sr 2 h m sh a sh

Detaljer

Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2005. eksamensoppgaver.org

Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2005. eksamensoppgaver.org Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2005 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det er lastet

Detaljer

PID-REGULERING OG JUSTERINGSTEKNIKKER

PID-REGULERING OG JUSTERINGSTEKNIKKER TEMPERATUR AN-CNTL-13 PID-REGULERING OG JUSTERINGSTEKNIKKER Versjon 1 D. Mitchell Carr 23. april 1986 Norsk oversettelse H. Slettvoll 31. januar 2012 Riktig justering av regulatorer er ikke bare avgjørende

Detaljer

Simulering i MATLAB og SIMULINK

Simulering i MATLAB og SIMULINK Simulering i MATLAB og SIMULINK Av Finn Haugen (finn@techteach.no) TechTeach (http://techteach.no) 13. november 2004 1 2 TechTeach Innhold 1 Simulering av differensiallikningsmodeller 7 1.1 Innledning...

Detaljer

FIE Signalprosessering i instrumentering

FIE Signalprosessering i instrumentering FIE 8 - Signalprosessering i instrumentering Øvelse #4: Z-transform, poler og nullpunkt Av Knut Ingvald Dietel Universitetet i Bergen Fysisk institutt 5 februar Innhold FIE 8 - Signalprosessering i instrumentering

Detaljer

Dette er et utdrag fra kapittel 6 i boka: Reguleringsteknikk, skrevet av. Per Hveem og Kåre Bjørvik

Dette er et utdrag fra kapittel 6 i boka: Reguleringsteknikk, skrevet av. Per Hveem og Kåre Bjørvik Dette er et utdrag fra kapittel 6 i boka: Reguleringsteknikk, skrevet av Per Hveem og Kåre Bjørvik Kapittelnummering og eksempelnummering stemmer ikke overens med det står i boka. 1 5.1 Fra overføringsfunksjon

Detaljer

Reguleringsteknikken kan ha stor (ofte avgjørende) betydning for blant annet følgende forhold:

Reguleringsteknikken kan ha stor (ofte avgjørende) betydning for blant annet følgende forhold: Kapittel 1 Innledning 1.1 Reguleringsteknikkens betydning Reguleringsteknikk er metoder og teknikker for automatisk styring en fysisk prosess slik at verdien av en gitt prosessvariabel er tilstrekkelig

Detaljer

Frekvensrespons. Kapittel Innledning

Frekvensrespons. Kapittel Innledning Kapittel 5 Frekvensrespons 5. Innledning Et systems frekvensrespons er en frekvensavhengig funksjon som uttrykker hvilken respons sinussignaler (eller cosinussignaler) med forskjellige frekvenser i systemets

Detaljer

Styresystemer og reguleringsteknikk Simuleringsnotat

Styresystemer og reguleringsteknikk Simuleringsnotat Styresystemer og reguleringsteknikk Simuleringsnotat Gaute Nybø, Basir Sedighi, Runar Indahl, Thomas Hestnes, Torkil Mollan og Sjur Tennøy Hovedprosjekt for TELE2008-A Styresystemer og reguleringsteknikk

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 11. juni 27 Tid for eksamen: 14.3 17.3 Oppgavesettet er på 5 sider. Vedlegg: INF 347 / INF 447 Digital Signalbehandling

Detaljer

Løsningsforslag Dataøving 2

Løsningsforslag Dataøving 2 TTK45 Reguleringsteknikk, Vår 6 Løsningsforslag Dataøving Oppgave a) Modellen er gitt ved: Setter de deriverte lik : ẋ = a x c x x () ẋ = a x + c x x x (a c x ) = () x ( a + c x ) = Det gir oss likevektspunktene

Detaljer

Fjæra i a) kobles sammen med massen m = 100 [kg] og et dempeledd med dempningskoeffisient b til en harmonisk oscillator.

Fjæra i a) kobles sammen med massen m = 100 [kg] og et dempeledd med dempningskoeffisient b til en harmonisk oscillator. Oppgave 1 a) Ei ideell fjær har fjærkonstant k = 2.60 10 3 [N/m]. Finn hvilken kraft en må bruke for å trykke sammen denne fjæra 0.15 [m]. Fjæra i a) kobles sammen med massen m = 100 [kg] og et dempeledd

Detaljer

Løsningsforslag øving 4

Løsningsforslag øving 4 TTK405 Reguleringsteknikk, Vår 206 Oppgave Løsningsforslag øving 4 Når k 50, m 0, f 20, blir tilstandsromformen (fra innsetting i likning (3.8) i boka) Og (si A) blir: (si A) [ ] [ ] 0 0 ẋ x + u 5 2 0.

Detaljer

Ormen Lange tie-in på Sleipner R

Ormen Lange tie-in på Sleipner R Ormen Lange tie-in på Sleipner R Studieretning: Elektro Hovedprosjekt utført ved Høgskolen Stord/Haugesund - Avd. Haugesund - ingeniørfag Av: Audun H. Johanson Kandidatnr. 07 Geir Helge Isdal 39 Tore Hamre

Detaljer

Universitetet i Bergen Fysisk institutt

Universitetet i Bergen Fysisk institutt FIE 216 - våren 1999 Laboratoriekurs i instrumentering og prosessregulering Universitetet i Bergen Universitetet i Bergen Fysisk institutt FIE216 - oppgave 2 Turtallsregulering av DC-motor Gruppe 1 Jørn

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Bokmål Eksamensdato: 15.desember 2014 Varighet/eksamenstid: 0900-1400 Emnekode: Emnenavn: TELE2001-A Reguleringsteknikk Klasse: 2EL 2FE Studiepoeng:

Detaljer

Rapport TFE4100. Lab 5 Likeretter. Eirik Strand Herman Sundklak. Gruppe 107

Rapport TFE4100. Lab 5 Likeretter. Eirik Strand Herman Sundklak. Gruppe 107 Rapport TFE4100 Lab 5 Likeretter Eirik Strand Herman Sundklak Gruppe 107 Lab utført: 08.november 2012 Rapport generert: 30. november 2012 Likeretter Sammendrag Denne rapporten er et sammendrag av laboratorieøvingen

Detaljer

Simuleringsalgoritmer

Simuleringsalgoritmer Simuleringsalgoritmer Finn Aakre Haugen, dosent Høgskolen i Telemark 14. september 2015 1 Innledning 1.1 Hva er simulering? Simulering av et system er beregning av tidsresponser vha. en matematisk modell

Detaljer

AU3: Espen Seljemo Torry Eriksen Vidar Wensel Magnus Bendiksen

AU3: Espen Seljemo Torry Eriksen Vidar Wensel Magnus Bendiksen AU3: Espen Seljemo Torry Eriksen Vidar Wensel Magnus Bendiksen 1.0 Problemstilling... 3 2.0 Fuzzy logikk... 3 2.1 Historie... 3 2.2 Fuzzy regulering... 3 2.3 Når kan man ta i bruk Fuzzy regulering?...

Detaljer

Fakultet for teknologi, Grimstad HØGSKOLEN I AGDER

Fakultet for teknologi, Grimstad HØGSKOLEN I AGDER Hovedprosjekt for: Ingeniørutdanningen Fakultet for teknologi, Grimstad HØGSKOLEN I AGDER Tittel: Konsept for hastighetsregulering av anker-kjetting Mas 304 Gruppe 2 Oppdragsgiver: Aker Kværner Pusnes

Detaljer

6DPSOLQJ DY NRQWLQXHUOLJH VLJQDOHU

6DPSOLQJ DY NRQWLQXHUOLJH VLJQDOHU TE6146 ignalbehandling 6DPOLQJ DY NRQWLQXHUOLJH VLJQDOHU,QWURGXNVMRQ Mest vanlige måte å oppnå diskrete signaler på er ved sampling av kontinuerlige signaler Under gitte forutsetninger kan kontinuerlige

Detaljer

SLUTTPRØVE. EMNEANSVARLIG: Finn Aakre Haugen. Tlf Epost: Antall sider: 15 (medregnet denne forsiden)

SLUTTPRØVE. EMNEANSVARLIG: Finn Aakre Haugen. Tlf Epost: Antall sider: 15 (medregnet denne forsiden) Høgskolen i Telemark Avdeling for teknologiske fag SLUTTPRØVE EMNE: EK3114 Automatisering og vannkraftregulering. EMNEANSVARLIG: Finn Aakre Haugen. Tlf. 9701915. Epost: finn.haugen@hit.no. KLASSE(R): DATO:.1.015

Detaljer

(12) Oversettelse av europeisk patentskrift

(12) Oversettelse av europeisk patentskrift (12) Oversettelse av europeisk patentskrift (11) NO/EP 2277086 B1 (19) NO NORGE (1) Int Cl. G0B 9/03 (06.01) G0B 11/42 (06.01) Patentstyret (21) Oversettelse publisert 13.04.29 (80) Dato for Den Europeiske

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Bokmål Eksamensdato: 7. januar 2011 Varighet/eksamenstid: 0900-1300 Emnekode: Emnenavn: Klasse: EDT212T Reguleringsteknikk grunnkurs 2EL Studiepoeng:

Detaljer

2.2.1 Framgangsmåte for matematisk modellering Modellering av massesystemer. Modellbegreper... 15

2.2.1 Framgangsmåte for matematisk modellering Modellering av massesystemer. Modellbegreper... 15 Innhold 1 Innledning 9 2 Matematisk modellering 13 2.1 Innledning... 13 2.2 Utviklingavdynamiskemodeller... 14 2.2.1 Framgangsmåte for matematisk modellering...... 14 2.2.2 Modellering av massesystemer.

Detaljer

EKSAMEN. Ta med utregninger i besvarelsen for å vise hvordan du har kommet fram til svaret.

EKSAMEN. Ta med utregninger i besvarelsen for å vise hvordan du har kommet fram til svaret. EKSAMEN Emnekode: ITD30005 Emne: Industriell IT Dato: 16.12.2015 Eksamenstid: kl. 0900 til kl. 1300 Hjelpemidler: Tre A4-ark (seks sider) med egne notater. "ikke-kommuniserende" kalkulator. Faglærer: Robert

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN STE 6251 Styring av romfartøy

LØSNINGSFORSLAG TIL EKSAMEN STE 6251 Styring av romfartøy HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi MSc-studiet Studieretning for romteknologi LØSNINGSFORSLAG TIL EKSAMEN STE 6251 Styring av romfartøy Tid: Fredag 21.10.2005, kl: 09:00-12:00

Detaljer

Øving 1 ITD Industriell IT

Øving 1 ITD Industriell IT Utlevert : uke 37 Innlevert : uke 39 (senest torsdag 29. sept) Avdeling for Informasjonsteknologi Høgskolen i Østfold Øving 1 ITD 30005 Industriell IT Øvingen skal utføres individuelt. Det forutsettes

Detaljer

Uke 12: FIR-filter design

Uke 12: FIR-filter design Uke 12: FIR-filter design Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/48 Dagens temaer Repetisjon Design av digitale filtre Design av FIR filtre 3/48 Notasjon

Detaljer

Tilstandsestimering Oppgaver

Tilstandsestimering Oppgaver University College of Southeast Norway Tilstandsestimering Oppgaver HANS-PETTER HALVORSEN http://home.hit.no/~hansha Innholdsfortegnelse 1 Grunnlag... 3 1.1 Statistikk og Stokastiske systemer... 3 1.2

Detaljer

Simuleringsnotat. Prosjekt i emnet «Styresystemer og reguleringsteknikk» Gruppe 6. av Stian Venseth og Kim Joar Øverås

Simuleringsnotat. Prosjekt i emnet «Styresystemer og reguleringsteknikk» Gruppe 6. av Stian Venseth og Kim Joar Øverås av Stian Venseth og Kim Joar Øverås Prosjekt i emnet «Styresystemer og reguleringsteknikk» Gruppe 6 Sammendrag I dette arbeidsnotatet vil det bli komme frem hvordan vi har jobbet med modellering og simulering

Detaljer

Finn Haugen. Reguleringsteknikk. 100 NOK techteach.no/shop. TechTeach. techteach.no

Finn Haugen. Reguleringsteknikk. 100 NOK techteach.no/shop. TechTeach. techteach.no Finn Haugen Reguleringsteknikk 100 NOK techteach.no/shop TechTeach techteach.no Januar 2012 2 Reguleringsteknikk Innhold 1 Innledning 9 1.1 De første begrepene....................... 9 1.2 Er det viktig

Detaljer

DET TEKNISK-NATURVITENSKAPELIGE FAKULTET MASTEROPPGAVE. Forfatter: Ben Ove Landa (signatur forfatter)

DET TEKNISK-NATURVITENSKAPELIGE FAKULTET MASTEROPPGAVE. Forfatter: Ben Ove Landa (signatur forfatter) DET TEKNISK-NATURVITENSKAPELIGE FAKULTET MASTEROPPGAVE Studieprogram/spesialisering: Master i Teknologi Kybernetikk/Signalbehandling Vårsemesteret, 2010 Åpen / Konfidensiell Forfatter: Ben Ove Landa (signatur

Detaljer

Løsning til eksamen i EE4107 Kybernetikk- videregående

Løsning til eksamen i EE4107 Kybernetikk- videregående Høgskolen i elemark. Finn Haugen(finn.haugen@hit.no). Løsning til eksamen i EE4107 Kybernetikk- videregående Eksamensdato: 11.6 2009. Varighet 3 timer. Vekt i sluttkarakteren: 70%. Hjelpemidler: Ingen

Detaljer

EKSAMEN Styring av romfartøy Fagkode: STE 6122

EKSAMEN Styring av romfartøy Fagkode: STE 6122 Avdeling for teknologi Sivilingeniørstudiet RT Side 1 av 5 EKSAMEN Styring av romfartøy Fagkode: STE 6122 Tid: Fredag 16.02.2001, kl: 09:00-14:00 Tillatte hjelpemidler: Godkjent programmerbar kalkulator,

Detaljer

Sammendrag kapittel 9 - Geometri

Sammendrag kapittel 9 - Geometri Sammendrag kapittel 9 - Geometri Absolutt vinkelmål (radianer) Det absolutte vinkelmålet til en vinkel v, er folholdet mellom buelengden b, og radien r. Buelengde v = b r Med v i radianer! b = r v Omregning

Detaljer

SAMMENDRAG (MARKUS) Regulatorparametre: Kp= 8 Ti= 13 KpFF= 0.19 TdFF= 5.14

SAMMENDRAG (MARKUS) Regulatorparametre: Kp= 8 Ti= 13 KpFF= 0.19 TdFF= 5.14 Avdeling for teknologi Program for elektrofag og fornybar energi 7004 Trondheim SIMULERINGSNOTAT Prosjekt i faget Styresystemer Sindre Åberg Mokkelbost, Markus Gundersen, Anders Nilsen, Even Wanvik og

Detaljer

Inst. for elektrofag og fornybar energi

Inst. for elektrofag og fornybar energi Inst. for elektrofag og fornybar energi Fag TELE2001 Reguleringsteknikk Løsningsforslag, Tank 4 øving 1 Utarbeidet av Erlend Melbye 2015-09-07 Revidert sist Fredrik Dessen 2015-09-07 1 Oppstart av Tank

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNELG vdeling for teknologi Kandidatnr: Eksamensdato: Varighet/eksamenstid: Emnekode: Emnenavn: Fredag 7.juni 23 5 klokketimer TLM3- / LM5M- Matematikk Klasse(r): EL FEN Studiepoeng:

Detaljer

Kalmanfilter HANS-PETTER HALVORSEN, 2012.02.24

Kalmanfilter HANS-PETTER HALVORSEN, 2012.02.24 Telemark University College Department of Electrical Engineering, Information Technology and Cybernetics HANS-PETTER HALVORSEN, 2012.02.24 Faculty of Technology, Postboks 203, Kjølnes ring 56, N-3901 Porsgrunn,

Detaljer

TTK 4140 Reguleringsteknikk m/elektriske kretser Dataøving 1

TTK 4140 Reguleringsteknikk m/elektriske kretser Dataøving 1 NTNU Norges teknisknaturvitenskapelige universitet Institutt for teknisk kybernetikk vårsemesteret 2004 TTK 4140 Reguleringsteknikk m/elektriske kretser Dataøving 1 Veiledning : Fiskelabben G-116/G-118

Detaljer

Kollektivassignment i EMMA og VISUM

Kollektivassignment i EMMA og VISUM Kollektivassignment i EMMA og VISUM Odd I. Larsen Høgskolen i Molde Stockholm 15.12.2010 Algoritmene VISUM Random Departure Time (RDT) (Hasselström, 1981) EMMA Optimal Strategy (OS) (Spiess & Florian,

Detaljer

LABORATORIEØVELSE C FYS LINEÆR KRETSELEKTRONIKK 1. TILBAKEKOBLING AV 2-ORDENS SYSTEM 2. KONTURANALYSE OG NYQUISTDIAGRAMMER

LABORATORIEØVELSE C FYS LINEÆR KRETSELEKTRONIKK 1. TILBAKEKOBLING AV 2-ORDENS SYSTEM 2. KONTURANALYSE OG NYQUISTDIAGRAMMER FYS322 - LINEÆR KRETSELEKTRONIKK LABORATORIEØVELSE C 1. TILBAKEKOBLING AV 2-ORDENS SYSTEM 2. KONTURANALYSE OG NYQUISTDIAGRAMMER 3. PI REGULATOR 4. FILTRE Maris Tali(maristal) maristal@student.matnat. uio.no

Detaljer

Reguleringsutstyr. Kapittel 3. 3.1 Prosessregulatorer

Reguleringsutstyr. Kapittel 3. 3.1 Prosessregulatorer Kapittel 3 Reguleringsutstyr Dette underkapitlet gir en oversikt over forskjellig reguleringsutstyr i form av kommersielle regulatorer og (prosess)styringssystemer og liknende, det vil si det utstyret

Detaljer

Havromsteknologi. Manøvrering, styring og regulering. Innhold. Forfattere: Håvard Holm, Asgeir Sørensen

Havromsteknologi. Manøvrering, styring og regulering. Innhold. Forfattere: Håvard Holm, Asgeir Sørensen Forfattere: Håvard Holm, Asgeir Sørensen Manøvrering, styring og regulering Havromsteknologi Innhold Innledning...2 Manøvrering av skip...4 Styring av skip...6 Reguleringssystemer for holding av skip og

Detaljer

DET TEKNISK-NATURVITENSKAPELIGE FAKULTET MASTEROPPGAVE

DET TEKNISK-NATURVITENSKAPELIGE FAKULTET MASTEROPPGAVE DET TEKNISK-NATURVITENSKAPELIGE FAKULTET MASTEROPPGAVE Studieprogram/spesialisering: Informasjonsteknologi, kybernetikk og signalbehandling Forfatter: Stein Tore Stegen Fagansvarlig: Kjersti Engan Vårsemesteret,

Detaljer

En periode er fra et punkt på en kurve og til der hvor kurven begynner å gjenta seg selv.

En periode er fra et punkt på en kurve og til der hvor kurven begynner å gjenta seg selv. 6.1 BEGREPER L SNSKRVE 1 6.1 BEGREPER L SNSKRVE il sinuskurven i figur 6.1.1 er det noen definisjoner som blir brukt i vekselstrømmen. Figur 6.1.1 (V) mid t (s) min Halvperiode Periode PERODE (s) En periode

Detaljer

1.2 Programvare for analyse og design av reguleringsystemer Bruk av konstant pådragsverdi... 21

1.2 Programvare for analyse og design av reguleringsystemer Bruk av konstant pådragsverdi... 21 Innhold 1 Innledning 9 1.1 Reguleringsteknikkensbetydning... 9 1.2 Programvare for analyse og design av reguleringsystemer... 12 1.3 Littreguleringstekniskhistorie... 14 2 Tilbakekoplet regulering 19 2.1

Detaljer

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON Side 1 av 7 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON Faglig kontakt under eksamen: Navn: Helge E. Engan Tlf.: 94420 EKSAMEN I EMNE TFE4130 BØLGEFORPLANTNING

Detaljer

EKSAMEN. Ta med utregninger i besvarelsen for å vise hvordan du har kommet fram til svaret.

EKSAMEN. Ta med utregninger i besvarelsen for å vise hvordan du har kommet fram til svaret. EKSAMEN Emneode: ID30005 Emne: Industriell I Dato: 5.2.204 Esamenstid: l. 0900 til l. 300 Hjelpemidler: re A4-ar (ses sider) med egne notater. "ie-ommuniserende" alulator. Faglærer: Robert Roppestad Esamensoppgaven:

Detaljer

Observer HANS-PETTER HALVORSEN, 2012.02.24. Telemark University College Department of Electrical Engineering, Information Technology and Cybernetics

Observer HANS-PETTER HALVORSEN, 2012.02.24. Telemark University College Department of Electrical Engineering, Information Technology and Cybernetics Telemark University College Department of Electrical Engineering, Information Technology and Cybernetics Observer HANS-PETTER HALVORSEN, 2012.02.24 Faculty of Technology, Postboks 203, Kjølnes ring 56,

Detaljer

EKSAMENSOPPGAVE. Eksamen i: FYS- 1002 Elektromagnetisme Fredag 31. august 2012 Kl 09:00 13:00 adm. Bygget, rom B154

EKSAMENSOPPGAVE. Eksamen i: FYS- 1002 Elektromagnetisme Fredag 31. august 2012 Kl 09:00 13:00 adm. Bygget, rom B154 side 1 av 6 sider FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI EKSAMENSOPPGAVE Eksamen i: FYS- 1002 Elektromagnetisme Dato: Tid: Sted: Fredag 31. august 2012 Kl 09:00 13:00 adm. Bygget, rom B154 Tillatte hjelpemidler:

Detaljer

Bølgekompensering under boring med RamRig

Bølgekompensering under boring med RamRig Bølgekompensering under boring med RamRig Modellering og regulering Yngvild Aurlien Master i teknisk kybernetikk Oppgaven levert: Juli 2007 Hovedveileder: Thor Inge Fossen, ITK Norges teknisk-naturvitenskapelige

Detaljer

LABORATORIEØVELSE B FYS LINEÆR KRETSELEKTRONIKK 1. LAPLACE TRANSFORMASJON 2. AC-RESPONS OG BODEPLOT 3. WIENBROFILTER

LABORATORIEØVELSE B FYS LINEÆR KRETSELEKTRONIKK 1. LAPLACE TRANSFORMASJON 2. AC-RESPONS OG BODEPLOT 3. WIENBROFILTER FYS322 - LINEÆR KRETSELEKTRONIKK LABORATORIEØVELSE B. LAPLACE TRANSFORMASJON 2. AC-RESPONS OG BODEPLOT 3. WIENBROFILTER Maris Tali(maristal) maristal@student.matnat. uio.no Eino Juhani Oltedal(einojo)

Detaljer

12 Vekst. Areal under grafer

12 Vekst. Areal under grafer MATEMATIKK: 2 Vekst. Areal under grafer 2 Vekst. Areal under grafer 2. Stigningstall og gjennomsnittlig vekst I kapitlene 8 og 0 viste vi hvordan vi kunne regne ut stigningen til en rett linje eller lineær

Detaljer

c;'1 høgskolen i oslo

c;'1 høgskolen i oslo I c;'1 høgskolen i oslo lemne: I I Gruppe(r) Kvbem~ti!

Detaljer

Treleder kopling - Tredleder kopling fordeler lednings resistansen i spenningsdeleren slik at de til en vis grad kanselerer hverandre.

Treleder kopling - Tredleder kopling fordeler lednings resistansen i spenningsdeleren slik at de til en vis grad kanselerer hverandre. Treleder kopling Tredleder kopling fordeler lednings resistansen i spenningsdeleren slik at de til en vis grad kanselerer hverandre. Dersom Pt100=R, vil treleder koplingen totalt kanselerere virkningen

Detaljer