dp dz dp dz 1 (z z 0 )

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "dp dz dp dz 1 (z z 0 )"

Transkript

1 25 Løsning B.1 Fra adiabatisk gassligning: ρ ρ 0 p p 0 ) 1/κ, p 0, ρ 0 gitt ved havoverflaten a) Integrer hydrostatikkens grunnligning. La z være høydekoordinat: dp ρg dz p dp ρ z 0g dz p 0 p 1/κ p 1/κ 0 z /κ p1 1/κ p 1 1/κ 0 ) ρ 0g z z 0 ) p p 0 p 1/κ 0 1 κ 1 κ 1 κ 1 κ ) κ/κ 1) ρ 0 g z z 0 ) p 0 gm z z 0 ) R 0 T 0 ) κ/κ 1) b) p 6000 p ) 1/ /.286 p p 0 Løsning B.2 Temperatur i fots høyde: T T 0 Bz ) o C 44.3 o C Anta ideell gass og ingen dekkvolumforandring. Trykket i hjulet i fots høyde er gitt ved 1 p pv T p 0v 0 T [ /14.696) ] kpa kpa Gaugetrykket i hjulet finnes når aktuelt omgivende trykk ikke standardatmosfæretrykket!) subtraheres. 2 Integrer fluidstatikkens grunnligning med ligningen for standardatmosfære innsatt, og finn se læreboka): ) gm/r0b 1 Bz/T0 p atm,9144 p 0 z 0 0) 1 Bz 0 /T ) 5.26 kpa kpa p gauge,9144 p p atm, kpa 1 I gasslikningen brukes selvsagt absolutt temperatur og trykk. 2 For petroleumsingeniører som skal beregne lavtrykks gasstransport i distribusjonsnett, er dette et særlig aktuelt poeng. Der kan heller ikke atmosfæretrykket approksimeres med en konstant, og man kan få betydelige utslag ved noen få meters høydedifferanse.

2 26 Løsning B.3 Det er ikke spesifisert om gauge- eller absolutt trykk er oppgitt. Men vi ser at det spiller ingen rolle hvis vi kan anta at atmosfæretrykkforandringen over høydedifferansen er neglisjerbar, fordi bare trykkdifferansen da vil opptre. p 2 p 1 ρgz 2 z 1 ) ρ s ρ vann 1 p 2 p 1 ρ vann g z 2 z 1 Med oppgitte tallverdier: s ) Løsning B.4 La p A bety absolutt trykk ved A før trykkfordoblingen, dvs. trykket etterpå blir 2p A. La videre h bety manometeravlesning Hg-nivådifferanse) og H den vertikale avstanden fra venstre kvikksølvsøylenivå til sentrum i røret, og la subskript 1 og 2 angi verdiene henholdsvis før og etter trykkfordoblingen. Fluidstatikkens grunnligning gir følgende to uttrykk for gaugetrykket ved A, henholdsvis før og etter trykkfordoblingen forutsatt at kvikksølvet står høyest i høyre gren): p A p atm ρ Hg g h 1 ρ vann g H 1 2p A p atm ρ Hg g h 2 ρ vann g H 2 Under forutsetning av at manometerrørets tverrsnitt er det samme overalt, må kvikksølvet synke like mye i den ene grenen som det stiger i den andre. Med x for denne nivåforskyvningen: Eliminer p A og løs for x: H 2 H 1 + x h 2 h 1 + 2x p atm ρ Hg g2 h 1 h 2 ) ρ vann g2 H 1 H 2 ) ρ Hg g h 1 2x) ρ vann g H 1 x) p atm ρ vann g x1 2s Hg ) + s Hg h 1 H 1 ) x p atm/ρ vann g + s Hg h 1 H 1 2s Hg 1 Med normalatmosfæretrykket innsatt, gir det den nye manometeravlesningen: h ) m m Også verdien av p A kan finnes ut fra de oppgitte størrelsene. Men som vi ser er det ikke nødvendig å finne den eksplisitt for å beregne den nye manometeravlesningen.

3 27 Løsning B.5 Poenget her er at vi kan ikke neglisjere damptrykket for bensenen, slik vi ofte kan for vann og kvikksølv. Fluidstatikkens grunnligning på integrert form gir: p g,a + p atm ) 0 s bensen ρ vann gx + p v,bensen øvre gren) Løst og innsatt: p g,a + p atm ) 0 + s bensen ρ vann gy + y) s Hg ρ vann g y + 0 nedre gren) x p g,a + p atm ) 0 p v,bensen s bensen ρ vann g m m y s Hg s bensen s bensen y p g,a + p atm ) 0 s bensen ρ vann g ) m ) m 1.81 m Løsning B.6 Flatesenteret for den rektangulære flaten ligger i den spesifiserte rotasjonsaksen, slik at dette punktet alltid får samme dybde h under rotasjonen. Størrelsen av trykkraften blir derfor den samme for alle vinkler: F ρghab ) N 1174 kn Ta ligningen som gir y p, sett inn rektangel-verdier for I c og A, sammen med relasjonen mellom y c og h c, hvor θ er skråvinkelen i forhold til horisontalen: b 2 y p y c 1 12 y c h c y c sin θ h c h) Det gir og altså y p y c 1 b 2 sin θ 0.75 m sin θ 12 h θ 90 o y p y c 0.75 m θ 45 o y p y c 0.53 m θ 0 o y p y c 0 m Løsning B.7 F 1 ρgh c1 A N F 2 ρgh c2 A N kn kn Total trykkraft på en side: F T F 1 + F ) kn kn h 2 1 h p1 h c h 1 c1 12 h 2 2 h p2 h c h 1 c ) ) m 2.48 m 3.5) ) m 5.44 m

4 28 Trykksenterplassering for kraftresultanten er bestemt ved sum av momenter, henholdsvis om en linje i overflaten og om en vertikal linje i platens venstre kant: h pt F T h p1 F 1 + h p2 F 2 x pt F T x 1 F 1 + x 2 F 2 h pt x pt m m 4.98 m 2.34 m Løsning B.8 Flatesenteravstand fra overflaten: h c H h c π ) m m 1 Dybde videre til trykksenter: h p h c π 2 ) 1 4R R 2 3πH ) H m Trykksenteravstand fra bunnen: h c h p h c ) m Kraftresultant F g gauge): F g ρ vann gh c A π 2 ρ vanngr 2 H1 4R 3πH ) P, horisontal kraft ved punkt A, finnes ved momentbalanse: kn P R F g h c h p h c )) F g h c I c h c A ) P π 2 ρ vanngrh c h c I c A ) π 2 ρ vanngrhh c1 h c H I c Hh c A ) 2 3 ρ vanngr 2 H 1 3πH 4R 3π 16 3π 4 ) H R ) 2 3 ρ vanngr 2 H 1 3π 16 H R ) ) π 16 3 ) 8 N kn Løsning B.9 Benevnelser: K netto kraft mot flaskebunnen kraft fra bunn mot champagne) H høyde fra nedre bunnkant til trykkmåler W tyngde av champagnen nedenfor målernivået F kraft mot champagnen i målernivået Sløyf algebraiske fortegn og sett alle størrelsene positive. Ved å bruke gaugetrykk kan man se bort fra trykket utenfra mot flaskebunnen. Vertikal statisk likevekt for champagnen under målernivået gir: F + W K 0 K F + W ) πr s 2 Hg ρ vann gh s ch ρ vann g h + πr 2 H 3 2 ) πr3 s ch ρ vann g πr 2 ρ vann g s Hg h + s ch H h 3 2 ) r) π0.05) ) 0.05) N N

5 29 Løsning B.10 Dette er et tilfelle hvor Arkimedes lov ikke kan brukes, fordi det ikke er samme type fluid hele veien rundt legemet. Kraftsummen må beregnes eksplisitt. Ved likevekt: F + F sjø F vann F W 0 F F sjø + F vann + F W s sjø ρ vann g π 4 D2 H + h H) + ρ vann g π 4 D2 H + s betong ρ vann g π 4 D2 h π 4 D2 ρ vann gh { s sjø 1 + H h H ) + H } h + s betong π { ) 4 0.6) } N ) kn 5.20 kn Kommentar: Vi tillot oss den pussige formen på sluttuttrykket fordi den viser sammenhengen med resultatet fra Arkimedes lov. Uttrykket foran parentesen er det som Arkimedes lov ville gitt om lokket var omgitt av ferskvann hele veien rundt, og innholdet av parentesen reduserer seg til s betong 1) dersom s sjø 1 og H 0. Løsning B.11 a) Beregn vekten av en tilsvarende kule med spesifikk tetthet lik 1: W vann 4 3 πr3 ρ vann g 4 3 π0.6) N 8.855kN Det viser at: W 1 < W vann W 2 > W vann W 1 + W 2 < 2W vann Systemet av de to sammenbundne kulene vil tilsammen få en oppdrift større enn totalvekten. Den letteste vil flyte i overflaten, mens den tyngste vil henge rett under den i tauet og være helt neddykket. b) La O 1 og O 2 betegne oppdriftene på henholdsvis øverste og nederste kule. Vertikal likevekt for nederste kule gir: O 2 + T W 2 0 O 2 W vann ) T W 2 W vann ) kn 3.15 kn c) For et masseløst tau er taustrekket det samme på øverste og nederste kule. Vertikal likevekt for øverste kule gir: O 1 T W 1 0 O 1 1 x)w vann 1 x)o 2 ) 1 x)w vann O 1 T + W 1 W 1 + W 2 W vann

6 30 Volumfraksjonen av øvre kule over vannoverflaten: x 2 W 1 + W 2 W vann x 2 W 1 + W 2 W vann % Løsning B.12 a) Bruk av Arkimedes lov forutsetter at det er væske opp til samme nivå på alle sider av det neddykkede legemet. I denne oppgaven mangler vannet over øvre høyre stokkvadrant. O er lik differansen mellom kraft nedenfra og kraft ovenfra, så bruk av Arkimes s lov impliserer at man trekker fra for stor kraft ovenfra i dette tilfellet. Men vi kan beregne O ved å addere til uttrykket fra Arkimedes lov det som en slik innbilt vannmengde over over øvre høyre kvadrant ville veid: O πr 2 Lρ vann g + R 2 1 ) 4 πr2 Lρ vann g ) 34 π + 1 r 2 Lρ vann g ) N 8.21 kn b) Ved stabil likevekt er stokkens vekt lik oppdriften: ) 3 πr 2 Ls stokk g 4 π + 1 r 2 Lρ vann g s stokk π Kommentar: Det er ikke nødvendigvis enkelt å finne en tømmerstokk med akkurat denne spesifikke tettheten... Løsning B.13 Man har W mg K ma x hvor m er studentmassen. Her har vi vært litt overbærende med algebraisk fortegn siden K strengt tatt ble definert i oppgaveteksten å være reaksjonskraften mot seteryggen, mens den her står for den akselererende kraften i positiv x-retning. Siden a z 0 x-aksen er parallell med rullebanen) gir det tan θ a x g K W 0.1 og følgelig θ 5.71 o hvor det negative fortegnet angir en helning i positiv x-retning.

Løsningsforslag Øving 3

Løsningsforslag Øving 3 Løsningsforslag Øving 3 TEP400 Fluidmekanikk, Vår 206 Oppgave 3-86 Løsning En sikkerhetsdemning for gjørmeskred skal konstrueres med rektangulære betongblokker. Gjørmehøyden som får blokkene til å begynne

Detaljer

Løsningsforslag Øving 4

Løsningsforslag Øving 4 Løsningsforslag Øving 4 TEP4100 Fluidmekanikk, Vår 2016 Oppgave 3-162 Løsning En halvsirkelformet tunnel skal bygges på bunnen av en innsjø. Vi ønsker å finne den totale hydrostatiske trykkraften som virker

Detaljer

Løsningsforslag Øving 3

Løsningsforslag Øving 3 Løsningsforslag Øving 3 TEP4105 Fluidmekanikk, Høst 2017 Oppgave 3-75 Løsning En sikkerhetsdemning for gjørmeskred skal konstrueres med rektangulære betongblokker. Gjørmehøyden som får blokkene til å begynne

Detaljer

EKSAMEN I: BIT260 Fluidmekanikk DATO: 15. mai TILLATTE HJELPEMIDDEL: Kalkulator, én valgfri standard formelsamling. I h c A.

EKSAMEN I: BIT260 Fluidmekanikk DATO: 15. mai TILLATTE HJELPEMIDDEL: Kalkulator, én valgfri standard formelsamling. I h c A. DET TEKNISK-NATURVITENSKAPELIGE FAKULTET EKSAMEN I: BIT60 Fluidmekanikk DATO: 15. mai 006 TID FOR EKSAMEN: kl. 09-13 (4 timer) TILLATTE HJELPEMIDDEL: Kalkulator, én valgfri standard formelsamling OPPGAVESETTET

Detaljer

Løsningsforslag til Øving 3 Høst 2010

Løsningsforslag til Øving 3 Høst 2010 TEP5: Fluidmekanikk Løsningsforslag til Øving 3 Høst 2 Oppgave 2.32 Vi skal finne vannhøyden H i røret. Venstre side (A) er fylt med vann og 8cm olje; SG =,827 = ρ olje /ρ vann. Høyre side (B) er fylt

Detaljer

EKSAMEN I: BIT260 Fluidmekanikk DATO: 15. mai TILLATTE HJELPEMIDDEL: Bestemt, enkel kalkulator (kode C) Én valgfri standard formelsamling

EKSAMEN I: BIT260 Fluidmekanikk DATO: 15. mai TILLATTE HJELPEMIDDEL: Bestemt, enkel kalkulator (kode C) Én valgfri standard formelsamling DET TEKNISK-NATURVITENSKAPELIGE FAKULTET EKSAMEN I: BIT60 Fluidmekanikk DATO: 15. mai 008 TID FOR EKSAMEN: kl. 09-13 (4 timer) TILLATTE HJELPEMIDDEL: Bestemt, enkel kalkulator (kode C) Én valgfri standard

Detaljer

Q = π 4 D2 V = π 4 (0.1)2 0.5 m 3 /s = m 3 /s = 3.93 l/s Pa

Q = π 4 D2 V = π 4 (0.1)2 0.5 m 3 /s = m 3 /s = 3.93 l/s Pa 35 Løsning C.1 Q π 4 D2 V π 4 (0.1)2 0.5 m 3 /s 0.00393 m 3 /s 3.93 l/s G gsρ vann Q 9.81 1.26 998 0.00393 N/s 0.0484 kn/s ṁ G/g 48.4/9.81 kg/s 4.94 kg/s Løsning C.2 Omregning til absolutt trykk: p abs

Detaljer

GRUNNLAG HYDROSTATIKK

GRUNNLAG HYDROSTATIKK RUNNLA HYDROSTATIKK Dette dreier seg om stille vann, (ingen strømning) I stille vann er det ingen skjærkrefter i væsken, bare trkk Hdrostat. trkkrefter står normalt på de flater de virker på Trkket i et

Detaljer

Løsningsforslag til eksamen i FYS1000, 14/8 2015

Løsningsforslag til eksamen i FYS1000, 14/8 2015 Løsningsforslag til eksamen i FYS000, 4/8 205 Oppgave a) For den første: t = 4 km 0 km/t For den andre: t 2 = = 0.4 t. 2 km 5 km/t + 2 km 5 km/t Den første kommer fortest fram. = 0.53 t. b) Dette er en

Detaljer

Løsningsforslag til Øving 6 Høst 2016

Løsningsforslag til Øving 6 Høst 2016 TEP4105: Fluidmekanikk Løsningsforslag til Øving 6 Høst 016 Oppgave 3.13 Skal finne utløpshastigheten fra røret i eksempel 3. når vi tar hensyn til friksjon Hvis vi antar at røret er m langt er friksjonen

Detaljer

Løsningsforslag til eksamen i FYS1000, 15/8 2014

Løsningsforslag til eksamen i FYS1000, 15/8 2014 Løsningsforslag til eksamen i FY1000, 15/8 2014 Oppgave 1 a) Lengden til strengen er L = 1, 2 m og farten til bølger på strengen er v = 230 m/s. Bølgelengden til den egensvingningen med lavest frekvens

Detaljer

EKSAMEN I: BIT260 Fluidmekanikk DATO: 15. mai TILLATTE HJELPEMIDDEL: Kalkulator, ei valgfri standard formelsamling. I h c A.

EKSAMEN I: BIT260 Fluidmekanikk DATO: 15. mai TILLATTE HJELPEMIDDEL: Kalkulator, ei valgfri standard formelsamling. I h c A. DET TEKNISK-NATURVITENSKAPELIGE FAKULTET EKSAMEN I: BIT60 Fluidmekanikk DATO: 15. mai 006 TID FOR EKSAMEN: kl. 09-13 (4 timer) TILLATTE HJELPEMIDDEL: Kalkulator, ei valgfri standard formelsamling OPPGÅVESETTET

Detaljer

2,0atm. Deretter blir gassen utsatt for prosess B, der. V 1,0L, under konstant trykk P P. P 6,0atm. 1 atm = 1,013*10 5 Pa.

2,0atm. Deretter blir gassen utsatt for prosess B, der. V 1,0L, under konstant trykk P P. P 6,0atm. 1 atm = 1,013*10 5 Pa. Oppgave 1 Vi har et legeme som kun beveger seg langs x-aksen. Finn den gjennomsnittlige akselerasjonen når farten endres fra v 1 =4,0 m/s til v = 0,10 m/s i løpet av et tidsintervall Δ t = 1,7s. a) = -0,90

Detaljer

Løsningsforslag Øving 8

Løsningsforslag Øving 8 Løsningsforslag Øving 8 TEP4100 Fluidmekanikk, Vår 016 Oppgave 5-78 Løsning En vannslange koblet til bunnen av en tank har en dyse som er rettet oppover. Trykket i slangen økes med en pumpe og høyden av

Detaljer

Auditorieøving 6, Fluidmekanikk

Auditorieøving 6, Fluidmekanikk Auditorieøving 6, Fluidmekanikk Utført av (alle i gruppen): Oppgave 1 En beholder er åpen i ene enden og har et hull i bunnen, påsatt et innadrettet rør av lengde l og med sirkulært tverrsnitt A 0. Beholderen,

Detaljer

SIF5005 Matematikk 2, 13. mai 2002 Løsningsforslag

SIF5005 Matematikk 2, 13. mai 2002 Løsningsforslag SIF55 Matematikk, 3. mai Oppgave Alternativ : At de to ligningene skjærer hverandre vil si at det finnes parameterverdier u og v som, innsatt i de to parametriseringene, gir samme punkt: Vi løser hver

Detaljer

Løsningsforslag Øving 7

Løsningsforslag Øving 7 Løsningsforslag Øving 7 TEP4100 Fluidmekanikk, Vår 016 Oppgave 5- Løsning Vinden blåser med konstant hastighet 8 m/s. Vi ønsker å finne den mekaniske energien per masseenhet i vindstrømmen, samt det totale

Detaljer

D. Energibetraktninger ved stasjonær strøm

D. Energibetraktninger ved stasjonær strøm D. Energibetraktninger ved stasjonær strøm Oppgave D.1 En sylindrisk tank med vertikal akse og radius R, åpen mot atmosfæren i toppen, er fylt til høyde H med en ideell inkompressibel væske. Midt i bunnen

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MEK 1100 Feltteori og vektoranalyse. Eksamensdag: Torsdag 11 desember 2008. Tid for eksamen: 14:30 17:30. Oppgavesettet er på

Detaljer

Løsningsforslag Øving 1

Løsningsforslag Øving 1 Løsningsforslag Øving 1 TEP4100 Fluidmekanikk, Vår 2016 Oppgave 1-59 Løsning Luftstrømmen gjennom en vindturbin er analysert. Basert på en dimensjonsanalyse er et uttrykk for massestrømmen gjennom turbinarealet

Detaljer

hvor s er målt langs strømningsretningen. Velges Darcy enheter så har en

hvor s er målt langs strømningsretningen. Velges Darcy enheter så har en Skisse til løsning Eksamen i Reservoarteknikk. september, 998 Oppgave a) v k dφ s µ ds ; () hvor s er målt langs strømningsretningen. Velges Darcy enheter så har en v s : volumhastighet, cm/s k : permeabilitet,

Detaljer

ρ = = = m / s m / s Ok! 0.1

ρ = = = m / s m / s Ok! 0.1 Løsningsfoslag TEP 00 FLUIDMEKNIKK.juni 007 Oppgave a) Foskjellen i vekt e oppdiftskaften på kula nå den e neddykket i olje (oppdiften i luft neglisjees). Oppdift =ρ Volum g olje π =ρvann SGolje d g 6

Detaljer

Resultanten til krefter

Resultanten til krefter KRAFTBEGREPET Resultanten til krefter En kraft er en vektor. Kraften har måltall (størrelse), enhet(n) og retning (horisontalt mot høyre) Kraften virker langs en rett linje, kraftens angrepslinje Punktet

Detaljer

EKSAMEN I: BIT260 Fluidmekanikk DATO: 20. desember TILLATTE HJELPEMIDDEL: Bestemt, enkel kalkulator (kode C) Ei valgfri standard formelsamling

EKSAMEN I: BIT260 Fluidmekanikk DATO: 20. desember TILLATTE HJELPEMIDDEL: Bestemt, enkel kalkulator (kode C) Ei valgfri standard formelsamling DET TEKNISK-NATURVITENSKAPELIGE FAKULTET EKSAMEN I: BIT60 Fluidmekanikk DATO: 0. desember 006 TID FOR EKSAMEN: kl. 09-13 (4 timar) TILLATTE HJELPEMIDDEL: Bestemt, enkel kalkulator (kode C) Ei valgfri standard

Detaljer

EKSAMEN I FAG SIF 4002 FYSIKK Mandag 7. mai 2001 Tid: Sensur: Uke 22

EKSAMEN I FAG SIF 4002 FYSIKK Mandag 7. mai 2001 Tid: Sensur: Uke 22 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK [bokmål] Faglig kontakt under eksamen: Navn: Helge Redvald Skullerud Tlf: 73593625 EKSAMEN I FAG SIF 4002 FYSIKK Mandag 7 mai 2001 Tid:

Detaljer

Foreta omskrivninger av den stedsderiverte av et produkt som forekommer i den vanlige formen:

Foreta omskrivninger av den stedsderiverte av et produkt som forekommer i den vanlige formen: . 2 65 Løsning E.1 Foreta omskrivninger av den stedsderiverte av et produkt som forekommer i den vanlige formen: Dette er den søkte formen. " Løsning E.2 %'& Legg en -akse i # s retning, dvs. # () -,&

Detaljer

Oppgave 1. Skisse til løsning Eksamen i Reservoarteknikk 1 4. juni, a) p c = 2σ/R hvor R = R 1 = R 2.

Oppgave 1. Skisse til løsning Eksamen i Reservoarteknikk 1 4. juni, a) p c = 2σ/R hvor R = R 1 = R 2. Skisse til løsning Eksamen i Reservoarteknikk 1 4. juni, 003 Oppgave 1 a) p c = σ/r hvor R = R 1 = R. b) Arbeidet utført ved volumutvidelsen er netto kraft multiplisert med veien kraften har virket. Kraften

Detaljer

F. Impulser og krefter i fluidstrøm

F. Impulser og krefter i fluidstrøm F. Impulser og krefter i fluidstrøm Oppgave F.1 Ved laminær strøm gjennom et sylindrisk tverrsnitt er hastighetsprofilet parabolsk, u(r) = u m (1 (r/r) 2 ) hvor u max er maksimalhastigheten ved aksen,

Detaljer

EKSAMEN I: BIT260 Fluidmekanikk DATO: 26. august TILLATTE HJELPEMIDDEL: Bestemt, enkel kalkulator (kode C) Ei valgfri standard formelsamling

EKSAMEN I: BIT260 Fluidmekanikk DATO: 26. august TILLATTE HJELPEMIDDEL: Bestemt, enkel kalkulator (kode C) Ei valgfri standard formelsamling DET TEKNISK-NATURVITENSKAPELIGE FAKULTET EKSAMEN I: BIT60 Fluidmekanikk DATO: 6. august 010 TID FOR EKSAMEN: kl. 09-13 (4 timer) TILLATTE HJELPEMIDDEL: Bestemt, enkel kalkulator (kode C) Ei valgfri standard

Detaljer

Øving 2: Krefter. Newtons lover. Dreiemoment.

Øving 2: Krefter. Newtons lover. Dreiemoment. Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 2007. Veiledning: 15. september kl 12:15 15:00. Øving 2: Krefter. Newtons lover. Dreiemoment. Oppgave 1 a) Du trekker en kloss bortover et friksjonsløst

Detaljer

Feltlikninger for fluider

Feltlikninger for fluider Kapittel 10 Feltlikninger for fluider Oppgave 1 Gitt et to-dimensjonalt strømfelt v = ωyi+ωxj. a) Den konvektive akselerasjonen for et to-dimensjonalt felt er gitt ved b) Bevegelseslikninga (Euler-likninga):

Detaljer

I. Stasjonær strøm i rør

I. Stasjonær strøm i rør I. Stasjonær strøm i rør Oppgave I.1 En olje med kinematisk viskositet 0.135 St flyter gjennom et rør med diameter 15 cm. Hva er (omtrentlig) øvre grense for strømhastigheten hvis strømmen skal være laminær?

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: GEF1 Eksamensdag: 3. November 9 Tid for eksamen: 9.-1. Oppgavesettet er på 5 sider Vedlegg: Ingen Tillatte hjelpemidler:

Detaljer

Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt.

Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 27. Veiledning: 29. september kl 12:15 15:. Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Oppgave 1 a) C. Elektrisk

Detaljer

Foreløpig løsningsforslag til eksamen i fag TEP4110 Fluidmekanikk

Foreløpig løsningsforslag til eksamen i fag TEP4110 Fluidmekanikk NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET SIDE AV 9 Foreløpig løsningsforslag til eksamen i fag TEP40 Fluidmekanikk Torsdag 6. desember 0 Ligningsnummer i løsningsforslaget henviser til læreboken:

Detaljer

p atm ρg +h(t)+0 = p atm dh h = ( r R )2 2gdt dh = ( r T T = (1 1 )( R 2H

p atm ρg +h(t)+0 = p atm dh h = ( r R )2 2gdt dh = ( r T T = (1 1 )( R 2H 49 Løsning D.1 I grensen r R vil synkehastigheten til vannoverflaten være neglisjerbar sammenlignet med V(t), den instantane utløpshastigheten gjennom hullet. Det er egentlig ikke en stasjonær strøm siden

Detaljer

Ukesoppgaver GEF1100

Ukesoppgaver GEF1100 Ukesoppgaver GEF1100 uke 46, 2014 Oppgave 1 Figur 11.2 i læreboka (Atmosphere, Ocean and Climate Dynamics) viser leddene i energibalansen på havoverflaten (likning (11-5) i læreboka). a) Hvilke prosesser

Detaljer

Øving 3. Oppgave 1 (oppvarming med noen enkle oppgaver fra tidligere midtsemesterprøver)

Øving 3. Oppgave 1 (oppvarming med noen enkle oppgaver fra tidligere midtsemesterprøver) Institutt for fysikk, NTNU TFY455/FY003: Elektrisitet og magnetisme Vår 2008 Veiledning: Fredag 25. og mandag 28. januar Innleveringsfrist: Fredag. februar kl 2.00 Øving 3 Oppgave (oppvarming med noen

Detaljer

Hjelpemidler: A - Alle trykte og håndskrevne hjelpemidler tillatt.

Hjelpemidler: A - Alle trykte og håndskrevne hjelpemidler tillatt. NORGES TEKNISK-NATURVITENSKAPLIGE UNIVERSITET, INSTITUTT FOR VASSBYGGING Side av Faglig kontakt under eksamen: Prof. Geir Moe, Tel. 79 467 (.6$0(,(0(6,%+

Detaljer

Faglig kontakt under eksamen: Navn: Anne Borg Tlf. 93413 BOKMÅL. EKSAMEN I EMNE TFY4115 Fysikk Elektronikk og Teknisk kybernetikk

Faglig kontakt under eksamen: Navn: Anne Borg Tlf. 93413 BOKMÅL. EKSAMEN I EMNE TFY4115 Fysikk Elektronikk og Teknisk kybernetikk Side 1 av 10 NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Navn: Anne Borg Tlf. 93413 BOKMÅL EKSAMEN I EMNE TFY4115 Fysikk Elektronikk og Teknisk kybernetikk

Detaljer

KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2012 Løsninger

KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2012 Løsninger Side 1 av 10 KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2012 Løsninger Oppgave 1 a) Et forsøk kan gjennomføres som vist i figur 1. Røret er isolert, dvs. at det ikke tilføres varme

Detaljer

Oppgavesettet har 10 punkter 1, 2ab, 3ab, 4ab, 5abc som teller likt ved bedømmelsen.

Oppgavesettet har 10 punkter 1, 2ab, 3ab, 4ab, 5abc som teller likt ved bedømmelsen. NTNU Institutt for matematiske fag SIF55 Matematikk 2 4. mai 999 Løsningsforslag Oppgavesettet har punkter, 2ab, 3ab, 4ab, 5abc som teller likt ved bedømmelsen. i alternativ (3, ii alternativ (2. 2 a For

Detaljer

Løsningsforslag Øving 6

Løsningsforslag Øving 6 Løsningsforslag Øving 6 TEP4100 Fluidmekanikk, Aumn 016 Oppgave 4-109 Løsning Vi skal bestemme om en strømning er virvlingsfri, hvis den ikke er det skal vi finne θ-komponenten av virvlingen. Antagelser

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME Mandag 4. desember 2006 kl

LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME Mandag 4. desember 2006 kl NOGES TEKNISK- NATUVITENSKAPEIGE UNIVESITET INSTITUTT FO FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 ØSNINGSFOSAG TI EKSAMEN I FY1003 EEKTISITET OG MAGNETISME

Detaljer

EKSAMEN I: BIT260 Fluidmekanikk DATO: 15. mai TILLATTE HJELPEMIDDEL: Bestemt, enkel kalkulator (kode C) Én valgfri standard formelsamling

EKSAMEN I: BIT260 Fluidmekanikk DATO: 15. mai TILLATTE HJELPEMIDDEL: Bestemt, enkel kalkulator (kode C) Én valgfri standard formelsamling DET TEKNISK-NATURVITENSKAPELIGE FAKULTET EKSAMEN I: BIT260 Fluidmekanikk DATO: 15. mai 2007 TID FOR EKSAMEN: kl. 09-13 (4 timer) TILLATTE HJELPEMIDDEL: Bestemt, enkel kalkulator (kode C) Én valgfri standard

Detaljer

Theory Norwegian (Norway) Vær vennlig å lese de generelle instruksjonene i den separate konvolutten før du begynner på dette problemet.

Theory Norwegian (Norway) Vær vennlig å lese de generelle instruksjonene i den separate konvolutten før du begynner på dette problemet. Q1-1 To problemer i mekanikk (10 poeng) Vær vennlig å lese de generelle instruksjonene i den separate konvolutten før du begynner på dette problemet. Del A. Den gjemte disken (3,5 poeng) Vi ser på en massiv

Detaljer

Kul geometri - overflateareal og volum av kuler

Kul geometri - overflateareal og volum av kuler Kul geometri - overflateareal og volum av kuler Helmer Aslaksen Institutt for lærerutdanning og skoleforskning/matematisk institutt Universitetet i Oslo helmer.aslaksen@gmail.com www.math.nus.edu.sg/aslaksen/

Detaljer

Løsningsforslag til eksamen i FYS1000, 16/8 2013

Løsningsforslag til eksamen i FYS1000, 16/8 2013 Løsningsforslag til eksamen i FYS1000, 16/8 2013 Oppgave 1 a) Totalrefleksjon oppstår når lys går fra et medium med større brytningsindeks til et med mindre. Da vil brytningsvinkelen være større enn innfallsvinkelen,

Detaljer

TFY4106 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 4. m 1 gl = 1 2 m 1v 2 1. = v 1 = 2gL

TFY4106 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 4. m 1 gl = 1 2 m 1v 2 1. = v 1 = 2gL TFY46 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 4. Oppgave. a) Hastigheten v til kule like før kollisjonen finnes lettest ved å bruke energibevarelse: Riktig svar: C. m gl = 2 m v 2

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 6 juni 2017 Tid for eksamen: 14:30 18:30 (4 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark Tillatte

Detaljer

Forelesning 23 den 18/4 2017

Forelesning 23 den 18/4 2017 Forelesning 3 den 18/4 017 Eksperiment Toricelli hvor fort renner vann ut av et kar? Vi navngir eksperimentet til ære for Evangelista Torricelli (1608 1647) som oppdaget Toricellis lov i 1643. Toricelli

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Midtveisksamen i: FYS1000 Eksamensdag: 27. mars 2014 Tid for eksamen: 15.00-17.00, 2 timer Oppgavesettet er på 6 sider Vedlegg: Formelark

Detaljer

ELEVARK. ...om å tømme en beholder for vann. Innledning. Utarbeidet av Skolelaboratoriet ved NTNU - NKR

ELEVARK. ...om å tømme en beholder for vann. Innledning. Utarbeidet av Skolelaboratoriet ved NTNU - NKR ELEVARK...om å tømme en beholder for vann Innledning Problemstilling: Vi har et sylindrisk beger med et sirkulært hull nær bunnen. Vi ønsker å bestemme sammenhengen mellom væskehøyden som funksjon av tiden

Detaljer

Løsningsforslag til eksamen i FYS1000, 13/6 2016

Løsningsforslag til eksamen i FYS1000, 13/6 2016 Løsningsforslag til eksamen i FYS1000, 13/6 2016 Oppgave 1 a) Sola skinner både på snøen og på treet. Men snøen er hvit og reflekterer det meste av sollyset. Derfor varmes den ikke så mye opp. Treet er

Detaljer

GEF1100: kapittel 6. Ada Gjermundsen. September 2017

GEF1100: kapittel 6. Ada Gjermundsen. September 2017 GEF1100: kapittel 6 Ada Gjermundsen September 2017 Hvem er jeg? (forha pentligvis snart Dr.) Ada Gjermundsen ada.gjermundsen@geo.uio.no adagjermundsen@gmail.com Studerer varmetransport i atmosfære og hav

Detaljer

Løsningsforslag kontinuasjonseksamen FYS1000 H11 = 43, 6. sin 90 sin 43, 6

Løsningsforslag kontinuasjonseksamen FYS1000 H11 = 43, 6. sin 90 sin 43, 6 Løsningsforslag kontinuasjonseksamen YS1 H11 Oppgae 1 Sar KORTpå disse oppgaene: a) Totalrefleksjon: Når lyset inn mot en flate kommer i en slik inkel at ingenting blir brutt og alt blir reflektert. Kriteriet

Detaljer

Fakultet for teknologi, kunst og design Teknologiske fag. Eksamen i: Fysikk for tretermin (FO911A)

Fakultet for teknologi, kunst og design Teknologiske fag. Eksamen i: Fysikk for tretermin (FO911A) Fakultet for teknologi, kunst og design Teknologiske fag Eksamen i: Fysikk for tretermin (FO911A) Målform: Bokmål Dato: 26/11-2014 Tid: 5 timer Antall sider (inkl. forside): 5 Antall oppgaver: 5 Tillatte

Detaljer

TMA4105 Matematikk 2 Vår 2014

TMA4105 Matematikk 2 Vår 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4105 Matematikk 2 Vår 2014 Løsningsforslag Øving 7 10.4.7 Vi skal finne likningen til et plan gitt to punkter P = (1, 1,

Detaljer

Kul geometri - overflateareal og volum av kuler

Kul geometri - overflateareal og volum av kuler Kul geometri - overflateareal og volum av kuler Helmer Aslaksen Institutt for lærerutdanning og skoleforskning/matematisk institutt Universitetet i Oslo helmer.aslaksen@gmail.com www.math.nus.edu.sg/aslaksen/

Detaljer

Eksamen i emnet SIB 5025 Hydromekanikk 25 nov b) Bestem størrelsen, retningen og angrepspunktet til resultantkrafta,.

Eksamen i emnet SIB 5025 Hydromekanikk 25 nov b) Bestem størrelsen, retningen og angrepspunktet til resultantkrafta,. Eksamen i emnet SIB 55 Hydromekanikk 5 nov 1999 Oppgave 1. Husk å angi benevninger ved tallsvar. ρ θ I en ny svømmehall er det foreslått montert et vindu formet som en halvsylinder med radius og bredde.

Detaljer

GEF Løsningsforslag til oppgaver fra kapittel 9

GEF Løsningsforslag til oppgaver fra kapittel 9 GEF1100 - Løsningsforslag til oppgaver fra kapittel 9 i.h.h.karset@geo.uio.no Oppgave 1 a) Når vi studerer havet, jobber vi ofte med følgende variable: tetthet, trykk, høyden til havoverflaten, temperatur,

Detaljer

1 β = AV 2 u 2 da I 2 I 1 = 1 V = 4 3. 2g V 2 2 +h 2. 2g h 2 h 1 +h 2 2g h 1 V 1 = V 2 =

1 β = AV 2 u 2 da I 2 I 1 = 1 V = 4 3. 2g V 2 2 +h 2. 2g h 2 h 1 +h 2 2g h 1 V 1 = V 2 = 83 Løsning F. Referer til løsningen av Oppgave D.3: Vi beregnet der integralet I N = ur N da = un m R N + Med denne definisjonen, samt V = u m / se løsning D.3, blir β = AV u da som vi ble bedt om å vise.

Detaljer

Løsningsforslag til øving 9

Løsningsforslag til øving 9 NTNU Institutt for Fysikk Løsningsforslag til øving 9 FY0001 Brukerkurs i fysikk Oppgave 1 a) Etter første refleksjon blir vinklene (i forhold til positiv x-retning) henholdsvis 135 og 157, 5, og etter

Detaljer

ResTek1 Løsning Øving 5

ResTek1 Løsning Øving 5 ResTek1 Løsning Øving 5 Ogave 1 Bruker at cr = h(ρ w ρ o ) 62:4=144, når er i si, h ft, ρ g/cm 3,ogat cl = σ L =σ R cr, som gir at cl = 0:188h. Dette gir følgende tabell, 1000 md røve 200 md røve h[ft]

Detaljer

(samme dreiemoment fra sider som støter opp til en kant). Formen må være en generalisering av definisjonsligningen

(samme dreiemoment fra sider som støter opp til en kant). Formen må være en generalisering av definisjonsligningen & 99 Løsning G.1 En rigorøs utledning som må baseres på begreper fra tensoranalyse skal vi ikke kaste oss ut i. En standard utledning på intuitivt plan kan gå som følger: Definer spenningskomponent i -retning

Detaljer

Fasit for Midtvegsprøva i Fys1000 V 2009

Fasit for Midtvegsprøva i Fys1000 V 2009 Fasit for Midtvegsprøva i Fys000 V 2009 Oppgave a) På toppen av banen er horisontalkomponeneten av farta v y = 0, og horisontalkomponenten (konstant lik) v x = v 0x = v o cosθ 0 = v 0 /2. Stigehøgda h

Detaljer

T 1 = (m k + m s ) a (1)

T 1 = (m k + m s ) a (1) Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 2008. Løsningsforslag til Øving 2. Oppgave 1 a) Vi ser på et system bestående av en kloss på et horisontalt underlag og en snor med masse. Vi

Detaljer

Løsningsforslag til øving 13

Løsningsforslag til øving 13 Institutt for fysikk, NTNU TFY4155/FY1003 Elektromagnetisme Vår 2009 Løsningsforslag til øving 13 Oppgave 1 a) Sløyfas magnetiske dipolmoment: m = IA ˆn = Ia 2 ˆn Sløyfa består av 4 rette ledere med lengde

Detaljer

Fysikkolympiaden Norsk finale 2017

Fysikkolympiaden Norsk finale 2017 Norsk fysikklærerforening Fysikkolympiaden Norsk finale 7 Fredag. mars kl. 8. til. Hjelpemidler: abell/formelsamling, lommeregner og utdelt formelark Oppgavesettet består av 6 oppgaver på sider Lykke til!

Detaljer

EKSAMEN I FAG SIO 1043 STRØMNINGSLÆRE Lørdag 1. juni 2002 Tid: kl. 09:00 15:00

EKSAMEN I FAG SIO 1043 STRØMNINGSLÆRE Lørdag 1. juni 2002 Tid: kl. 09:00 15:00 Side 1 av 10 Norges teknisk natrvitenskapelige niversitet NTNU Fakltet for Ingeniørvitenskap og teknologi Instittt for Mekanikk, Termo og Fliddynamikk Faglig kontakt nder eksamen: Per-Åge Krogstad, tlf.:

Detaljer

LØSNINGSFORSLAG, KAPITTEL 4

LØSNINGSFORSLAG, KAPITTEL 4 ØSNINGSFORSAG, KAPITTE 4 REVIEW QUESTIONS: 1 va er partialtrykk? En bestemt gass sitt partialtrykk er den delen av det totale atmosfæretrykket som denne gassen utøver. Totaltrykk = summen av alle gassenes

Detaljer

METEROLOGI= Læren om bevegelsene og forandringene i atomosfæren (atmosfæren er lufthavet rundt jorden)

METEROLOGI= Læren om bevegelsene og forandringene i atomosfæren (atmosfæren er lufthavet rundt jorden) METEROLOGI= Læren om bevegelsene og forandringene i atomosfæren (atmosfæren er lufthavet rundt jorden) I bunn og grunn Bli kjent med de store linjene i boka METEROLOGI I PRAKSIS for oss hobbyflygere! Spørsmål

Detaljer

OVERFLATE FRA A TIL Å

OVERFLATE FRA A TIL Å OVERFLATE FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til overflate... 2 2 Grunnleggende om overflate.. 2 3 Overflate til:.. 3 3 3a Kube. 3 3b Rett Prisme... 5 3c

Detaljer

Eksamen i FYS-0100. Oppgavesettet, inklusiv ark med formler, er på 8 sider, inkludert forside. FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI

Eksamen i FYS-0100. Oppgavesettet, inklusiv ark med formler, er på 8 sider, inkludert forside. FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI Eksamen i FYS-0100 Eksamen i : Fys-0100 Generell fysikk Eksamensdag : 23. februar, 2012 Tid for eksamen : kl. 9.00-13.00 Sted : Administrasjonsbygget, Rom B154 Hjelpemidler : K. Rottmann: Matematisk Formelsamling,

Detaljer

Løsningsforslag for eksamen 5. januar 2009

Løsningsforslag for eksamen 5. januar 2009 Løsningsforslag for eksamen 5. januar 2009 Oppgave 1 Figuren til høyre viser en hengebroliknende konstruksjon, med et tau mellom C og E med egen tyngde g = 0,5 kn/m og en punktlast P = 75 kn som angriper

Detaljer

1 MAT100 Obligatorisk innlevering 1. 1 Regn ut i) iii) ii) Regn ut i) ii)

1 MAT100 Obligatorisk innlevering 1. 1 Regn ut i) iii) ii) Regn ut i) ii) 1 MAT1 Obligatorisk innlevering 1 1 Regn ut 3 7 + 1 2. i) 13 14 ii) 11 14 iii) 9 14 2 Regn ut 8 9 + 3 4. i) 57 36 ii) 59 36 iii) 61 36 3 Regn ut 1 4 + 1 8. i) 3 16 ii) 3 8 iii) 5 8 4 Regn ut 1 8 + 1 16.

Detaljer

Regneøving 9. (Veiledning: Fredag 18. mars kl og mandag 21. mars kl )

Regneøving 9. (Veiledning: Fredag 18. mars kl og mandag 21. mars kl ) Institutt for fysikk, NTNU TFY4165 og FY1005 Termisk fysikk, våren 011. Regneøving 9. (Veiledning: Fredag 18. mars kl. 1.15-14.00 og mandag 1. mars kl. 17.15-19.00.) Oppgave 1 Damptrykket for vann ved

Detaljer

Sammendrag, forelesning onsdag 17/ Likevektsbetingelser og massevirkningsloven

Sammendrag, forelesning onsdag 17/ Likevektsbetingelser og massevirkningsloven Sammendrag, forelesning onsdag 17/10 01 Kjemisk likevekt og minimumspunkt for G Reaksjonsligningen for en kjemisk reaksjon kan generelt skrives: ν 1 X 1 + ν X +... ν 3 X 3 + ν 4 X 4 +... 1) Utgangsstoffer

Detaljer

Integralsatser: Green, Stokes og Gauss

Integralsatser: Green, Stokes og Gauss Kapittel 7 Integralsatser: Green, tokes og Gauss Oppgave 1 Vi har gitt strømfeltet v = ωyi+ωxj der ω er en konstant. a) trømfarten: v = ω 2 y 2 +ω 2 x 2 = ωr, r = x 2 +y 2. Langs sirkelen r 2 = x 2 +y

Detaljer

Massegeometri. Vi skal her se på noen begreper og utregninger som vi får stor bruk for videre i mekanikken.

Massegeometri. Vi skal her se på noen begreper og utregninger som vi får stor bruk for videre i mekanikken. Massegeometri Vi skal her se på noen begreper og utregninger som vi får stor bruk for videre i mekanikken. Tyngdepunktets plassering i ulike legemer og flater. Viktig for å kunne regne ut andre størrelser.

Detaljer

FAG SIB 5025 HYDROMEKANIKK. Laboratorieøving nr.1 Oppgavetekst

FAG SIB 5025 HYDROMEKANIKK. Laboratorieøving nr.1 Oppgavetekst FAG SIB 505 HYDROMEKANIKK Laboratorieøving nr.1 Oppgavetekst Gruppe Dag Navn Navn Navn Navn Navn FAG SIB 505 Hydromekanikk, Laboratorieøving 1, Oppgavetekst 1 Innholdsfortegnelse 1. Hydrostatikk trykk

Detaljer

Impuls, bevegelsesmengde, energi. Bevaringslover.

Impuls, bevegelsesmengde, energi. Bevaringslover. Impuls, bevegelsesmengde, energi. Bevaringslover. Kathrin Flisnes 19. september 2007 Bevegelsesmengde ( massefart ) Når et legeme har masse og hastighet, viser det seg fornuftig å definere legemets bevegelsesmengde

Detaljer

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 10.

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 10. TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 015. Løsningsforslag til øving 10. Oppgave A B C D 1 x x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 x 11 x 1 x 13 x 14 x 15 x 16 x 17 x 18 x 9 x 0 x 1) Glass-staven

Detaljer

GEF Løsningsforslag til oppgaver fra kapittel 6

GEF Løsningsforslag til oppgaver fra kapittel 6 GEF1100 - Løsningsforslag til oppgaver fra kapittel 6 i.h.h.karset@geo.uio.no Oppgave 1 a) Hva er forskjellen mellom Lagrangesk og Eulersk representasjon av en væskebevegelse? Gi et eksempel på hver av

Detaljer

Oppgave 1. Svaralternativer. Oppgave 2. Svaralternativer

Oppgave 1. Svaralternativer. Oppgave 2. Svaralternativer Oppgave 1 To biljardkuler med samme masse m kolliderer elastisk. Den ene kulen er blå og ligger i ro før kollisjonen, den andre er rød og beveger seg med en fart v 0,r = 5 m s mot sentrum av den blå kula

Detaljer

EKSAMENSOPPGAVE. Eksamen i: FYS 0100 Generell fysikk Dato: Fredag 13.des 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget: Aud.

EKSAMENSOPPGAVE. Eksamen i: FYS 0100 Generell fysikk Dato: Fredag 13.des 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget: Aud. EKSAMENSOPPGAVE Eksamen i: FYS 0100 Generell fysikk Dato: Fredag 13.des 013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget: Aud.max og B154 Tillatte hjelpemidler: Kalkulator med tomt dataminne Rottmann:

Detaljer

Anbefalte oppgaver - Løsningsforslag

Anbefalte oppgaver - Løsningsforslag TMA405 Matematikk Anbefalte oppgaver - Løsningsforslag Uke 6 3..9: Vi starter med å finne de kritiske punktene. De deriverte blir T x (x, y) = ( x xy)e x y T y (x, y) = ( y xy)e x y, slik at de kritiske

Detaljer

Mandag qq 4πε 0 r 2 ˆr F = Elektrisk felt fra punktladning q (følger av definisjonen kraft pr ladningsenhet ): F dl

Mandag qq 4πε 0 r 2 ˆr F = Elektrisk felt fra punktladning q (følger av definisjonen kraft pr ladningsenhet ): F dl Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke 6 Mandag 05.02.07 Oppsummering til nå, og møte med Maxwell-ligning nr 1 Coulombs lov (empirisk lov for kraft mellom to

Detaljer

EKSAMEN 07HBINEA, 07HBINET, 07HBINDA, 07HBINDT

EKSAMEN 07HBINEA, 07HBINET, 07HBINDA, 07HBINDT KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Fysikk REA2041 EKSAMENSDATO: 14. mai 2008 KLASSE: 07HBINBPL, 07HBINBLAN, 0HBINBK, 07HBINEA, 07HBINET, 07HBINDA, 07HBINDT TID: kl. 9.00 13.00 FAGLÆRER: Are Strandlie

Detaljer

- trykk-krefter. µ. u u u x. u venstre side. Det siste forsvinner fordi vi nettopp har vist x. r, der A er en integrasjonskonstant.

- trykk-krefter. µ. u u u x. u venstre side. Det siste forsvinner fordi vi nettopp har vist x. r, der A er en integrasjonskonstant. Løsningsforslag, MPT 1 Fluiddynamikk, vår 7 Oppgave 1 1. Bevarelse av impuls, massefart,..; k ma. Venstre side er ma og høyre side kreftene (pr. volumenhet). Substansielt deriverte: Akselerasjon av fluidpartikkel,

Detaljer

NORGES TEKNISK- SIDE 1 AV 3 NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KJEMISK PROSESSTEKNOLOGI EKSAMEN I FAG TKP4100 STRØMNING OG VARMETRANSPORT

NORGES TEKNISK- SIDE 1 AV 3 NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KJEMISK PROSESSTEKNOLOGI EKSAMEN I FAG TKP4100 STRØMNING OG VARMETRANSPORT NORGES TEKNISK- SIDE AV 3 Faglig kontakt under eksamen: Reidar Kristoffersen, tlf: 739367 EKSAMEN I FAG TK400 STRØMNING OG VARMETRANSORT Torsdag 0 juni 00 Tid: 0900-300 C: Innføring i informasjonsteknologi:

Detaljer

Språkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.: (direkte) / (mobil) / (sekretær)

Språkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.: (direkte) / (mobil) / (sekretær) Side 1 av 9 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK Faglig kontakt under eksamen: Språkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk

Detaljer

KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2011 Løsninger

KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2011 Løsninger Side 1 av 11 KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2011 Løsninger Oppgave 1 a) Gibbs energi for et system er definert som og entalpien er definert som Det gir En liten endring

Detaljer

EKSAMENSOPPGAVE I FYS-1001

EKSAMENSOPPGAVE I FYS-1001 side 1 av 6 sider FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI EKSAMENSOPPGAVE I FYS-1001 Eksamen i : Fys-1001 Mekanikk Eksamensdato : 06.12.2012 Tid : 09.00-13.00 Sted : Åsgårdvegen 9 Tillatte hjelpemidler

Detaljer

EKSAMENSOPPGA VE. Fagnr: FO 44JA Dato: Antall oppgaver:

EKSAMENSOPPGA VE. Fagnr: FO 44JA Dato: Antall oppgaver: Høgsko/l'n imm m Avdeling for ingeniørutdanning EKSAMENSOPPGA VE Fag: FYSIKK / TERMODYNAMIKK Gruppe(r) KA,3K Eksamensoppgaven består av Tillatte hjelpemidler: Antall sider inkl forside: 7 Fagnr: FO 44JA

Detaljer

Løsningsforslag TEP 4110 FLUIDMEKANIKK 18.desember ρ = = = m / s m / s 0.1

Løsningsforslag TEP 4110 FLUIDMEKANIKK 18.desember ρ = = = m / s m / s 0.1 Løsningsfoslag TEP 40 FLUIDMEKNIKK 8.desembe 007 Oppgave a) Foskjellen i vekt e oppdiftskaften på kula nå den e neddykket i olje (oppdiften i luft neglisjees). Oppdift =ρ Volum g olje π =ρvann SGolje d

Detaljer

Likevekt STATISK LIKEVEKT. Når et legeme er i ro, sier vi at det er i statisk likevekt.

Likevekt STATISK LIKEVEKT. Når et legeme er i ro, sier vi at det er i statisk likevekt. Likevekt STATISK LIKEVEKT Når et legeme er i ro, sier vi at det er i statisk likevekt. Et legeme beveger seg i den retningen resultanten virker. Vi kan sette opp den første betingelsen for at et legeme

Detaljer

To sider med formler blir delt ut i eksamenslokalet. Denne formelsamlingen finnes også på første side i oppgavesettet.

To sider med formler blir delt ut i eksamenslokalet. Denne formelsamlingen finnes også på første side i oppgavesettet. Forside Midtveiseksamen i FYS 1120 Elektromagnetisme Torsdag 12. oktober kl. 09:00-12:00 (3 timer) Alle 18 oppgaver skal besvares. Lik vekt på alle oppgavene. Ikke minuspoeng for galt svar. Maksimum poengsum

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4 Matematikk Høst 4 Løsningsforslag Øving 5.7.4 Vi observerer at både y = cos πx 4 og y = x er like funksjoner. Det vil si

Detaljer

Kurve-, flate- og volumintegraler, beregning av trykkraft

Kurve-, flate- og volumintegraler, beregning av trykkraft Kapittel 6 Kurve-, flate- og volumintegraler, beregning av trykkraft Oppgave 1 Vi skal regne ut kurveintegralet λ v dr langs kurven λ: y x3 når 1 x 2 og v xyi+x 2 j. Vi kan parametrisere med x som parameter,

Detaljer