Resultanten til krefter

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Resultanten til krefter"

Transkript

1 KRAFTBEGREPET Resultanten til krefter En kraft er en vektor. Kraften har måltall (størrelse), enhet(n) og retning (horisontalt mot høyre) Kraften virker langs en rett linje, kraftens angrepslinje Punktet kraften virker eller angriper i kalles kraftens angrepspunkt Når kraften skyver inn mot angrepspunktet skyvekraft Når kraften drar i angrepspunktet drakraft side 1

2 Eksempel To like tunge personer står i ro på en helt glatt isflate. Den ene personen skyver på den andre med en horisontal kraft. begge personene glir fra hverandre Når den ene personen påvirker den andre med en kraft, vil den andre automatisk påvirke den første med en like stor og motsatt rettet kraft. side 2

3 Eksempel En person med tyngde 700N står på et golv. Personen påvirker golvet med en kraft på 700N. Golvet påvirker personen med en like stor og motsatt rettet kraft. De to kreftene ligger alltid på samme angrepslinje. Regel (vekselvirkningsloven): Når et legeme A påvirker et annet legeme B med en kraft, vil B påvirke A med en like stor og motsatt rettet kraft langs samme angrepslinje. side 3

4 Legemet som forårsaker kraften yter en aksjonskraft Det andre legemet svarer med en reaksjonskraft aksjonskraft = reaksjonskraft Legemene som påvirker hverandre trenger ikke å være fysisk nær hverandre Jorda og månen påvirker (tiltrekker) hverandre med like store og motsatt rettete krefter Hva som er aksjonskraft og reaksjonskraft er umulig å si og har her ingen betydning Eksempel Vi binder sammen to personer på isen De greier ikke lenger å få til noen bevegelse uansett hvor store krefter de bruker på hverandre De to personene må nå regnes som ett legeme Regel: Et legeme kan ikke påvirke seg selv med en ytre kraft. Krefter som påvirker et legeme, kommer alltid fra andre legemer. Her fins det også indre krefter i legemet Disse kreftene kan forårsake for eksempel bruddfare og bøying side 4

5 Tenk deg en lett papplate som ligger på et bord Vi setter på to krefter i platen som vist i a) Platen beveger seg omtrent som pilen viser For at platen skal bli liggende i ro, må de to kreftene være motsatt rettet og ligge på samme angrepslinje som i b) Hvis vi måler de to kreftene med fjærvekter vil de være like store Når legemet ligger i ro, sier vi at det er i likevekt Regel: Dersom to krefter skal holde et legeme i likevekt, må kreftene være like store, motsatt rettet og ligge på samme angrepslinje. Når to krefter holder et legeme i likevekt kan vi flytte en eller begge kreftene langs angrepslinjen uten at likevekten blir forstyrret Kreftene kan være dra- eller skyvekrefter Regel: Vi kan flytte en kraft fritt langs kraftens angrepslinje side 5

6 STATISK MOMENT Når vi trekker til en mutter på en motorblokk, bruker vi gjerne en momentnøkkel Hvis nøkkelens arm l = 0,5m og kraft F = 100 trekker til med et moment: M = F l = 100N 0,5m = 50Nm (newtonmeter) I statikken bruker vi begrepet statisk moment Definisjon: Statisk moment til en kraft om et fast omdreiningspunkt (momentpunkt) er produktet av kraften og kraftens arm (momentarmen) om punktet Kraften trenger ikke å bevege seg eller legemet å dreie om omdreiningspunktet Momentarmen, a, står alltid vinkelrett på kraftretningen Momentet prøver å dreie legemet enten med eller mot urviseren Hvis vi velger å kalle kalle dreieretningen med urviseren for positiv, vil et positivt moment virke med urviseren og et negativt mot urviseren side 6

7 GRAFISK LØSNING Ved grafisk løsning bruker vi en grafisk konstruksjon til å finne løsningen. Dette er gjerne den enkleste måten å løse statikkoppgaver på. I tillegg danner den grafiske løsningen ofte grunnlaget for en analytisk løsning, det vil si utregning. Ved grafisk løsning må vi vanligvis tegne figuren i to samtidige målestokker, en kraftmålestokk og en lengdemålestokk. Grafisk løsning vil ikke bli behandlet her. side 7

8 ANALYTTISK LØSNING Analyttisk løsning er å løse oppgave med regning. Vi trenger da et visst matematisk grunnlag i trigonometri. Vi må vite hvordan vi finner sinus, cosinus og tangens til vinkler i første kvadrant, og tilsvarende hvordan vi finner de inverse trigonometriske verdiene. I tillegg er det viktig å kjenne til det rettvinklete koordinatsystemet med x-akse og y-akse. Grunnlag Kraften F danner en vinkel α F med den horisontale x-aksen. Denne kraften skal dekomponeres i x-retningen F x og i y-retningen F y. Figuren viser Grafisk løsning hvor det er tegnet et parallellogram (rektangel) som består av to like, rettvinklete trekanter. Vi ser på den nederste trekanten og får vi det trigonometriske forholdet: Ligningene kan uttrykkes i en allmenn regel: side 8

9 Trekanten gir også det trigonometriske forholdet: Etter den pytagoreiske læresetningen: Uttrykkene gjelder allment. Kan brukes dem til å finne verdien og retningen til en kraft der vi kjenner x- og y-komponentene: Regel: Når vi kjenner x- og y-komponentene til en kraft, kan vi finne verdien av kraften etter formelen: Vinkelen mellom kraften og x-aksen følger av formelen: side 9

10 Eksempel 1 Vi skal dekomponere kraften F = 4kN. Kraften danner en vinkel på 30 0 med x-aksen. Siden kraften peker oppover mot høyre, vil F y peke oppover og F x peke mot høyre. Dersom vi hadde kjent verdiene av F y og F x, kunne vi gitt motsatt vei og funnet F og α F : side 10

11 Eksempel 2 Vi skal nå dekomponere kraften F = 14kN. Kraften danner 20 0 med x-aksen. Siden kraften peker nedover mot venstre, vil F y peke nedover og F x peke mot venstre. Vi bryr oss ikke om å definere positiv og negativ retning på x- og y-aksene. Dersom vi hadde kjent verdiene av F y og F x, kunne vi gitt motsatt vei og funnet F og α F : side 11

12 Resultanten til krefter som angriper i samme punkt To krefter, F 1 og F 2 angriper i samme punkt resultanten angriper da i dette punktet Oppgaven er derfor løst når vi finner verdien og retningen til resultanten. Grafisk kan vi løse oppgaven med en hjelpefigur, b) side 12

13 For å løse oppgaven analytisk, tar vi utgangspunkt i den grafiske løsningen. Vi dekomponer F 1 i F 1x og F 1y Vi dekomponer F 2 i F 2x og F 2y F 2x finner vi igjen i tallverdi langs x-aksen til høyre for F 1x F 2y finner vi igjen i tallverdi langs y-aksen over F 1y Vi setter opp resultanten F R med x- og y-komponentene F Rx og F Ry Vi finner disse sammenhengene: Vi kan finne resultantenes x- og y-komponenter, F Rx og F Ry Vi kan si finne verdien og retningen til resultanten etter: side 13

14 Resultanten til krefter som angriper i ulike punkter Viktig matematisk regel som vi får bruk for: Når to vinkler har vinkelbein som står parvis vinkelrett på hverandre, er vinklene like store. side 14

15 For å finne resultanten til krefter som ikke angriper i samme punkt, må vi bruke det statiske momentet. Definisjon: Statisk moment til en kraft om et fast omdreiningspunkt (momentpunkt) er produktet av kraften og kraftens arm (momentarmen) om punktet: M = F a F Momentarmen står alltid vinkelrett på angrepslinja til kraften Vi finner den ved å felle en normal fra punktet ned på angrepslinja. Der statiske momentet om et punkt kan gi dreining med urviseren a) eller mot urviseren b). Hvis angrepslinja til kraften går gjennom momentpunktet c) blir armen lik null og momentet blir lik null, og det gir derfor ingen dreining. Vi må velge positiv dreieretning: med eller mot urviseren. side 15

16 Eksempel 3 Kraft F = 4kN Vi skal finne det statiske momentet til kraften om det nedre, høyre hjørnet, P, og momentarmen a F side 16

17 Statiske momentet om punkt P (definerer positivt moment med urviseren): Vi kan dekomponere en kraft, og komponentene skal ha samme virkning som den kraften de erstatter: Statiske momentet om punkt P med F x og F y blir: Samme statiske momentet Vanligvis er det enklere å ta momentet av x- og y-komponentene i stedet for å ta momentet av kraften direkte. side 17

18 Eksempel 4 Et legeme er påvirket av to krefter, F 1 og F 2. Bestem: - Størrelse og retning på resultantkraften - Statiske momentet om punkt P i nedre, venstre hjørnet. Vi dekomponerer først F 1 og F 2 i x- og y-komponenter: Vi finner så x- og y-komponentene til resultanten: side 18

19 Av dette ser vi at resultanten F R peker skrått oppover mot høyre. Resultanten F R kan erstatte F 1 og F 2 og har samme statiske moment som F 1 og F 2 til sammen om hvilket som helst punkt. Vi skal finne statiske moment om punkt P. Matematisk kan vi uttrykke det slik: Det statiske momentet om P er lik momentet til resultanten om P, og også lik summen av de statiske momentene til alle kraftkomponenter som til sammen utgjør resultanten. Vi kan nå velge om vi vil ta momentet til hver enkelt kraft eller momentet til kraftens x- og y-komponenter. Det siste er ofte det enkleste. Vi definerer positivt moment med urviseren og får dette uttrykket: side 19

20 Vi kan sløyfe momentet til F 2x ettersom kraftens angrepslinje går gjennom momentpunktet P. Momentarmen blir lik null, og momentet blir da lik null. Vi setter inn de kjente verdiene: Det negative fortegnet får vi matematisk fra momentet om P, som blir negativt (-13,50kNm). Momentarmen til F R blir 0,31m. Resultanten skal da gi et moment om punkt P mot urviseren. side 20

21 KRAFTPAR Et kraftpar er to like store og motsatt rettete krefter som ligger på to parallelle angrepslinjer. Fordi kreftene er like store og motsatt rettet blir resultanten lik null. Statiske momentet til kraftparet om momentpunktet P: side 21

2 Resultanten. til krefter

2 Resultanten. til krefter 2 Resultanten til krefter Mål Når du har lest dette kapitlet skal du kunne gjøre greie for angrepslinja og angrepspunktet til en kraft forklare hva vi mener med statisk moment sette sammen krefter grafisk

Detaljer

Likevekt STATISK LIKEVEKT. Når et legeme er i ro, sier vi at det er i statisk likevekt.

Likevekt STATISK LIKEVEKT. Når et legeme er i ro, sier vi at det er i statisk likevekt. Likevekt STATISK LIKEVEKT Når et legeme er i ro, sier vi at det er i statisk likevekt. Et legeme beveger seg i den retningen resultanten virker. Vi kan sette opp den første betingelsen for at et legeme

Detaljer

Statikk. Kraftmoment. F = 0, forblir ikke stolsetet i ro. Det begynner å rotere. Stive legemer

Statikk. Kraftmoment. F = 0, forblir ikke stolsetet i ro. Det begynner å rotere. Stive legemer Statikk Etter Newtons. lov vil et legeme som er i ro, forbli i ro hvis summen av kreftene på legemet er lik null. Det er i hvert fall tilfellet for et punktformet legeme. Men for et legeme med utstrekning

Detaljer

Krefter, Newtons lover, dreiemoment

Krefter, Newtons lover, dreiemoment Krefter, Newtons lover, dreiemoment Tor Nordam 13. september 2007 Krefter er vektorer En ting som beveger seg har en hastighet. Hastighet er en vektor, som vi vanligvis skriver v. Hastighetsvektoren har

Detaljer

Løsningsforslag til test nr. 1 Mekanikk våren 2011

Løsningsforslag til test nr. 1 Mekanikk våren 2011 Løsningsforslag til test nr. 1 Mekanikk våren 2011 Spørsmål 1. V11-Resultant (i kn) - 3 laster på rektangel Legemet på figuren er utsatt for 3 krefter. Kraften på 4 kn er skrå, med retning nedover t.h.

Detaljer

Massegeometri. Vi skal her se på noen begreper og utregninger som vi får stor bruk for videre i mekanikken.

Massegeometri. Vi skal her se på noen begreper og utregninger som vi får stor bruk for videre i mekanikken. Massegeometri Vi skal her se på noen begreper og utregninger som vi får stor bruk for videre i mekanikken. Tyngdepunktets plassering i ulike legemer og flater. Viktig for å kunne regne ut andre størrelser.

Detaljer

Elektrisk og Magnetisk felt

Elektrisk og Magnetisk felt Elektrisk og Magnetisk felt Kjetil Liestøl Nielsen 1 Emner for i dag Coulombs lov Elektrisk felt Ladet partikkel i elektrisk felt Magnetisk felt Magnetisk kraft på elektrisk eladninger Elektromagnetiske

Detaljer

Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt.

Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 27. Veiledning: 29. september kl 12:15 15:. Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Oppgave 1 a) C. Elektrisk

Detaljer

EKSAMEN RF3100 Matematikk og fysikk

EKSAMEN RF3100 Matematikk og fysikk Side 1 av 5 Oppgavesettet består av 5 (fem) sider. EKSAMEN RF3100 Matematikk og fysikk Tillatte hjelpemidler: Kalkulator, vedlagt formelark Varighet: 3 timer Dato: 4.juni 2015 Emneansvarlig: Lars Sydnes

Detaljer

Breivika Tromsø maritime skole

Breivika Tromsø maritime skole Breivika Tromsø maritime skole F-S-Fremdriftsplan 00TM01F - Fysikk på operativt nivå Utgave: 1.01 Skrevet av: Knut Magnus Sandaker Gjelder fra: 18.09.2015 Godkjent av: Jarle Johansen Dok.id.: 2.21.2.4.3.2.6

Detaljer

FY0001 Brukerkurs i fysikk

FY0001 Brukerkurs i fysikk NTNU Institutt for Fysikk Løsningsforslag til øving FY0001 Brukerkurs i fysikk Oppgave 1 a Det er fire krefter som virker på lokomotivet. Først har vi tyngdekraften, som virker nedover, og som er på F

Detaljer

Matematikk og kart et undervisningsopplegg for ungdomstrinnet og videregående skole

Matematikk og kart et undervisningsopplegg for ungdomstrinnet og videregående skole Helge Jellestad, Laksevåg videregående skole Matematikk og kart et undervisningsopplegg for ungdomstrinnet og videregående skole Kart er en grei tilnærming til trigonometri. Avstanden mellom koordinatene

Detaljer

SAMMENDRAG OG FORMLER

SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER Nye Mega 8A Kapittel A GEOMETRI LINJE, LINJESTYKKE OG STRÅLE linje stråle linjestykke VINKLER VINKELBEIN OG TOPPUNKT En vinkel har et toppunkt. Denne vinkelen

Detaljer

Geometri. Mål. for opplæringen er at eleven skal kunne

Geometri. Mål. for opplæringen er at eleven skal kunne 8 1 Geometri Mål for opplæringen er at eleven skal kunne bruke geometri i planet til å analysere og løse sammensatte teoretiske og praktiske problemer knyttet til lengder, vinkler og areal 1.1 Vinkelsummen

Detaljer

T 1 = (m k + m s ) a (1)

T 1 = (m k + m s ) a (1) Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 2008. Løsningsforslag til Øving 2. Oppgave 1 a) Vi ser på et system bestående av en kloss på et horisontalt underlag og en snor med masse. Vi

Detaljer

Hovedpunkter fra pensum Versjon 12/1-11

Hovedpunkter fra pensum Versjon 12/1-11 Hovedpunkter fra pensum Versjon 1/1-11 Kapittel 1 1 N = 1 kg m / s F = m a G = m g Haugan: s. 6 (Kap. 1.3, pkt. ) 1 kn = Tyngden (dvs. tyngdekraften G) fra en mann som veier 100 kg. Kapittel En kraft er

Detaljer

Impuls, bevegelsesmengde, energi. Bevaringslover.

Impuls, bevegelsesmengde, energi. Bevaringslover. Impuls, bevegelsesmengde, energi. Bevaringslover. Kathrin Flisnes 19. september 2007 Bevegelsesmengde ( massefart ) Når et legeme har masse og hastighet, viser det seg fornuftig å definere legemets bevegelsesmengde

Detaljer

Beregning av konstruksjon med G-PROG Ramme

Beregning av konstruksjon med G-PROG Ramme Side 1 av 11 Beregning av konstruksjon med G-PROG Ramme Introduksjon G-Prog Ramme er et beregningsprogram for plane (2-dimensjonale) ramme-strukturer. Beregningene har følgende fremgangsmåte: 1) Man angir

Detaljer

6.201 Badevekt i heisen

6.201 Badevekt i heisen RST 1 6 Kraft og bevegelse 27 6.201 Badevekt i heisen undersøke sammenhengen mellom normalkraften fra underlaget på et legeme og legemets akselerasjon teste hypoteser om kraft og akselerasjon Du skal undersøke

Detaljer

Hvor i all verden? Helge Jellestad

Hvor i all verden? Helge Jellestad Helge Jellestad Hvor i all verden? Vi presenterer her deler av et et undervisningsopplegg for ungdomstrinnet og videregående skole. Hele opplegget kan du lese mer om på www.caspar.no/tangenten/2009/hvor-i-all-verden.pdf.

Detaljer

6: Trigonometri. Formlikhet bør kanskje repeteres. Og Pytagoras læresetning. Se nettsidene! Oppgaver Innhold Dato

6: Trigonometri. Formlikhet bør kanskje repeteres. Og Pytagoras læresetning. Se nettsidene! Oppgaver Innhold Dato Plan for hele året: - Kapittel 7: Mars - Kapittel 8: Mars/april 6: Trigonometri - Repetisjon: April/mai - Økter, prøver, prosjekter: Mai - juni Ordet geometri betyr egentlig jord- (geos) måling (metri).

Detaljer

Newtons lover i én dimensjon

Newtons lover i én dimensjon Newtons lover i én dimensjon 6.01.017 YS-MEK 1110 6.01.017 1 Hva er kraft? Vi har en intuitivt idé om hva kraft er. Vi kan kvantifisere en kraft med elongasjon av en fjær. YS-MEK 1110 6.01.017 Bok på bordet

Detaljer

Eksamen i emnet SIB 5025 Hydromekanikk 25 nov b) Bestem størrelsen, retningen og angrepspunktet til resultantkrafta,.

Eksamen i emnet SIB 5025 Hydromekanikk 25 nov b) Bestem størrelsen, retningen og angrepspunktet til resultantkrafta,. Eksamen i emnet SIB 55 Hydromekanikk 5 nov 1999 Oppgave 1. Husk å angi benevninger ved tallsvar. ρ θ I en ny svømmehall er det foreslått montert et vindu formet som en halvsylinder med radius og bredde.

Detaljer

Nat104 / Grimstad. Forelesningsnotater. Våren 2011. Newtons 3 lover. UiA / Tarald Peersen

Nat104 / Grimstad. Forelesningsnotater. Våren 2011. Newtons 3 lover. UiA / Tarald Peersen Nat104 / Grimstad Forelesningsnotater Våren 2011 Netons 3 lover UiA / Tarald Peersen 1 Netons 3 lover 1.1 Forelesning: Netons tre fundamentale lover for bevegelse I leksjon 1 lærte vi språket som beskriver

Detaljer

Skipsoffisersutdanningen i Norge. Innholdsfortegnelse. 00TM01G - Emneplan for: Matematikk på operativt nivå

Skipsoffisersutdanningen i Norge. Innholdsfortegnelse. 00TM01G - Emneplan for: Matematikk på operativt nivå Skipsoffisersutdanningen i Norge 00TM01G - Emneplan for: Matematikk på operativt nivå Generelt Utarbeidet av: Maritime fagskoler i Norge Godkjent av: Linda Gran Kalve Versjon: 2.01 Gjelder fra: 27.09.2016

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN STE 6251 Styring av romfartøy

LØSNINGSFORSLAG TIL EKSAMEN STE 6251 Styring av romfartøy HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi MSc-studiet Studieretning for romteknologi Side 1 av 5 LØSNINGSFORSLAG TIL EKSAMEN STE 6251 Styring av romfartøy Tid: Torsdag 14.1.24,

Detaljer

Norges Informasjonstekonlogiske Høgskole

Norges Informasjonstekonlogiske Høgskole Oppgavesettet består av 10 (ti) sider. Norges Informasjonstekonlogiske Høgskole RF3100 Matematikk og fysikk Side 1 av 10 Tillatte hjelpemidler: Kalkulator, vedlagt formelark Varighet: 3 timer Dato: 11.desember

Detaljer

Er hvitveisen speilsymmetrisk?

Er hvitveisen speilsymmetrisk? Er hvitveisen speilsymmetrisk? 11 Geometri 2 MÅL I dette kapitlet skal du lære om flytting av figurer ved speiling, parallellforskyving og dreining speilingssymmetri KOPIERINGSORIGINALER 11.1 Speiling

Detaljer

Beregning av konstruksjon med G-PROG Ramme

Beregning av konstruksjon med G-PROG Ramme Side 1 av 11 Beregning av konstruksjon med G-PROG Ramme Introduksjon G-Prog Ramme er et beregningsprogram for plane (2-dimensjonale) ramme-strukturer. Beregningene har følgende fremgangsmåte: 1) Man angir

Detaljer

MEK likevektslære (statikk)

MEK likevektslære (statikk) MEK2500 - likevektslære (statikk) Tormod Landet Høst 2015 Mange konstruksjoner kan analyseres med tre enkle prinsipper 1. Saint-Venants prinsipp 2. Balanse i krefter 3. Balanse i momenter Denne forelesningen

Detaljer

Tempoplan: Kapittel 4: 8/11 14/12. Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver.

Tempoplan: Kapittel 4: 8/11 14/12. Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver. Tempoplan: Kapittel 4: 8/11 14/1. Kapittel 5: /1 1/. Kapittel 6: 1/ 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver. 3: Vektorer Dette kapitlet er meget spesielt og annerledes enn den matematikken

Detaljer

Sammendrag kapittel 9 - Geometri

Sammendrag kapittel 9 - Geometri Sammendrag kapittel 9 - Geometri Absolutt vinkelmål (radianer) Det absolutte vinkelmålet til en vinkel v, er folholdet mellom buelengden b, og radien r. Buelengde v = b r Med v i radianer! b = r v Omregning

Detaljer

Øving 2: Krefter. Newtons lover. Dreiemoment.

Øving 2: Krefter. Newtons lover. Dreiemoment. Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 2007. Veiledning: 15. september kl 12:15 15:00. Øving 2: Krefter. Newtons lover. Dreiemoment. Oppgave 1 a) Du trekker en kloss bortover et friksjonsløst

Detaljer

Notat om trigonometriske funksjoner

Notat om trigonometriske funksjoner Notat om trigonometriske funksjoner Dette notatet ble først skrevet for MA000 våren 005 av Ole Jacob Broch. Dette er en noe omarbeidet versjon skrevet høsten 0. Radianer Anta at en vinkel A er gitt, f.eks

Detaljer

Kurs. Kapittel 2. Bokmål

Kurs. Kapittel 2. Bokmål Kurs 8 Kapittel 2 Bokmål D.8.2.1 1 av 4 Introduksjon til dynamisk geometri med GeoGebra Med et dynamisk geometriprogram kan du tegne og konstruere figurer som du kan trekke og dra i. I noen slike programmer

Detaljer

GeoGebra for Sinus 2T

GeoGebra for Sinus 2T GeoGebra for Sinus 2T Innhold Vektorer med GeoGebra Skalarproduktet med GeoGebra Parameterframstilling med GeoGebra Ordnede utvalg eksempelet på side 89 med GeoGebra Uordnede utvalg eksempelet på side

Detaljer

Instruktøren. Kort innføring i biomekanikk... 53. Vektarmprinsippet... 53 Kraftretning... 55 Løft... 59

Instruktøren. Kort innføring i biomekanikk... 53. Vektarmprinsippet... 53 Kraftretning... 55 Løft... 59 Instruktøren Kort innføring i biomekanikk......................... 53 Vektarmprinsippet...................................... 53 Kraftretning......................................... 55 Løft................................................

Detaljer

Løsningsforslag for eksamen 5. januar 2009

Løsningsforslag for eksamen 5. januar 2009 Løsningsforslag for eksamen 5. januar 2009 Oppgave 1 Figuren til høyre viser en hengebroliknende konstruksjon, med et tau mellom C og E med egen tyngde g = 0,5 kn/m og en punktlast P = 75 kn som angriper

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: mars 017 Tid for eksamen: 14:30 17:30 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark

Detaljer

Løsningsforslag til eksamen FY0001 Brukerkurs i fysikk Juni 2011

Løsningsforslag til eksamen FY0001 Brukerkurs i fysikk Juni 2011 NTNU Institutt for Fysikk Løsningsforslag til eksamen FY0001 Brukerkurs i fysikk Juni 011 Oppgave 1 a) Figur A. Tyngdeakselerasjonen er konstant, altså den endrer seg ikke med tiden. b) Vi finner farten

Detaljer

Løsningsforslag Øving 3

Løsningsforslag Øving 3 Løsningsforslag Øving 3 TEP4105 Fluidmekanikk, Høst 2017 Oppgave 3-75 Løsning En sikkerhetsdemning for gjørmeskred skal konstrueres med rektangulære betongblokker. Gjørmehøyden som får blokkene til å begynne

Detaljer

Løsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K

Løsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K Løsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K ORDINÆR EKSAMEN 11.1.009 Oppgave 1 a) En følge av parallellaksiomet er at samsvarende vinkler ved parallelle linjer er like store.

Detaljer

Heldagsprøve i matematikk. Svar og løsningsforslag

Heldagsprøve i matematikk. Svar og løsningsforslag Heldagsprøve i matematikk Svar og løsningsforslag Mandag 19. desember 005 Forkurset, Høgskolen i Oslo Tillatte hjelpemidler: Lommeregner. Formelsamling i matematikk. Tid: 5 klokketimer Alle svar må være

Detaljer

TRIGONOMETRI KRISTIN LÅGEIDE OG THEA-KAROLINE NOMERSTAD

TRIGONOMETRI KRISTIN LÅGEIDE OG THEA-KAROLINE NOMERSTAD TRIGONOMETRI KRISTIN LÅGEIDE OG THEA-KAROLINE NOMERSTAD Abstract. Oppgaven tar for seg utvalgte temaer innenfor trigonometri, og retter seg mot lærere som skal undervise i fagene 1T og R2. Date: May 7,

Detaljer

NTNU Fakultet for lærer- og tolkeutdanning

NTNU Fakultet for lærer- og tolkeutdanning NTNU Fakultet for lærer- og tolkeutdanning Emnekode(r): LGU51007 Emnenavn: Naturfag 1 5-10, emne 1 Studiepoeng: 15 Eksamensdato: 26. mai 2016 Varighet/Timer: Målform: Kontaktperson/faglærer: (navn og telefonnr

Detaljer

Geometri Verktøylinja i GeoGebra Konstruksjon / tegning Konstruksjonsforklaring Normaler, paralleller og vinkler Mangekant, areal og omkrets

Geometri Verktøylinja i GeoGebra Konstruksjon / tegning Konstruksjonsforklaring Normaler, paralleller og vinkler Mangekant, areal og omkrets 2 Geometri Verktøylinja i GeoGebra Konstruksjon / tegning Konstruksjonsforklaring Normaler, paralleller og vinkler Mangekant, areal og omkrets Eksamensoppgaver 0 Innholdsfortegnelse INTRODUKSJON GEOGEBRA...

Detaljer

Fjæra i a) kobles sammen med massen m = 100 [kg] og et dempeledd med dempningskoeffisient b til en harmonisk oscillator.

Fjæra i a) kobles sammen med massen m = 100 [kg] og et dempeledd med dempningskoeffisient b til en harmonisk oscillator. Oppgave 1 a) Ei ideell fjær har fjærkonstant k = 2.60 10 3 [N/m]. Finn hvilken kraft en må bruke for å trykke sammen denne fjæra 0.15 [m]. Fjæra i a) kobles sammen med massen m = 100 [kg] og et dempeledd

Detaljer

Løsningsforslag. for. eksamen. fysikk forkurs. 3 juni 2002

Løsningsforslag. for. eksamen. fysikk forkurs. 3 juni 2002 Løsningsforslag for eksamen fysikk forkurs juni 00 Løsningsforslag eksamen forkurs juni 00 Oppgave 1 1 7 a) Kinetisk energi Ek = mv, v er farten i m/s. Vi får v= m/s= 0m/s, 6 1 1 6 slik at Ek = mv = 900kg

Detaljer

Arbeidsoppgaver i vektorregning

Arbeidsoppgaver i vektorregning Arbeidsoppgaver i vektorregning Fagdag 17.03.2016 Løsningsskisser! God arbeidsinnsats på disse oppgavene vil som vanlig gi stor gevinst på prøven 18.03.16! Hva man bør kunne etter å ha gjort disse arbeidsoppgavene:

Detaljer

Newtons lover i én dimensjon

Newtons lover i én dimensjon Newtons lover i én dimensjon.01.014 Interessert å være studentrepresentant for YS-MEK kurset? ta kontakt med meg. YS-MEK 1110.01.014 1 Bok på bordet Gravitasjon virker på boken om den ligger på bordet

Detaljer

1 Introduksjon GeoGebra 2 Speiling, rotasjon og parallellforskyvning 3 Perspektivtegning 4 Symmetriakser

1 Introduksjon GeoGebra 2 Speiling, rotasjon og parallellforskyvning 3 Perspektivtegning 4 Symmetriakser 1 Geometri i kunsten: 1 Introduksjon GeoGebra 2 Speiling, rotasjon og parallellforskyvning 3 Perspektivtegning 4 Symmetriakser MKH GeoGebra - Geometri i kunsten Innhold 1 Introduksjon GeoGebra... 1 1.1

Detaljer

Bevis i Geometri. 23. April, Kristian Ranestad Matematisk Institutt, Universitetet i Oslo

Bevis i Geometri. 23. April, Kristian Ranestad Matematisk Institutt, Universitetet i Oslo Kristian Ranestad Matematisk Institutt, Universitetet i Oslo 23. April, 2012 Matematikk - å regne - å resonnere/argumentere Geometri -hvorfor? Argumentasjon og bevis, mer enn regning etter oppskrifter.

Detaljer

Geometriske avbildninger og symmetri. A2A/A2B Høgskolen i Vestfold

Geometriske avbildninger og symmetri. A2A/A2B Høgskolen i Vestfold Geometriske avbildninger og symmetri A2A/A2B Høgskolen i Vestfold 6. november 2009 Innhold 1. Symmetri 2. Avbildninger 3. Isometrier 4. Egenskaper ved avbildninger 5. Symmetrigrupper Kilde for forelesningen:

Detaljer

KORT INTRODUKSJON TIL TENSORER

KORT INTRODUKSJON TIL TENSORER KORT INTRODUKSJON TIL TENSORER Tensorer har vi allerede møtt i form av skalarer (tall) og vektorer. En skalar kan betraktes som en tensor av rang null (en komponent), mens en vektor er en tensor av rang

Detaljer

Løsningsforslag til Øving 3 Høst 2010

Løsningsforslag til Øving 3 Høst 2010 TEP5: Fluidmekanikk Løsningsforslag til Øving 3 Høst 2 Oppgave 2.32 Vi skal finne vannhøyden H i røret. Venstre side (A) er fylt med vann og 8cm olje; SG =,827 = ρ olje /ρ vann. Høyre side (B) er fylt

Detaljer

Sammendrag R2. www.kalkulus.no. 31. mai 2009

Sammendrag R2. www.kalkulus.no. 31. mai 2009 Sammendrag R2 www.kalkulus.no 31. mai 2009 1 1 Trigonometri Definisjon av sinus og cosinus Sirkelen med sentrum i origo og radius 1 kalles enhetssirkelen. La v være en vinkel i grunnstilling, og la P være

Detaljer

Generell trigonometri

Generell trigonometri 7 Generell trigonometri 7.1 et utvidede vinkelbegrepet Oppgave 7.110 Tegn vinklene i grunnstilling. a) 30 b) 120 c) 210 d) 300 Oppgave 7.111 Tegn vinklene i grunnstilling. a) 45 b) 360 c) 540 d) 720 Oppgave

Detaljer

Punktene A, B, C og D ligger på linje med innbyrdes avstander AB = 3, BC = 6, CD = 8 og DE = 4.

Punktene A, B, C og D ligger på linje med innbyrdes avstander AB = 3, BC = 6, CD = 8 og DE = 4. Oppgave Punktene A, B, C og D ligger på linje med innbyrdes avstander AB =, BC = 6, CD = 8 og DE =. Hva er minste mulige verdi for AE? A 0 B C D E 5 Tegn! Start med å tegne ei lang rett linje, plasser

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Fagnr: FIOIA I - Dato: Antall oppgaver: 2 : Antall vedlegg: 3 - - -

Fagnr: FIOIA I - Dato: Antall oppgaver: 2 : Antall vedlegg: 3 - - - ;ag: Fysikk i-gruppe: Maskin! EkSarnensoppgav-en I består av ~- - Tillatte hjelpemidler: Fagnr: FIOIA A Faglig veileder: FO lo' Johan - Hansteen I - - - - Dato: Eksamenstidt 19. August 00 Fra - til: 09.00-1.00

Detaljer

5.201 Modellering av bøyning

5.201 Modellering av bøyning RST 2 5 Kraft og bevegelse 26 5.201 Modellering av bøyning lage en modell for nedbøyning av plastikklinjaler teste modellen Eksperimenter Fest en lang plastikklinjal til en benk med en tvinge e.l. slik

Detaljer

Kapittel 1:Introduksjon - Statikk

Kapittel 1:Introduksjon - Statikk 1 - Introduksjon - Statikk Kapittel 1:Introduksjon - Statikk Studér: - Emnebeskrivelse - Emneinformasjon - Undervisningsplan 1.1 Oversikt over temaene Skjærkraft-, Moment- og Normalkraft-diagrammer Grunnleggende

Detaljer

Løsningsforslag Øving 3

Løsningsforslag Øving 3 Løsningsforslag Øving 3 TEP400 Fluidmekanikk, Vår 206 Oppgave 3-86 Løsning En sikkerhetsdemning for gjørmeskred skal konstrueres med rektangulære betongblokker. Gjørmehøyden som får blokkene til å begynne

Detaljer

dp dz dp dz 1 (z z 0 )

dp dz dp dz 1 (z z 0 ) 25 Løsning B.1 Fra adiabatisk gassligning: ρ ρ 0 p p 0 ) 1/κ, p 0, ρ 0 gitt ved havoverflaten a) Integrer hydrostatikkens grunnligning. La z være høydekoordinat: dp ρg dz p dp ρ z 0g dz p 0 p 1/κ p 1/κ

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

HØGSKOLEN I BERGEN Avdeling for Ingeniørutdanning

HØGSKOLEN I BERGEN Avdeling for Ingeniørutdanning HØGSKOLEN I BERGEN Avdeling for Ingeniørutdanning EKSAMEN I Matematisk analyse og vektoralgebra, FOA150 KLASSE : Alle DATO : 11. august 006 TID: : Kl. 0900-100 (4 timer) ANTALL OPPGAVER : 5 VARIGHET ANTALL

Detaljer

1 β = AV 2 u 2 da I 2 I 1 = 1 V = 4 3. 2g V 2 2 +h 2. 2g h 2 h 1 +h 2 2g h 1 V 1 = V 2 =

1 β = AV 2 u 2 da I 2 I 1 = 1 V = 4 3. 2g V 2 2 +h 2. 2g h 2 h 1 +h 2 2g h 1 V 1 = V 2 = 83 Løsning F. Referer til løsningen av Oppgave D.3: Vi beregnet der integralet I N = ur N da = un m R N + Med denne definisjonen, samt V = u m / se løsning D.3, blir β = AV u da som vi ble bedt om å vise.

Detaljer

Løsningsforslag til utvalgte oppgaver i kapittel 3

Løsningsforslag til utvalgte oppgaver i kapittel 3 Løsningsforslag til utvalgte oppgaver i kapittel 3 I dette kapittelet har mange av oppgavene et mindre teoretisk preg enn i de foregående kapitlene, og jeg regner derfor med at lærebokas eksempler og fasit

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

F B L/2. d A. mg Mg F A. TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 6. Oppgave 1

F B L/2. d A. mg Mg F A. TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 6. Oppgave 1 TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 2016. Løsningsforslag til øving 6. Oppgave 1 L/2 d A F A B F B L mg Stupebrettet er i ro, dvs vi har statisk likevekt. Det betyr at summen av alle krefter

Detaljer

Menylinje og de vanligste funksjonene. Her gjør du de tilpasningene du trenger.

Menylinje og de vanligste funksjonene. Her gjør du de tilpasningene du trenger. GeoGebra GeoGebra 1 GeoGebra er et dynamisk geometriprogram. Ved hjelp av dette programmet kan du framstille forskjellige geometriske figurer, forskjellige likninger (likningssett) og ulike funksjonsuttrykk,

Detaljer

Kortfattet løsningsforslag / fasit

Kortfattet løsningsforslag / fasit 1 Kortfattet løsningsforslag / fasit Ordinær eksamen i FYS-MEK 1110 - Mekanikk / FYS-MEF 1110 - Mekanikk for MEF / FY-ME 100 Eksamensdag onsdag 8. juni 2005 (Versjon 10. juni kl 1520) 1. Forståelsesspørsmål

Detaljer

Biomekanikk. Ola Eriksrud, MSPT, FAFS Seksjon for fysisk prestasjonsevne Norges idrettshøgskole

Biomekanikk. Ola Eriksrud, MSPT, FAFS Seksjon for fysisk prestasjonsevne Norges idrettshøgskole Biomekanikk Ola Eriksrud, MSPT, FAFS Seksjon for fysisk prestasjonsevne Norges idrettshøgskole Læringsmål Studenten skal kunne gjøre rede for: Hva menes med biomekanikk Kraft/spenning og måleenheter Dreiemoment

Detaljer

Løsningsforslag heldagsprøve våren 2012 1T

Løsningsforslag heldagsprøve våren 2012 1T Løsningsforslag heldagsprøve våren 01 1T DEL 1 OPPGAVE 1 a1) Skriv så enkelt som mulig x 9 x 6 Vi må faktorisere både teller og nevner. Så kan vi forkorte felles faktorer. Da får vi: x 9 x x 6 a) 4a4 b

Detaljer

GeoGebraøvelser i geometri

GeoGebraøvelser i geometri GeoGebraøvelser i geometri av Peer Andersen Peer Andersen 2014 Innhold Innledning... 3 Øvelse 1. Figurer i GeoGebra... 4 Øvelse 2. Noen funksjoner i GeoGebra... 8 Øvelse 3. Omskrevet sirkelen til en trekant...

Detaljer

Eksempelsett R2, 2008

Eksempelsett R2, 2008 Eksempelsett R, 008 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave a) Deriver funksjonen f x x cosx f x cosx x s x f x cosx 6x sinx

Detaljer

FLYGETEORI Bok 1 Michael Katz Nedre Romerike Flyklubb michael@katz.no 5. august 2009

FLYGETEORI Bok 1 Michael Katz Nedre Romerike Flyklubb michael@katz.no 5. august 2009 FLYGETEORI Bok 1 Michael Katz Nedre Romerike Flyklubb michael@katz.no 5. august 2009 Innhold 1 Krefter på yet 3 1.1 Kraftkomponenter.................................... 3 1.2 Likevektssituasjoner...................................

Detaljer

Løsningsforslag til øving 3: Impuls, bevegelsesmengde, energi. Bevaringslover.

Løsningsforslag til øving 3: Impuls, bevegelsesmengde, energi. Bevaringslover. Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 2007. Veiledning: 22. september kl 12:15 15:00. Løsningsforslag til øving 3: Impuls, bevegelsesmengde, energi. Bevaringslover. Oppgave 1 a)

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 88 4 Funksjoner og andregradsuttrykk Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder løse likninger, ulikheter

Detaljer

HamboHus 5.4 Rev. 1, 8. september 2005 A. Cordray

HamboHus 5.4 Rev. 1, 8. september 2005 A. Cordray HamboHus Technical Note Nr 10: Terreng HamboHus 5.4 Rev. 1, 8. september 2005 A. Cordray I HamboHus 5.4 er implementasjonen av terreng utvidet og forbedret. Det er lettere å lage terrengpunkter, og mye

Detaljer

Oppgave 578. Tilleggsspørsmål: a. (Som i original oppgave)

Oppgave 578. Tilleggsspørsmål: a. (Som i original oppgave) Oppgave 578 Med tilleggsspørsmål og eksempler på bruk av GeoGebra. (I forsøket på å illustrere flere forskjellige teknikker er det ikke til å unngå at noen av spørsmålene til en viss grad overlapper hverandre.)

Detaljer

KONTINUASJONSEKSAMEN Tirsdag 07.05.2002 STE 6159 Styring av romfartøy Løsningsforslag

KONTINUASJONSEKSAMEN Tirsdag 07.05.2002 STE 6159 Styring av romfartøy Løsningsforslag + *6.2/(1, 1$59,. Institutt for data-, elektro-, og romteknologi Sivilingeniørstudiet RT KONTINUASJONSEKSAMEN Tirsdag 7.5.22 STE 6159 Styring av romfartøy Løsningsforslag 2SSJDYH (%) D) Kvaternioner benyttes

Detaljer

Løsningsforslag til øving 13

Løsningsforslag til øving 13 Institutt for fysikk, NTNU TFY4155/FY1003 Elektromagnetisme Vår 2009 Løsningsforslag til øving 13 Oppgave 1 a) Sløyfas magnetiske dipolmoment: m = IA ˆn = Ia 2 ˆn Sløyfa består av 4 rette ledere med lengde

Detaljer

Forelesningsnotat, lørdagsverksted i fysikk

Forelesningsnotat, lørdagsverksted i fysikk Forelesningsnotat, lørdagsverksted i fysikk Kristian Etienne Einarsrud 1 Vektorer, grunnleggende matematikk og bevegelse 1.1 Introduksjon Fysikk er en vitenskap som har som mål å beskrive verden rundt

Detaljer

13.03.2013 Manual til Excel. For ungdomstrinnet ELEKTRONISK UNDERVISNINGSFORLAG AS

13.03.2013 Manual til Excel. For ungdomstrinnet ELEKTRONISK UNDERVISNINGSFORLAG AS 13.03.2013 Manual til Excel 2010 For ungdomstrinnet ELEKTRONISK UNDERVISNINGSFORLAG AS Innholdsfortegnelse Huskeliste... 3 Lage en formel... 3 Når du får noe uønsket som f.eks. en dato i en celle... 3

Detaljer

Algoritmer og datastrukturer Kapittel 2 - Delkapittel 2.1

Algoritmer og datastrukturer Kapittel 2 - Delkapittel 2.1 Delkapittel 2.1 Plangeometriske algoritmer Side 1 av 7 Algoritmer og datastrukturer Kapittel 2 - Delkapittel 2.1 2.1 Punkter, linjesegmenter og polygoner 2.1.1 Polygoner og internett HTML-sider kan ha

Detaljer

Løsningsforslag Eksamen M1 Onsdag 14.desember 2005

Løsningsforslag Eksamen M1 Onsdag 14.desember 2005 Løsningsforslag Eksamen M Onsdag.desember 005 Her følger et kort løsningsforslag, med forbehold om at det kan ha sneket seg inn enkelte feil... Oppgave (0) a) V basskasse dm 5,5dm 5,0dm 75,dm 75, l Basskassen

Detaljer

Løsningsforslag for øvningsoppgaver: Kapittel 2

Løsningsforslag for øvningsoppgaver: Kapittel 2 Løsningsforslag for øvningsoppgaver: Kapittel 2 Jon Walter Lundberg 13.01.2015 2.03 Tyngdekraften på strikkhoppern på bildet er 540N. Kraften fra striken i fotoøyeblikket er 580N. a) Tegn figur og beregn

Detaljer

Løsningsforslag til problemløsningsoppgaver i MA-132 Geometri høsten 2008.

Løsningsforslag til problemløsningsoppgaver i MA-132 Geometri høsten 2008. Løsningsforslag til problemløsningsoppgaver i M-12 Geometri høsten 2008. Oppgave 1 a. Vi starter med å utføre abri-versjoner av standardkontruksjoner for de oppgitte vinklene. (t problem med abri er at

Detaljer

PÅ LAND Kilde: SeaSport, 2004

PÅ LAND Kilde: SeaSport, 2004 PÅ LAND Kilde: SeaSport, 2004 Det er mange deler med utstyr og øvelse gjør mester. Derfor er det alltid en fordel å ha montert sammen seil og brett i hagen før første turen på vannet. Så slipper du å skape

Detaljer

FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014

FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014 FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014 Oppgave 1 (4 poeng) Forklar hvorfor Charles Blondin tok med seg en lang og fleksibel stang når han balanserte på stram line over Niagara fossen i 1859. Han

Detaljer

Løsningsforslag Øving 4

Løsningsforslag Øving 4 Løsningsforslag Øving 4 TEP4100 Fluidmekanikk, Vår 2016 Oppgave 3-162 Løsning En halvsirkelformet tunnel skal bygges på bunnen av en innsjø. Vi ønsker å finne den totale hydrostatiske trykkraften som virker

Detaljer

Analyse og metodikk i Calculus 1

Analyse og metodikk i Calculus 1 Analyse og metodikk i Calculus 1 Fredrik Göthner og Raymi Eldby Norges teknisk-naturvitenskapelige universitet 3. desember 01 1 Innhold Forord 3 1 Vurdering av grafer og funksjoner 4 1.1 Hva er en funksjon?.........................

Detaljer

R1 Eksamen høsten 2009 Løsning

R1 Eksamen høsten 2009 Løsning R1 Eksamen, høsten 009 Løsning R1 Eksamen høsten 009 Løsning Del 1 Oppgave 1 3 a) Deriver funksjonen f( x) 5e x f( x) 5e 3 15e 3 x 3x b) Deriver funksjonen gx x 3 ln x x x g( x) 3x ln x x 3 x 3ln 1 3 c)

Detaljer

Eksempeloppgave 2008. REA3024 Matematikk R2. Bokmål

Eksempeloppgave 2008. REA3024 Matematikk R2. Bokmål Eksempeloppgave 008 REA04 Matematikk R Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del : Hjelpemidler på Del : Bruk av kilder: Vedlegg: Framgangsmåte: Veiledning om vurderingen: 5 timer:

Detaljer

Theory Norwegian (Norway) Vær vennlig å lese de generelle instruksjonene i den separate konvolutten før du begynner på dette problemet.

Theory Norwegian (Norway) Vær vennlig å lese de generelle instruksjonene i den separate konvolutten før du begynner på dette problemet. Q1-1 To problemer i mekanikk (10 poeng) Vær vennlig å lese de generelle instruksjonene i den separate konvolutten før du begynner på dette problemet. Del A. Den gjemte disken (3,5 poeng) Vi ser på en massiv

Detaljer

Formler, likninger og ulikheter

Formler, likninger og ulikheter 58 3 Formler, likninger og ulikheter Mål for opplæringen er at eleven skal kunne tolke, bearbeide og vurdere det matematiske innholdet i ulike tekster bruke matematiske metoder og hjelpemidler til å løse

Detaljer

Matematisk visualisering

Matematisk visualisering 02/01/17 1/5 Matematisk visualisering Matematisk visualisering GLU 1.-7. trinn: Matematisk visualisering og konstruksjon - GeoGebra Innføring i GeoGebra (2 uv-timer) Denne delen er direkte knyttet til

Detaljer

R2 2011/12 - Kapittel 2: 19. september 19. oktober 2011

R2 2011/12 - Kapittel 2: 19. september 19. oktober 2011 R 011/1 - Kapittel : 19. september 19. oktober 011 Plan for skoleåret 011/01: Kapittel : 17/9-0/10. Kapittel 3:5/10 19/11. Kapittel 4: 19/11 1/1. Kapittel 5: 1/1 11/. Kapittel 6: 11/ 9/3. Kapittel 7: 19/3

Detaljer