Chebyshev interpolasjon

Størrelse: px
Begynne med side:

Download "Chebyshev interpolasjon"

Transkript

1 Chebyshev interpolasjon Chebyshev polynomer Vi vil studere polynomapproksimasjon på intervallet [-, ]. Målet er å minimalisere den største verdien av feilestimatet E HxL = f HxL - P HxL, hvor maksimum tas over alle x Î [-,], Både lagrangepolynomer og newtonpolynomer gir et feilestimat som involverer nodene xk, k = 0,,,..., : E HxL = QHxL f H+L HcL H+L!, c x D, QHxL = Hx - x0 L Hx - x L... Hx - x- L Hx - x L Hvis nodene kan velges fritt, vil Chebyshev polynomer T HxL minimere maksimumsverdien av Q(x). odene velges da som nullpunktene til T HxL. Disse ligger alle i intervallet [-,] og er gitt ved xk = cosj H k+l Π, k = 0,,..., -. Polynomet Q(x) er av grad +. Chebyshev polynomer kan defineres rekursivt ved T@0, x_d = ; T@, x_d = x; T@k_, x_d := x T@k -, xd - T@k -, xd ; Table@T@k, xd, 8k, 0, 7<D Simplify Expand Column x x - 4 x3-3 x 8 x4-8 x + 6 x5-0 x3 + 5 x 3 x6-48 x4 + 8 x - 64 x7 - x x3-7 x Den ledende koeffisienten for x i polynomet T HxL er - når ³. Polynomene har en trigonometrisk representasjon T HxL = cos H arccos xl, x D Chebyshev polynomer ( av første slag) er implementert i Mathematica som ChebyshevT[k,x]. Her er et plott av de 5 første polynomene, av grad,...,5. Her ser vi tydelig at alle nullpunktene ligger innenfor intervallet <-,>.

2 = 5<, Plot@ChebyshevT@Range@kD, xd, 8x, -, <DD Chebyshev interpolerende polynom Chebyshev approksimasjonen av grad er basert på de + nullpunkter av T+ HxL. Chebyshevpolynomene tilfredsstiller følgende ortogonalitetsrelasjoner: Ú Ti Hxk L T j Hxk L = 0 når i ¹ j Ú Ti Hxk L Ti Hxk L = + når i ¹ 0 Ú T0 Hxk L T0 Hxk L = + Sjekker for I = j = : â CosBΠ k+ + + F Simplify Sjekker for i = 3, j = 5 : â CosB3 Π k+ + 0 F CosB5 Π k+ + F Det interpolerende polynom kan da utvikles i en sum av ortogonale funksjoner: P HxL = Új=0 c j T j HxL For å bestemme koeffisientene ck, benyttes ortogonalitetsegenskapene. Med xk = cosj vi: k+ Π + får f Hxk L = Pn Hxk L = Új=0 c j T j Hxk L Ú f Hxk L T0 Hxk L = Ú Új=0 c j T j Hxk L T0 Hxk L = Új=0 Ú c j T j Hxk L T0 Hxk L = Ú c0 T0 Hxk L T0 Hxk L = Þ c0 = c0 Ú T0 Hxk L T0 Hxk L = c0 Ú = c0 H + L + Ú f Hxk L T0 Hxk L = + Ú f Hxk L

3 For å bestemme koeffisientene ck, benyttes ortogonalitetsegenskapene. Med xk = cosj vi: k+ Π + får f Hxk L = Pn Hxk L = Új=0 c j T j Hxk L Ú f Hxk L T0 Hxk L = Ú Új=0 c j T j Hxk L T0 Hxk L = Új=0 Ú c j T j Hxk L T0 Hxk L = Ú c0 T0 Hxk L T0 Hxk L = Þ c0 = c0 Ú T0 Hxk L T0 Hxk L = c0 Ú = c0 H + L + Ú f Hxk L T0 Hxk L = + Ú f Hxk L Ú f Hxk L Ti Hxk L = Ú Új=0 c j T j Hxk L Ti Hxk L = Új=0 Ú c j T j Hxk L Ti Hxk L = Ú ci Ti Hxk L Ti Hxk L = ci = ci Ú Ti Hxk L Ti Hxk L = ci J + Ú f Hxk L Ti Hxk L = Algoritme + + Ú f Hxk L coshi arccoshxk LL = + Ú f Hxk L cos Ji k+ Π + 3

4 4 n_d := Π ModuleB: d = *, c, T>, n+ H* definer noder, lagre funksjonsverdier, initialiser koeffisientliste *L For@k = 0, k n, ++k, x@kd k + L ddd; y@kd = f@x@kdd; c@kd = 0 D; H* Beregn koeffiisentene *L For@j = 0, j n, ++j, For@k = 0, k n, ++k, c@jd = c@jd + y@kd Cos@ j H k + L dd D D; c@0d = c@0d; n+ ForBj =, j n, ++j, c@jd = F c@jdf; n+ H* beregn chebyshevpolynomene rekursivt *L T@0D = ; T@D = x; If@n >, For@j =, j < n, ++j, T@j + D = x T@jD - T@j - D D D; P = 0; For@j = 0, j n, ++j, P = P + c@jd T@jD D; P = Expand Simplify P; Print@" Chebyshevpolynomet Pn HxL = ", PD Mathematica kode Koden i Mathematica blir mye kortere fordi Chebyshevpolynomene allerede er implementert i programmet.

5 5 n_d := ModuleB8c, z<, k+ := B CosBΠ n+ c@j_d := n+ â f@z@kdd ChebyshevT@j, z@kdd; n â c@kd ChebyshevT@k, xd Simplify n F FF; â f@z@kdd ChebyshevT@0, z@kdd; n c@0d := Hn + L Eksempel Som eksempel ønsker vi å bestemme polynomet P3 HxL som approksimerer funksjonen f HxL = ãx på intervallet [-,] odene er gitt ved xk = cosj f@x_d := ãx ΠH k+l 8 når n = 3.. ChebyshevInterpolatingPolynomial@x, 3D Chebyshevpolynomet Pn HxL = x x x ChPoly@x, 3D x x x = â c@kd ChebyshevT@k, xd Simplify z z z Exp@xD<, 8x, -, <, PlotStyle 8 8Thick, Dashed, Red<, 8Blue<<D

6 6 Oppgave Bestem Chebyshevpolynomet av grad som approksimerer besselfunksjonen av grad på intervallet [-,]. Lag et plott som viser polynomet og funksjonen sammen over dette intervallet slik som demonstrert i eksemplene. f@x_d := BesselJ@, xd ChPoly@x, D Chop x Plot@8ChPoly@x, D, f@xd<, 8x, -, <, PlotStyle 8 8Thick, Dashed, Red<, 8Blue<<D Plot@8ChPoly@x, D, f@xd<, 8x, - 4, 4<, PlotStyle 8 8Thick, Dashed, Red<, 8Blue<<D Konvergensområdet er tydeligvis [-, ] 4

7 5D, 8x, - 4, 4<, PlotStyle 8 8Thick, Dashed, Red<, 8Blue<<D Høyere grad av chebyshevpolynom endrer ikke konvergensområdet [-, ] Oppgave Bestem Chebyshevpolynomet av grad 8 som approksimerer f HxL = sin 4 x +8 x på intervallet [-,]. Plott polynomet med stiplet, rød linje sammen med f(x) i samme graf. Beregn deretter Lagrangeplolynomet over de ekvidistante nodene pts =Table[{-.+ k,f[-.+ k]},{k,,9}]. (Bruk InterpolatingPolynomial[pts,x]). Plott polynomet med stiplet, rød linje sammen med f(x) i samme graf. Observer Runge fenomenet. Eksperimenter med andre funksjoner, f.eks. f HxL = sin x +8 x Sin@4 xd f@x_d := + 8 x ChPoly@x, 8D Chop x x x x Plot@8ChPoly@x, 8D, f@xd<, 8x, -, <, PlotStyle 8 8Thick, Dashed, Red<, 8Blue<<D

8 8 pts = Table@8-. + k, f@-. + kd<, 8k,, 9<D LP@x_, 8D = InterpolatingPolynomial@pts, xd Simplify x x x x x x x x Plot@8LP@x, 8D, f@xd<, 8x, -, <, PlotStyle 8 8Thick, Dashed, Red<, 8Blue<<D Oppgave 3 Bestem Chebyshevpolynomet av grad 5 som approksimerer f HxL = cos0 x på intervallet [-,]. Plott polynomet med stiplet, rød linje sammen med f(x) i samme graf. k k Beregn deretter Lagrangeplolynomet over de ekvidistante nodene pts =Table[{-+,f[-+ ]},{k,,9}]. Plott polynomet med stiplet, rød linje sammen med f(x) i samme graf. Hvis tid, eksperimenter med polynomer av grad 0. f@x_d := Cos@xD0

9 8x, -, <D Plot@8ChPoly@x, 5D, f@xd<, 8x, -, <, PlotStyle 8 8Thick, Dashed, Red<, 8Blue<<, PlotRange 8-0.3, <D k X@k_D := - + pts = Table@8X@iD, f@x@idd<, 8i, 0, 4<D LPoly@x_, 5D = InterpolatingPolynomial@pts, xd Expand Chop x x +. 9

10 0 5D, 8x, -, <, PlotStyle 8 8Thick, Dashed, Red<, 8Blue<<, PlotRange 8-0.3, <D Øker vi graden til 0, vil begge polynomer gi god tilpasning til funksjonen på intervallet <-, >, men vi ser tendenser til Runges fenomen i endepunktene ved lagrangepolynomet. Plot@8ChPoly@x, 0D, f@xd<, 8x, -, <, PlotStyle 8 8Thick, Dashed, Red<, 8Blue<<, PlotRange 80, <D k X@k_D := pts = Table@8X@iD, f@x@idd<, 8i, 0, 9<D

11 0D, 8x, -, <, PlotStyle 8 8Thick, Dashed, Red<, 8Blue<<, PlotRange 8-0., <D

Chebyshev interpolasjon

Chebyshev interpolasjon Chebyshev interpolasjon Chebyshev polynomer Vi vil studere polynomapproksimasjon på intervallet [-, ]. Målet er å minimalisere den største verdien av feilestimatet E HxL = f HxL - P HxL, hvor maksimum

Detaljer

Newtonpolynomer med senterpunkter x0, x1,..., xn-1

Newtonpolynomer med senterpunkter x0, x1,..., xn-1 Newtonpolynomer med senterpunkter x, x,..., xn- Det er av og til nyttig å finne flere approksimerende polynomer P HxL, P HxL,..., Pn HxL til et datasett med n+ elementer for så å velge den som passer best

Detaljer

Tangenten svarer til lineær approksimasjon av funksjonen. Likningen for tangenten finnes derfor fra 1. ordens Taylorutvikling:

Tangenten svarer til lineær approksimasjon av funksjonen. Likningen for tangenten finnes derfor fra 1. ordens Taylorutvikling: Newton' s metode Teori Bisektormetoden og sekantmetoden benytter begge skjæringspunkter mellom x - aksen og approksimerende linjer til funksjonen f som tilnærmede verdier til løsningen av likningen f (x)

Detaljer

8 Interpolasjon TMA4125 våren 2019

8 Interpolasjon TMA4125 våren 2019 8 Interpolasjon TMA4 våren 9 Fra M husker du at dersom x i er n + forskjellige punkter på x-aksen med korresponderende y-verdier y i, finnes det et entydig polynom av maksimal grad n som interpolerer punktene

Detaljer

Øving 6 Tallfølger og differenslikninger

Øving 6 Tallfølger og differenslikninger Øving Tallfølger og differenslikninger Teori Se også Mathematicakompendiet kap. En tallfølge er en liste av elementer satt opp i en bestemt rekkefølge { a[0]a[]a[]...a[n]... } = {a[n]} 0. Vi kaller elementet

Detaljer

Ekstrapolasjon. Minste kvadraters metode. Minste kvadraters metode på matriseform. Implementering

Ekstrapolasjon. Minste kvadraters metode. Minste kvadraters metode på matriseform. Implementering Ekstrpolsjon Minste kvdrters metode Implementering lsm@dt_d := ModuleB8c, c, c, c

Detaljer

I denne øvingen vil vi sammenlikne det teoretiske resultat med et grafisk bilde av konturlinjene til flaten. Vi tegner konturene der

I denne øvingen vil vi sammenlikne det teoretiske resultat med et grafisk bilde av konturlinjene til flaten. Vi tegner konturene der Øving uke 44 Kritiske punkter Se også Mathematicakompendiet, kap 3.8 En funksjon av to variable kan ha lokale maksimal- og minimalpunkter innenfor definisjonsmengden, akkurat som funksjoner av en variabel.

Detaljer

LØSNINGSFORSLAG. Skriv følgende komplekse tall både på kartesisk form som a + bi og på polar form som re iθ (r 0 og 0 θ < 2π). a) 2 + 3i.

LØSNINGSFORSLAG. Skriv følgende komplekse tall både på kartesisk form som a + bi og på polar form som re iθ (r 0 og 0 θ < 2π). a) 2 + 3i. Innlevering DAFE ELFE Matematikk 000 HIOA Obligatorisk innlevering Innleveringsfrist Onsdag. februar 05 før forelesningen :30 Antall oppgaver: LØSNINGSFORSLAG Skriv følgende komplekse tall både på kartesisk

Detaljer

Eksamensoppgave i TMA4125 Matematikk 4N

Eksamensoppgave i TMA4125 Matematikk 4N Institutt for matematiske fag Eksamensoppgave i TMA4125 Matematikk 4N Faglig kontakt under eksamen: Morten Andreas Nome Tlf: 90849783 Eksamensdato: 6. juni 2019 Eksamenstid (fra til): 09:00-13:00 Hjelpemiddelkode/Tillatte

Detaljer

Laplacelikningen med Dirichlet betingelser

Laplacelikningen med Dirichlet betingelser Laplacelikningen med Dirichlet betingelser Vi vil løse laplacellikningen Φ x + Φ y = 0, 0 < x

Detaljer

Numerisk integrasjon

Numerisk integrasjon Numerisk integrasjon Arne Morten Kvarving Department of Mathematical Sciences Norwegian University of Science and Technology 29. Oktober 2007 Problem og framgangsmåte Vil vil finne en numerisk approksimasjon

Detaljer

: subs x = 2, f n x end do

: subs x = 2, f n x end do Oppgave 2..5 a) Vi starter med å finne de deriverte til funksjonen av orden opp til og med 5 i punktet x = 2. Det gjør vi ved å bruke kommandoen diff f x, x$n der f x er uttrykket som skal deriveres, x

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 1100L Programmering, modellering, og beregninger. Prøveeksamen 1 Eksamensdag: Onsdag 14. November 2014. Tid for eksamen:

Detaljer

Semesteroppgave. TMA4215 Numerisk Matematikk Gruppe nr. 6 Kristian Stormark og Bjørn E. Vesterdal. Høst 2003

Semesteroppgave. TMA4215 Numerisk Matematikk Gruppe nr. 6 Kristian Stormark og Bjørn E. Vesterdal. Høst 2003 Semesteroppgave TMA4215 Numerisk Matematikk Gruppe nr. 6 Kristian Stormark og Bjørn E. Vesterdal Høst 2003 Sammendrag Fra datasettet med termodynamiske egenskaper for vann ved konstant temperatur 25 C

Detaljer

Taylor- og Maclaurin-rekker

Taylor- og Maclaurin-rekker Taylor- og Maclaurin-rekker Forelest: Okt, 004 Potensrekker er funksjoner Vi så at noen funksjoner vi kjenner på andre måter kan skrives som funksjoner, for eksempel: = + t + t + t 3 + + t n + t e x =

Detaljer

Eksamen i TMA4122 Matematikk 4M

Eksamen i TMA4122 Matematikk 4M Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 Faglig kontakt under eksamen: Yura Lyubarskii: mobil 9647362 Anne Kværnø: mobil 92663824 Eksamen i TMA422 Matematikk

Detaljer

Eksamensoppgave i TMA4130/35 Matematikk 4N/4D

Eksamensoppgave i TMA4130/35 Matematikk 4N/4D Institutt for matematiske fag Eksamensoppgave i TMA4130/35 Matematikk 4N/4D Faglig kontakt under eksamen: Anne Kværnø a, Kurusch Ebrahimi-Fard b, Xu Wang c Tlf: a 92 66 38 24, b 96 91 19 85, c 94 43 03

Detaljer

BYFE/EMFE 1000, 2012/2013. Numerikkoppgaver uke 35

BYFE/EMFE 1000, 2012/2013. Numerikkoppgaver uke 35 BYFE/EMFE 1000, 2012/2013 Numerikkoppgaver uke 35 Oppgave 1 Halveringsmetoden a) x = cos x x cos x = 0 eller f(x) = 0 med f(x) = x cos x b) f(0) = 0 cos 0 = 1 < 0 og f(π/2) = π/2 cos(π/2) = π/2 > 0. f(x)

Detaljer

Eksamensoppgave i TMA4135 Matematikk 4D

Eksamensoppgave i TMA4135 Matematikk 4D Institutt for matematiske fag Eksamensoppgave i TMA435 Matematikk 4D Faglig kontakt under eksamen: Helge Holden a, Gard Spreemann b Tlf: a 92038625, b 93838503 Eksamensdato: 2. desember 204 Eksamenstid

Detaljer

For at en funksjon i to variable skal ha en grenseverdi i punktet (a,b), dvs.

For at en funksjon i to variable skal ha en grenseverdi i punktet (a,b), dvs. Øving ue 3 Grenser og ontinuitet For at en funsjon i to variable sal ha en grenseverdi i puntet (a,b), dvs. lim Hx,yL Ha,bL f Hx, yl = L sal esistere, må denne unie verdien oppnåes uansett hvilen vei man

Detaljer

Eksamensoppgave i TMA4125 BARE TULL - LF

Eksamensoppgave i TMA4125 BARE TULL - LF Institutt for matematiske fag Eksamensoppgave i TMA425 BARE TULL - LF Faglig kontakt under eksamen: Tlf: Eksamensdato: 8.april-5. juni 29 Eksamenstid (fra til): : - 24: Hjelpemiddelkode/Tillatte hjelpemidler:

Detaljer

= x lim n n 2 + 2n + 4

= x lim n n 2 + 2n + 4 NTNU Institutt for matematiske fag TMA400 Matematikk høsten 20 Løsningsforslag - Øving Avsnitt 8.7 6 Potensrekken konvergerer opplagt for x = 0, så i drøftingen nedenfor antar vi x 0. Vi vil bruke forholdstesten

Detaljer

NY Eksamen i matematikk III, 5 studiepoeng. August 2007

NY Eksamen i matematikk III, 5 studiepoeng. August 2007 NY Eksamen i matematikk III, 5 studiepoeng. August 7 Oppgave a. Regn ut gradienten til funksjonen f(x, y) = x +y +xy. I hvilken retning øker f mest når x = og y =? b. Regn ut kurveintegralet f(x, y) ds

Detaljer

Diskretisering av 1D - varmelikningen

Diskretisering av 1D - varmelikningen Diskretisering av D - varmelikningen Vi vil løse numerisk den tidsuavhengige en-dimensjonale varmeledningslikningen uten kilde/sluk ledd. Differensiallikningen forenkles da til d T d x d dt Vi representerer

Detaljer

MAT 110A - VÅR 2001 OBLIGATORISK OPPGAVESETT

MAT 110A - VÅR 2001 OBLIGATORISK OPPGAVESETT MAT 110A - VÅR 2001 OBLIGATORISK OPPGAVESETT 3 Skriftlige besvarelser skal innleveres til den gruppelæreren på den regneøvelsen hver enkel er påmeldt til, etter nærmere avtale. Innleveringsfristen er fredag

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Teknostart forelesning 6 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Teknostart forelesning 6 Grenseverdier I dagens forelesning skal vi se på følgende: 1 En formell definisjon

Detaljer

LØSNINGSFORSLAG EKSAMEN MATEMATIKK 4N,

LØSNINGSFORSLAG EKSAMEN MATEMATIKK 4N, Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 16 LØSNINGSFORSLAG EKSAMEN MATEMATIKK 4N, 19.12.2003 Oppgave 1 a) Vis at den Laplacetransformerte av f(t) = 2te t

Detaljer

Grafisk fremstilling av hvordan metoden "bisection" virker.

Grafisk fremstilling av hvordan metoden bisection virker. Oppgave11.nb 1 Oppgave 11 Pris på avkastningsgaranti

Detaljer

12 Projeksjon TMA4110 høsten 2018

12 Projeksjon TMA4110 høsten 2018 Projeksjon TMA0 høsten 08 En projeksjon er en lineærtransformasjon P som tilfredsstiller P x = P x for alle x Denne ligningen sier at intet nytt skjer om du benytter lineærtransformasjonen for andre gang,

Detaljer

Løsningsforslag. Innlevering i BYFE/EMFE 1000 Oppgavesett 1 Innleveringsfrist: 14. september klokka 14:00 Antall oppgaver: 3.

Løsningsforslag. Innlevering i BYFE/EMFE 1000 Oppgavesett 1 Innleveringsfrist: 14. september klokka 14:00 Antall oppgaver: 3. Innlevering i BYFE/EMFE 1000 Oppgavesett 1 Innleveringsfrist: 14. september klokka 14:00 Antall oppgaver: 3 Løsningsforslag Oppgave 1 a) ln a ln 3 a+ln 4 a = ln a 1/2 ln a 1/3 +ln a 1/4 = 1 2 ln a 1 3

Detaljer

Newtons interpolasjon og dividerte differanser

Newtons interpolasjon og dividerte differanser Newtons interpolasjon og dividerte differanser Gitt (x i, y i ), for i = 0, 1,..., n, Newtons basis funksjoner er definert som 1/16 j 1 π j (x) = (x x 0 )(x x 1 ) (x x j 1 ) = (x x k ) for j = 1,..., n

Detaljer

6.6 Anvendelser på lineære modeller

6.6 Anvendelser på lineære modeller 6.6 Anvendelser på lineære modeller Skal først se på lineær regresjon for gitte punkter i planet: det kan formuleres og løses som et minste kvadraters problem! I mere generelle lineære modeller er man

Detaljer

UNIVERSITETET I BERGEN

UNIVERSITETET I BERGEN Bokmål UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Løsningsforslag til Eksamen i emnet MAT - Grunnkurs i matematikk I Torsdag 22. mai 28, kl. 9-4. Dette er kun et løsningsforslag.

Detaljer

Matematikk 4 TMA4123M og TMA 4125N 20. Mai 2011 Løsningsforslag med utfyllende kommentarer

Matematikk 4 TMA4123M og TMA 4125N 20. Mai 2011 Løsningsforslag med utfyllende kommentarer h og f g og f Matematikk TMA3M og TMA 5N 0. Mai 0 Løsningsforslag med utfyllende kommentarer Oppgave Funksjonen f () = sin, de nert på intervallet [0; ], skal utvides til en odde funksjon, g, og en like

Detaljer

KAPITTEL 9 Approksimasjon av funksjoner

KAPITTEL 9 Approksimasjon av funksjoner KAPITTEL 9 Approksimasjon av funksjoner En grunnleggende teknikk som ofte brukes i ulike deler av matematikk og anvendelser er å tilnærme eller approksimere et objekt med et annet. Som regel er objektet

Detaljer

a) f(x) = 3 cos(2x 1) + 12 LF: Vi benytter (lineær) kjerneregel og får f (x) = (sin(7x + 1)) (sin( x) + x) sin(7x + 1)(sin( x) + x) ( sin(x) + x) 2 =

a) f(x) = 3 cos(2x 1) + 12 LF: Vi benytter (lineær) kjerneregel og får f (x) = (sin(7x + 1)) (sin( x) + x) sin(7x + 1)(sin( x) + x) ( sin(x) + x) 2 = Innlevering ELFE KJFE MAFE Matematikk 1000 HIOA Obligatorisk innlevering 4 Innleveringsfrist Mandag 12. oktober 2015 før forelesningen 12:30 Antall oppgaver: 7 + 3 Løsningsforslag 1 Deriver de følgende

Detaljer

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 19. august 2010

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 19. august 2010 Funksjoner Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 9. august 200 2 Funksjon som en maskin x Funksjon f f(x) 3 Definisjon- og verdimengde x f(x) 4 Funksjon som en

Detaljer

MA1102 Grunnkurs i analyse II Vår 2014

MA1102 Grunnkurs i analyse II Vår 2014 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag MA Grunnkurs i analyse II Vår 4 Løsningsforslag Øving 9 7.3.b Med f() = tan +, så er f () = cos () på intervallet ( π/, π/).

Detaljer

MAT1120 Notat 2 Tillegg til avsnitt 5.4

MAT1120 Notat 2 Tillegg til avsnitt 5.4 MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjonen (også kalt koordinatmatrisen) til en lineær avbildning mellom to endeligdimensjonale vektorrom

Detaljer

Høgskolen i Oslo og Akershus. sin 2 x cos 2 x = 0, x [0, 2π) 1 cos 2 x cos 2 x = 0 2 cos 2 x = 1 cos 2 x = 1 2 1 2

Høgskolen i Oslo og Akershus. sin 2 x cos 2 x = 0, x [0, 2π) 1 cos 2 x cos 2 x = 0 2 cos 2 x = 1 cos 2 x = 1 2 1 2 Innlevering i DAFE/ELFE 1000 Oppgavesett 1 Innleveringsfrist: 31. januar klokka 14:00 Antall oppgaver: 3 Løsningsforslag Oppgave 1 Løs disse likningene ved regning, og oppgi svarene eksakt: a) Vi kan for

Detaljer

Eksamen MAT1013 Matematikk 1T Våren 2012

Eksamen MAT1013 Matematikk 1T Våren 2012 Eksamen MAT1013 Matematikk 1T Våren 01 DEL 1 Uten hjelpemidler Oppgave 1 (18 poeng) a) Regn ut 1) 8 33 10 1 833 8 694 1 ) 1 9 3 3 1 3 3 3 33 3 3 3 6 6 3 3 1 3 6 4 3 3 81 b) Regn ut og skriv svaret på standardform

Detaljer

MAT1120 Notat 2 Tillegg til avsnitt 5.4

MAT1120 Notat 2 Tillegg til avsnitt 5.4 MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjoner (også kalt koordinatmatriser) av lineære avbildninger mellom endeligdimensjonale vektorrom En slik

Detaljer

Eksamen Ma 3 des 2004

Eksamen Ma 3 des 2004 Eksamen Ma 3 des 4.nb Eksamen Ma 3 des 4 Initialization In[8]:= In[]:=

Detaljer

Den deriverte og derivasjonsregler

Den deriverte og derivasjonsregler Den deriverte og derivasjonsregler Department of Mathematical Sciences, NTNU, Norway September 3, 2014 Tangenten til en funksjon i et punkt (kap. 2.1) Sekant til en funksjon gjennom to punkter 25 20 f(c+h)

Detaljer

Eksempler på aktiviteter med TI Interactive!

Eksempler på aktiviteter med TI Interactive! Eksempler på aktiviteter med TI Interactive! Disse aktivitetene er skrevet ut direkte fra programmet. Skulle du ønske å prøve de i praksis kan du laste ned en demoversjon (30 dager) av programmet fra http://education.ti.com/us/product/software/tii/features/features.ht

Detaljer

Eksempel: s d taylor sin x, x = 0, 9

Eksempel: s d taylor sin x, x = 0, 9 Maple kan selv konstruere taylorpolynomer til en gitt funksjon om et gitt punkt. Kommandoen er taylor der vi må taste inn funksjonen, punktet a vi finner polynomet om, og hvilken orden n vi vil at polynomet

Detaljer

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 4 Innleveringsfrist Fredag 11. mars 2016 Antall oppgaver: Løsningsforslag

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 4 Innleveringsfrist Fredag 11. mars 2016 Antall oppgaver: Løsningsforslag Innlevering BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 4 Innleveringsfrist Fredag 11. mars 2016 Antall oppgaver: 10 + 1 Løsningsforslag 1 Hvilken av de to funksjonene vist i guren er den deriverte

Detaljer

5.8 Iterative estimater på egenverdier

5.8 Iterative estimater på egenverdier 5.8 Iterative estimater på egenverdier Det finnes ingen eksplisitt formel for beregning av egenverdiene til en kvadratisk matrise. Iterative metoder som finner (ofte) en (meget god) approksimasjon til

Detaljer

Eksamensoppgave i MA1101/MA6101 Grunnkurs i analyse I. LØSNINGSFORSLAG

Eksamensoppgave i MA1101/MA6101 Grunnkurs i analyse I. LØSNINGSFORSLAG Institutt for matematiske fag Eksamensoppgave i MA/MA6 Grunnkurs i analyse I. LØSNINGSFORSLAG Faglig kontakt under eksamen: John Erik Fornæss /Kari Hag Tlf: 464944/483988 Eksamensdato: 8. desember 5 Eksamenstid

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 1100L Programmering, modellering, og beregninger. Eksamensdag: Fredag 2. Desember 2016. Tid for eksamen: 9:00 13:00.

Detaljer

Innlevering Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Onsdag 15. november 2017 kl 14:30 Antall oppgaver: 8

Innlevering Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Onsdag 15. november 2017 kl 14:30 Antall oppgaver: 8 Innlevering Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Onsdag 15. november 017 kl 14:30 Antall oppgaver: 8 1 Deriver følgende funksjoner a) ( x) b) (3 5x) 6 c) x x + 3 d) x ln

Detaljer

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger Institutt for matematiske fag Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger Faglig kontakt under eksamen: Anton Evgrafov Tlf: 4503 0163 Eksamensdato: 06. juni 2016 Eksamenstid (fra

Detaljer

LYØSINGSFORSLAG Eksamen i MAT111 - Grunnkurs i matematikk I onsdag 18. mai 2011 kl. 09:00-14: i( 3 + 1) = i + i + 1

LYØSINGSFORSLAG Eksamen i MAT111 - Grunnkurs i matematikk I onsdag 18. mai 2011 kl. 09:00-14: i( 3 + 1) = i + i + 1 LYØSINGSFORSLAG Eksamen i MAT111 - Grunnkurs i matematikk I onsdag 18. mai 011 kl. 09:00-1:00 NYNORSK OPPGAVE 1 Gitt dei komplekse tala z = 3 + i, w = 1 + i a Rekn ut (skriv på forma a + bi (i z + 3w,

Detaljer

Eksamen i MAT1100 H14: Løsningsforslag

Eksamen i MAT1100 H14: Løsningsforslag Eksamen i MAT H4: Løsningsforslag Oppgave. ( poeng) Dersom f(x, y) x sin(xy ), er f y lik: A) sin(xy ) + xy cos(xy ) B) x cos(xy ) C) x y cos(xy ) D) sin(xy ) + x y cos(xy ) E) cos(xy ) Riktig svar: C):

Detaljer

Eksamen i TMA4123/TMA4125 Matematikk 4M/N

Eksamen i TMA4123/TMA4125 Matematikk 4M/N Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 Faglig kontakt under eksamen: Anne Kværnø: mobil 92663824 Eksamen i TMA423/TMA425 Matematikk 4M/N Bokmål Mandag 2.

Detaljer

Eksamensoppgave i MA2501 Numeriske metoder

Eksamensoppgave i MA2501 Numeriske metoder Institutt for matematiske fag Eksamensoppgave i MA50 Numeriske metoder Faglig kontakt under eksamen: Trond Kvamsdal Tlf: 9305870 Eksamensdato: 3. mai 08 Eksamenstid (fra til): 09:00 3:00 Hjelpemiddelkode/Tillatte

Detaljer

Korreksjoner til fasit, 2. utgave

Korreksjoner til fasit, 2. utgave Korreksjoner til fasit,. utgave Kapittel. Oppgave.. a): / Oppgave.. e):.887, 0.58 Oppgave..9: sin00πt). + ) x Oppgave.7.5 c): ln for 0 < x. x Oppgave.8.0: Uttrykket for a + b) 7 skal være a + b) 7 = a

Detaljer

Ortogonale polynom og Gauss kvadratur

Ortogonale polynom og Gauss kvadratur Ortogonale polynom og Gauss kvadratur Hans Munthe-Kaas 1. jaunar 2002 Sammendrag Dette notatet tar for seg minste kvadrat approksimasjoner, ortogonale polynom og Gauss kvadratur. Notatet er ment som et

Detaljer

Løsningsforslag for eksamen i brukerkurs i matematikk A (MA0001)

Løsningsforslag for eksamen i brukerkurs i matematikk A (MA0001) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 8 Løsningsforslag for eksamen i brukerkurs i matematikk A (MA1) Bokmål Tirsdag 1. desember 11 Tid: 9: 1: (4 timer)

Detaljer

Oppgave x, x$1 f 1 x := K 1. x d diff. x 2. subs x = 2, f 2 K x, x$2 f 2 x := 2. x x, x$3 f 3 x := K 6.

Oppgave x, x$1 f 1 x := K 1. x d diff. x 2. subs x = 2, f 2 K x, x$2 f 2 x := 2. x x, x$3 f 3 x := K 6. Oppgave 2.3.35 a) Vi starter med å finne de deriverte til funksjonen av orden opp til og med 5 i punktet = 2. Det gjør vi ved å bruke kommandoen diff f, $n der f er uttrykket som skal deriveres, er navnet

Detaljer

Høgskolen i Oslo og Akershus. i=1

Høgskolen i Oslo og Akershus. i=1 Innlevering i BYFE/EMFE 1000 Oppgavesett 2 Innleveringsfrist: 19. oktober klokka 14:00 Antall oppgaver: 2 Løsningsforslag Oppgave 1 a) Skriptet starter med å la Sum være 0, så blir det for hver iterasjon

Detaljer

Fasit MAT102 juni 2016

Fasit MAT102 juni 2016 Fasit MAT02 juni 206. (a) Finn egenverdiene og egenvektorene til matrisen ( ) 6 A = 2 7 Svar: λ = 8 og ( ) x = y y ( ) /2, λ = 5 og ( ) x = y y ( ) for alle y 0. (b) Finn den generelle løsningen på systemet

Detaljer

Nicolai Kristen Solheim

Nicolai Kristen Solheim Oppgave 1. 1a) 1, 0, 2, sin 5 4cos sin 54cos sin 8 sin cos cos 54cos 8 sin cos 5cos 4cos 8sin cos 5cos 4cos Dersom vi plotter grafen for vil vi se hvor vokser og avtar. 1 Fra grafen for ser vi følgende

Detaljer

EKSAMEN I NUMERISK MATEMATIKK (TMA4215)

EKSAMEN I NUMERISK MATEMATIKK (TMA4215) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 5 Faglig kontakt under eksamen: Anne Kværnø 92663824) EKSAMEN I NUMERISK MATEMATIKK TMA425) Tirsdag 4. desember 2007

Detaljer

Løsningsforslag: Eksamen i MAT111 - Grunnkurs i Matematikk I

Løsningsforslag: Eksamen i MAT111 - Grunnkurs i Matematikk I Universitetet i Bergen Matematisk institutt Bergen, 8. desember 006. Bokmål Løsningsforslag: Eksamen i MAT - Grunnkurs i Matematikk I Mandag desember 8, 006, kl. 09-4. Oppgave Gitt funksjonen f(x) = ln(

Detaljer

Sammendrag R2. www.kalkulus.no. 31. mai 2009

Sammendrag R2. www.kalkulus.no. 31. mai 2009 Sammendrag R2 www.kalkulus.no 31. mai 2009 1 1 Trigonometri Definisjon av sinus og cosinus Sirkelen med sentrum i origo og radius 1 kalles enhetssirkelen. La v være en vinkel i grunnstilling, og la P være

Detaljer

with plots plot sin x, x =KPi..Pi Pi 3 eval tan eval cos K1 1 > evalf sin 3 2 K 2 $Pi

with plots plot sin x, x =KPi..Pi Pi 3 eval tan eval cos K1 1 > evalf sin 3 2 K 2 $Pi with plots Maple har en rekke innebygde funksjoner. Kommandoen plot brukes til å tegne grafen til en funksjon, og kommandoene eval og evalf brukes til å beregne funksjonsverdier for en funskjon. Den første

Detaljer

6.8 Anvendelser av indreprodukter

6.8 Anvendelser av indreprodukter 6.8 Anvendelser av indreprodukter Vektede minste kvadraters problemer Anta at vi approksimerer en vektor y = (y 1,..., y m ) R m med ŷ = (ŷ 1,..., ŷ m ) R m. Et mål for feilen vi da gjør er y ŷ, der betegner

Detaljer

Eksamen S2, Høsten 2013

Eksamen S2, Høsten 2013 Eksamen S, Høsten 0 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave (4 poeng) Deriver funksjonene x a) fx f x x x x b) 5 g x 5 x 5 5 5 4 4 g x x x

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag Oppgave 1 Summer og for-løkker a) 10 i=1 i 2 = 1 2 + 2 2 + 3 2 + 4 2 + 5 2 + 6 2 + 7 2 + 8 2 + 9 2 + 10 2 = 1 + 4 + 9 + 16 + 25 + 36

Detaljer

Eksamensoppgåve i TMA4135 Matematikk 4D

Eksamensoppgåve i TMA4135 Matematikk 4D Institutt for matematiske fag Eksamensoppgåve i TMA435 Matematikk 4D Fagleg kontakt under eksamen: Gard Spreemann Tlf: 73 55 02 38 Eksamensdato: 5. august 204 Eksamenstid (frå til): 09.00 3.00 Helpemiddelkode/Tillatne

Detaljer

Newtons metode. Gitt f(x) slik at f(a)f(b) < 0, Newtons metode genererer en følge {x k }, hvor. (Newton Raphson) x k+1 = x k f(x k) f (x k )

Newtons metode. Gitt f(x) slik at f(a)f(b) < 0, Newtons metode genererer en følge {x k }, hvor. (Newton Raphson) x k+1 = x k f(x k) f (x k ) Newtons metode 1/15 Gitt f(x) slik at f(a)f(b) < 0, Newtons metode genererer en følge {x k }, hvor x k+1 = x k f(x k) f (x k ) x 0 [a, b] gitt. (Newton Raphson) y=f(x) x k+1 x k Konvergens: Iterasjons

Detaljer

Løsningsforslag eksamen i TMA4100 Matematikk desember Side 1 av 7

Løsningsforslag eksamen i TMA4100 Matematikk desember Side 1 av 7 Løsningsforslag eksamen i TMA4 Matematikk 2. desember 23. Side av 7 Oppgave Løs initialverdiproblemet y (2/x)y, y() 2. Løsning: y (2/x)y er en førsteordens lineær differensialligning. Vi finner en løsning

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Teknostart forelesning 5 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Teknostart forelesning 5 Grenseverdier I dagens forelesning skal vi se på grenseverdier. 1 Hvorfor

Detaljer

Generell informasjon om faget er tilgjengelig fra It s learning.

Generell informasjon om faget er tilgjengelig fra It s learning. Stavanger, 6. august 013 Det teknisknaturvitenskapelige fakultet ELE500 Signalbehandling, 013. Generell informasjon om faget er tilgjengelig fra It s learning. Innhold 5.1 Implementering av IIR filter....................

Detaljer

Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010

Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Oppgave 1 Løs ulikheten x + 6 5 x + 2 Strategien er å

Detaljer

MAT jan jan feb MAT Våren 2010

MAT jan jan feb MAT Våren 2010 MAT 1012 Våren 2010 Mandag 25. januar 2010 Forelesning Vi fortsetter med å se på det bestemte integralet, bl.a. på hvordan vi kan bruke numeriske beregninger til å bestemme verdien når vi ikke nødvendigvis

Detaljer

Eksamen R2, Våren 2015, løsning

Eksamen R2, Våren 2015, løsning Eksamen R, Våren 05, løsning Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (4 poeng) Deriver funksjonene a) f () =- 3cos f =- 3 - sin

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 5. Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 5. Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 5 Løsningsforslag a) x = cos x x cos x = 0 eller f(x) = 0 med f(x) = x cos x b) f(0) = 0 cos 0 = 1 < 0 og f(π/2) = π/2 cos(π/2) = π/2 > 0. f(x) er en elementær

Detaljer

Løsningsforslag Eksamen S2, høsten 2016 Laget av Tommy Odland Dato: 27. januar 2017

Løsningsforslag Eksamen S2, høsten 2016 Laget av Tommy Odland Dato: 27. januar 2017 Løsningsforslag Eksamen S, høsten 016 Laget av Tommy Odland Dato: 7. januar 017 Del 1 - uten hjelpemidler Oppgave 1 a) Vi skal derivere f(x) = x 3 5x, og vi kommer til å få bruk for reglene (ax n ) = anx

Detaljer

MA1102 Grunnkurs i analyse II Vår 2019

MA1102 Grunnkurs i analyse II Vår 2019 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA112 Grunnkurs i analyse II Vår 219 8.4.1 Vi skal finne lengden til kurven x = 3t 2, y = 2t 3 der t 1. Som boka beskriver på

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Forelesning 9 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 9 Derivasjon I dagens forelesning skal vi se på følgende: 1 Tilnærminger til små endringer. 2 Vekstfart.

Detaljer

1 2 3 4 5 Innendørs temperatursvingninger.nb 1 Innendørs temperaturoscillasjoner Eksempel på lineær første ordens differensiallikning E:P.6 ed. s. 57 1.5 Application. La innetemperaturen i et hus være

Detaljer

1. Finn egenverdiene og egenvektorene til matrisen A = 2 1 A =

1. Finn egenverdiene og egenvektorene til matrisen A = 2 1 A = Fasit MAT102 juni 2017 Oppgave 1 1. Finn egenverdiene og egenvektorene til matrisen ( ) 1 2 A = 2 1 Løsning: Egenverdiene er røttene til det karakteristiske polynom gitt ved determinanten av matrisen (

Detaljer

Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3

Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3 Prøve i Matematikk BYFE DAFE Dato: 27. mai 26 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Løsningsforslag Oppgave Gitt matrisene [ 2 A 4 B [ 2 og C [ 2

Detaljer

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 18. august 2011

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 18. august 2011 Funksjoner Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 8. august 20 2 Definisjon av funksjon Definisjon En funksjon er en regel f som til et hvert tall i definisjonsmengden

Detaljer

13.1 Fourierrekker-Oppsummering

13.1 Fourierrekker-Oppsummering 3. Fourierrekker-Oppsummering Fourierrekken til en periodisk funksjon f med periode = L er gitt ved F f (x) = a + a n cos(nωx) + b n sin(nωx) der x D (konvergensområdet) a = / / f(x) dx = L b n = f(x)

Detaljer

Fasit, Kap : Derivasjon 2.

Fasit, Kap : Derivasjon 2. Ukeoppgaver, uke 37, i Matematikk 10, Kap. 3.5-3.8: Derivasjon. 1 Fasit, Kap. 3.5-3.8: Derivasjon. Oppgave 1 a) f (x) =x. Denne eksisterer over alt (det er vanligvis punkter med null i nevner som kan skaffe

Detaljer

x n+1 = x n f(x n) f (x n ) = x n x2 n 3

x n+1 = x n f(x n) f (x n ) = x n x2 n 3 TMA4 Høst 26 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag 4.2.8 Vi setter f(x) = x 2 3. Da blir f (x) = 2x, og iterasjonen blir f (x n ) = x n x2 n 3 2x n () Siden vi har

Detaljer

MAT-INF 2360: Obligatorisk oppgave 3. Løsningsforslag

MAT-INF 2360: Obligatorisk oppgave 3. Løsningsforslag MAT-INF 2360: Obligatorisk oppgave 3. Løsningsforslag I kapittel 9 i kompendiet forklarte vi at maximum-likelihood er en av de viktige anvendelsene av ikke-lineær optimering. Vi skal se litt mer på hva

Detaljer

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8 Innlevering BYFE DAFE Matematikk HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 5. april 6 kl Antall oppgaver: 8 Funksjonen ft) er vist i guren over. Funksjonen F x) er denert som for x. F x)

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 5 for-løkker

Matematikk Øvingsoppgaver i numerikk leksjon 5 for-løkker Matematikk 1000 Øvingsoppgaver i numerikk leksjon 5 for-løkker I dette settet skal vi introdusere for-løkker. Først vil vi bruke for-løkker til å regne ut summer. Vi skal også se på hvordan vi kan implementere

Detaljer

2 Fourierrekker TMA4125 våren 2019

2 Fourierrekker TMA4125 våren 2019 Fourierrekker TMA45 våren 9 I M lærte du at mange glatte funksjoner kan skrives som en potensrekke. En mye større klasse av funksjoner kan skrives som rekker av sinus- cosinusfunksjoner. Komplekse funksjoner

Detaljer

TMA4123/TMA4125 Matematikk 4M/4N Vår 2013

TMA4123/TMA4125 Matematikk 4M/4N Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA41/TMA415 Matematikk 4M/4N Vår 1 Løsningsforslag Øving 1 Skriv om følgende trigonometriske funksjoner til fourierrekker ved

Detaljer

Opp til nå har problemstilling vart: Gitt en funksjon f, finn for hvilket verdier av de variabler f tar en bestemt verdi. Ax = b, f(x) = 0.

Opp til nå har problemstilling vart: Gitt en funksjon f, finn for hvilket verdier av de variabler f tar en bestemt verdi. Ax = b, f(x) = 0. Interpolasjon Opp til nå har problemstilling vart: Gitt en funksjon f, finn for hvilket verdier av de variabler f tar en bestemt verdi. 1/9 Ax = b, f(x) = 0. Ved interpolasjon, er problemet det motsatte:

Detaljer

MAT 100a - LAB 3. Vi skal først illustrerere hvordan Newtons metode kan brukes til å approksimere n-te roten av et positivt tall.

MAT 100a - LAB 3. Vi skal først illustrerere hvordan Newtons metode kan brukes til å approksimere n-te roten av et positivt tall. MAT 100a - LAB 3 I denne øvelsen skal vi bruke Maple til å illustrere noen anvendelser av derivasjon, først og fremst Newtons metode til å løse likninger og lokalisering av min. og max. punkter. Vi skal

Detaljer

Forelesning Matematikk 4N

Forelesning Matematikk 4N Forelesning Matematikk 4N Hans Jakob Rivertz Institutt for matematiske fag 18. september 2006 2 Komplekse fourier rekker (10.5) Målet med denne leksjonen er vise hvordan man skrive fourier rekkene på kompleks

Detaljer

. Følgelig er csc 1 ( 2) = π 4. sin θ = 3

. Følgelig er csc 1 ( 2) = π 4. sin θ = 3 NTNU Institutt for matematiske fag TMA400 Matematikk høsten 00 Løsningsforslag - Øving Avsnitt 3.7 99 Vi deriverer to ganger: = A cos (ln ) B sin (ln ) = A cos (ln ) A sin (ln ) + B sin (ln ) B cos (ln

Detaljer

Potensrekker Forelesning i Matematikk 1 TMA4100

Potensrekker Forelesning i Matematikk 1 TMA4100 Potensrekker Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 11. november 2011 Kapittel 8.8. Taylorrekker og Maclaurinrekker 3 Taylor-polynomer Definisjon (Taylorpolynomet

Detaljer