Oppgave 1. Oppgave 2. Eksamen feb 2006.nb 1. Vektorfeltet er ikke konservativt da curl F 0. F. dr der C er kurven parametrisert av r(t), 0 t 1

Størrelse: px
Begynne med side:

Download "Oppgave 1. Oppgave 2. Eksamen feb 2006.nb 1. Vektorfeltet er ikke konservativt da curl F 0. F. dr der C er kurven parametrisert av r(t), 0 t 1"

Transkript

1 Eksamen feb 6.nb Oppgave y, zd y_, z_d := 8x y z, y z, x y z< << Calculus`VectorAnalysis` SetCoordinates@Cartesian@x, y, zdd CartesianHx, y, zl Curl@F@x, y, zdd 8x z - y z, x y - y z, -x z< Vektorfeltet er ikke konservativt da curl F Beregner W = Ÿ C F@8x_, y_, z_<d := F@x, y, zd r@t_d := 8t, t, t < F. dr der C er kurven parametrisert av r(t), t W = F@r@tDD.r'@tD t + t 8 + t 7 F@r@tDD.r'@tD t 5 ÅÅÅÅÅ 8 Siden feltet ikke er konservativt, vil arbeidet utført av vektorfeltet være avhengig av veien. Neste test bekrefter dette. rr@t_d := t 8,, < F@rr@tDD.rr'@tD t ÅÅÅÅÅÅÅÅ Oppgave Et legeme er begrenset av x y - planet, paraboloiden z = x + y + = r +, og hyperboloiden x + y -Hz - L = r -Hz - L =. La dk være overflaten av K, og A den del av dk som ligger på hyperboloidedelen. intercept = Solve@8r Hz L, z r + <, 8r, z<d 98z Ø, r Ø -<, 8z Ø, r Ø <, 9z Ø, r Ø - è!!!! =, 9z Ø, r Ø è!!!! ==

2 Eksamen feb 6.nb Vi må ha z = da paraboloiden skjærer ut av paraboloiden igjen ved z =. 8r, z< = 8r, z< ê. intercept@@dd 8, < Clear@r, zd Området i (x, y) - planet blir en sirkel med radius r: Solve@8r Hz L, z <, 8r<D@@DD 9r Ø è!!!! 5= Off@Plot::plnrD PlotA9x +, è!!!!!!!!!!!!!! x, + è!!!!!!!!!!!!!! x =, 9x, è!!!! 5, è!!!! 5=, Ticks 99 è!!!! 5,,, è!!!! 5 =, Automatic=, PlotStyle 88<, 8<, Dashing@8.<D<, Epilog 9Dashing@8.5,.8<D, Line@88, <, 8, <<D, LineA99 è!!!!, =, 9 è!!!!, ==E=E è!!! 5 - è!!! 5 Ü Graphics Ü << Graphics`ContourPlotD`

3 Eksamen feb 6.nb BlockA8$DisplayFunction = Identity<, cp = ContourPlotD@z x y, 8x,, <, 8y,, <, 8z,, <, PlotPoints 6 D; cp = ContourPlotDAx + y Hz L, 9x, è!!!! 5, è!!!! 5=, 9y, è!!!! 5, è!!!! 5=, 8z,, <, PlotPoints 6E E; Show@cp, cp, Boxed False, DisplayFunction $DisplayFunctionD; BlockA8$DisplayFunction = Identity<, cp = ContourPlotD@z x y, 8x,, <, 8y,, <, 8z,, <, PlotPoints 6 D; cp4 = ContourPlotDAx + y Hz L, 9x, è!!!! 5, è!!!! 5=, 9y,, è!!!! 5=, 8z,, <, PlotPoints 6E E; Show@cp, cp4, Boxed False, ViewPoint 8,, <, DisplayFunction $DisplayFunctionD;

4 Eksamen feb 6.nb 4 PlotA9x +, è!!!!!!!!!!!!!! x =, 9x, è!!!! 5, è!!!! 5=, Ticks 99 è!!!! 5,,, è!!!! 5 =, Automatic=E è!!! 5 - è!!! 5 Ü Graphics Ü ü a) Deler volumet opp i to, pga ulike randkurver. Beregner først volumet av legemet mellom paraboloiden og x y - planet. Dette legemet har grunnflate lik enhetssirkelen, r =. Først integreres langs den vertikale søylen fra z = til z = r -. π r + V = r z r θ p ÅÅÅÅÅÅÅÅÅ Den andre delen består av legemet over sirkelringen i xy -planet begrenset av hyperboloideflaten. Først integreres langs den vertikale søylen fra z = til z = - è!!!!!!!!!!!!! r -. π è!!!! 5 è!!!!!!!!!!!!!! r V = r z r θ 8 p ÅÅÅÅÅÅÅÅÅ V K = V + V 5 p 6 Kan også beregne volumet bygd opp av horisontale sirkulære skiver med tykkelse dz. è!!!!!!!!!!!!!!!!!!!!!!!!!!! π Hz L + π V = r r z θ + 5 p 6 è!!!!!!!!!!!!!!!!!!!!!!!!!!! Hz L + è!!!!!!!!!!! z r r z θ V = π HHz L + L z + π H HHz L + L Hz LL z 5 p 6

5 Eksamen feb 6.nb 5 ü b) F@x_, y_, z_d := 9x y z, x + y + z, H yl z y z = Div@F@x, y, zdd êê Simplify ü c) Φ = F.n ds = F dv H Gauss' setningl = dv δk K K Φ δ K = V K 5 p ü d ü Alternativ Denne metoden er mest direkte, men gir komplisert beregning av fluksintegralet over paraboloiden. En utvendig normalvektor til paraboloideflaten vil ha positiv z- komponent. Den projiserte flaten i xy-planet vil være enhetssirkelen, så vi skifter til polarkoordinater n@x_, y_, z_d := 8 x, y, < F@x, y, zd.n@x, y, zd ê. z x + y + ê. 8 x r Cos@θD, y r Sin@θD< êê Simplify ÅÅÅÅÅ H-rH6 r4 + 9 r + 9L sinhql -Hr + LHr sinh ql - 4LL π Φ par = i j k H r H6 r4 + 9 r + 9L Sin@θD Hr + L Hr Sin@ θd 4LL y z r r θ { p I det siste integralet vil bare siste ledd gi bidrag pga symmetri π Hr + L r r t p Fluksen ut av bunnflaten er null, da F.n = her: F@x, y, zd.8,, < ê. z Φ bunn = ;

6 Eksamen feb 6.nb 6 Fluksen ut av hyperboloideflaten A blir Φ A = Φ δ K Φ par Φ bunn 6 p Vi har altså funnet at ŸŸ A F.n S = 6 p ÅÅÅÅÅÅÅÅ ü Alternativ Vi kan definere et nytt, lukket område L bestående av hyperboloiden begrenset av planene z = og z =. Da slipper vi problemet med å beregne fluksen ut av paraboloideflaten. Fluksen ut av toppskiven er enklere å beregne. La dl betegne overflaten til legemet L. ShowAContourPlotDAx + y Hz L, 9x, è!!!! 5, è!!!! 5=, 9y, è!!!! 5, è!!!! 5 =, 8z,, <, PlotPoints 6, DisplayFunction IdentityE, ParametricPlotD@8r Cos@uD, r Sin@uD, <, 8r,, <, 8u,, π<, DisplayFunction IdentityD, DisplayFunction $DisplayFunction, Boxed FalseE; PlotA è!!!!!!!!!!!!!! x, 9x, è!!!! 5, è!!!! 5=, Ticks 99 è!!!! 5,,, è!!!! 5 =, Automatic=, Epilog Line@88, <, 8, <<DE.5.5 è!!! 5 - è!!! 5 Ü Graphics Ü

7 Eksamen feb 6.nb 7 Vi beregner volumet av L lettest ved å addere horisontale sirkelskiver med radius r = "######################## +Hz - L mellom z = og z =. V L = pÿ HHz - L + L z è!!!!!!!!!!!!!!!!!!!!!!!!!!! π Hz L + V L = r r z θ 4 p Fluksen ut av L beregnes ved divergenssetningen. Vi husker at õ.f = Φ δ L = V L 8 p Det gjenstår å beregne fluksen ut av toppflaten, en sirkulær skive med radius. En utvendig normalvektor er rettet rett oppover. n@x_, y_, z_d = 8,, <; F@x, y, zd.n@x, y, zd ê. z êê Simplify 4-6 y Bare første ledd gir bidrag til fluksintegralet (aksialsymmetri) og fluksen blir derfor lik 4 ŸŸ da = 4 p = 4 p. π Φ topp = H4 r Sin@θDL r r θ 4 p Fluksen ut av A blir differansen mellom total fluks ut av dl og fluksen ut av toppflaten og bunnflaten: Φ A = Φ δ L Φ topp Φ bunn 6 p ü e) G@x_, y_, z_d := 8 y z + z Cos@yD, x z, x y z < Curl@G@x, y, zdd 8 x y z x z - x z, -y - x y z z y + z coshyl, sinhyl z + z + y z<

8 Eksamen feb 6.nb 8 ü f) ShowAContourPlotDAx + y Hz L, 9x, è!!!! 5, è!!!! 5=, 9y, è!!!! 5, è!!!! 5 =, 8z,, <, PlotPoints 6, DisplayFunction IdentityE, ParametricPlotD@8Cos@uD, Sin@uD,, 8Thickness@.D, Red<<, 8u,, π<, DisplayFunction IdentityD, DisplayFunction $DisplayFunction, Boxed FalseE; Curl@F@x, y, zdd.8,, < ê. z êê Simplify W = Ÿ C r@t_d := 8Cos@tD, Sin@tD, < F@8x_, y_, z_<d = F@x, y, zd :x y z, x + y + z, H - yl z - ÅÅÅÅÅÅÅÅ y z ÅÅÅÅÅ > F@r@tDD.r'@tD êê Simplify coshtl HcosH tl + 4L π F@r@tDD.r'@tD t F. dr = Ÿ Ÿõ äf.n S = Ÿ p Ÿ õ äf.n r r q Forfatteren av oppgaven hadde egentlig forvekslet GHx, y.zl med FHx, y, zl. Direkte utregning av kurveintegralet W = Ÿ C G@8x_, y_, z_<d = G@x, y, zd 8z coshyl - y z, x z, x y z < G. dr

9 Eksamen feb 6.nb 9 G@r@tDD.r'@tD êê Simplify Hsin HtL - coshsinhtll sinhtl + cos HtLL Bare siste ledd gir bidrag når vi integrerer over en hel periode, så integralet blir redusert til p 4Ÿ cos p t t = + cos t p 4Ÿ ÅÅÅÅÅÅÅ t = Ÿ t = 4 p π G@r@tDD.r'@tD t 4 p Med Stokes sats: k = 8,, <; Curl@G@x, y, zdd.k ê. z 4 y + 4 sinhyl + 4 W = Ÿ G. dr = Ÿ Ÿõ äg.k S =ŸŸH4 y + 4 sin y + 4L S, der vi integrerer over toppskiva begrenset av kurven C. Vi C skifter til polarkoordinater: W = Ÿ p Ÿ H4 r sin q + 4 sinh r sin ql + 4L r r q π W = H4 r Sin@θD + 4 Sin@ r Sin@θDD + 4L r r θ 4 p De to første leddene integreres til null pga odde symmetri. Kurveintegralet blir derfor W = 4 * Arealet av enhetssirkelen. π W = 4 r r θ 4 p Oppgave Clear@f, gd f@x_, y_, z_d := x + y + z g@x_, y_, z_d := x y z + 4 Bestem største og minste avstand til nivåflaten ghx, y, zl = fra origo og hvor dette inntreffer. Dette er ekvivalent med å finne ekstremalverdiene til f med bibetingelse g =. Lagrange's multiplikatormetode gir õf = l õg << Calculus`VectorAnalysis` SetCoordinates@Cartesian@x, y, zdd;

10 Eksamen feb 6.nb y, zdd 8 x, y, z< Grad@f@x, y, zdd λ Grad@g@x, y, zdd 8 x, y, z< 8y l, x l, - z l< Vi får likningene x = l y, y = l x, z = -l z. Dersom z, følger av siste likning at l = -. Innsetting i de to andre likningene x = - y, y = -x, som bare er oppfylt for x = y =. Punktet (,,z) skal ligge på flaten g. Men g(,,z) = -z + 4 = har løsninger z =. Vi finner derfor kandidatene H,, L og H,, -L. Disse har avstand fra origo. Dersom z =, vil siste likning være tilfredstilt for alle l. Kombinerer vi derimot de to andre likningene, får vi 4 x = l x. Vi kan ikke ha x =, siden det medfører at y =, og origo ligger ikke på flaten g. Eneste mulighet er derfor l = eller l = -. l = gir videre y = x. ghx, x, L = x + 4 = gir ingen reelle løsninger. l = - gir y = -x. Likningen ghx, -x, L = -x + 4 = gir løsninger x =. Vi finner derfor to nye kandidater H, -, Log H-,, L. Disse har avstand è!!! fra origo. Vi har derfor funnet maks avstand fra origo i punktene (±,,) og minst avstand fra origo i punktene(,, ). Vi lar Mathematica løse problemet for oss, og ser at både de reelle og komplekse løsningene stemmer med papirarbeidet. solns = Solve@8Grad@f@x, y, zdd λ Grad@g@x, y, zdd, x y z + 4 <, 8x, y, z, λ<d 88z Ø -, x Ø, y Ø, l Ø -<, 8z Ø, x Ø, y Ø, l Ø -<, 8l Ø -, z Ø, x Ø -, y Ø <, 8l Ø -, z Ø, x Ø, y Ø -<, 8l Ø, z Ø, x Ø - Â, y Ø - Â<, 8l Ø, z Ø, x Ø Â, y Ø Â<< values = 8x, y, z, λ< ê. solns i - -y  -  j k   z { pts = values ê. 8x_, y_, z_, λ_< 8x, y, z< i -y  -  j k   z { Vi kan bare akseptere reelle verdier: pts = DeleteCases@pts, 8_Complex, _Complex, _Integer<D i -y - j k - z {

11 Eksamen feb 6.nb y_, z_<d = f@x, y, zd x + y + z & ê@ pts 9,, è!!!!, è!!!! = Minste avstand fra origo til flaten ghx, y, zl er, i punktene (,,±). Største avstand fra origo til flaten ghx, y, zl er è!!!, i punktene (, ±,) Oppgave 4 << Graphics`InequalityGraphics` BlockA8$DisplayFunction = Identity<, pl = PlotA9x, 4 x, x, 9 =, 8x,, 5<E; x ip = InequalityPlot@y > x && y < 4 x && x y > && x y < 9, 8x,, <, 8y,, 6<DE; Show@ip, pl, PlotRange 8, 7<, AxesLabel 8"x", "y"<d y Ü Graphics Ü Clear@u, vd u@x_, y_d := v@x, yd := x y 4 5 x y x

12 Eksamen feb 6.nb = Identity<, ip = InequalityPlot@u > && u < 4 && v > && v < 9, 8u,, 5<, 8v,, <DD; lines = Graphics@8Line@88, <, 8, <<D, Line@884, <, 84, <<D<D; Show@ip, lines, PlotRange 8, <, AxesLabel 8"u", "v"<d v u J "##### y ÅÅÅÅ Ü Graphics Ü J@x_, y_d = Outer@D, 8u@x, yd, v@x, yd<, 8x, y<d i - ÅÅÅÅÅÅ y j k y ÅÅÅÅ x x x y z { Det@J@x, ydd - y ÅÅÅÅÅÅÅÅÅ x j = Det@J@x, ydd ê. y x u - u x 9 4 ÅÅÅÅ Ÿ Ÿ I ÅÅÅÅÅÅÅÅ è!!!! + è!!!!!!!! x yn x y = Ÿ ŸI è!!!! u + è!!! vm + è!!!! v ÅÅÅÅÅÅÅÅ u Å Abs@ jd u v = ÅÅÅÅÅ Ÿ ŸI ÅÅÅÅÅÅÅÅ è!!!! + è!!!! v ÅÅÅÅÅÅÅÅ u u M u v = u M u v = ÅÅÅÅ 9 è!!! 9 è!!! Ÿ I + v ln 4M v = Ÿ I + v ln M v = 8 + ÅÅÅÅÅ 5 ln

13 Eksamen feb 6.nb 9 4 I è!!!! u + è!!!! vm u v êê Expand Abs@jD 5 loghl 8 +

Eksamen Ma 3 des 2004

Eksamen Ma 3 des 2004 Eksamen Ma 3 des 4.nb Eksamen Ma 3 des 4 Initialization In[8]:= In[]:=

Detaljer

Eksamen Ma 3 red.pensum 2006

Eksamen Ma 3 red.pensum 2006 Eksamen Ma B høst 6.nb Eksamen Ma red.pensum 6 Oppgave

Detaljer

NY Eksamen i matematikk III, 5 studiepoeng. August 2007

NY Eksamen i matematikk III, 5 studiepoeng. August 2007 NY Eksamen i matematikk III, 5 studiepoeng. August 7 Oppgave a. Regn ut gradienten til funksjonen f(x, y) = x +y +xy. I hvilken retning øker f mest når x = og y =? b. Regn ut kurveintegralet f(x, y) ds

Detaljer

ü Omkrets ü Rotasjonsflate oblig1 Ma 3B h 2007 fasit.nb 2 Ldq. Vi må passe på at cos H ÅÅÅÅL>0 når 0 Relasjonen cosh ÅÅÅÅ

ü Omkrets ü Rotasjonsflate oblig1 Ma 3B h 2007 fasit.nb 2 Ldq. Vi må passe på at cos H ÅÅÅÅL>0 når 0 Relasjonen cosh ÅÅÅÅ oblig Ma 3B h 7 fasit.nb Oblig Ma 3B h 7 fasit ü Oppgave Det er ikke umiddelbart klart hvordan vi eliminerer parameteren t, men prøv å summere de kvadrerte uttrykkene og se hva det fører til: x + y = -

Detaljer

Oppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener.

Oppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener. NTNU Institutt for matematiske fag TMA45 Matematikk, øving, vår Løsningsforslag Notasjon og merknader Oppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener. Oppgaver fra kapittel

Detaljer

The full and long title of the presentation

The full and long title of the presentation The full and long title of the presentation Subtitle if you want Øistein Søvik Mai 207 Ø. Søvik Short title Mai 207 / 4 Innholdsfortegnelse Introduksjon Nyttige tips før eksamen Nyttige tips under eksamen

Detaljer

Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, vår 2009

Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, vår 2009 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 8 Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, vår 2009 Oppgave 1 Avgjør om grenseverdiene eksisterer:

Detaljer

Løsningsforslag til eksamen i TMA4105 matematikk 2,

Løsningsforslag til eksamen i TMA4105 matematikk 2, Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av Løsningsforslag til eksamen i TMA45 matematikk, 9.5.4 Oppgave La fx, y, z) xy + arctanxz). La P være punktet,, ). a)

Detaljer

Løsning til eksamen i ingeniørmatematikk

Løsning til eksamen i ingeniørmatematikk Løsning til eksamen i ingeniørmatematikk 3 78 Oppgave Vektorfeltet har komponenter og er funksjon av variable Jacobimatrisen er av type ( xy) ( xy) x y ( yx) ( yx) xy x y xy Innsatt finner vi JF ( x, y)

Detaljer

Oppgavesettet har 10 punkter 1, 2ab, 3ab, 4ab, 5abc som teller likt ved bedømmelsen.

Oppgavesettet har 10 punkter 1, 2ab, 3ab, 4ab, 5abc som teller likt ved bedømmelsen. NTNU Institutt for matematiske fag SIF55 Matematikk 2 4. mai 999 Løsningsforslag Oppgavesettet har punkter, 2ab, 3ab, 4ab, 5abc som teller likt ved bedømmelsen. i alternativ (3, ii alternativ (2. 2 a For

Detaljer

Anbefalte oppgaver - Løsningsforslag

Anbefalte oppgaver - Løsningsforslag TMA415 Matematikk 2 Anbefalte oppgaver - Løsningsforslag Uke 7 15.1.3: Siden vektorfeltet er gitt ved F(x, y) = yi + xj må feltlinjene tilfredstille differensiallikningen eller y = x y, ( ) 1 2 y2 = x.

Detaljer

Løsningsforslag til prøveeksamen i MAT 1110, våren 2006

Løsningsforslag til prøveeksamen i MAT 1110, våren 2006 Løsningsforslag til prøveeksamen i MAT, våren 6 Oppgave : a) Vi har C 5 3 II+( )I a + 3a 3a III+I 3 II 3 3 3 3 a + 3a 3a 3 a + 3a 3a III+II I+( ))II 3 3 3 a + 3a 3a 3 3 3 a + 3a 4 3 3a a + 3a 4 3 3a b)

Detaljer

y = x y, y 2 x 2 = c,

y = x y, y 2 x 2 = c, TMA415 Matematikk Vår 17 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 9 Alle oppgavenummer referer til 8. utgave av Adams & Essex alculus: A omplete

Detaljer

dx = 1 1 )dx = 3 y= x . Tangentplanet til hyperboloiden i (2, 1, 3) er derfor gitt ved x 2, y 1, z 3 = 0 x 2 + 2(y 1) 2 (z 3) = 0 x + 2y 2z 3 = 2

dx = 1 1 )dx = 3 y= x . Tangentplanet til hyperboloiden i (2, 1, 3) er derfor gitt ved x 2, y 1, z 3 = 0 x 2 + 2(y 1) 2 (z 3) = 0 x + 2y 2z 3 = 2 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA415 Matematikk vår 9 øsningsforslag til eksamen 15. august 9 1 Treghetsmoment med hensyn på x-aksen er gitt ved x [ ] y I

Detaljer

Anbefalte oppgaver - Løsningsforslag

Anbefalte oppgaver - Løsningsforslag TMA415 Matematikk 2 Anbefalte oppgaver - Løsningsforslag Uke 14 1.4.5: Vi skal finne fluksen ut overflaten til den solide ballen B med sentrum = (2,, 3) og radius r = 3, av vektorfeltet F = x 2 i + y 2

Detaljer

Randkurva C til flata S orienteres positivt sett ovenfra, og kan parametriseres ved: r (t) = [ sin t, cos t, sin t] dt, 0 t 2π.

Randkurva C til flata S orienteres positivt sett ovenfra, og kan parametriseres ved: r (t) = [ sin t, cos t, sin t] dt, 0 t 2π. Ma - Løsningsforslag til uke 17 i 7 Eks. mai 1999 oppgave 4 ylinderen x + y = 1 skjærer ut ei flate av planet z = x + 1 dvs. x + z = 1 med enhetsnormal i positiv z-retning lik n= 1 [ 1 1]. Flata blir en

Detaljer

Løsning IM3 15.06.2011.

Løsning IM3 15.06.2011. Løsning IM 15611 1 Oppgave 1 Innsetting viser at både teller og nevner er i origo, så uttrykket er ubestemt Siden det ikke er noen umiddelbar omskriving som forenkler uttrykket satser vi på å vise at grensen

Detaljer

SIF 5005 Matematikk 2 våren 2001

SIF 5005 Matematikk 2 våren 2001 IF 55 Matematikk våren Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Diverse løsningsforslag 75 Matematikk B, mai 994 (side 77 79) 6 a) Vi finner en potensialfunksjon φ(x,

Detaljer

Matematikk 4, ALM304V Løsningsforslag eksamen mars da 1 er arealet av en sirkel med radius 2. F = y x = t t r = t t v = r = t t

Matematikk 4, ALM304V Løsningsforslag eksamen mars da 1 er arealet av en sirkel med radius 2. F = y x = t t r = t t v = r = t t Oppgave r( t) v( t) dt t dt, t dt, t dt t +, t +, t +. d d d a( t) v '( t) t, t, t,6 t,t dt dt dt F ma m t t Gitt en hastighetsvektor v( t) t, t, t.,6, Oppgave Greens setning: δq δ P I ( Pdx + Qdy) ( )

Detaljer

EKSAMEN I FAG SIF5005 MATEMATIKK 2

EKSAMEN I FAG SIF5005 MATEMATIKK 2 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 3 Faglig kontakt under eksamen: Trond Digernes 7359357 Berner Larsen 73 59 35 5 Lisa Lorentzen 73 59 35 48 Vigdis Petersen

Detaljer

Vi regner først ut de nødvendige partiellderiverte for å se om vektorfeltet er konservativt. z = 2z, F 2 F 2 z = 2y, F 3. x = 2x, F 3.

Vi regner først ut de nødvendige partiellderiverte for å se om vektorfeltet er konservativt. z = 2z, F 2 F 2 z = 2y, F 3. x = 2x, F 3. TMA415 Matematikk Vår 15 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 7 Alle oppgavenummer refererer til 8. utgave av Adams & Essex alculus: A omplete

Detaljer

TMA Representasjoner. Funksjoner. Operasjoner

TMA Representasjoner. Funksjoner. Operasjoner TMA 4105 Representasjoner Funksjoner Operasjoner Funksjoner f : D R m! f(d) R n reelle funksjoner kurver flater vektorfelt Funksjoner i) f : D R n! R reell funksjon av n variabler, f(x), f(x,y) eller f(x,y,z)

Detaljer

Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, 8.juni 2010

Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, 8.juni 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Løsningsforslag, eksamen MA11 Flerdimensjonal analyse, 8.juni 21 Oppgave 1 a) Finn og klassifiser alle kritiske

Detaljer

SIF5005 Matematikk 2, 13. mai 2002 Løsningsforslag

SIF5005 Matematikk 2, 13. mai 2002 Løsningsforslag SIF55 Matematikk, 3. mai Oppgave Alternativ : At de to ligningene skjærer hverandre vil si at det finnes parameterverdier u og v som, innsatt i de to parametriseringene, gir samme punkt: Vi løser hver

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: Eksamensdag: Fredag 1. april 2011 Tid for eksamen: 15.00 17.00 Oppgavesettet er på 7 sider. Vedlegg: Tillatte hjelpemidler:

Detaljer

SIF5005 MATEMATIKK 2 VÅR r5 drdθ = 1 m. zrdzdrdθ = 1 m. zrdzdrdθ =

SIF5005 MATEMATIKK 2 VÅR r5 drdθ = 1 m. zrdzdrdθ = 1 m. zrdzdrdθ = SIF55 MAEMAIKK Å 3 Løsningsforslag Hjemmeøving 5 Oppgave. Ser at massen fordeler seg symetrisk om z-aksen, derfor vil tyngdepunktet ligge på z-aksen. Det eneste vi da trenger å regne ut er z. zδd = m π

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAGET 5005/7 MATEMATIKK 2 1. august der k er et vilkårlig heltall. Det gir

LØSNINGSFORSLAG TIL EKSAMEN I FAGET 5005/7 MATEMATIKK 2 1. august der k er et vilkårlig heltall. Det gir LØNINGFOLAG IL EKAMEN I FAGE 55/7 MAEMAIKK. august Oppgave. (i Ja. (ii Ja. (iii Nei. Alternativt: (i Ja. (ii Ja. (iii Ja. Oppgave. curlf (x, y F i j k (x, y / x / y / z e y + ye x +x xe y + e x + Altså

Detaljer

Eksamensoppgave i MA1103 Flerdimensjonal analyse

Eksamensoppgave i MA1103 Flerdimensjonal analyse Institutt for matematiske fag Eksamensoppgave i MA3 Flerdimensjonal analyse Faglig kontakt under eksamen: Mats Ehrnstrøm Tlf: 735 97 44 Eksamensdato: 22. mai 28 Eksamenstid (fra til): 9: 3: Hjelpemiddelkode/Tillatte

Detaljer

Løsningsforslag eksamen TMA4105 matematikk 2, 25. mai 2005

Løsningsforslag eksamen TMA4105 matematikk 2, 25. mai 2005 Løsningsforslag eksamen TMA5 matematikk, 5. mai 5 Oppgave Vi finner de partiellderiverte av første og annen orden av f, ) = sin : f = sin, f = cos, f =, f = cos, f = sin. Finner de kritiske punktene ved

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: MAT Kalkulus og lineær algebra Eksamensdag: Fredag. mars Tid for eksamen: 5. 7. Oppgavesettet er på 8 sider. Vedlegg: Tillatte

Detaljer

EKSAMENSOPPGAVE. KRAFT I og II Hall del 2 Kraft sportssenter Ingen

EKSAMENSOPPGAVE. KRAFT I og II Hall del 2 Kraft sportssenter Ingen Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: MAT-1003 Kalkulus 3 Dato: 11.12.2018 Klokkeslett: 09.00-13.00 Sted: Tillatte hjelpemidler: KRAFT I og II Hall del 2 Kraft sportssenter

Detaljer

LØSNINGSFORSLAG EKSAMEN TMA4105 MATEMATIKK 2 Lørdag 14. aug 2004

LØSNINGSFORSLAG EKSAMEN TMA4105 MATEMATIKK 2 Lørdag 14. aug 2004 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag ide av LØNINGFOLAG EKAMEN TMA4 MATEMATIKK 2 Lørdag 4. aug 24 Oppgave Grenseverdien eksisterer ikke. For eksempel er grenseverdien

Detaljer

(1 + x 2 + y 2 ) 2 = 1 x2 + y 2. (1 + x 2 + y 2 ) 2, x 2y

(1 + x 2 + y 2 ) 2 = 1 x2 + y 2. (1 + x 2 + y 2 ) 2, x 2y Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA45 Matematikk vår 9 Løsningsforslag til eksamen.5.9 Gitt f(, y) = + +y. a) Vi regner ut f = f y = + + y ( + + y ) = + + y

Detaljer

Anbefalte oppgaver - Løsningsforslag

Anbefalte oppgaver - Løsningsforslag TMA405 Matematikk Anbefalte oppgaver - Løsningsforslag Uke 6 3..9: Vi starter med å finne de kritiske punktene. De deriverte blir T x (x, y) = ( x xy)e x y T y (x, y) = ( y xy)e x y, slik at de kritiske

Detaljer

Anbefalte oppgaver - Løsningsforslag

Anbefalte oppgaver - Løsningsforslag TMA45 Matematikk Anbefalte oppgaver - Løsningsforslag Uke 5.5.: Kulen er grafen til rφ, θ) asinφ) cosθ)i + sin φ sinθ)j + cosφ)k), φ π, θ < π. Vi har slik at φ θ acosφ) cosθ)i + sinφ) sinθ)j + cosφ)k)

Detaljer

Eksamen, høsten 14 i Matematikk 3 Løsningsforslag

Eksamen, høsten 14 i Matematikk 3 Løsningsforslag Oppgave 1. Fra ligningen Eksamen, høsten 14 i Matematikk 3 Løsningsforslag x 2 64 y2 36 1 finner vi a 64 8 og b 36 6. Fokus til senter avstanden er da gitt ved c a 2 + b 2 64 + 36 1 1. Dermed er fokuspunktene

Detaljer

LØSNINGSFORSLAG TIL ØVING 11, TMA4105, V2008. x = r cos θ, y = r sin θ, z = 2r for 0 θ 2π, 2 2r 6. i j k. 5 r dr dθ = 8

LØSNINGSFORSLAG TIL ØVING 11, TMA4105, V2008. x = r cos θ, y = r sin θ, z = 2r for 0 θ 2π, 2 2r 6. i j k. 5 r dr dθ = 8 LØNINGFORLAG TIL ØVING, TMA45, V8 Oppgave 4.5.9. Parametrisering: x = r cos θ, y = r sin θ, z = r for θ π, r 6. r(r, θ) = r cos θ, r sin θ, r. N = r r r θ = cos θ sin θ = r cos θ, r sin θ, r. r sin θ r

Detaljer

Løsning IM

Løsning IM Løsning IM 6 Oppgave x + y Grensen lim er ubestemt da både teller og nevner blir Vi skal vise at grensen ( xy, ) (,) x + y ikke eksisterer og bruker rette linjer inn mot origo De enkleste linjene er koordinataksene

Detaljer

TMA4105 Matematikk 2 Vår 2014

TMA4105 Matematikk 2 Vår 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4105 Matematikk 2 Vår 2014 Løsningsforslag Øving 7 10.4.7 Vi skal finne likningen til et plan gitt to punkter P = (1, 1,

Detaljer

e y + ye x +2x xe y + e x +1 0 = 0

e y + ye x +2x xe y + e x +1 0 = 0 LØNINGFORLAG TIL EKAMEN I FAGET 55/7 MATEMATIKK. august Oppgave. (i) Ja. (ii) Ja. (iii) Nei. Alternativt: (i) Ja. (ii) Ja. (iii) Ja. Oppgave. a) curlf (x, y) F i j k (x, y) / x / y / z e y + ye x +x xe

Detaljer

EKSAMEN I FAG SIF5005 MATEMATIKK 2

EKSAMEN I FAG SIF5005 MATEMATIKK 2 Norges teknisk naturvitenskapelige universitet Trond Digernes 75957 Berner Larsen 7 59 5 5 Lisa Lorenten 7 59 5 8 Vigdis Petersen 75965 ide av Vedlegg: Formelliste IF55 Matematikk ide av Oppgave Et plant

Detaljer

For at en funksjon i to variable skal ha en grenseverdi i punktet (a,b), dvs.

For at en funksjon i to variable skal ha en grenseverdi i punktet (a,b), dvs. Øving ue 3 Grenser og ontinuitet For at en funsjon i to variable sal ha en grenseverdi i puntet (a,b), dvs. lim Hx,yL Ha,bL f Hx, yl = L sal esistere, må denne unie verdien oppnåes uansett hvilen vei man

Detaljer

Kurve-, flate- og volumintegraler, beregning av trykkraft

Kurve-, flate- og volumintegraler, beregning av trykkraft Kapittel 6 Kurve-, flate- og volumintegraler, beregning av trykkraft Oppgave 1 Vi skal regne ut kurveintegralet λ v dr langs kurven λ: y x3 når 1 x 2 og v xyi+x 2 j. Vi kan parametrisere med x som parameter,

Detaljer

Løsningsforslag til prøveeksamen i MAT1050, vår 2019

Løsningsforslag til prøveeksamen i MAT1050, vår 2019 Løsningsforslag til prøveeksamen i MT15, vår 19 Oppgave 1. a) Vi har sinx + y) d R cosx + y) sinx + π) + sin x siden alle fire leddene er. yπ y π dx sinx + y) dy dx cosx + π) + cos x) dx sin π + sin π)

Detaljer

Oppgaver og fasit til seksjon

Oppgaver og fasit til seksjon 1 Oppgaver og fasit til seksjon 3.4-3.6 Oppgaver til seksjon 3.4 1. Anta at f(x, y) = x 2 y 3 og r(t) = t 2 i + 3t j. Regn ut g (t) når g(t) = f(r(t)). 2. Anta at f(x, y) = x 2 e xy2 og r(t) = sin t i+cos

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT111 Prøveeksamen Eksamensdag: 5. juni 21. Tid for eksamen: 1. 13.3. Oppgavesettet er på 9 sider. Vedlegg: Tillatte hjelpemidler:

Detaljer

Eksamensoppgave i MA1103 Flerdimensjonal analyse

Eksamensoppgave i MA1103 Flerdimensjonal analyse Institutt for matematiske fag Eksamensoppgave i MA113 Flerdimensjonal analyse Faglig kontakt under eksamen: Tlf: Eksamensdato: 5. Juni 19 Eksamenstid (fra til): 9: 13: Hjelpemiddelkode/Tillatte hjelpemidler:

Detaljer

Kurve-, flate- og volumintegraler, beregning av trykkraft

Kurve-, flate- og volumintegraler, beregning av trykkraft Kapittel 6 Kurve-, flate- og volumintegraler, beregning av trykkraft Oppgave 1 Vi skal regne ut kurveintegralet λ v dr langs kurven λ: y x3 når 1 x 2 og v xyi+x 2 j. Vi kan parametrisere med x som parameter,

Detaljer

EKSAMEN i MATEMATIKK 30

EKSAMEN i MATEMATIKK 30 Eksamen i Matematikk 3 1. desember 1999 1 Høgskolen i Gjøvik Avdeling for teknologi EKAMEN i MATEMATIKK 3 1 desember 1999 kl. 9 14 Fagnummer: V139A Faglærer: Hans Petter Hornæs Tillatte hjelpemidler: Godkjent

Detaljer

a 2 x 2 dy dx = e r r dr dθ =

a 2 x 2 dy dx = e r r dr dθ = NTNU Institutt for matematiske fag TMA4 Matematikk, øving, vår Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon, språk

Detaljer

Obligatorisk oppgåve 1

Obligatorisk oppgåve 1 FYS112 Elektromagnetisme 214 Obligatorisk oppgåve 1 Innleveringsfrist 19. september kl. 23.59 Lars Kristian Henriksen 21. oktober 214 Obligar i FYS112 leverast elektronisk på Devilry http://devilry.ifi.uio.no/.

Detaljer

Eksamensoppgaver og Matematikk 1B

Eksamensoppgaver og Matematikk 1B Eksamensoppgaver 7500 og 750 Matematikk B Samlet for SIF5005 Matematikk våren 00 Samlingen inneholder utvalgte oppgaver gitt i 7500 og 750 Matematikk B ved NTH/NTNU i tiden 993 997. Oppgaver eller punkter

Detaljer

NTNU. MA1103 Flerdimensjonal Analyse våren Maple-øving 2. Viktig informasjon. Institutt for matematiske fag. maple02 28.

NTNU. MA1103 Flerdimensjonal Analyse våren Maple-øving 2. Viktig informasjon. Institutt for matematiske fag. maple02 28. NTNU Institutt for matematiske fag MA1103 Flerdimensjonal Analyse våren 2011 Maple-øving 2 Fyll inn studieprogram: Fyll inn navn: 1. 2. 3. 4. Viktig informasjon Besvarelsen kan leveres som gruppearbeid

Detaljer

Ma Flerdimensjonal Analyse Øving 11

Ma Flerdimensjonal Analyse Øving 11 Ma3 - Flerdimensjonal Analyse Øving Øistein Søvik 7.3. Oppgaver 5.3 5. Find the moment of inertie about the -axis. Eg the value of δ x + y ds, for a wire of constant density δ lying along the curve : r

Detaljer

Eksamen IRF30014, høsten 15 i Matematikk 3 Løsningsforslag

Eksamen IRF30014, høsten 15 i Matematikk 3 Løsningsforslag Oppgave 1. Eksamen IRF314, høsten 15 i Matematikk 3 øsningsforslag I denne oppgaven er det to løsningsforslag. Ett med asymptotene som gitt i oppgaveteksten. I dette første tilfellet blir tallene litt

Detaljer

Løsning IM

Løsning IM Løsning IM Oppgave Den retningsderiverte er D f ( a) u f ( a), når funksjonen er deriverbar i punktet u f f ( y ) ( y ) Innsatt f,, ( y, y ) Den derivertes verdi i punktet er f (,) ( ( ),( ) ) (,) (,)

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT Kalkulus og lineær algebra Eksamensdag: Onsdag 9 mai 9 Tid for eksamen: 4:3 8:3 Oppgavesettet er på 7 sider Vedlegg: Tillatte

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2013

MA0002 Brukerkurs i matematikk B Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2013 Løsningsforslag Øving 10 10.6.3 La f (x, y) = x 2 y 4x 2 4y der (x, y) R 2. Finn alle

Detaljer

Løsning, Stokes setning

Løsning, Stokes setning Ukeoppgaver, uke 4 Matematikk, tokes setning 1 Løsning, tokes setning Oppgave 1 a) b) c) F x y z x y z F x x + y y + z z 1+1+1 iden F er feltet konservativt. ( z y y ) ( x i z z z ) ( y x x x ) k i +k

Detaljer

EKSAMEN. Valgfag, ingeniørutdanning (3. klasse). ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formelark.)

EKSAMEN. Valgfag, ingeniørutdanning (3. klasse). ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formelark.) KANDIDANUMME: EKAMEN FAGNAVN: Matematikk 3 FAGNUMME: EA32 EKAMENDAO: 1. desember 26 KLAE: Valgfag, ingeniørutdanning (3. klasse). ID: kl. 9. 13.. FAGLÆE: Hans Petter Hornæs ANALL IDE ULEVE: 5 (innkl. forside

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 11. juni 21. Tid for eksamen: 14.3 17.3. Oppgavesettet er på 7 sider. Vedlegg: Tillatte hjelpemidler: MAT111 Kalkulus

Detaljer

Oppgaver og fasit til kapittel 6

Oppgaver og fasit til kapittel 6 1 Oppgaver og fasit til kapittel 6 Mange av oppgavene i dette kapitlet brukes for første gang, og det er sannsynligvis flere fasitfeil enn normalt. Finner du en feil, så send en melding til lindstro@math.uio.no.

Detaljer

5 z ds = x 2 +4y 2 4

5 z ds = x 2 +4y 2 4 TMA45 Matematikk 2 Vår 25 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving Alle oppgavenummer referer til 8. utgave av Adams & Essex Calculus: A Complete

Detaljer

LØSNINGSFORSLAG TMA4105 Matematikk 2 8. August 2005

LØSNINGSFORSLAG TMA4105 Matematikk 2 8. August 2005 LØSNINGSFORSLAG TMA45 Matematikk 8. August 5 Oppgave Vi introduserer funksjonen g(x, y, z) x +y z slik at flaten z x + y er gitt ved g(x, y, z). I dette tilfellet utgjør gradienten til g en normalvektor

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MEK 11 Feltteori og vektoranalyse. Eksamensdag: Torsdag 1 desember 29. Tid for eksamen: 14:3 17:3. Oppgavesettet er på 7 sider.

Detaljer

Eksamen IRF30014, våren 16 i Matematikk 3 Løsningsforslag

Eksamen IRF30014, våren 16 i Matematikk 3 Løsningsforslag Oppgave 1. Eksamen IRF314, våren 16 i Matematikk 3 Løsningsforslag Ellipsen vil skal finne er på standardform x a + y b 1 der a > b for styrelinjene er vertikale linjer. Formelen for styrelinjene er x

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i Eksamensdag: 9. april,. Tid for eksamen: : :. Oppgavesettet er på 9 sider. Vedlegg: Tillatte hjelpemidler: MAT Kalkulus og

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Ny/utsatt eksamen i Eksamensdag: 9. august 2. Tid for eksamen: 9 2. Oppgavesettet er på 8 sider. Vedlegg: Tillatte hjelpemidler: MAT Kalkulus

Detaljer

EKSAMEN. 3. klassene, ingenørutdanning. ANTALL SIDER UTLEVERT: 5 (innkl. forside og formelark)

EKSAMEN. 3. klassene, ingenørutdanning. ANTALL SIDER UTLEVERT: 5 (innkl. forside og formelark) KANDIDATNUMME: EKAMEN EMNENAVN: Matematikk 3 EMNENUMME: EA32 EKAMENDATO: 8.desember 28 KLAE: 3. klassene, ingenørutdanning. TID: kl. 9. 13.. EMNEANVALIG: Hans Petter Hornæs ANTALL IDE UTLEVET: 5 (innkl.

Detaljer

Eksamen i V139A Matematikk 30

Eksamen i V139A Matematikk 30 Høgskolen i Gjøvik Avdeling for teknologi Eksamen i V139A Matematikk 3 4. juni 22 9. 14. Fagnummer: V139A Faglærere: Hans Petter Hornæs. Tillatte hjelpemidler: Godkjent kalkulator, Formelsamling. Oppgavesettet

Detaljer

I denne øvingen vil vi sammenlikne det teoretiske resultat med et grafisk bilde av konturlinjene til flaten. Vi tegner konturene der

I denne øvingen vil vi sammenlikne det teoretiske resultat med et grafisk bilde av konturlinjene til flaten. Vi tegner konturene der Øving uke 44 Kritiske punkter Se også Mathematicakompendiet, kap 3.8 En funksjon av to variable kan ha lokale maksimal- og minimalpunkter innenfor definisjonsmengden, akkurat som funksjoner av en variabel.

Detaljer

Obligatorisk oppgave 2

Obligatorisk oppgave 2 MEK Obligatorisk oppgave 2 Nicolai Kristen Solheim Obligatorisk oppgave 2 Oppgave a) Vi kan beregne vektorfluksen Q = F ndσ gjennom en kuleflate σ gitt vektorfeltet σ F = xi + 2y + z j + z + x 2 k. Ved

Detaljer

Øvelse, eksamensoppgaver MAT 1050 mars 2018

Øvelse, eksamensoppgaver MAT 1050 mars 2018 Øvelse, eksamensoppgaver MAT 5 mars 8 Oppgave. La f være funksjonen gitt ved f (x) = x 8 x, x a) Finn alle kritiske punkter for funksjonen f. f (x) = 8 x + x 8 x ( x) = (8 8 x x x ) = (4 8 x x ) = gir

Detaljer

Arne B. Sletsjøe. Oppgaver, MAT 1012

Arne B. Sletsjøe. Oppgaver, MAT 1012 Arne B. Sletsjøe Oppgaver, MAT 101 1 En-variabel kalkulus 1.1 I de følgende oppgavene, i) finn alle kritiske punkter til f(x), ii) beskriv monotoniegenskapene til funksjonene ved å se på fortegnet til

Detaljer

Navn/kursparallell skrives her (ved gruppearbeid er det viktig at alle fyller ut):

Navn/kursparallell skrives her (ved gruppearbeid er det viktig at alle fyller ut): MA1103 vår 2008 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Øving 10M Navn/kursparallell skrives her (ved gruppearbeid er det viktig at alle fyller ut): 1. 2. 3. 4. 5.

Detaljer

Løsningsforslag til Eksamen i MAT111

Løsningsforslag til Eksamen i MAT111 Universitetet i Bergen Matematisk institutt Bergen, 9. desember 25. Bokmål Løsningsforslag til Eksamen i MAT Mandag 9. desember 25, kl. 9-. Dette er kun et løsningsforslag. Oppgave a) Betrakt de to komplekse

Detaljer

EKSAMENSOPPGAVE. Vil det bli gått oppklaringsrunde i eksamenslokalet? Svar: JA Hvis JA: ca. kl.10:00 og 12:00

EKSAMENSOPPGAVE. Vil det bli gått oppklaringsrunde i eksamenslokalet? Svar: JA Hvis JA: ca. kl.10:00 og 12:00 Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: MAT-1003 Kalkulus 3 Dato: Tirsdag 1.1.017 Klokkeslett: 09:00-13:00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Pedersen et al.: Teknisk

Detaljer

f =< 2x + z/x, 2y, 4z + ln(x) >.

f =< 2x + z/x, 2y, 4z + ln(x) >. MA 40: Analyse Uke 48, 00 http://home.hia.no/ aasvaldl/ma40 H0 Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag Oppgave.5: 5. Vi har gitt funksjon f(x, y) = x + y z + z ln(x) og punkt

Detaljer

NTNU. MA1103 Flerdimensjonal analyse våren Maple/Matlab-øving 2. Viktig informasjon. Institutt for matematiske fag

NTNU. MA1103 Flerdimensjonal analyse våren Maple/Matlab-øving 2. Viktig informasjon. Institutt for matematiske fag NTNU Institutt for matematiske fag MA1103 Flerdimensjonal analyse våren 2012 Maple/Matlab-øving 2 Fyll inn studieprogram: Fyll inn navn: 1. 2. 3. 4. Viktig informasjon Besvarelsen kan leveres som gruppearbeid

Detaljer

Integralsatser: Green, Stokes og Gauss

Integralsatser: Green, Stokes og Gauss Kapittel 7 Integralsatser: Green, tokes og Gauss Oppgave 1 Vi har gitt strømfeltet v = ωyi+ωxj der ω er en konstant. a) trømfarten: v = ω 2 y 2 +ω 2 x 2 = ωr, r = x 2 +y 2. Langs sirkelen r 2 = x 2 +y

Detaljer

TMA Tanker omkring innlevering 3 fra en studentassistents perspektiv

TMA Tanker omkring innlevering 3 fra en studentassistents perspektiv TMA15 - Tanker omkring innlevering 3 fra en studentassistents perspektiv April 7, 15 Mesteparten av dere har klart denne øvingen langt bedre enn de to forregående øvingene selv om denne var hakket vanskeligere.

Detaljer

EKSAMENSOPPGAVE. Eksamen i: MAT-1003 Dato: Tirsdag 15. desember 2015 Tid: Kl 15:00 19:00 Sted: Åsgårdvegen 9

EKSAMENSOPPGAVE. Eksamen i: MAT-1003 Dato: Tirsdag 15. desember 2015 Tid: Kl 15:00 19:00 Sted: Åsgårdvegen 9 EKSAMENSOPPGAVE Eksamen i: MAT-13 Dato: Tirsdag 15. desember 215 Tid: Kl 15: 19: Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Pedersen et al.: Teknisk formelsamling med tabeller, Rottmanns formelsamling,

Detaljer

Tillegg om strømfunksjon og potensialstrøm

Tillegg om strømfunksjon og potensialstrøm Kapittel 9 Tillegg om strømfunksjon og potensialstrøm 9.1 Divergensfri strøm 9.1.1 Strømfunksjonen I kompendiet, kap. 4.6 og kap. 9, er det påstått at dersom et todimensjonalt strømfelt v(x y) = v x (x

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MEK 1100 Feltteori og vektoranalyse. Eksamensdag: Torsdag 11 desember 2008. Tid for eksamen: 14:30 17:30. Oppgavesettet er på

Detaljer

Eksamen, høsten 13 i Matematikk 3 Løsningsforslag

Eksamen, høsten 13 i Matematikk 3 Løsningsforslag Eksamen, høsten 3 i Matematikk 3 Løsningsforslag Oppgave. a) Fra ligningen x 5 + y 3 kan vi lese ut store og lille halvakse a 5 og b 3. Fokus til senter avstanden er da gitt ved c a b 5 3 5 9 6 4. ermed

Detaljer

Eksamensoppgave i MA1103 Flerdimensjonal analyse

Eksamensoppgave i MA1103 Flerdimensjonal analyse Institutt for matematiske fag Eksamensoppgave i MA1103 Flerdimensjonal analyse Faglig kontakt under eksamen: Mats Ehrnstrøm Tlf: 735 917 44 Eksamensdato: 22. mai 2018 Eksamenstid (fra til): 09:00 13:00

Detaljer

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101)

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA0/MA60) Fredag 2. desember 202 Tid: 09:00 3:00 Hjelpemidler: Kode

Detaljer

dg = ( g P0 u)ds = ( ) = 0

dg = ( g P0 u)ds = ( ) = 0 NTNU Institutt for matematiske fag TMA4105 Matematikk 2, øving 8, vår 2011 Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon,

Detaljer

Tillegg om flateintegraler

Tillegg om flateintegraler Kapittel 6 Tillegg om flateintegraler 6.1 Litt ekstra om flateintegraler I kompendiet har vi definert flateintegraler som grenseoverganger for diskretiseringer. Har vi en flate kan vi representere den

Detaljer

Fasit for eksamen i MEK1100 torsdag 13. desember 2007 Hvert delspørsmål honoreres med poengsum fra 0 til 10 (10 for perfekt svar).

Fasit for eksamen i MEK1100 torsdag 13. desember 2007 Hvert delspørsmål honoreres med poengsum fra 0 til 10 (10 for perfekt svar). Fasit for eksamen i MEK torsdag 3. desember 27 Hvert delspørsmål honoreres med poengsum fra til ( for perfekt svar). Oppgave Vi har gitt to vektorfelt i kartesiske koordinater (x,y,z) A = yi+coszj +xy

Detaljer

Laplacelikningen med Dirichlet betingelser

Laplacelikningen med Dirichlet betingelser Laplacelikningen med Dirichlet betingelser Vi vil løse laplacellikningen Φ x + Φ y = 0, 0 < x

Detaljer

Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon, språk og stil variere noe fra oppgave til oppgave.

Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon, språk og stil variere noe fra oppgave til oppgave. NTNU Institutt for matematiske fag TMA4105 Matematikk, øving 7, vår 011 Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon,

Detaljer

Eksamen i V139A Matematikk 30

Eksamen i V139A Matematikk 30 Høgskolen i Gjøvik Avdeling for teknologi Eksamen i V139A Matematikk 3 21. desember 21 9. 14. Fagnummer: V139A Faglærer: Hans Petter Hornæs Tillatte hjelpemidler: Godkjent kalkulator ottmanns formelsamling

Detaljer

MAT mars mars mars 2010 MAT Våren 2010

MAT mars mars mars 2010 MAT Våren 2010 MAT 1012 Våren 2010 Mandag Forelesning Vi har tidligere integrert funksjoner langs x-aksen, og vi har integrert funksjoner i flere variable over begrensede områder i xy-planet. I denne forelesningen skal

Detaljer

EKSAMEN i MATEMATIKK 30

EKSAMEN i MATEMATIKK 30 Eksamen i Matematikk 3 3. mai Høgskolen i Gjøvik Avdeling for teknologi EKSAMEN i MATEMATIKK 3 Onsdag 3. mai kl. 9 4 agnummer: V39A aglærer: Hans Petter Hornæs Tillatte hjelpemidler: Godkjent kalkulator

Detaljer

Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 2009

Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 2009 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 009 Oppgave 1 Funksjonen g er definert ved g(x)

Detaljer

Fasit til eksamen i MEK1100 høst 2006

Fasit til eksamen i MEK1100 høst 2006 Fasit til eksamen i MEK11 høst 26 Det er tilsammen 1 delspørsmål. Hvert delspørsmål honoreres med poengsum fra til 1 (1 for fullstendig svar, for blank). Maksimal oppnåelig poengsum er 1. Kontroller at

Detaljer

Løsning, Trippelintegraler

Løsning, Trippelintegraler Ukeoppgaver, uke 7 Matematikk, rippelintegraler Løsning, rippelintegraler Oppgave a) b) c) 6 x + + ) d d dx x + +/) d dx x) d d dx x + + /] d dx x + /+/] dx x +6)dx 8 6 d ) ) d xdx 6 ) ) ) d d xdx 6 8

Detaljer

Ma Flerdimensjonal Analyse II Øving 9

Ma Flerdimensjonal Analyse II Øving 9 Ma23 - Flerdimensjonal Analyse II Øving 9 Øistein Søvik 2.3.22 Oppgaver 4.5 Evaluate the triple integrals over the indicated region. Be alert for simplifications and auspicious orders of integration 3.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT Kalkulus og lineær algebra Eksamensdag: Lørdag 25. Mai 29. Tid for eksamen: :5 4:5. Oppgavesettet er på 7 sider. Vedlegg:

Detaljer