EKSAMENSOPPGAVE. Vil det bli gått oppklaringsrunde i eksamenslokalet? Svar: JA Hvis JA: ca. kl.10:00 og 12:00
|
|
- Ingve Didriksen
- 6 år siden
- Visninger:
Transkript
1 Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: MAT-1003 Kalkulus 3 Dato: Tirsdag Klokkeslett: 09:00-13:00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Pedersen et al.: Teknisk formelsamling med tabeller, Rottmanns formelsamling, A4 ark med egne notater (fire sider). Kalkulator er ikke tillatt. Type innføringsark (rute/linje): Antall sider inkl. forside: Kontaktperson under eksamen: Telefon/mobil: Ruter 3 Kristoffer Rypdal Vil det bli gått oppklaringsrunde i eksamenslokalet? Svar: JA Hvis JA: ca. kl.10:00 og 1:00 NB! Det er ikke tillatt å levere inn kladdepapir som del av eksamensbesvarelsen. Hvis det likevel leveres inn, vil kladdepapiret bli holdt tilbake og ikke bli sendt til sensur. Postboks 6050 Langnes, N-9037 Tromsø / / postmottak@uit.no / uit.no
2 Bokmål Skriv ellipsen Oppgave 1 x a + y b = 1 (1) som en parametrisert kurve X(t) = (x(t), y(t)). I resten av oppgavesettet skal vi kalle denne kurven C. Betrakt et skalarfelt Oppgave f(x, y, z) = x a + y b + z c, der a, b, c er positive, reelle konstanter. Et område V i R 3 består av punktene (x, y, z) som tilfredsstiller ulikheten f(x, y, z) 1. Randen til V (dvs. flaten f(x, y, z) = 1) er en lukket flate S som kalles en ellipsoide. Forklar hvorfor ellipsen C fra Oppgave 1 er randen til projeksjonen (skyggen) av ellipsoiden ned på xy-planet. Oppgave 3 Forklar hvorfor volumet av området V kan uttrykkes som det itererte integralet volum V = 1 b 1 x /a c 1 x /a y /b 1 b 1 x /a dz dy dx. c 1 x /a y /b Underbygg forklaringen med en eller flere figurer. Beregning av dette integralet krever mye arbeid, så dette skal vi heller gjøre på en enklere måte i Oppgave 5. Oppgave 4 Innfør et nytt sett av variable (r, s, t) definert slik at x a = r sin s cos t, y b = r sin s sin t, z c = r cos s. () Vis at hvis vi setter r = 1 og lar s og t være parametre som varierer over rektanglet R = {(s, t) 0 s π, 0 t < π}, så beskriver likning () ellipsoiden f(x, y, z) = 1. 1
3 Oppgave 5 Bruk teoremet for variabelskifte i trippelintegral og likning () til beregne volum V. Oppgave 6 Beregn f på ellipsoideflaten S som funksjon av parametrene s og t, og beregn tangenten T s og T t til flaten. Vis at f står vinkelrett på tangentene. Oppgave 7 Vis at standardnormalen til flaten S kan skrives på formen, ( x N = abc sin s a, y b, z ), c og beregn flateintegralet F ds av vektorfeltet F(x, y, z) = xi + yj + zk. S Oppgave 8 Beregn F og integralet F dv. Hvordan kunne vi ha funnet dette integralet V fra resultatet i Oppgave 7 uten regning? Oppgave 9 Betrakt vektorfeltet G(x, y, z) = yi + xj. Beregn G og integralet S + G ds, der S + er den delen av flaten S som ligger over xy-planet (z > 0). Oppgave 10 Finn linjeintegralet G ds langs ellipsen C definert i likning (1). Hvordan kunne vi ha C funnet dette integralet fra resultatene i Oppgave 9 uten regning?
4 Fakultet for naturvitenskap og teknologi EKSAMENSOPPGÅVE Eksamen i: MAT-1003 Kalkulus 3 Dato: Tirsdag Klokkeslett: 09:00-13:00 Stad: Åsgårdvegen 9 Lovlege hjelpemiddel: Pedersen et al.: Teknisk formelsamling med tabeller, Rottmanns formelsamling, A4 ark med eigne notat (fire sider). Kalkulator er ikkje tillete. Type innføringsark (rute/linje): Antall sider inkl. forside: Ruter 3 Kontaktperson under eksamen: Telefon/mobil: Skal det gåast trøysterunde i eksamenslokalet? Svar: JA Hvis JA: kl.10:00 og 1:00 NB! Det er ikkje lov å levere inn kladd saman med svaret. Om det likevel leverast inn, vil kladden bli heldt tilbake og ikkje sendt til sensur. Postboks 6050 Langnes, N-9037 Tromsø / / postmottak@uit.no / uit.no
5 Nynorsk Skriv ellipsen Oppgåve 1 x a + y b = 1 (1) som ei parametrisert kurve X(t) = (x(t), y(t)). I resten av oppgåvesettet skal vi kalla denne kurva C. Sjå på eit skalarfelt Oppgåve f(x, y, z) = x a + y b + z c, der a, b, c er positive, reelle konstantar. Eit område V i R 3 omfattar punktane (x, y, z) som tilfredsstiller ulikheten f(x, y, z) 1. Randen til V (dvs. flata f(x, y, z) = 1) er ei lukka flate S som kallas en ellipsoide. Forklar kvifor ellipsen C frå Oppgåve 1 er randen til projeksjonen (skugga) av ellipsoiden ned på xy-planet. Oppgåve 3 Forklar kvifor volumet av området V kan skrivast som det itererte integralet volum V = 1 b 1 x /a c 1 x /a y /b 1 b 1 x /a dz dy dx. c 1 x /a y /b Underbygg forklaringa med ein eller fleire figurar. Utrekning av dette integralet krevjer mykje arbeid, så dette skal vi heller gjera på enklare vis i Oppgåve 5. Oppgåve 4 Innfør eit nytt sett av variablar (r, s, t) definert slik at x a = r sin s cos t, y b = r sin s sin t, z c = r cos s. () Vis at viss vi set r = 1 og let s og t vera parametrar som varierer over rektanglet R = {(s, t) 0 s π, 0 t < π}, så skildrar likning () ellipsoiden f(x, y, z) = 1. 1
6 Oppgave 5 Bruk teoremet for variabelskifte i trippelintegral og likning () til rekne ut volum V. Oppgåve 6 Rekn ut f på ellipsoideflata S som funksjon av parametrane s og t, og rekn ut tangenten T s og T t til flata. Vis at f står vinkelrett på tangentane. Oppgåve 7 Vis at standardnormalen til flata S kan skrivast på forma, ( x N = abc sin s a, y b, z ), c og rekn ut flateintegralet F ds av vektorfeltet F(x, y, z) = xi + yj + zk. S Oppgåve 8 Rekn ut F og integralet F dv. Korleis kunne vi ha funnet dette integralet V fra resultatet i Oppgåve 7 utan rekning? Oppgåve 9 Sjå på vektorfeltet G(x, y, z) = yi + xj. Rekn ut G og integralet S + G ds, der S + er den delen av flata S som ligg over xy-planet (z > 0). Oppgåve 10 Finn linjeintegralet G ds langs med ellipsen C definert i likning (1). Korleis kunne C vi ha funne dette integralet fra resultata i Oppgåve 9 utan rekning?
EKSAMENSOPPGAVE. KRAFT I og II Hall del 2 Kraft sportssenter Ingen
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: MAT-1003 Kalkulus 3 Dato: 11.12.2018 Klokkeslett: 09.00-13.00 Sted: Tillatte hjelpemidler: KRAFT I og II Hall del 2 Kraft sportssenter
EKSAMENSOPPGAVE. Eksamen i: MAT-1003 Dato: Tirsdag 15. desember 2015 Tid: Kl 15:00 19:00 Sted: Åsgårdvegen 9
EKSAMENSOPPGAVE Eksamen i: MAT-13 Dato: Tirsdag 15. desember 215 Tid: Kl 15: 19: Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Pedersen et al.: Teknisk formelsamling med tabeller, Rottmanns formelsamling,
EKSAMENSOPPGÅVE. Kalkulator, Rottmanns tabellar og 2 A4 ark med eigne notater (4 sider).
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGÅVE Eksamen i: Mat-2, Kalkulus 2 Dato: 2. mai 28 Klokkeslett: 9.-. Stad: Asgårdvegen 9 Lovlege hjelpemiddel: Kalkulator, Rottmanns tabellar og 2 A4
EKSAMENSOPPGAVE. Alle skrevne og trykte. Godkjent kalkulator.
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: MAT-0001 Brukerkurs i Matematikk Dato: 28.11.2017 Klokkeslett: 15:00-19:00 Sted: Åsgårdvegen 9, Teorifagb. hus 1 plan Tillatte hjelpemidler:
EKSAMENSOPPGÅVE. Kalkulator, 2 ark (4 sider) med eigne notater og Rottmanns tabeller. Ragnar Soleng
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGÅVE Eksamen i: Mat-1005, diskret matematikk Dato: 1. desember 017 Klokkeslett: 15.00-19.00 Stad: Åsgårdvegen 9 Lovlege hjelpemiddel: Kalkulator, ark
EKSAMENSOPPGÅVE. Tilletne hjelpemiddel: Godkjend kalkulator og formelsamling og 2 eigne A4-ark (4 sider totalt)
EKSAMENSOPPGÅVE/EKSAMENSOPPGAVE EKSAMENSOPPGÅVE Eksamen i: MAT-1003 Kalkulus 3 Dato: Tirsdag 17. 1.013 Tid: Kl 09:00 13:00 Stad: Åsgårdveien 9 Tilletne hjelpemiddel: Godkjend kalkulator og formelsamling
EKSAMENSOPPGAVE. 4 (1+3) Det er 12 deloppgaver (1abc, 2abcd, 3abc, 4ab) Andrei Prasolov
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: Mat-004 Lineær algebra Dato: Torsdag. juni 207 Klokkeslett: 09.00-3.00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Godkjent kalkulator,
EKSAMENSOPPGAVE. Godkjent kalkulator; Rottmanns tabeller; To A4 ark egne notater (håndskrevne, trykte, eller blandede).
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: MAT-1005 Diskret matematikk Dato: 30.11.2018 Klokkeslett: 09:00-13:00 Sted: Teorifagbygget hus 1, Plan 2 og Plan 3 Tillatte hjelpemidler:
EKSAMENSOPPGÅVE. Mat-1005, Diskret matematikk. Godkjent kalkulator, Rottmanns tabellar og 2 A4 ark med eigne notater (4 sider).
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGÅVE Eksamen i: Mat-1005, Diskret matematikk Dato:. desember 016 Klokkeslett: 90.00-13.00 Stad: Åsgårdvegen 9 Lovlege hjelpemiddel: Godkjent kalkulator,
EKSAMENSOPPGAVE. «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark/ 4 sider med egne notater. Godkjent kalkulator.
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: STA-1001. Dato: Mandag 9. mai 017. Klokkeslett: 09 13. Sted: Åsgårdvegen 9. Tillatte hjelpemidler: «Tabeller og formler i statistikk»
EKSAMENSOPPGAVE. Vil det bli gått oppklaringsrunde i eksamenslokalet? Svar: JA / NEI Hvis JA: ca. kl. 10:30
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: INF-1100 Innf. i progr. og datam. virkem. Dato: 05.12.2018 Klokkeslett: 09:00 13:00 Sted: Kraft I og II Hall del 3 Tillatte hjelpemidler:
Randkurva C til flata S orienteres positivt sett ovenfra, og kan parametriseres ved: r (t) = [ sin t, cos t, sin t] dt, 0 t 2π.
Ma - Løsningsforslag til uke 17 i 7 Eks. mai 1999 oppgave 4 ylinderen x + y = 1 skjærer ut ei flate av planet z = x + 1 dvs. x + z = 1 med enhetsnormal i positiv z-retning lik n= 1 [ 1 1]. Flata blir en
EKSAMEN I FAG SIF5005 MATEMATIKK 2
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 3 Faglig kontakt under eksamen: Trond Digernes 7359357 Berner Larsen 73 59 35 5 Lisa Lorentzen 73 59 35 48 Vigdis Petersen
EKSAMENSOPPGAVE. GEO-2010 Marine geofag
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: GEO-2010 Marine geofag Dato: 25. mai 2018 Klokkeslett: 09:00 13:00 Sted: Tillatte hjelpemidler: Åsgård Ingen Type innføringsark (rute/linje):
EKSAMENSOPPGAVE. INF-1100 Innføring i programmering og datamaskiners virkemåte. Teorifagb, hus 3, og og Adm.bygget, Aud.max og B.
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: Dato: 06.12.2016 Klokkeslett: 09:00 13:00 INF-1100 Innføring i programmering og datamaskiners virkemåte Sted: Tillatte hjelpemidler:
EKSAMENSOPPGAVE STA «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark/ 4 sider med egne notater. Godkjent kalkulator. Rute.
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: STA-1001. Dato: Tirsdag 26. september 2017. Klokkeslett: 09 13. Sted: Åsgårdvegen 9. Tillatte hjelpemidler: «Tabeller og formler i statistikk»
EKSAMENSOPPGAVE. ü Kalkulator med tomt dataminne ü Rottmann: Matematisk Formelsamling. rute
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAE Eksamen i: FYS-1002 Dato: 26. september 2017 Klokkeslett: 09.00-13.00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: ü Kalkulator med tomt dataminne
EKSAMENSOPPGAVE. Ingen. Robert Pettersen. Eksamen i: INF Innf. i progr. og datam. virkem. Dato: Tirsdag 5. desember 2017
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: INF-1100 - Innf. i progr. og datam. virkem. Dato: Tirsdag 5. desember 2017 Klokkeslett: 09:00-13:00 Sted: Teorifagb., hus 3, 3218 og
EKSAMENSOPPGAVE. To dobbeltsidige ark med notater. Stian Normann Anfinsen
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: FYS-1001 Mekanikk Dato: 30. november 2017 Klokkeslett: 09:00 13:00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: To dobbeltsidige ark med
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: Eksamensdag: Fredag 1. april 2011 Tid for eksamen: 15.00 17.00 Oppgavesettet er på 7 sider. Vedlegg: Tillatte hjelpemidler:
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: MAT Kalkulus og lineær algebra Eksamensdag: Fredag. mars Tid for eksamen: 5. 7. Oppgavesettet er på 8 sider. Vedlegg: Tillatte
EKSAMENSOPPGAVE. Adm.bygget, rom K1.04 og B154 Ingen. Vil det bli gått oppklaringsrunde i eksamenslokalet? Svar: JA / NEI Hvis JA: ca. kl.
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: Dato: 22 mai 2018 Klokkeslett: 09-13 Sted: Tillatte hjelpemidler: Adm.bygget, rom K1.04 og B154 Ingen Type innføringsark (rute/linje):
EKSAMENSOPPGAVE. To dobbeltsidige ark med notater. Stian Normann Anfinsen
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: FYS-1001 Mekanikk Dato: Onsdag 28. februar 2018 Klokkeslett: 09:00 13:00 Sted: Administrasjonsbygget, 1. etg., rom B.154 Tillatte hjelpemidler:
EKSAMENSOPPGAVE. Fys-1002 Elektromagnetisme. Adm.bygget B154 Kalkulator med tomt dataminne, Rottmann: Matematisk formelsamling
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAE Eksamen i: Fys-1002 Elektromagnetisme Dato: Onsdag 26. september 2018 Klokkeslett: Kl. 9:00-13:00 Sted: Tillatte hjelpemidler: Adm.bygget B154 Kalkulator
EKSAMENSOPPGAVE / EKSAMENSOPPGÅVE
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE / EKSAMENSOPPGÅVE Eksamen i: Inf-1049, Introduksjon til beregningsorientert programmering Dato: 15. desember 017 Klokkeslett: 09.00 13.00 Sted /
EKSAMENSOPPGAVE. Vil det bli gått oppklaringsrunde i eksamenslokalet? Svar: NEI
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: Dato: 25 september 2018 Klokkeslett: 09.00-13.00 Sted: Adm. Bygget K1.04 Tillatte hjelpemidler: Ingen Type innføringsark (rute/linje):
EKSAMENSOPPGAVE. Vil det bli gått oppklaringsrunde i eksamenslokalet? Svar: JA / NEI Hvis JA: ca. Kl 10.00
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: STA-2003 Tidsrekker Dato: 29/5-2018 Klokkeslett: 09.00-13.00 Sted: TEO H1, PLAN 3 Tillatte hjelpemidler: "Tabeller og formler i statistikk"
Anbefalte oppgaver - Løsningsforslag
TMA415 Matematikk 2 Anbefalte oppgaver - Løsningsforslag Uke 14 1.4.5: Vi skal finne fluksen ut overflaten til den solide ballen B med sentrum = (2,, 3) og radius r = 3, av vektorfeltet F = x 2 i + y 2
EKSAMENSOPPGAVE. Adm.bygget, rom B154 2 ark med egne notater (4 sider) Godkjent kalkulator Rottman. Matematisk formelsamling
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: Dato: 5.12.2018 FYS-1001 Mekanikk Klokkeslett: 09:00-13:00 Sted: Tillatte hjelpemidler: Adm.bygget, rom B154 2 ark med egne notater (4
= (2 6y) da. = πa 2 3
TMA45 Matematikk Vår 7 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving Alle oppgavenummer referer til 8. utgave av Adams & Essex alculus: A omplete ourse.
EKSAMENSOPPGAVE Bjarte Aarmo Lund
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: KJE-6003 Analytisk kjemi og org.kjemi for lærere Dato: 11.12.2017 Klokkeslett: 09.00-13.00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler:
Eksamensoppgave i MA1103 Flerdimensjonal analyse
Institutt for matematiske fag Eksamensoppgave i MA1103 Flerdimensjonal analyse Faglig kontakt under eksamen: Mats Ehrnstrøm Tlf: 735 917 44 Eksamensdato: 22. mai 2018 Eksamenstid (fra til): 09:00 13:00
EKSAMENSOPPGAVE. MNF-6002 Videreutdanning i naturfag for lærere, Naturfag trinn 2. Kalkulator Rom Stoff Tid: Fysikktabeller (utskrift)
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: MNF-6002 Videreutdanning i naturfag for lærere, Naturfag trinn 2 Dato: Mandag 28. mai 2018 Klokkeslett: Kl. 09:00-13:00 Sted: TEO-H1
EKSAMENSOPPGAVE. INF-1101 Datastrukturer og algoritmer. Adm.bygget, rom K1.04 og B154 Ingen
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: Dato: 15.mai 2018 Klokkeslett: 09:00 13:00 Sted: Tillatte hjelpemidler: Adm.bygget, rom K1.04 og B154 Ingen Type innføringsark (rute/linje):
Eksamensoppgave i MA1103 Flerdimensjonal analyse
Institutt for matematiske fag Eksamensoppgave i MA113 Flerdimensjonal analyse Faglig kontakt under eksamen: Tlf: Eksamensdato: 5. Juni 19 Eksamenstid (fra til): 9: 13: Hjelpemiddelkode/Tillatte hjelpemidler:
Navn/kursparallell skrives her (ved gruppearbeid er det viktig at alle fyller ut):
MA1103 vår 2008 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Øving 10M Navn/kursparallell skrives her (ved gruppearbeid er det viktig at alle fyller ut): 1. 2. 3. 4. 5.
EKSAMENSOPPGAVE Njål Gulbrandsen / Ole Meyer /
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: FYS-1001 Mekanikk Dato: 21.2.2017 Klokkeslett: 09:00 13:00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Fire A4-sider (to dobbeltsidige
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT111 Prøveeksamen Eksamensdag: 5. juni 21. Tid for eksamen: 1. 13.3. Oppgavesettet er på 9 sider. Vedlegg: Tillatte hjelpemidler:
EKSAMENSOPPGAVE. Kalkulator «Huskelapp» -A4 ark med skrift på begge sider. Enkel norsk-engelsk/engelsk-norsk ordbok
Fakultet for naturvitenskap og teknologi EKSAMESOPPGAVE Eksamen i: KJE-1001 Introduksjon til kjemi og kjemisk biologi Dato: Fredag 16.desember 2016 Klokkeslett: 09:00-15:00 Sted: Teorifagbygget hus 1,
EKSAMENSOPPGAVE. INF-1100 Innføring i programmering og datamaskiners virkemåte. Ingen. Elektronisk (WiseFlow) Robert Pettersen
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: Dato: 20.02.2017 Klokkeslett: 09:00 13:00 INF-1100 Innføring i programmering og datamaskiners virkemåte Sted: Teorifagbygget, Hus 3,
Løsningsforslag til eksamen i TMA4105 matematikk 2,
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av Løsningsforslag til eksamen i TMA45 matematikk, 9.5.4 Oppgave La fx, y, z) xy + arctanxz). La P være punktet,, ). a)
EKSAMENSOPPGAVE Georg Elvebakk NB! Det er ikke tillatt å levere inn kladd sammen med besvarelsen
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: STA-1001. Dato: 30.mai 2016. Klokkeslett: 09 13. Sted: Tillatte hjelpemidler: Teorifagbygget, «Tabeller og formler i statistikk» av Kvaløy
EKSAMENSOPPGAVE STA-1001.
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: STA-1001. Dato: Mandag 28. mai 2018. Klokkeslett: 09-13. Sted: Tillatte hjelpemidler: Administrasjonsbygget B154/AUDMAX. «Tabeller og
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT Kalkulus og lineær algebra Eksamensdag: Onsdag 9 mai 9 Tid for eksamen: 4:3 8:3 Oppgavesettet er på 7 sider Vedlegg: Tillatte
EKSAMENSOPPGAVE. Adm.bygget, Aud.max. ü Kalkulator med tomt dataminne ü Rottmann: Matematisk Formelsamling. rute
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAE Eksamen i: Fys-1002 Dato: 30. september 2016 Klokkeslett: 09.00-13.00 Sted: Tillatte hjelpemidler: Adm.bygget, Aud.max ü Kalkulator med tomt dataminne
(t) = [ 2 cos t, 2 sin t, 0] = 4. Da z = 2(1 + t) blir kurva C en helix/ei skruelinje på denne flata (se fig side 392).
Ma - Løsningsforslag til uke 5 i 7 Eks. mai 994 oppgave Romkurva er parametrisert for t [, π] ved r (t) = [ + cos t, + sin t, + t ] Hastighets- og akselerasjonsvektorene blir v = r (t) = [ sin t, cos t,
EKSAMENSOPPGAVE. 7 (6 sider med oppgaver + 1 side med formler)
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAE Eksamen i: FYS-1002 (elektromagnetisme) Dato: 9. juni 2017 Klokkeslett: 09.00-13.00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: ü Kalkulator med tomt
EKSAMENSOPPGAVE. FYS 2000, Kvantemekanikk Dato: 7. Juni 2017 Klokkeslett: 9:00-13:00 Sted: Tillatte hjelpemidler: rute.
EKSAMENSOPPGAVE Eksamen i: FYS 2000, Kvantemekanikk Dato: 7. Juni 2017 Klokkeslett: 9:00-13:00 Sted: Tillatte hjelpemidler: ett handskrevet A4-ark(2 sider med egne notater, samt K. Rottmann: Matematisk
Oppgaver og fasit til seksjon
1 Oppgaver og fasit til seksjon 3.4-3.6 Oppgaver til seksjon 3.4 1. Anta at f(x, y) = x 2 y 3 og r(t) = t 2 i + 3t j. Regn ut g (t) når g(t) = f(r(t)). 2. Anta at f(x, y) = x 2 e xy2 og r(t) = sin t i+cos
EKSAMENSOPPGAVE. Professor Anders Schomacker
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: Dato: 25.11.2016 Klokkeslett: 15.00-19.00 Kvartærgeologi GEO-2003 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Ingen Type innføringsark
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i Eksamensdag: 9. april,. Tid for eksamen: : :. Oppgavesettet er på 9 sider. Vedlegg: Tillatte hjelpemidler: MAT Kalkulus og
EKSAMENSOPPGAVE. Vil det bli gått oppklaringsrunde i eksamenslokalet? Svar: JA / NEI Hvis JA: ca. kl. 10
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: Dato: 28 september 2017 Klokkeslett: 09-13 Sted: Teo-H3, 3218 Tillatte hjelpemidler: Type innføringsark (rute/linje): Antall sider inkl.
Integraler. John Rognes. 15. mars 2011
15. mars 2011 forener geometrisk målbare områder Ω og skalarfelt f : Ω R definert på disse områdene. Vi danner produktet f (Ω) Ω av verdien f (Ω) av funksjonen og størrelsen Ω av området. Mer presist deler
Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål
Eksamen 3.05.0 REA304 Matematikk R Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del : Hjelpemiddel på Del : 5 timar: Del skal leverast inn etter timar. Del skal leverast inn
EKSAMENSOPPGAVE. Kalkulator Rom Stoff Tid: Fysikktabeller (Bok/utskrift fra bok)
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: MNF-6002 Videreutdanning i naturfag for lærere, Naturfag trinn 2 Dato: Mandag 29. mai 2017 Klokkeslett: Kl 09:00 13:00 Sted: Åsgårdvegen
F = x F 1 + y F 2 + z F 3 = y 2 z 2 + x 2. i j k F = xy 2 yz 2 zx 2 = i(0 ( 2yz)) j(2xz 0) + k(0 2xy) = 2yzi 2xzj 2xyk.
TMA415 Matematikk 2 Vår 215 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 12 Alle oppgavenummer referer til 8. utgave av Adams & Essex alculus: A omplete
Eksamensoppgave i MA1103 Flerdimensjonal analyse
Institutt for matematiske fag Eksamensoppgave i MA3 Flerdimensjonal analyse Faglig kontakt under eksamen: Mats Ehrnstrøm Tlf: 735 97 44 Eksamensdato: 22. mai 28 Eksamenstid (fra til): 9: 3: Hjelpemiddelkode/Tillatte
Obligatorisk oppgåve 1
FYS112 Elektromagnetisme 214 Obligatorisk oppgåve 1 Innleveringsfrist 19. september kl. 23.59 Lars Kristian Henriksen 21. oktober 214 Obligar i FYS112 leverast elektronisk på Devilry http://devilry.ifi.uio.no/.
EKSAMENSOPPGAVE. Kalkulator, transportør (vinkelmåler), linjaler, fargeblyanter. Millimeterpapir deles ut.
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: Geo-2002 Dato: 30. mai 2017 Klokkeslett: 9:00-13:00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Kalkulator, transportør (vinkelmåler),
EKSAMENSOPPGAVE. NB! Det er ikke tillatt å levere inn kladd sammen med besvarelsen
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: INF-1101 Datastrukturer og algoritmer Dato: 18.05.2016 Klokkeslett: 09:00 13:00 Sted: Teorifagbygget, hus 3, 3.218 Tillatte hjelpemidler:
EKSAMEN i MATEMATIKK 30
Eksamen i Matematikk 3 1. desember 1999 1 Høgskolen i Gjøvik Avdeling for teknologi EKAMEN i MATEMATIKK 3 1 desember 1999 kl. 9 14 Fagnummer: V139A Faglærer: Hans Petter Hornæs Tillatte hjelpemidler: Godkjent
EKSAMENSOPPGAVE. Linjal, kalkulator (hva som helst typ)
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: GEO-2001 Dato: Tirsdag 26. september 2017 Klokkeslett: 09.00-13.00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Linjal, kalkulator (hva
Anbefalte oppgaver - Løsningsforslag
TMA415 Matematikk 2 Anbefalte oppgaver - Løsningsforslag Uke 7 15.1.3: Siden vektorfeltet er gitt ved F(x, y) = yi + xj må feltlinjene tilfredstille differensiallikningen eller y = x y, ( ) 1 2 y2 = x.
EKSAMENSOPPGAVE STA-2004.
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: STA-2004. Dato: Torsdag 28. september 2017. Klokkeslett: 09 13. Sted: Tillatte hjelpemidler: Teorifagsbygget. «Tabeller og formler i
The full and long title of the presentation
The full and long title of the presentation Subtitle if you want Øistein Søvik Mai 207 Ø. Søvik Short title Mai 207 / 4 Innholdsfortegnelse Introduksjon Nyttige tips før eksamen Nyttige tips under eksamen
EKSAMENSOPPGAVE. Kalkulator «Huskelapp» -A4 ark med skrift på begge sider Enkel norsk-engelsk/engelsk-norsk ordbok
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: KJE-1001 Introduksjon til kjemi og kjemisk biologi Dato: 22.02.2017 Klokkeslett: 09:00-15:00 Sted: Åsgårdveien 9 Tillatte hjelpemidler:
EKSAMENSOPPGAVE. B154 «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark (4 sider) med egne notater. Godkjent kalkulator.
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: STA-2004 Dato: 29.september 2016 Klokkeslett: 09 13 Sted: Tillatte hjelpemidler: B154 «Tabeller og formler i statistikk» av Kvaløy og
EKSAMENSOPPGAVE. to A4 ark egne notater og Rottmanns tabeller. Kontaktperson under eksamen: Professor Andrei Prasolov. Telefon:
EKSAMENSOPPGAVE Eksamen i: Mat 4 Lineær algebra Dato: Torsdag 4 juni 25 Tid: Kl 9: 3: Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Godkjent kalkulator, to A4 ark egne notater og Rottmanns tabeller Oppgavesettet
dx = 1 1 )dx = 3 y= x . Tangentplanet til hyperboloiden i (2, 1, 3) er derfor gitt ved x 2, y 1, z 3 = 0 x 2 + 2(y 1) 2 (z 3) = 0 x + 2y 2z 3 = 2
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA415 Matematikk vår 9 øsningsforslag til eksamen 15. august 9 1 Treghetsmoment med hensyn på x-aksen er gitt ved x [ ] y I
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MEK 11 Feltteori og vektoranalyse. Eksamensdag: Torsdag 1 desember 29. Tid for eksamen: 14:3 17:3. Oppgavesettet er på 7 sider.
EKSAMEN I FAG SIF5005 MATEMATIKK 2
Norges teknisk naturvitenskapelige universitet Trond Digernes 75957 Berner Larsen 7 59 5 5 Lisa Lorenten 7 59 5 8 Vigdis Petersen 75965 ide av Vedlegg: Formelliste IF55 Matematikk ide av Oppgave Et plant
EKSAMENSOPPGAVE. INF-1400 Objektorientert Programmering. Dato: Tirsdag 23. mai Klokkeslett: Kl 17:00-21:00. Adm. bygget, Aud.
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: INF-1400 Objektorientert Programmering Dato: Tirsdag 23. mai 2017 Klokkeslett: Kl 17:00-21:00 Sted: Tillatte hjelpemidler: Type innføringsark
IR Matematikk 1. Utsatt Eksamen 8. juni 2012 Eksamenstid 4 timer
Utsatt Eksamen 8. juni 212 Eksamenstid 4 timer IR1185 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del 2 uten bruk av hjelpemidler. Du kan bare
EKSAMEN BOKMÅL STEMMER. DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember :00-13: FAGKODE: IR Matematikk 1
EKSAMEN BOKMÅL DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember 15 9:-13: FAGKODE: FAGNAVN: IR151 Matematikk 1 HJELPEMIDLER: Del 1: kl 9.-11. Ingen Del : kl 11.-13. Lommeregner Lærebok etter fritt valg Matematisk
Anbefalte oppgaver - Løsningsforslag
TMA45 Matematikk Anbefalte oppgaver - Løsningsforslag Uke 5.5.: Kulen er grafen til rφ, θ) asinφ) cosθ)i + sin φ sinθ)j + cosφ)k), φ π, θ < π. Vi har slik at φ θ acosφ) cosθ)i + sinφ) sinθ)j + cosφ)k)
Oppgavesettet har 10 punkter 1, 2ab, 3ab, 4ab, 5abc som teller likt ved bedømmelsen.
NTNU Institutt for matematiske fag SIF55 Matematikk 2 4. mai 999 Løsningsforslag Oppgavesettet har punkter, 2ab, 3ab, 4ab, 5abc som teller likt ved bedømmelsen. i alternativ (3, ii alternativ (2. 2 a For
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 11. juni 21. Tid for eksamen: 14.3 17.3. Oppgavesettet er på 7 sider. Vedlegg: Tillatte hjelpemidler: MAT111 Kalkulus
Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål
Eksamen 30..00 REA304 Matematikk R Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del : Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del skal leverast inn etter timar. Del skal
EKSAMENSOPPGAVE. KJE-1001 Introduksjon til kjemi og kjemisk biologi
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: KJE-1001 Introduksjon til kjemi og kjemisk biologi Dato: Onsdag 28. februar 2018 Klokkeslett: 09:00-15:00 Sted: Tillatte hjelpemidler:
EKSAMENSOPPGAVE. linjal, kalkulator (hva som helst typ)
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: GEO-2004 Dato: 9. juni 2017 Klokkeslett: 9:00 13:00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: linjal, kalkulator (hva som helst typ)
MAT mars mars mars 2010 MAT Våren 2010
MAT 1012 Våren 2010 Mandag Forelesning Vi har tidligere integrert funksjoner langs x-aksen, og vi har integrert funksjoner i flere variable over begrensede områder i xy-planet. I denne forelesningen skal
Oppgavesettet er på 3 sider eks. forside, og inneholder 12 deloppgaver: 1abc, 2, 3, 4abc, 5ab, 6ab.
EKSAMENSOPPGAVE MAT-0001 (BOKMÅL) Eksamen i : Mat-0001 Brukerkurs i matematikk. Dato : tirsdag 4. desember 2012. Tid : 09.00-13.00. Sted: : Åsgårdvegen 9. Tillatte hjelpemidler : Alle trykte og skrevne.
EKSAMENSOPPGAVE. linjal. Jiri Konopasek
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: GEO 2001 Dato: Tirsdag 6. juni 2017 Klokkeslett: 09.00 13.00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: linjal Type innføringsark (rute/linje):
Løsning til eksamen i ingeniørmatematikk
Løsning til eksamen i ingeniørmatematikk 3 78 Oppgave Vektorfeltet har komponenter og er funksjon av variable Jacobimatrisen er av type ( xy) ( xy) x y ( yx) ( yx) xy x y xy Innsatt finner vi JF ( x, y)
EKSAMENSOPPGAVE / EKSAMENSOPPGÅVE
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE / EKSAMENSOPPGÅVE Eksamen i: Inf-1049, Introduksjon til beregningsorientert programmering Dato: 14. desember 2018 Klokkeslett: 09.00 13.00 Sted
Vi regner først ut de nødvendige partiellderiverte for å se om vektorfeltet er konservativt. z = 2z, F 2 F 2 z = 2y, F 3. x = 2x, F 3.
TMA415 Matematikk Vår 15 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 7 Alle oppgavenummer refererer til 8. utgave av Adams & Essex alculus: A omplete
Oppgaver og fasit til kapittel 6
1 Oppgaver og fasit til kapittel 6 Mange av oppgavene i dette kapitlet brukes for første gang, og det er sannsynligvis flere fasitfeil enn normalt. Finner du en feil, så send en melding til lindstro@math.uio.no.
Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger
Institutt for matematiske fag Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger Faglig kontakt under eksamen: Anton Evgrafov Tlf: 4503 0163 Eksamensdato: 30. mai 2017 Eksamenstid (fra
SIF5005 Matematikk 2, 13. mai 2002 Løsningsforslag
SIF55 Matematikk, 3. mai Oppgave Alternativ : At de to ligningene skjærer hverandre vil si at det finnes parameterverdier u og v som, innsatt i de to parametriseringene, gir samme punkt: Vi løser hver
y = x y, y 2 x 2 = c,
TMA415 Matematikk Vår 17 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 9 Alle oppgavenummer referer til 8. utgave av Adams & Essex alculus: A omplete
EKSAMENSOPPGAVE. linjal, kalkulator (hva som helst typ)
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: GEO-2004 Dato: 8. juni 2018 Klokkeslett: 9:00 13:00 Sted: Teorifagbygget, hus 1, plan 4 Tillatte hjelpemidler: linjal, kalkulator (hva
Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, 8.juni 2010
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Løsningsforslag, eksamen MA11 Flerdimensjonal analyse, 8.juni 21 Oppgave 1 a) Finn og klassifiser alle kritiske
Kurve-, flate- og volumintegraler, beregning av trykkraft
Kapittel 6 Kurve-, flate- og volumintegraler, beregning av trykkraft Oppgave 1 Vi skal regne ut kurveintegralet λ v dr langs kurven λ: y x3 når 1 x 2 og v xyi+x 2 j. Vi kan parametrisere med x som parameter,
EKSAMENSOPPGAVE. linjal, kalkulator (hva som helst typ) Vil det bli gått oppklaringsrunde i eksamenslokalet? Svar: JA Hvis JA: ca. kl.
EKSAMENSOPPGAVE Eksamen i: GEO-2001 Dato: 26. september 2018 Klokkeslett: 9:00 13:00 Sted: Tillatte hjelpemidler: Adm.bygget B154 linjal, kalkulator (hva som helst typ) Type innføringsark (rute/linje):
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT1100 Kalkulus. Eksamensdag: Fredag 9. desember 011. Tid for eksamen: 09.00 1.00. Oppgavesettet er på 5 sider. Vedlegg: Tillatte
LØSNINGSFORSLAG TIL ØVING 11, TMA4105, V2008. x = r cos θ, y = r sin θ, z = 2r for 0 θ 2π, 2 2r 6. i j k. 5 r dr dθ = 8
LØNINGFORLAG TIL ØVING, TMA45, V8 Oppgave 4.5.9. Parametrisering: x = r cos θ, y = r sin θ, z = r for θ π, r 6. r(r, θ) = r cos θ, r sin θ, r. N = r r r θ = cos θ sin θ = r cos θ, r sin θ, r. r sin θ r
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MEK 1100 Feltteori og vektoranalyse. Eksamensdag: Torsdag 11 desember 2008. Tid for eksamen: 14:30 17:30. Oppgavesettet er på
Tillegg om flateintegraler
Kapittel 6 Tillegg om flateintegraler 6.1 Litt ekstra om flateintegraler I kompendiet har vi definert flateintegraler som grenseoverganger for diskretiseringer. Har vi en flate kan vi representere den
UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Eksamen i MAT111 Grunnkurs i matematikk I Løsningsforslag
UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i MAT Grunnkurs i matematikk I Løsningsforslag Onsdag 9. mai, kl. 9. 4. Bokmål Oppgave a) La R være området mellom kurvene Finn
Kurve-, flate- og volumintegraler, beregning av trykkraft
Kapittel 6 Kurve-, flate- og volumintegraler, beregning av trykkraft Oppgave 1 Vi skal regne ut kurveintegralet λ v dr langs kurven λ: y x3 når 1 x 2 og v xyi+x 2 j. Vi kan parametrisere med x som parameter,