EKSAMENSOPPGAVE. 4 (1+3) Det er 12 deloppgaver (1abc, 2abcd, 3abc, 4ab) Andrei Prasolov

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "EKSAMENSOPPGAVE. 4 (1+3) Det er 12 deloppgaver (1abc, 2abcd, 3abc, 4ab) Andrei Prasolov"

Transkript

1 Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: Mat-004 Lineær algebra Dato: Torsdag. juni 207 Klokkeslett: Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Godkjent kalkulator, to A4 ark egne notater (håndskrevne, trykte, eller blandede) og Rottmanns tabeller. Type innføringsark (rute/linje): Antall sider inkl. forside: Kontaktperson under eksamen: 4 (+3) Det er 2 deloppgaver (abc, 2abcd, 3abc, 4ab) Andrei Prasolov Telefon/mobil: NB! Det er ikke tillatt å levere inn kladdepapir som del av eksamensbesvarelsen. Hvis det likevel leveres inn, vil kladdepapiret bli holdt tilbake og ikke bli sendt til sensur. Postboks 6050 Langnes, N-9037 Tromsø / / / uit.no

2 Begrunn svarene dine, vis fremgangsmåten ved oppgaveløsningen tydelig! OPPGAVE Gitt matrisen A = a) Finn en basis for radrommet (the row space) til A. b) Finn en basis for kolonnerommet (the column space) til A. c) Betrakt følgende vektor i R 4 : b = som avhenger av parameteren r. Undersøk for hvilken verdi av r tilhører b kolonnerommet col (A) (b col (A)). 2 OPPGAVE r, La A = a) Finn det karakteristiske polynomet (the characteristic polynomial) til matrisen A. b) Vis at 5 og er egenverdier (eigenvalues) til A. c) Finn en invertibel matrise P og en diagonalmatrise D slik at P AP = D. d) Finn en ortogonal matrise Q slik at Q AQ = Q T AQ = D.

3 3 OPPGAVE La V = Mat 2 2 være vektorrommet av alle reelle 2 2 matriser. Definer en operator S : V V ved S(X) = X + X T. For eksempel, hvis [ 2 X = er S (X) = [ 2 [ 2 +, T = [ a) S er en lineær operator (du behøver ikke vise at den er lineær). Velg en basis B for V og finn matrisen [S B til S med hensyn til denne basisen (matrix for S relative to the basis B). b) Finn en basis for bildet R (S) til S (the range of S). c) La Y = [ 3 3. Finn alle matriser X V som tilfredsstiller likningen S (X) = Y. 2

4 4 OPPGAVE Vi minner om at den konjugert-transponerte (the conjugate transpose) til en kompleks matrise X er X = ( X ) T = (XT ) der () er konjugasjonen, og () T er transponeringen. Gitt matrisene som avhenger av en kompleks parameter z: [ 2 z A (z) =, 2 + 4i i z B (z) = i i a) Undersøk for hvilken verdi av z er matrisen A (z) Hermitsk (Hermitian, (A (z)) = A (z)). b) Undersøk for hvilken verdi av z er matrisen B (z) unitær (unitary, (B (z)) = (B (z)) ). LYKKE TIL! 3

5 Fakultet for naturvitenskap og teknologi EKSAMENSOPPGÅVE Eksamen i: Mat-004 Lineær algebra Dato: Torsdag. juni 207 Klokkeslett: Sted: Åsgårdvegen 9 Lovlige hjelpemiddel: Godkjent kalkulator, to A4 ark eigne notatar (handskrivne, trykte, eller blanda) og Rottmanns tabellar. Type innføringsark (rute/linje): Antal sider inkl. forside: Kontaktperson under eksamen: 4 (+3) Det er 2 deloppgåver (abc, 2abcd, 3abc, 4ab) Andrei Prasolov Telefon/mobil: NB! Det er ikkje tillate å levera inn kladdepapir som del av eksamensbesvarelsen. Viss det likevel vert levert inn, vil kladdepapiret haldast tilbake og ikkje sendast til sensur. Postboks 6050 Langnes, N-9037 Tromsø / / / uit.no

6 Grunngi svara dine, vis framgangsmåten ved oppgåveløysinga tydeleg! OPPGÅVE Gitt matrisa A = a) Finn ein basis for radrommet (the row space) til A. b) Finn ein basis for kolonnerommet (the column space) til A. c) Sjå på følgjande vektor i R 4 : b = som avheng av parameteren r. Undersøk for kva for ein verdi av r tilhøyrer b kolonnerommet col (A) (b col (A)). 2 OPPGÅVE r, La A = a) Finn det karakteristiske polynomet (the characteristic polynomial) til matrisa A. b) Vis at 5 og er eigenverdiar (eigenvalues) til A. c) Finn ei inverterbar matrise P og ei diagonalmatrise D slik at P AP = D. d) Finn ei ortogonal matrise Q slik at Q AQ = Q T AQ = D.

7 3 OPPGÅVE La V = Mat 2 2 vere vektorrommet av alle reelle 2 2 matriser. Definer ein operator S : V V ved S(X) = X + X T. Til dømes, viss [ 2 X = er S (X) = [ 2 [ 2 +, T = [ a) S er ein lineær operator (du treng ikkje vise at den er lineær). Vel ein basis B for V og finn matrisa [S B til S med omsyn til denne basisen (matrix for S relative to the basis B). b) Finn ein basis for biletet R (S) til S (the range of S). c) La Y = [ 3 3. Finn alle matriser X V som tilfredsstiller likninga S (X) = Y. 2

8 4 OPPGÅVE Vi minner om at den konjugert-transponerte (the conjugate transpose) til ei kompleks matrise X er X = ( X ) T = (XT ) der () er konjugasjonen, og () T er transponeringen. Gitt matrisene som avheng av ein kompleks parameter z: [ 2 z A (z) =, 2 + 4i i z B (z) = i i a) Undersøk for kva for ein verdi av z er matrisen A (z) Hermitsk (Hermitian, (A (z)) = A (z)). b) Undersøk for kva for ein verdi av z er matrisen B (z) unitær (unitary, (B (z)) = (B (z)) ). TIL LYKKE! 3

EKSAMENSOPPGAVE. to A4 ark egne notater og Rottmanns tabeller. Kontaktperson under eksamen: Professor Andrei Prasolov. Telefon:

EKSAMENSOPPGAVE. to A4 ark egne notater og Rottmanns tabeller. Kontaktperson under eksamen: Professor Andrei Prasolov. Telefon: EKSAMENSOPPGAVE Eksamen i: Mat 4 Lineær algebra Dato: Torsdag 4 juni 25 Tid: Kl 9: 3: Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Godkjent kalkulator, to A4 ark egne notater og Rottmanns tabeller Oppgavesettet

Detaljer

EKSAME SOPPGAVE MAT-1004 (BOKMÅL)

EKSAME SOPPGAVE MAT-1004 (BOKMÅL) EKSAME SOPPGAVE MAT-00 (BOKMÅL) Eksamen i : Mat-00 Lineær algebra. Dato : Torsdag 09. juni. Tid : 09.00 -.00. Sted: : Teorifagb., hus, plan. Tillatte hjelpemidler : Godkjent kalkulator, to A ark egne notater

Detaljer

EKSAMENSOPPGÅVE. Kalkulator, 2 ark (4 sider) med eigne notater og Rottmanns tabeller. Ragnar Soleng

EKSAMENSOPPGÅVE. Kalkulator, 2 ark (4 sider) med eigne notater og Rottmanns tabeller. Ragnar Soleng Fakultet for naturvitenskap og teknologi EKSAMENSOPPGÅVE Eksamen i: Mat-1005, diskret matematikk Dato: 1. desember 017 Klokkeslett: 15.00-19.00 Stad: Åsgårdvegen 9 Lovlege hjelpemiddel: Kalkulator, ark

Detaljer

Eksamensoppgave MAT juni 2010 (med løsningsforslag)

Eksamensoppgave MAT juni 2010 (med løsningsforslag) Eksamensoppgave MAT-4 juni (med løsningsforslag) Contents OPPGAVE OPPGAVE 4 OPPGAVE 5 4 OPPGAVE 6 5 Fasit 7 5 Oppgave 7 5 Oppgave 7 5 Oppgave 8 54 Oppgave 8 6 Løsningsforslag 9 6 Oppgave 9 6 Oppgave 6

Detaljer

MAT-1004 Vårsemester 2017 Prøveeksamen

MAT-1004 Vårsemester 2017 Prøveeksamen MAT-1004 Vårsemester 017 Prøveeksamen Contents 0.1 Forord................................. 1 1 OPPGAVE OPPGAVE OPPGAVE 6 4 OPPGAVE 7 5 OPPGAVE 10 6 OPPGAVE 11 7 OPPGAVE 11 8 OPPGAVE 1 9 Formatering av

Detaljer

EKSAMENSOPPGÅVE. Mat-1005, Diskret matematikk. Godkjent kalkulator, Rottmanns tabellar og 2 A4 ark med eigne notater (4 sider).

EKSAMENSOPPGÅVE. Mat-1005, Diskret matematikk. Godkjent kalkulator, Rottmanns tabellar og 2 A4 ark med eigne notater (4 sider). Fakultet for naturvitenskap og teknologi EKSAMENSOPPGÅVE Eksamen i: Mat-1005, Diskret matematikk Dato:. desember 016 Klokkeslett: 90.00-13.00 Stad: Åsgårdvegen 9 Lovlege hjelpemiddel: Godkjent kalkulator,

Detaljer

MAT-1004 Vårsemester 2017 Prøveeksamen

MAT-1004 Vårsemester 2017 Prøveeksamen MAT-4 Vårsemester 7 Prøveeksamen Contents. Forord................................. OPPGAVE OPPGAVE OPPGAVE 7 4 OPPGAVE 8 OPPGAVE 6 OPPGAVE 7 OPPGAVE 8 OPPGAVE 9 Formatering av svarene 4 9. Rasjonale tall.............................

Detaljer

EKSAMEN I MA1202 OG MA6202 LINEÆR ALGEBRA MED ANVENDELSER

EKSAMEN I MA1202 OG MA6202 LINEÆR ALGEBRA MED ANVENDELSER Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 3 Faglig kontakt under eksamen: Carl Fredrik Berg (975 05 585) EKSAMEN I MA1202 OG MA6202 LINEÆR ALGEBRA MED ANVENDELSER

Detaljer

Universitetet i Agder Fakultetet for teknologi og realfag Institutt for matematiske fag. Eksamen MA desember Lykke til!

Universitetet i Agder Fakultetet for teknologi og realfag Institutt for matematiske fag. Eksamen MA desember Lykke til! Universitetet i Agder Fakultetet for teknologi og realfag Institutt for matematiske fag Eksamen Emnekode: Emnenavn: MA-2 Lineær algebra Dato: Varighet:. desember 2 9. - 4. Antall sider: Tillatte hjelpemidler:

Detaljer

EKSAMENSOPPGAVE. «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark/ 4 sider med egne notater. Godkjent kalkulator.

EKSAMENSOPPGAVE. «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark/ 4 sider med egne notater. Godkjent kalkulator. Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: STA-1001. Dato: Mandag 9. mai 017. Klokkeslett: 09 13. Sted: Åsgårdvegen 9. Tillatte hjelpemidler: «Tabeller og formler i statistikk»

Detaljer

EKSAMENSOPPGAVE. INF-1100 Innføring i programmering og datamaskiners virkemåte. Ingen. Elektronisk (WiseFlow) Robert Pettersen

EKSAMENSOPPGAVE. INF-1100 Innføring i programmering og datamaskiners virkemåte. Ingen. Elektronisk (WiseFlow) Robert Pettersen Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: Dato: 20.02.2017 Klokkeslett: 09:00 13:00 INF-1100 Innføring i programmering og datamaskiners virkemåte Sted: Teorifagbygget, Hus 3,

Detaljer

EKSAMENSOPPGAVE. INF-1100 Innføring i programmering og datamaskiners virkemåte. Teorifagb, hus 3, og og Adm.bygget, Aud.max og B.

EKSAMENSOPPGAVE. INF-1100 Innføring i programmering og datamaskiners virkemåte. Teorifagb, hus 3, og og Adm.bygget, Aud.max og B. Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: Dato: 06.12.2016 Klokkeslett: 09:00 13:00 INF-1100 Innføring i programmering og datamaskiners virkemåte Sted: Tillatte hjelpemidler:

Detaljer

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra Universitet i Bergen Det matematisk-naturvitenskapelige fakultet Bokmål Eksamen i emnet MAT2 - Lineær algebra Onsdag 29 mai, 20, kl. 09.00-4.00 Tillatte hjelpemidler. kalkulator, i samsvar med fakultetets

Detaljer

EKSAMENSOPPGAVE. Professor Anders Schomacker

EKSAMENSOPPGAVE. Professor Anders Schomacker Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: Dato: 25.11.2016 Klokkeslett: 15.00-19.00 Kvartærgeologi GEO-2003 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Ingen Type innføringsark

Detaljer

EKSAMENSOPPGAVE. Kalkulator, transportør (vinkelmåler), linjaler, fargeblyanter. Millimeterpapir deles ut.

EKSAMENSOPPGAVE. Kalkulator, transportør (vinkelmåler), linjaler, fargeblyanter. Millimeterpapir deles ut. Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: Geo-2002 Dato: 30. mai 2017 Klokkeslett: 9:00-13:00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Kalkulator, transportør (vinkelmåler),

Detaljer

EKSAMENSOPPGAVE STA «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark/ 4 sider med egne notater. Godkjent kalkulator. Rute.

EKSAMENSOPPGAVE STA «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark/ 4 sider med egne notater. Godkjent kalkulator. Rute. Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: STA-1001. Dato: Tirsdag 26. september 2017. Klokkeslett: 09 13. Sted: Åsgårdvegen 9. Tillatte hjelpemidler: «Tabeller og formler i statistikk»

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 1120 Lineær algebra Eksamensdag: 9. desember 2014. Tid for eksamen: 14.30 18.30. Oppgavesettet er på 6 sider. Vedlegg: Tillatte

Detaljer

EKSAMENSOPPGAVE. Linjal, kalkulator (hva som helst typ)

EKSAMENSOPPGAVE. Linjal, kalkulator (hva som helst typ) Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: GEO-2001 Dato: Tirsdag 26. september 2017 Klokkeslett: 09.00-13.00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Linjal, kalkulator (hva

Detaljer

EKSAMENSOPPGAVE. linjal. Jiri Konopasek

EKSAMENSOPPGAVE. linjal. Jiri Konopasek Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: GEO 2001 Dato: Tirsdag 6. juni 2017 Klokkeslett: 09.00 13.00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: linjal Type innføringsark (rute/linje):

Detaljer

EKSAMENSOPPGAVE MAT-0001 (BOKMÅL)

EKSAMENSOPPGAVE MAT-0001 (BOKMÅL) EKSAMENSOPPGAVE MAT-0001 (BOKMÅL) Eksamen i : Mat-0001 Brukerkurs i matematikk. Dato : Tirsdag 6. desember 2011. Tid : 09.00-13.00. Sted: : Adm. bygget, Aud. max. eller B154. Tillatte hjelpemidler : Alle

Detaljer

EKSAMENSOPPGAVE Njål Gulbrandsen / Ole Meyer /

EKSAMENSOPPGAVE Njål Gulbrandsen / Ole Meyer / Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: FYS-1001 Mekanikk Dato: 21.2.2017 Klokkeslett: 09:00 13:00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Fire A4-sider (to dobbeltsidige

Detaljer

EKSAMEN I MA1202 LINEÆR ALGEBRA MED ANVENDELSER

EKSAMEN I MA1202 LINEÆR ALGEBRA MED ANVENDELSER Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 Faglig kontakt under eksamen: Truls Fretland (73 55 89 87) EKSAMEN I MA1202 LINEÆR ALGEBRA MED ANVENDELSER LØSNINGSFORSLAG

Detaljer

EKSAMENSOPPGAVE. Kalkulator «Huskelapp» -A4 ark med skrift på begge sider. Enkel norsk-engelsk/engelsk-norsk ordbok

EKSAMENSOPPGAVE. Kalkulator «Huskelapp» -A4 ark med skrift på begge sider. Enkel norsk-engelsk/engelsk-norsk ordbok Fakultet for naturvitenskap og teknologi EKSAMESOPPGAVE Eksamen i: KJE-1001 Introduksjon til kjemi og kjemisk biologi Dato: Fredag 16.desember 2016 Klokkeslett: 09:00-15:00 Sted: Teorifagbygget hus 1,

Detaljer

EKSAMENSOPPGAVE. linjal, kalkulator (hva som helst typ)

EKSAMENSOPPGAVE. linjal, kalkulator (hva som helst typ) Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: GEO-2004 Dato: 9. juni 2017 Klokkeslett: 9:00 13:00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: linjal, kalkulator (hva som helst typ)

Detaljer

EKSAMENSOPPGAVE. INF-1400 Objektorientert Programmering. Dato: Tirsdag 23. mai Klokkeslett: Kl 17:00-21:00. Adm. bygget, Aud.

EKSAMENSOPPGAVE. INF-1400 Objektorientert Programmering. Dato: Tirsdag 23. mai Klokkeslett: Kl 17:00-21:00. Adm. bygget, Aud. Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: INF-1400 Objektorientert Programmering Dato: Tirsdag 23. mai 2017 Klokkeslett: Kl 17:00-21:00 Sted: Tillatte hjelpemidler: Type innføringsark

Detaljer

EKSAMENSOPPGAVE. Vil det bli gått oppklaringsrunde i eksamenslokalet? Svar: JA / NEI Hvis JA: ca. kl. 10

EKSAMENSOPPGAVE. Vil det bli gått oppklaringsrunde i eksamenslokalet? Svar: JA / NEI Hvis JA: ca. kl. 10 Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: Dato: 28 september 2017 Klokkeslett: 09-13 Sted: Teo-H3, 3218 Tillatte hjelpemidler: Type innføringsark (rute/linje): Antall sider inkl.

Detaljer

EKSAMENSOPPGAVE. Kalkulator Rom Stoff Tid: Fysikktabeller (Bok/utskrift fra bok)

EKSAMENSOPPGAVE. Kalkulator Rom Stoff Tid: Fysikktabeller (Bok/utskrift fra bok) Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: MNF-6002 Videreutdanning i naturfag for lærere, Naturfag trinn 2 Dato: Mandag 29. mai 2017 Klokkeslett: Kl 09:00 13:00 Sted: Åsgårdvegen

Detaljer

EKSAMENSOPPGAVE. NB! Det er ikke tillatt å levere inn kladd sammen med besvarelsen

EKSAMENSOPPGAVE. NB! Det er ikke tillatt å levere inn kladd sammen med besvarelsen Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: INF-1101 Datastrukturer og algoritmer Dato: 18.05.2016 Klokkeslett: 09:00 13:00 Sted: Teorifagbygget, hus 3, 3.218 Tillatte hjelpemidler:

Detaljer

EKSAMENSOPPGAVE Georg Elvebakk NB! Det er ikke tillatt å levere inn kladd sammen med besvarelsen

EKSAMENSOPPGAVE Georg Elvebakk NB! Det er ikke tillatt å levere inn kladd sammen med besvarelsen Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: STA-1001. Dato: 30.mai 2016. Klokkeslett: 09 13. Sted: Tillatte hjelpemidler: Teorifagbygget, «Tabeller og formler i statistikk» av Kvaløy

Detaljer

EKSAMENSOPPGAVE. FYS 2000, Kvantemekanikk Dato: 7. Juni 2017 Klokkeslett: 9:00-13:00 Sted: Tillatte hjelpemidler: rute.

EKSAMENSOPPGAVE. FYS 2000, Kvantemekanikk Dato: 7. Juni 2017 Klokkeslett: 9:00-13:00 Sted: Tillatte hjelpemidler: rute. EKSAMENSOPPGAVE Eksamen i: FYS 2000, Kvantemekanikk Dato: 7. Juni 2017 Klokkeslett: 9:00-13:00 Sted: Tillatte hjelpemidler: ett handskrevet A4-ark(2 sider med egne notater, samt K. Rottmann: Matematisk

Detaljer

EKSAMENSOPPGAVE. Kalkulator «Huskelapp» -A4 ark med skrift på begge sider Enkel norsk-engelsk/engelsk-norsk ordbok

EKSAMENSOPPGAVE. Kalkulator «Huskelapp» -A4 ark med skrift på begge sider Enkel norsk-engelsk/engelsk-norsk ordbok Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: KJE-1001 Introduksjon til kjemi og kjemisk biologi Dato: 22.02.2017 Klokkeslett: 09:00-15:00 Sted: Åsgårdveien 9 Tillatte hjelpemidler:

Detaljer

Oppgavesettet er på 3 sider eks. forside, og inneholder 12 deloppgaver: 1abc, 2, 3, 4abc, 5ab, 6ab.

Oppgavesettet er på 3 sider eks. forside, og inneholder 12 deloppgaver: 1abc, 2, 3, 4abc, 5ab, 6ab. EKSAMENSOPPGAVE MAT-0001 (BOKMÅL) Eksamen i : Mat-0001 Brukerkurs i matematikk. Dato : tirsdag 4. desember 2012. Tid : 09.00-13.00. Sted: : Åsgårdvegen 9. Tillatte hjelpemidler : Alle trykte og skrevne.

Detaljer

UNIVERSITET I BERGEN

UNIVERSITET I BERGEN UNIVERSITET I BERGEN Det matematisk-naturvitenskapelige fakultet BOKMÅL Løsningsforslag eksamen MAT - Lineær algebra H Med forbehold om skrivefeil. Oppgave. Betrakt A = 6 5, b = 6 b (a) (b) Finn den reduserte

Detaljer

EKSAMENSOPPGAVE. Adm.bygget, Aud.max. ü Kalkulator med tomt dataminne ü Rottmann: Matematisk Formelsamling. rute

EKSAMENSOPPGAVE. Adm.bygget, Aud.max. ü Kalkulator med tomt dataminne ü Rottmann: Matematisk Formelsamling. rute Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAE Eksamen i: Fys-1002 Dato: 30. september 2016 Klokkeslett: 09.00-13.00 Sted: Tillatte hjelpemidler: Adm.bygget, Aud.max ü Kalkulator med tomt dataminne

Detaljer

EKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Mandag 6. juni 2011 løsningsforslag

EKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Mandag 6. juni 2011 løsningsforslag Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 EKSAMEN I TMA4 MATEMATIKK 3 Bokmål Mandag 6. juni løsningsforslag Hjelpemidler (kode C): Enkel kalkulator (HP3S eller

Detaljer

EKSAMENSOPPGAVE / EKSAMENSOPPGÅVE

EKSAMENSOPPGAVE / EKSAMENSOPPGÅVE Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE / EKSAMENSOPPGÅVE Eksamen i: Inf-1049, Introduksjon til beregningsorientert programmering Dato: 15. desember 017 Klokkeslett: 09.00 13.00 Sted /

Detaljer

EKSAMENSOPPGAVE Bokmål og Nynorsk

EKSAMENSOPPGAVE Bokmål og Nynorsk Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Bokmål og Nynorsk Eksamen i: GEO-1001 Innføring i geologi Dato: Torsdag 8. desember 2016 Klokkeslett: Kl 09:00 13:00 Sted: Åsgårdveien 9 Tillatte

Detaljer

EKSAMENSOPPGAVE. ü Kalkulator med tomt dataminne ü Rottmann: Matematisk Formelsamling. rute

EKSAMENSOPPGAVE. ü Kalkulator med tomt dataminne ü Rottmann: Matematisk Formelsamling. rute Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAE Eksamen i: FYS-1002 Dato: 26. september 2017 Klokkeslett: 09.00-13.00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: ü Kalkulator med tomt dataminne

Detaljer

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra Universitet i Bergen Det matematisk-naturvitenskapelige fakultet Bokmål Eksamen i emnet MAT - Lineær algebra Onsdag 5 september, 0, kl. 09.00-4.00 Tillatte hjelpemidler. kalkulator, i samsvar med fakultetets

Detaljer

EKSAMENSOPPGAVE. INF-1400 Objektorientert Programmering. Dato: Torsdag 29. september Klokkeslett: Kl 09:00-13:00.

EKSAMENSOPPGAVE. INF-1400 Objektorientert Programmering. Dato: Torsdag 29. september Klokkeslett: Kl 09:00-13:00. Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: INF-1400 Objektorientert Programmering Dato: Torsdag 29. september 2016 Klokkeslett: Kl 09:00-13:00 Sted: Tillatte hjelpemidler: Type

Detaljer

MAT-1004 Vårsemester 2017 Obligatorisk øving 3

MAT-1004 Vårsemester 2017 Obligatorisk øving 3 MAT-4 Vårsemester 7 Obligatorisk øving Contents OPPGAVE OPPGAVE Hvordan løses oppgave? 5 4 Hvordan løses oppgave? 6 5 Formatering av svarene 8 5. Rasjonale tall............................. 8 5. Matriser

Detaljer

EKSAMENSOPPGAVE. B154 «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark (4 sider) med egne notater. Godkjent kalkulator.

EKSAMENSOPPGAVE. B154 «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark (4 sider) med egne notater. Godkjent kalkulator. Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: STA-2004 Dato: 29.september 2016 Klokkeslett: 09 13 Sted: Tillatte hjelpemidler: B154 «Tabeller og formler i statistikk» av Kvaløy og

Detaljer

EKSAMENSOPPGAVE. FYS-1001 Mekanikk. Fire A4-sider (to dobbeltsidige ark) med egne notater. Kalkulator ikke tillatt. Ruter.

EKSAMENSOPPGAVE. FYS-1001 Mekanikk. Fire A4-sider (to dobbeltsidige ark) med egne notater. Kalkulator ikke tillatt. Ruter. Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksaen i: FYS-1001 Mekanikk Dato: 1.12.2016 Klokkeslett: 09:00 13:00 Sted: Åsgårdvegen 9 Tillatte hjelpeidler: Fire A4-sider (to dobbeltsidige ark)

Detaljer

EKSAMENSOPPGAVE. 7 (6 sider med oppgaver + 1 side med formler)

EKSAMENSOPPGAVE. 7 (6 sider med oppgaver + 1 side med formler) Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAE Eksamen i: FYS-1002 (elektromagnetisme) Dato: 9. juni 2017 Klokkeslett: 09.00-13.00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: ü Kalkulator med tomt

Detaljer

Lineær algebra. 0.1 Vektorrom

Lineær algebra. 0.1 Vektorrom Lineær algebra Siden dette temaet er alt for stort til å kunne gjennomgås på en halvtime, med alle de teoremene og denisjonene som skal til, har jeg laget dette notatet. Det bygger hovedsakelig på notatene

Detaljer

Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter!

Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Oppgave.. a x y = x + y = r r r +r r x y = y fri x y = y fri Vi får én fri variabel, og løsningens har følgelig dimensjon.

Detaljer

13 Oppsummering til Ch. 5.1, 5.2 og 8.5

13 Oppsummering til Ch. 5.1, 5.2 og 8.5 3 Oppsummering til Ch. 5. 5. og 8.5 3. Motivasjon Det er veldig viktig å kunne beregne funksjonsverdier f (A) for kvadratiske matriser A. I kalkulus (teori av differensiallikninger) er det viktig å beregne

Detaljer

12 Diagonalisering av matriser og operatorer (Ch. 5.1, 5.2 og 8.5)

12 Diagonalisering av matriser og operatorer (Ch. 5.1, 5.2 og 8.5) Diagonalisering av matriser og operatorer (Ch 5, 5 og 85) Motivasjon Det er veldig viktig å kunne beregne funksjonsverdier f (A) for kvadratiske matriser A I kalkulus (teori av differensiallikninger) er

Detaljer

Rang og Vektorrom. Magnus B. Botnan NTNU. 4. august, 2015

Rang og Vektorrom. Magnus B. Botnan NTNU. 4. august, 2015 Rang og Vektorrom Magnus B. Botnan NTNU 4. august, 2015 Lineær Uavhengighet La v (1),..., v (m) være vektorer av samme størrelse. Vi sier at vektorene er lineært avhengige hvis det finnes konstanter c

Detaljer

EKSAMENSOPPGAVE STA-2004.

EKSAMENSOPPGAVE STA-2004. Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: STA-2004. Dato: Torsdag 28. september 2017. Klokkeslett: 09 13. Sted: Tillatte hjelpemidler: Teorifagsbygget. «Tabeller og formler i

Detaljer

7.1 forts. Schur triangularisering og spektralteoremet

7.1 forts. Schur triangularisering og spektralteoremet 7.1 forts. Schur triangularisering og spektralteoremet Vi skal vise to svært sentrale resultat i lineær algebra. Spektralteoremet (Teorem 3 i Lay): dette sier bl.a. at reelle symmetriske matriser er ortogonalt

Detaljer

EKSAME SOPPGAVE MAT-0001 (BOKMÅL)

EKSAME SOPPGAVE MAT-0001 (BOKMÅL) EKSAME SOPPGAVE MAT-0001 (BOKMÅL) Eksamen i : Mat-0001 Brukerkurs i matematikk. Dato : Tirsdag 21. februar 2012. Tid : 09.00-13.00. Sted: : Adm. bygget, B154. Tillatte hjelpemidler : Alle trykte og skrevne.

Detaljer

Løsningsforslag MAT 120B, høsten 2001

Løsningsforslag MAT 120B, høsten 2001 Løsningsforslag MAT B, høsten Sett A = ( ) (a) Finn egenverdiene og egenvektorene til A ( ) λ =, e = ( λ =, e = ) (b) Finn matrisen e ta og den generelle løsningen på initialverdiproblemet Ẋ = AX, X()

Detaljer

16 Ortogonal diagonalisering

16 Ortogonal diagonalisering Ortogonal diagonalisering Ortogonale matriser Definisjon (Def 7) En n n matrise A kalles ortogonal dersom den er invertibel og A A T Denne betingelsen er ekvivalent til at der I n er n n identitesmatrisen

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Ny/utsatt eksamen i Eksamensdag: 9. august 2. Tid for eksamen: 9 2. Oppgavesettet er på 8 sider. Vedlegg: Tillatte hjelpemidler: MAT Kalkulus

Detaljer

MA1201/MA6201 Høsten 2016

MA1201/MA6201 Høsten 2016 MA/MA6 Høsten 6 Norges teknisk naturvitenskapelige universitet Institutt for matematikk Løsningsforslag Øving Med forebehold om feil. Hvis du finner en, ta kontakt med Karin. Kapittel 6. a) Stemmer. Anta

Detaljer

Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon.

Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. 4.6 Rang Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. Definisjon: Rangen til en m n matrise A betegnes med rank A og er definert som dimensjonen til kolonnerommet

Detaljer

TMA4110 Matematikk 3 Haust 2011

TMA4110 Matematikk 3 Haust 2011 Noregs teknisk naturvitskaplege universitet Institutt for matematiske fag TMA40 Matematikk 3 Haust 0 Løysingsforslag Øving Oppgåver frå læreboka kap 5, s 7-73 5 Eigenrommet som svarar til λ = 5 er det

Detaljer

EKSAMENSOPPGAVE. Eksamen i: MAT-1003 Dato: Tirsdag 15. desember 2015 Tid: Kl 15:00 19:00 Sted: Åsgårdvegen 9

EKSAMENSOPPGAVE. Eksamen i: MAT-1003 Dato: Tirsdag 15. desember 2015 Tid: Kl 15:00 19:00 Sted: Åsgårdvegen 9 EKSAMENSOPPGAVE Eksamen i: MAT-13 Dato: Tirsdag 15. desember 215 Tid: Kl 15: 19: Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Pedersen et al.: Teknisk formelsamling med tabeller, Rottmanns formelsamling,

Detaljer

Løsninger for eksamen i MAT Lineær algebra og M102 - Lineær algebra, fredag 28. mai 2004, Oppgave 1. M s = = 1 2 (cofm 2) T.

Løsninger for eksamen i MAT Lineær algebra og M102 - Lineær algebra, fredag 28. mai 2004, Oppgave 1. M s = = 1 2 (cofm 2) T. Løsninger for eksamen i MAT - Lineær algebra og M - Lineær algebra, fredag 8. mai 4, (a) Finn determinanten til matrisen M s = Oppgave s uttrykt ved s, og bruk dette til å avgjøre for hvilke s matrisen

Detaljer

EKSAMENSOPPGAVE. «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark (4 sider) med egne notater. Godkjent kalkulator.

EKSAMENSOPPGAVE. «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark (4 sider) med egne notater. Godkjent kalkulator. Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: STA-2004. Dato: Fredag 26. mai 2017. Klokkeslett: 09 13. Sted: Åsgårdvegen 9. Tillatte hjelpemidler: «Tabeller og formler i statistikk»

Detaljer

EKSAMENSOPPGAVER FOR TMA4110/TMA4115 MATEMATIKK 3

EKSAMENSOPPGAVER FOR TMA4110/TMA4115 MATEMATIKK 3 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 25 2. januar 25 EKSAMENSOPPGAVER FOR TMA4/TMA45 MATEMATIKK 3 Oppgave A- a) Finn kvadratrøttene til det komplekse tallet

Detaljer

(3/2)R 2+R 3 R 1 +R 2,( 2)R 1 +R 3 ( 2)R 1 +R 4 6/5R 3 +R 4 1/5R 3

(3/2)R 2+R 3 R 1 +R 2,( 2)R 1 +R 3 ( 2)R 1 +R 4 6/5R 3 +R 4 1/5R 3 NTNU Institutt for matematiske fag TMA4115 Matematikk 3 våren 2009 Løsningsforslag - Øving 10 Fra Edwards & Penney, avsnitt 4.4 5 Vi bruker Algoritme 1 og 2 i EP på sidene 190 og 193 for å finne en basis

Detaljer

7.4 Singulærverdi dekomposisjonen

7.4 Singulærverdi dekomposisjonen 7.4 Singulærverdi dekomposisjonen Singulærverdi dekomposisjon til en matrise A er en av de viktigste faktoriseringene av A (dvs. A skrives som et produkt av matriser). Den inneholder nyttig informasjon

Detaljer

Oppgave 1 (25 %) - Flervalgsoppgaver

Oppgave 1 (25 %) - Flervalgsoppgaver Oppgaver og løsningsforslag for 4t eksamen 10.mai 006 i LO510D Lineær algebra med grafiske anvendelser. Fra og med oppgave skal alle svar begrunnes. Oppgave 1 (5 %) - Flervalgsoppgaver Denne oppgaven består

Detaljer

Kap. 5 og Notat 2 Oppsummering

Kap. 5 og Notat 2 Oppsummering Kap. 5 og Notat 2 Oppsummering Vi lar A være en reell n n matrise, med mindre noe annet sies. x R n er en egenvektor for A tilh. egenverdien λ R betyr at A x = λ x og x 0. Hvis A er triangulær, er egenverdiene

Detaljer

MAT3000/ Våren 2013 Obligatorisk oppgavesett nr. 2 Løsningsskisse

MAT3000/ Våren 2013 Obligatorisk oppgavesett nr. 2 Løsningsskisse MAT3000/4000 - Våren 2013 Obligatorisk oppgavesett nr. 2 Løsningsskisse Oppgave 1 Din offentlig nøkkel er N = 377 og a = 269, mens lederen av klubben har valgt N = 1829 og a = 7. Passordet som du har mottatt

Detaljer

MAT Prøveeksamen 29. mai - Løsningsforslag

MAT Prøveeksamen 29. mai - Løsningsforslag MAT0 - Prøveeksamen 9 mai - Løsningsforslag Oppgave Sett A = 4 4 0 x 0, x = x, b =, x 0 og la v, v, v betegne kolonnevektorene til A a) Skriv A x = y som en vektorlikning x Svar : Siden A x = [v v v ]

Detaljer

MAT1120 Notat 2 Tillegg til avsnitt 5.4

MAT1120 Notat 2 Tillegg til avsnitt 5.4 MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjoner (også kalt koordinatmatriser) av lineære avbildninger mellom endeligdimensjonale vektorrom En slik

Detaljer

MAT 1120: Obligatorisk oppgave 2, H-09

MAT 1120: Obligatorisk oppgave 2, H-09 MAT 1120: Obligatorisk oppgave 2, H-09 Innlevering: Senest fredag 30 oktober, 2009, kl1430, på Ekspedisjonskontoret til Matematisk institutt (7 etasje NHA) Du kan skrive for hånd eller med datamaskin,

Detaljer

EKSAMENSOPPGAVE. Eksamen i: KJE-6001 Generell kjemi for lærere Dato: Mandag 14. desember 2015 Tid: Kl 09:00 13:00 Sted: Åsgårdvegen 9

EKSAMENSOPPGAVE. Eksamen i: KJE-6001 Generell kjemi for lærere Dato: Mandag 14. desember 2015 Tid: Kl 09:00 13:00 Sted: Åsgårdvegen 9 EKSAMENSOPPGAVE Eksamen i: KJE-6001 Generell kjemi for lærere Dato: Mandag 14. desember 2015 Tid: Kl 09:00 13:00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Kalkulator «Huskelapp» -A4 ark med skrift på

Detaljer

12 Lineære transformasjoner

12 Lineære transformasjoner 2 Lineære transformasjoner 2 Funksjoner Definisjon 2 En funksjon ( a function) f : A B er en regel, som tilordner en entydig bestemt verdi f (a) B til ethvert element a A Mengden A kalles domenet til f

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Ny/Utsatt eksamen i: MAT1001 Matematikk 1 Eksamensdag: Torsdag 15 januar 2015 Tid for eksamen: 14:30 18:30 Oppgavesettet er på 5 sider Vedlegg:

Detaljer

Notat2 - MAT Om matriserepresentasjoner av lineære avbildninger

Notat2 - MAT Om matriserepresentasjoner av lineære avbildninger Notat2 - MAT1120 - Om matriserepresentasjoner av lineære avbildninger Dette notatet uftfyller bokas avsn 54 om matriserepresentasjoner av lineære avbildninger mellom endelig dimensjonale vektorrom En matriserepresentasjon

Detaljer

Kap. 7 Symmetriske matriser og kvadratiske former

Kap. 7 Symmetriske matriser og kvadratiske former Kap. 7 Symmetriske matriser og kvadratiske former Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på symmetriske matriser som har uvanlig pene egenskaper mht. diagonalisering.

Detaljer

10 Radrommet, kolonnerommet og nullrommet

10 Radrommet, kolonnerommet og nullrommet Radrommet kolonnerommet og nullrommet La A være en m n matrise Vi kan beskrive matrisen ved hjelp av dens rader r A r r i R n r m eller dens kolonner A [ c c c n ci R m Definisjon (se Def 7 i boka) For

Detaljer

15 Hovedprinsippet for vektorrom med et indre produkt

15 Hovedprinsippet for vektorrom med et indre produkt Hovedprinsippet for vektorrom med et indre produkt La oss minne Hovedprinsippet (Seksjon 8.): Alle (endelig dimensjonale dvs. de som har en endelig basis) vektorrom kan beskrives som R n der n dim V. Alle

Detaljer

Lineær algebra-oppsummering

Lineær algebra-oppsummering Kapittel 9 Lineær algebra-oppsummering Matriser 1 Matriser er et rektangulært sett av elementer ordnet i rekker og kolonner: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij m n a m1 a n2 a mn 2 Kvadratisk matrise:

Detaljer

EKSAMENSOPPGAVE. Tillatte hjelpemidler: Kalkulator «Huskelapp» - A4 ark med skrift på begge sider Enkel norsk-engelsk/engelsk-norsk ordbok

EKSAMENSOPPGAVE. Tillatte hjelpemidler: Kalkulator «Huskelapp» - A4 ark med skrift på begge sider Enkel norsk-engelsk/engelsk-norsk ordbok EKSAMENSOPPGAVE Eksamen i: KJE-1001 Dato: Fredag 27. februar 2015 Tid: Kl 09:00 15:00 Sted: Aud.max Tillatte hjelpemidler: Kalkulator «Huskelapp» - A4 ark med skrift på begge sider Enkel norsk-engelsk/engelsk-norsk

Detaljer

Rom og lineæritet. Erik Bédos. Matematisk Institutt, UiO 2012.

Rom og lineæritet. Erik Bédos. Matematisk Institutt, UiO 2012. Rom og lineæritet Erik Bédos Matematisk Institutt, UiO 202. Lineær algebra er et viktig redskap i nær sagt alle grener av moderne matematikk. De fleste emnene i matematikk på masternivå bygger på en forståelse

Detaljer

Utkast til løsningsforslag til eksamen i emnet MAT 121 - Lineær algebra Utan ansvar for feil og mangler Mandag 31. mai 2010, kl. 09-14.

Utkast til løsningsforslag til eksamen i emnet MAT 121 - Lineær algebra Utan ansvar for feil og mangler Mandag 31. mai 2010, kl. 09-14. Utkast til løsningsforslag til eksamen i emnet MAT 2 - Lineær algebra Utan ansvar for feil og mangler Mandag 3. mai 2, kl. 9-4. Oppgave En bisverm flyr mellom to kuber, A og B, på dagtid, og hver bi blir

Detaljer

MA1201, , Kandidatnummer:... Side 1 av 5. x =.

MA1201, , Kandidatnummer:... Side 1 av 5. x =. MA1201, 05.10.2016, Kandidatnummer:... Side 1 av 5 Oppgave 1 Løs ligningssystemet S T S T 1 1 0 1 W X W X U2 1 1 V x = U5V. 1 0 2 1 x =. Oppgave 2 Regn ut: S T S T 1 2 1 1 1 W X W X U 3 0 1 V U0 1 V =

Detaljer

LØSNINGSFORSLAG EKSAMEN MA1202/MA6202 VÅR 2010

LØSNINGSFORSLAG EKSAMEN MA1202/MA6202 VÅR 2010 LØSNINGSFORSLAG EKSAMEN MA/MA6 VÅR Oppgave. a Radredusering gir A 4 6 5 R, og siden R har to ledende variabler så får vi ranka. Siden A har re kolonner gir dimensjonsteoremet for matriser at nullitya 4

Detaljer

EKSAMEN I NUMERISK MATEMATIKK (TMA4215)

EKSAMEN I NUMERISK MATEMATIKK (TMA4215) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 5 Faglig kontakt under eksamen: Anne Kværnø 92663824) EKSAMEN I NUMERISK MATEMATIKK TMA425) Tirsdag 4. desember 2007

Detaljer

EKSAMENSOPPGAVE. Oppgavesettet er på 5 sider inklusiv forside Kontaktperson under eksamen: Stian Normann Anfinsen Telefon:

EKSAMENSOPPGAVE. Oppgavesettet er på 5 sider inklusiv forside Kontaktperson under eksamen: Stian Normann Anfinsen Telefon: EKSAMENSOPPGAVE Eksamen i: Fys-1001 Mekanikk Dato: Torsdag 4. desember 2014 Tid: Kl 09:00 13:00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Fire A4-sider (to dobbeltsidige ark) med egne notater. Kalkulator

Detaljer

MAT-1004 Vårsemester 2017 Obligatorisk øving 2

MAT-1004 Vårsemester 2017 Obligatorisk øving 2 MAT-1004 Vårsemester 2017 Obligatorisk øving 2 Contents 1 OPPGAVE 2 2 OPPGAVE 2 Eksempler 4.1 Oppgave 1............................... 4.2 Oppgave 2............................... 5 4 Formatering av svarene

Detaljer

EKSAMEN I NUMERISK LØSNING AV DIFFERENSIALLIGNINGER MED DIFFERANSEMETODER (TMA4212)

EKSAMEN I NUMERISK LØSNING AV DIFFERENSIALLIGNINGER MED DIFFERANSEMETODER (TMA4212) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 Faglig kontakt under eksamen: Navn: Brynjulf Owren (964) EKSAMEN I NUMERISK LØSNING AV DIFFERENSIALLIGNINGER MED DIFFERANSEMETODER

Detaljer

MA1201 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3. desember 2007

MA1201 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3. desember 2007 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag MA101 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3 desember 007 Oppgave 1 a) Vi ser på ligningssystemet x +

Detaljer

1 Gauss-Jordan metode

1 Gauss-Jordan metode Merknad I dette Kompendiet er det gitt referanser både til læreboka og til selve Kompendiet Hvordan å gjenkjenne dem? Referansene til boka er 3- tallede, som Eks 3 Vi kan også referere til 22, kap 22 eller

Detaljer

Løsningsforslag. e n. n=0. 3 n 2 2n 1. n=1

Løsningsforslag. e n. n=0. 3 n 2 2n 1. n=1 Eksamen i BYPE2000 - Matematikk 2000 Dato: 6. juni 2014 Målform: Bokmål Antall oppgaver: 7 (20 deloppgaver) Antall sider: 4 Vedlegg: Noen formler Hjelpemiddel: Ingen Alle svarene skal grunngis. Alle deloppgavene

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

6.4 Gram-Schmidt prosessen

6.4 Gram-Schmidt prosessen 6.4 Gram-Schmidt prosessen La W {0} være et endeligdimensjonalt underrom av R n. (Senere skal vi mer generelt betrakte indreprodukt rom; se seksjon 6.7). Vi skal se hvordan vi kan starte med en vanlig

Detaljer

R: 0, , = 6000 D : 0, , = 4000 La v n = angi fordelingen etter n år (dvs. a b n stemmer for R og

R: 0, , = 6000 D : 0, , = 4000 La v n = angi fordelingen etter n år (dvs. a b n stemmer for R og EGENVERDIER FOR MATRISER a Motiverende eksempel En by i USA har 0000 innbyggere som stemmer ved valget hvert år. I dag stemmer 8000 for R og 000 for D. Hvert år går 30% fra R til D og 0% fra D til R. Hva

Detaljer

MAT-1004 Vårsemester 2017 Obligatorisk øving 6

MAT-1004 Vårsemester 2017 Obligatorisk øving 6 MAT-4 Vårsemester 7 Obligatorisk øving Contents OPPGAVE Hvordan å løse oppgaven? 4 Formatering av svarene 9. Rasjonale tall............................. 9. Matriser og vektorer.........................

Detaljer

Kap. 5 Egenverdier og egenvektorer

Kap. 5 Egenverdier og egenvektorer Kap. 5 Egenverdier og egenvektorer Egenverdier, egenvektorer og diagonaliserbarhet er sentrale begreper for kvadratiske matriser. Mye er kjent fra tidligere, skal repetere dette og gå videre. Sammenhengen

Detaljer

Egenverdier for 2 2 matriser

Egenverdier for 2 2 matriser Egenverdier for matriser (Bearbeidet versjon av tidligere notat på nett-sidene til MA101 - Lineær algebra og geometri Versjon oppdatert med referanser til 10utg av læreboken) Egenvektorer og egenverdier

Detaljer

Basis, koordinatsystem og dimensjon

Basis, koordinatsystem og dimensjon Basis, koordinatsystem og dimensjon NTNU, Institutt for matematiske fag 22.-24. oktober 2013 Basis Basis for vektorrom: En endelig mengde B = {b 1, b 2,..., b n } av vektorer i et vektorrom V er en basis

Detaljer

Eksamensoppgavehefte 2. MAT1012 Matematikk 2: Mer lineær algebra

Eksamensoppgavehefte 2. MAT1012 Matematikk 2: Mer lineær algebra Eksamensoppgavehefte 2 MAT1012 Matematikk 2: Mer lineær algebra Matematisk institutt, UiO, våren 2010 I dette heftet er det samlet et utvalg av tidligere eksamensoppgaver innenfor temaet Lineær algebra

Detaljer

IR Matematikk 1. Utsatt Eksamen 8. juni 2012 Eksamenstid 4 timer

IR Matematikk 1. Utsatt Eksamen 8. juni 2012 Eksamenstid 4 timer Utsatt Eksamen 8. juni 212 Eksamenstid 4 timer IR1185 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del 2 uten bruk av hjelpemidler. Du kan bare

Detaljer

(a) R n defineres som mengden av kolonnevektorer. a 1 a 2. a n. (b) R n defineres som mengden av radvektorer

(a) R n defineres som mengden av kolonnevektorer. a 1 a 2. a n. (b) R n defineres som mengden av radvektorer 5 Vektorrom Et vektorrom er en mengde V med tre algebraiske operasjoner (addisjon, negasjon og skalærmultiplikasjon) som tilfredsstiller de 10 betingelsene fra Def. 4.1.1. Jeg vil ikke gi en eksamensoppgave

Detaljer