Eksamen i V139A Matematikk 30

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Eksamen i V139A Matematikk 30"

Transkript

1 Høgskolen i Gjøvik Avdeling for teknologi Eksamen i V139A Matematikk desember Fagnummer: V139A Faglærer: Hans Petter Hornæs Tillatte hjelpemidler: Godkjent kalkulator ottmanns formelsamling Oppgavesettet består av 7 oppgaver på tilsammen 5 sider inkludert forside og 2 sider formelsamling. Kontrollér at settet er komplett før du starter arbeidet. Ved innlevering skilles hvit og gul besvarelse, og de legges i hvert sitt omslag. Oppgavetekst, kladd og blå kopi beholdes av kandidaten. Innføring med penn eller blyant som gir gjennomslag. Husk kandidatnummer på hvert ark! LYKKE TIL MED EKAMEN!

2 Eksamen i V139A Matematikk desember 21 2 Oppgave 1 I en snøball med sentrum i origo og radius 5 centimeter er temperaturen u i et punkt ved et tidspunkt gitt som funksjonen ux, y, z = 1e x2 y 2 z 2, x 2 + y 2 + z Finn en vektor som angir retningen varmeenergien vil strømme fra punktet 2, 2, 1, og finn den retningsderiverte av u i denne retningen. Oppgave 2 La være en sirkelskive i planet, med radius 1 og sentrum i origo. egn ut integralet Oppgave x 2 + y 2 da. La være en bit av en ellipse i planet parametrisert ved rt =[3cost, sint], t π/2. La feltet F, definert i 2 \{}, væregittved [ F x, y = x x2 +9y 2, ] 6y x2 +9y 2. egn ut arbeidsintegralet F T ds = F dr. Oppgave 4 I denne oppgaven er vektorfeltet F,definertihele 3,gittved La T være kula gitt ved likningen F x, y, z = [ x 3 + e y,y 3 x 5,z 3 ]. x 2 + y 2 + z La være overflaten til T,ogn enhetsnormalvektoren til som peker bort fra origo. a Uttrykk fluksen F n d som et integral over legemet T. I svaret skal integranden uttrykkes som en formel med x, y og z, men grensene behøver foreløbig ikke settes inn.

3 Eksamen i V139A Matematikk desember 21 3 b ett opp trippelintegralet fra a oppgaven så langt du kommer med grenser uten å begynne å integrere, både i rektangulære koordinater, sylinderkoordinater og kulekoordinater. c egn ut F n d. Oppgave 5 I denne oppgaven er F vektorfeltet gitt ved F x, y, z = [ 2z 3 3x 2 y, x 3, 6xz 2 ], x, y, z 3. a Vis at F er et konservativt felt på hele 3. b Finn en fx, y, z slik at fx, y, z =F x, y, z. det vil si at du skal finne en potensialfunksjon til F. c egn ut arbeidsintegralet Oppgave 6 Løs bølgelikningsproblemet 2,,1 1,2, F T ds. 1 2 u xx = u tt 1 u,t = 2 uπ, t = 3 ux, = sinx 1 sin3x 4 9 u t x, = 5 x π, t. Bruk separasjon av variable, og vis i grove trekk utregningene. Oppgave 7 Et flatestykke i rommet er parametrisert ved ru, v = [ sin 2 u/2, cosu sinv, cosu cosv ], u π 2, v 2π. a egn ut arealet til. b er en del av en flate som kan utrykkes som løsningsmengden til en likning i rektangulære koordinater, altså en likningen med x, y og z. Finn en slik likning. LUTT på oppgavesettet.

4 Eksamen i V139A Matematikk desember 21 4 FOMELAMLING, MATEMATIKK 3 1. Koordinatskifte i multiple integraler: Dobbeltintegral, generelt: } x = xu, v y = yu, v der Ju, v =x u y v x v y u. fx, y dx dy = Dobbeltintegral, polarkoordinater: } x = r cos θ fx, y dx dy = y = r sin θ Trippelintegral, generelt: fx, y, z dx dy dz = x = xu, v, w y = yu, v, w z = zu, v, w der Ju, v, w = Trippelintegral, sylinderkoordinater: x = r cos θ y = r sin θ fx, y, z dx dy dz = z = z Trippelintegral, kulekoordinater: fx, y, z dx dy dz = fxu, v,yu, v Ju, v du dv fr cos θ, r sin θ rdrdθ fxu, v, w,yu, v, w,zu, v, w Ju, v, w du dv dw x = ρ sin φ cos θ y = ρ sin φ sin θ z = ρ cos φ x u x v x w y u y v y w z u z v z w. fr cos θ, r sin θ, z rdzdrdθ fρ sin φ cos θ, ρ sin φ sin θ, ρ cos φ ρ 2 sin φdρdφdθ 2. Formler for gradient, divergens og curl : gradf = f = f x i + f y j + f z k divf = F = P x + Q y + z, curlf = F = ı j k x y z P Q der F = P i + Qj + k = y Q z i x P z j +Q x P y k

5 Eksamen i V139A Matematikk desember To viktige setninger: Divergenssetningen Gauss setning: F n d = T F dv dersom T er et begrenset legeme, er overflaten til T og er stykkevis glatt, n er den overalt utadrettede enhetsnormalvektor på og F er et vektorfelt hvis komponenter er definert og kontinuerlig deriverbare i hele T og på hele. tokes setning: F T ds = F n d dersom er en lukket, begrenset og stykkevis glatt flate, n er en orientering av, er randkurven til positivt orientert m.h.p. n, og F er et vektorfelt hvis komponenter er definert og kontinuerlig deriverbare ienåpen del av rommet som inneholder. 4. Differensiallikninger 1. ordens lineære, homogene differensiallikninger med konstante koeffisienter: Allmenn løsning av F z+af z =erf z =e az,dera er en gitt og en vilkårlig konstant. 2. ordens lineære, homogene differensiallikninger med konstante koeffisienter: Allmenn løsning av af z +bf z +cf z =dera,b og c er en gitte og 1 og 2 vilkårlige konstanter: 4ac b 2 > 4ac b F z =e bz/2a 2 4ac b 2 1 cos z + 2 sin z 2a 2a b 2 4ac > b 2 4ac = D Alemberts løsningsmetode F z = 1 e b+ b 2 4ac z/2a + 2 e b b 2 4ac z/2a F z = 1 e bz/2a + 2 ze bz/2a Bølgelikningen c 2 u xx = u tt har allmenn løsning på formenf x + ct+gx ct der F og G er vilkårlige to ganger kontinuerlig deriverbare funksjoner Hvis vi har randbetingelsen u t x, = er ux, t =F x + ct+f x ct Hvis også u,t=ul, t =erf x en odde funksjon med periode 2L Fourierrekker for halvperiodiske utvidelser Hvis fx er definert på intervallet,l, og er stykkevis kontinuerlig og begrenset gjelder for alle x der fx er kontinuerlig: 1. nπ fx = b n sin L x 2. der a = 1 L der L b n = 2 L fx =a + n=1 L nπ fxsin L x dx n=1 fx dx og a n = 2 L nπ a n cos L x L nπ fxcos L x dx

6 Fasit, eksamen i V139A Matematikk desember 21 1 Løsning, V139A Matematikk 3, 21. desember 21 Oppgave 1 iden gradienten angir retningen funksjonen øker raskest, vil varmeenergien strømme i stikk motsatt retning så u gir strømningsretningen: [ ] u = 2xe x2 y 2 z 2, 2ye x2 y 2 z 2, 2ze x2 y 2 z 2, [ ] [ ] u2, 2, 1 = 4 e 9, 4 e 9, 2 e 9 = 4e 9, 4e 9, 2e 9 Hvilken som helst positiv konstant multiplisert med dette gir også retningen. For eksempel godtas at temperaturen, pga. kulesymmetrien til u, strømmer bort fra origo så retningen er [2, 2, 1], som svar. Normen til gradienten gir den retningsderiverte i gradientretningen, og i motsatt retning får den retningsderiverte motsatt fortegn: D u2, 2, 1 = u 4e e e 9 2 = 6e 9 Oppgave 2 Bør bruke polarkoordinater, og da kan sirkelen beskrives ved ulikhetene r 1, θ 2π. iden x 2 + y 2 = r 2 og da = rdrdθ er da integralet 1 1+x 2 + y 2 da = 2π 1 r dr dθ 1+r2 Innerste integral regnes ut ved substitusjonen u =1+r 2, du =2rdr rdr= 1 2 du, nedre grense u =1+ 2 =1,øvregrenseu =1+1 2 =2: Oppgave 3 = 2π π u 2 du dθ = 1 2 [ln u ]2 1 dθ = 1 2π ln2 ln1 dθ = 1 2π 2 2 ln2 dθ = π ln2 F T ds = Pdx+ Qdy = x x 2 +9y dx + 6y 2 x 2 +9y dy 2 etter inn x =3cost, dx = 3sint dt, y =sint, dy =cost dt, t π/2. Vi har da at x 2 +9y 2 = 3 cost 2 +9sint 2 = 9cos 2 t+sin 2 t = 9 1=3: F T ds = π/2 3cost 3 3sint dt + 6sint 3 cost dt = π/2 sintcost dt ubstituerer med u =sint, du =cost dt, NG:u =sin=,øg:u =sinπ/2 = 1: 1 [ F T ds = udu= 1 ] 1 2 u2 = 1 2

7 Fasit, eksamen i V139A Matematikk desember 21 2 Oppgave 4 a Divergenssetningen: F n d = T F dv = T 3x 2 +3y 2 +3z 2 dv b Med rektangulære koordinater x, y, z: 5 25 x 2 25 x 2 y 2 F n d = x 2 25 x 2 y 2 x 2 + y 2 + z 2 dz dy dx Med sylinderkoordinater r, θ, z har vi at x 2 +y 2 = r 2,så x 2 +y 2 +z 2 =25 z 2 =25 r 2 som gir grensene ± 25 r 2 for z. Har dessuten dv = rdzdrdθ: F n d =3 2π 5 25 r 2 25 r 2 r 2 + z 2 rdzdrdθ Med kulekoordinater ρ, φ, θ erx 2 + y 2 + z 2 = ρ 2,ogdV = ρ 2 sinφ dρ dφ dθ. Videreer kula beskrevet ved ρ 5, φ π, θ 2π, såvihar F n d = 2π π 5 ρ 2 ρ 2 sinφ dρ dφ dθ =3 2π π 5 ρ 4 sinφ dρ dφ dθ c Kulekoordinater gir enklest utregning: 3 2π π 5 ρ 4 sinφ dρ dφ dθ =3 2π π [ 1 5 ρ5 sinφ] 5 dφ dθ = Oppgave π π π 2π sinφ dφ dθ = dθ = 375 2π [ cosφ] π dθ = dθ = 75π a Vi har at F er konservativt på hele 3 hvis og bare hvis F = påhele 3 : i j k 6xz 2 F = x y z = i 2z 3 3x 2 y x 3 6xz 2 y x3 z 6xz 2 j 2z3 3x 2 y x 3 + k 2z3 3x 2 y = x z x y i j 6z 2 6z 2 + k 3x 2 3x 2 =i j +k = Q.E.D.

8 Fasit, eksamen i V139A Matematikk desember 21 3 b For origo og et punkt med koordinater x 1,y 1,z 1 gjelderdetat x1,y 1,z 1,, F dr = Pdx+ Qdy+ dz = fx 1,y 1,z 1 f,,, uansett hvilken kurve mellom punktene,, og x 1,y 1,z 1 vi velger. Vi har derfor fx 1,y 1,z 1 = x1,y 1,z 1,, Pdx+ Qdy+ dz+ f,, Når vi regner ut høyresiden av dette får vi en formel for fx 1,y 1,z 1 som gjelder i et vilkårlig punkt, slik at den tilsvarende formelen der indeksene på x 1, y 1 og z 1 strykes gir fx, y, z. Dessuten er f,, en konstant, som blir i derivasjonene i gradienten. Den kan derfor velges fritt, og enklest som f,, =. Vi kan for eksempel regne ut integralet ved å bruke kurven som består av de tre rette linjestykkene parallelle med koordinataksene gitt ved: 1 : r 1 t =[x 1 t,, ] dx = x 1 dt dy = dz = 2 : r 2 t =[x 1,y 1 t, ] dx = dy = y 1 dt dz = 3 : r 3 t =[x 1,y 1,z 1 t ] dx = dy = dz = z 1 dt For alle tre kurvene gjelder det at t 1. Arbeidsintegralet er da Pdx+ Qdy+ dz+ 1 Pdx+ Qdy+ dz+ 2 Pdx+ Qdy+ dz 3 iden dx, dy og dz er flere steder faller mange av leddene, og vi står igjen med = Pdx+ 1 Qdy+ 2 dz 3 etter så innx, y, z og dx, dy, dz fra parametriseringa, og P, Q og fra F og har da = 2 3 3x 1 t 2 x 1 dt + 1 x 1 3 y 1 dt + 2 6x 1 z 1 t 2 z 1 dt 3 iden alle integralene er på området t 1 kan de samles under felles integrasjonstegn. 1 = x 3 1y 1 +6x 1 z1 3 t 2 dt = [ x 3 1y 1 t +2x 1 z1 3 t 3] 1 = x3 1y 1 +2x 1 z1 3 esultatet kan da oppsummeres til fx 1,y 1,z 1 = x 3 1y 1 +2x 1 z 3 1 fx, y, z =2xz 3 x 3 y c 2,,1 1,2, F T ds = f2,, 1 f1, 2, = 4 2 = 6

9 Fasit, eksamen i V139A Matematikk desember 21 4 Oppgave 6 Begynner med å se etter løsninger på formenxxt t, som innsatt i 1 gir 1 2 X T = XT X X = 1 T 1 2 T = k Prøver med k<, og kaller den da κ 2. Dette gir to difflikninger X + κ 2 X = med løsning X = A cosκx+ B sinκx T +1 2 κ 2 T = med løsning T = cos1κt+b sin1κt Vi har så langt løsninger på formen ux, t =XxT t =A cosκx +B sinκx cos1κt +D sin1κt, og bruker randbetingelse 2, at u,t = for alle t: A cosκ + B sinκ cos1κt +D sin1κt = A cos1κt +D sin1κt = For å få til ikke trivielle løsninger må vi derfor ha A =,og dermed ux, t =B sinκx cos1κt+d sin1κt. Bruker så randbetingelse 3, at uπ, t = for alle t: uπ, t =B sinκπ cos1κt+d sin1κt = Får åfå ikke trivielle løsninger må vihasinκπ = κ = n, for positive heltall n. Vihar derfor så langt ux, t =B sinnx cos1nt+d sin1nt, og skal bruke initialbetingelse 5, at u t,t = for alle x: Dermed er u t x, t =B sinnx 1n sin1nt + 1nD cos1nt u t x, = B sinnx 1n sin + 1nD cos = 1nBD sinnx = For åfå til ikke-trivielle løsninger må D =,ogvistår igjen med ux, t =B sinnx cos1nt u n x, t =E n sinnx cos1nt I siste omforming har vi omdøpt løsningen så langt til u n, og konstanten B til E n. Det er nå ikke mulig å finne konstanter så 4 er oppfyllt direkte, men vi kan finne konstanter så hvert av leddene passer: u n x, = E n sinnxcos = sinx om n =1ogE 1 =1 u n x, = E n sinnxcos = 1 9 sin3x om n =3ogE 3 = 1 9 Vi har dermed u 1 x, t =sinx cos1t ogu 3 x, t = 1 9 sin3x cos3t, og summerer vi disse får vi den entydige løsningen som oppfyller alle betingelsene: ux, t =sinx cos1t 1 sin3x cos3t 9

10 Fasit, eksamen i V139A Matematikk desember 21 5 Oppgave 7 a Arealformelen er A = d = D r u r v du dv, så vi begynner med å regne ut r u r v = i j k sinucosu sinusinv sinucosv cosucosv cosusinv i sinucosusin 2 v+sinucosucos 2 v k j = sinucos 2 usinv + sinucos 2 ucosv sinucosu er felles faktor og kan settes utenfor. iden sinucosu for u π/2 kan det også settes utenfor absoluttverdien til vektoren: sin r u r v =sinucosu 2 v+cos 2 v 2 + cosusinv 2 +cosucosv 2 Første ledd er cos 2 v +sin 2 v 2 =1 2 = 1, og i de to siste kan vi sette cos 2 u utenforsom felles faktor, og det som står igjen der er da sin 2 v+cos 2 v = 1, slik at r u r v =sinucosu 1+cos 2 u d =sinucosu 1+cos 2 u du dv D er området parametrene u og v gjennomløper D =[,π/2] [, 2π], så arealet er A = 2π π/2 sinucosu 1+cos 2 u du dv Innerste integral løses ved substitusjonen z =1+cos 2 u, som gir dz = 2cosusinu du, nedre grense z =1+cos 2 = = 2 og øvre grense z =1+cos 2 π/2 = =1: A = b Vi har at 2π z1/2 dz dv = = 1 3 2π 2 2π 2 1 [ 1 ] z3/2 2 dv = 2π 3 dv = 2π x =sin 2 u/2, y =cosusinv og z =cosucosv, 1 2 3/2 1 3/2 dv = 3 og vi skal eliminere u og v fra disse likningene. Den trigonometriske identitetene sin 2 θ+cos 2 θ = 1 er nyttig. Vi har bl.a. at y 2 + z 2 =cos 2 u sin 2 v+cos 2 v y 2 + z 2 =cos 2 u Videre er 2x =sin 2 u slik at 2x + y 2 + z 2 =sin 2 u+cos 2 u 2x + y 2 + z 2 =1 Dette er en paraboloide med x aksen som omdreiningsakse, og punktet 1/2,, som toppunkt. Parametriseringen gir den delen av denne som har positiv x kordinat og ser ut som reflektoren i en parabolantenne. LUTT

EKSAMEN i MATEMATIKK 30

EKSAMEN i MATEMATIKK 30 Eksamen i Matematikk 3 1. desember 1999 1 Høgskolen i Gjøvik Avdeling for teknologi EKAMEN i MATEMATIKK 3 1 desember 1999 kl. 9 14 Fagnummer: V139A Faglærer: Hans Petter Hornæs Tillatte hjelpemidler: Godkjent

Detaljer

EKSAMEN. Valgfag, ingeniørutdanning (3. klasse). ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formelark.)

EKSAMEN. Valgfag, ingeniørutdanning (3. klasse). ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formelark.) KANDIDANUMME: EKAMEN FAGNAVN: Matematikk 3 FAGNUMME: EA32 EKAMENDAO: 1. desember 26 KLAE: Valgfag, ingeniørutdanning (3. klasse). ID: kl. 9. 13.. FAGLÆE: Hans Petter Hornæs ANALL IDE ULEVE: 5 (innkl. forside

Detaljer

Eksamen i V139A Matematikk 30

Eksamen i V139A Matematikk 30 Høgskolen i Gjøvik Avdeling for teknologi Eksamen i V139A Matematikk 3 4. juni 22 9. 14. Fagnummer: V139A Faglærere: Hans Petter Hornæs. Tillatte hjelpemidler: Godkjent kalkulator, Formelsamling. Oppgavesettet

Detaljer

EKSAMEN. 3. klassene, ingenørutdanning. ANTALL SIDER UTLEVERT: 5 (innkl. forside og formelark)

EKSAMEN. 3. klassene, ingenørutdanning. ANTALL SIDER UTLEVERT: 5 (innkl. forside og formelark) KANDIDATNUMME: EKAMEN EMNENAVN: Matematikk 3 EMNENUMME: EA32 EKAMENDATO: 8.desember 28 KLAE: 3. klassene, ingenørutdanning. TID: kl. 9. 13.. EMNEANVALIG: Hans Petter Hornæs ANTALL IDE UTLEVET: 5 (innkl.

Detaljer

EKSAMEN. 3. klassene, ingenørutdanning. ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formelark.)

EKSAMEN. 3. klassene, ingenørutdanning. ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formelark.) KANDIDATNUMME: EKAMEN FAGNAVN: Matematikk 3 FAGNUMME: EA32 EKAMENDATO: 13. desember 25 ENUFIT: 3. januar 26 KLAE: 3. klassene, ingenørutdanning. TID: kl. 9. 13.. FAGLÆE: Hans Petter Hornæs ANTALL IDE UTLEVET:

Detaljer

EKSAMEN i MATEMATIKK 30

EKSAMEN i MATEMATIKK 30 Eksamen i Matematikk 3 3. mai Høgskolen i Gjøvik Avdeling for teknologi EKSAMEN i MATEMATIKK 3 Onsdag 3. mai kl. 9 4 agnummer: V39A aglærer: Hans Petter Hornæs Tillatte hjelpemidler: Godkjent kalkulator

Detaljer

EKSAMEN. 3. klassene, ingenørutdanning. ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formler.)

EKSAMEN. 3. klassene, ingenørutdanning. ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formler.) KANDIDATNUMME: EKAMEN FAGNAVN: Matematikk 3 FAGNUMME: EA32 EKAMENDATO: 25. mars 29 KLAE: 3. klassene, ingenørutdanning. TID: kl. 9. 13.. FAGLÆE: Hans Petter Hornæs ANTALL IDE UTLEVET: 5 (innkl. forside

Detaljer

EKSAMEN. 3. klassene, ingenørutdanning. ANTALL SIDER UTLEVERT: 5 (innkl. forside og formelark)

EKSAMEN. 3. klassene, ingenørutdanning. ANTALL SIDER UTLEVERT: 5 (innkl. forside og formelark) KANDIDANUMME: EKAMEN EMNENAVN: Matematikk 3 EMNENUMME: EA32 EKAMENDAO: 5.desember 27 KLAE: 3. klassene, ingenørutdanning. ID: kl. 9. 13.. EMNEANVALIG: Hans Petter Hornæs ANALL IDE ULEVE: 5 (innkl. forside

Detaljer

Oppgavesettet har 10 punkter 1, 2ab, 3ab, 4ab, 5abc som teller likt ved bedømmelsen.

Oppgavesettet har 10 punkter 1, 2ab, 3ab, 4ab, 5abc som teller likt ved bedømmelsen. NTNU Institutt for matematiske fag SIF55 Matematikk 2 4. mai 999 Løsningsforslag Oppgavesettet har punkter, 2ab, 3ab, 4ab, 5abc som teller likt ved bedømmelsen. i alternativ (3, ii alternativ (2. 2 a For

Detaljer

Løsningsforslag til eksamen i TMA4105 matematikk 2,

Løsningsforslag til eksamen i TMA4105 matematikk 2, Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av Løsningsforslag til eksamen i TMA45 matematikk, 9.5.4 Oppgave La fx, y, z) xy + arctanxz). La P være punktet,, ). a)

Detaljer

Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, 8.juni 2010

Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, 8.juni 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Løsningsforslag, eksamen MA11 Flerdimensjonal analyse, 8.juni 21 Oppgave 1 a) Finn og klassifiser alle kritiske

Detaljer

Løsning, Stokes setning

Løsning, Stokes setning Ukeoppgaver, uke 4 Matematikk, tokes setning 1 Løsning, tokes setning Oppgave 1 a) b) c) F x y z x y z F x x + y y + z z 1+1+1 iden F er feltet konservativt. ( z y y ) ( x i z z z ) ( y x x x ) k i +k

Detaljer

SIF5005 Matematikk 2, 13. mai 2002 Løsningsforslag

SIF5005 Matematikk 2, 13. mai 2002 Løsningsforslag SIF55 Matematikk, 3. mai Oppgave Alternativ : At de to ligningene skjærer hverandre vil si at det finnes parameterverdier u og v som, innsatt i de to parametriseringene, gir samme punkt: Vi løser hver

Detaljer

LØSNINGSFORSLAG EKSAMEN TMA4105 MATEMATIKK 2 Lørdag 14. aug 2004

LØSNINGSFORSLAG EKSAMEN TMA4105 MATEMATIKK 2 Lørdag 14. aug 2004 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag ide av LØNINGFOLAG EKAMEN TMA4 MATEMATIKK 2 Lørdag 4. aug 24 Oppgave Grenseverdien eksisterer ikke. For eksempel er grenseverdien

Detaljer

EKSAMEN. Ingeniørstudenter som tar opp igjen eksa- men (6stp.).

EKSAMEN. Ingeniørstudenter som tar opp igjen eksa- men (6stp.). KANDIDATNUMMER: EKSAMEN FAGNAVN: Matematikk FAGNUMMER: F74A EKSAMENSDATO: 6. desember 24 SENSURFRIST: 6. januar 25 Ingeniørstudenter som tar opp igjen eksa- KLASSE: men 6stp.). TID: kl. 9. 4.. FAGLÆRER:

Detaljer

Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, vår 2009

Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, vår 2009 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 8 Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, vår 2009 Oppgave 1 Avgjør om grenseverdiene eksisterer:

Detaljer

e y + ye x +2x xe y + e x +1 0 = 0

e y + ye x +2x xe y + e x +1 0 = 0 LØNINGFORLAG TIL EKAMEN I FAGET 55/7 MATEMATIKK. august Oppgave. (i) Ja. (ii) Ja. (iii) Nei. Alternativt: (i) Ja. (ii) Ja. (iii) Ja. Oppgave. a) curlf (x, y) F i j k (x, y) / x / y / z e y + ye x +x xe

Detaljer

The full and long title of the presentation

The full and long title of the presentation The full and long title of the presentation Subtitle if you want Øistein Søvik Mai 207 Ø. Søvik Short title Mai 207 / 4 Innholdsfortegnelse Introduksjon Nyttige tips før eksamen Nyttige tips under eksamen

Detaljer

Eksamen, høsten 14 i Matematikk 3 Løsningsforslag

Eksamen, høsten 14 i Matematikk 3 Løsningsforslag Oppgave 1. Fra ligningen Eksamen, høsten 14 i Matematikk 3 Løsningsforslag x 2 64 y2 36 1 finner vi a 64 8 og b 36 6. Fokus til senter avstanden er da gitt ved c a 2 + b 2 64 + 36 1 1. Dermed er fokuspunktene

Detaljer

y = x y, y 2 x 2 = c,

y = x y, y 2 x 2 = c, TMA415 Matematikk Vår 17 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 9 Alle oppgavenummer referer til 8. utgave av Adams & Essex alculus: A omplete

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: John Haugan: Formler og tabeller. Rottmanns formelsamling (tillatt som overgangsordning)

EKSAMEN. TILLATTE HJELPEMIDLER: John Haugan: Formler og tabeller. Rottmanns formelsamling (tillatt som overgangsordning) KANDIDATNUMMER: EKSAMEN FAGNAVN: Matematikk FAGNUMMER: REA4 EKSAMENSDATO: 6. desember 24 SENSURFRIST: 6. januar 25 KLASSE:. klassene, ingenørutdanning. TID: kl. 9. 3.. FAGLÆRER: Hans Petter Hornæs ANTALL

Detaljer

Randkurva C til flata S orienteres positivt sett ovenfra, og kan parametriseres ved: r (t) = [ sin t, cos t, sin t] dt, 0 t 2π.

Randkurva C til flata S orienteres positivt sett ovenfra, og kan parametriseres ved: r (t) = [ sin t, cos t, sin t] dt, 0 t 2π. Ma - Løsningsforslag til uke 17 i 7 Eks. mai 1999 oppgave 4 ylinderen x + y = 1 skjærer ut ei flate av planet z = x + 1 dvs. x + z = 1 med enhetsnormal i positiv z-retning lik n= 1 [ 1 1]. Flata blir en

Detaljer

TMA Representasjoner. Funksjoner. Operasjoner

TMA Representasjoner. Funksjoner. Operasjoner TMA 4105 Representasjoner Funksjoner Operasjoner Funksjoner f : D R m! f(d) R n reelle funksjoner kurver flater vektorfelt Funksjoner i) f : D R n! R reell funksjon av n variabler, f(x), f(x,y) eller f(x,y,z)

Detaljer

Eksamen, høsten 13 i Matematikk 3 Løsningsforslag

Eksamen, høsten 13 i Matematikk 3 Løsningsforslag Eksamen, høsten 3 i Matematikk 3 Løsningsforslag Oppgave. a) Fra ligningen x 5 + y 3 kan vi lese ut store og lille halvakse a 5 og b 3. Fokus til senter avstanden er da gitt ved c a b 5 3 5 9 6 4. ermed

Detaljer

EKSAMEN I FAG SIF5005 MATEMATIKK 2

EKSAMEN I FAG SIF5005 MATEMATIKK 2 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 3 Faglig kontakt under eksamen: Trond Digernes 7359357 Berner Larsen 73 59 35 5 Lisa Lorentzen 73 59 35 48 Vigdis Petersen

Detaljer

Løsning IM

Løsning IM Løsning IM 6 Oppgave x + y Grensen lim er ubestemt da både teller og nevner blir Vi skal vise at grensen ( xy, ) (,) x + y ikke eksisterer og bruker rette linjer inn mot origo De enkleste linjene er koordinataksene

Detaljer

LØSNINGSFORSLAG TIL ØVING 11, TMA4105, V2008. x = r cos θ, y = r sin θ, z = 2r for 0 θ 2π, 2 2r 6. i j k. 5 r dr dθ = 8

LØSNINGSFORSLAG TIL ØVING 11, TMA4105, V2008. x = r cos θ, y = r sin θ, z = 2r for 0 θ 2π, 2 2r 6. i j k. 5 r dr dθ = 8 LØNINGFORLAG TIL ØVING, TMA45, V8 Oppgave 4.5.9. Parametrisering: x = r cos θ, y = r sin θ, z = r for θ π, r 6. r(r, θ) = r cos θ, r sin θ, r. N = r r r θ = cos θ sin θ = r cos θ, r sin θ, r. r sin θ r

Detaljer

dx = 1 1 )dx = 3 y= x . Tangentplanet til hyperboloiden i (2, 1, 3) er derfor gitt ved x 2, y 1, z 3 = 0 x 2 + 2(y 1) 2 (z 3) = 0 x + 2y 2z 3 = 2

dx = 1 1 )dx = 3 y= x . Tangentplanet til hyperboloiden i (2, 1, 3) er derfor gitt ved x 2, y 1, z 3 = 0 x 2 + 2(y 1) 2 (z 3) = 0 x + 2y 2z 3 = 2 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA415 Matematikk vår 9 øsningsforslag til eksamen 15. august 9 1 Treghetsmoment med hensyn på x-aksen er gitt ved x [ ] y I

Detaljer

Oppgaver og fasit til seksjon

Oppgaver og fasit til seksjon 1 Oppgaver og fasit til seksjon 3.4-3.6 Oppgaver til seksjon 3.4 1. Anta at f(x, y) = x 2 y 3 og r(t) = t 2 i + 3t j. Regn ut g (t) når g(t) = f(r(t)). 2. Anta at f(x, y) = x 2 e xy2 og r(t) = sin t i+cos

Detaljer

Anbefalte oppgaver - Løsningsforslag

Anbefalte oppgaver - Løsningsforslag TMA415 Matematikk 2 Anbefalte oppgaver - Løsningsforslag Uke 14 1.4.5: Vi skal finne fluksen ut overflaten til den solide ballen B med sentrum = (2,, 3) og radius r = 3, av vektorfeltet F = x 2 i + y 2

Detaljer

Anbefalte oppgaver - Løsningsforslag

Anbefalte oppgaver - Løsningsforslag TMA45 Matematikk Anbefalte oppgaver - Løsningsforslag Uke 5.5.: Kulen er grafen til rφ, θ) asinφ) cosθ)i + sin φ sinθ)j + cosφ)k), φ π, θ < π. Vi har slik at φ θ acosφ) cosθ)i + sinφ) sinθ)j + cosφ)k)

Detaljer

Oppgaver og fasit til kapittel 6

Oppgaver og fasit til kapittel 6 1 Oppgaver og fasit til kapittel 6 Mange av oppgavene i dette kapitlet brukes for første gang, og det er sannsynligvis flere fasitfeil enn normalt. Finner du en feil, så send en melding til lindstro@math.uio.no.

Detaljer

EKSAMENSOPPGAVE. Eksamen i: MAT-1003 Dato: Tirsdag 15. desember 2015 Tid: Kl 15:00 19:00 Sted: Åsgårdvegen 9

EKSAMENSOPPGAVE. Eksamen i: MAT-1003 Dato: Tirsdag 15. desember 2015 Tid: Kl 15:00 19:00 Sted: Åsgårdvegen 9 EKSAMENSOPPGAVE Eksamen i: MAT-13 Dato: Tirsdag 15. desember 215 Tid: Kl 15: 19: Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Pedersen et al.: Teknisk formelsamling med tabeller, Rottmanns formelsamling,

Detaljer

Løsning IM3 15.06.2011.

Løsning IM3 15.06.2011. Løsning IM 15611 1 Oppgave 1 Innsetting viser at både teller og nevner er i origo, så uttrykket er ubestemt Siden det ikke er noen umiddelbar omskriving som forenkler uttrykket satser vi på å vise at grensen

Detaljer

(t) = [ 2 cos t, 2 sin t, 0] = 4. Da z = 2(1 + t) blir kurva C en helix/ei skruelinje på denne flata (se fig side 392).

(t) = [ 2 cos t, 2 sin t, 0] = 4. Da z = 2(1 + t) blir kurva C en helix/ei skruelinje på denne flata (se fig side 392). Ma - Løsningsforslag til uke 5 i 7 Eks. mai 994 oppgave Romkurva er parametrisert for t [, π] ved r (t) = [ + cos t, + sin t, + t ] Hastighets- og akselerasjonsvektorene blir v = r (t) = [ sin t, cos t,

Detaljer

Løsning IM

Løsning IM Løsning IM Oppgave Den retningsderiverte er D f ( a) u f ( a), når funksjonen er deriverbar i punktet u f f ( y ) ( y ) Innsatt f,, ( y, y ) Den derivertes verdi i punktet er f (,) ( ( ),( ) ) (,) (,)

Detaljer

Løsning til eksamen i ingeniørmatematikk

Løsning til eksamen i ingeniørmatematikk Løsning til eksamen i ingeniørmatematikk 3 78 Oppgave Vektorfeltet har komponenter og er funksjon av variable Jacobimatrisen er av type ( xy) ( xy) x y ( yx) ( yx) xy x y xy Innsatt finner vi JF ( x, y)

Detaljer

Løsning, Trippelintegraler

Løsning, Trippelintegraler Ukeoppgaver, uke 7 Matematikk, rippelintegraler Løsning, rippelintegraler Oppgave a) b) c) 6 x + + ) d d dx x + +/) d dx x) d d dx x + + /] d dx x + /+/] dx x +6)dx 8 6 d ) ) d xdx 6 ) ) ) d d xdx 6 8

Detaljer

Eksamen IRF30014, høsten 15 i Matematikk 3 Løsningsforslag

Eksamen IRF30014, høsten 15 i Matematikk 3 Løsningsforslag Oppgave 1. Eksamen IRF314, høsten 15 i Matematikk 3 øsningsforslag I denne oppgaven er det to løsningsforslag. Ett med asymptotene som gitt i oppgaveteksten. I dette første tilfellet blir tallene litt

Detaljer

Eksamen IRF30014, våren 16 i Matematikk 3 Løsningsforslag

Eksamen IRF30014, våren 16 i Matematikk 3 Løsningsforslag Oppgave 1. Eksamen IRF314, våren 16 i Matematikk 3 Løsningsforslag Ellipsen vil skal finne er på standardform x a + y b 1 der a > b for styrelinjene er vertikale linjer. Formelen for styrelinjene er x

Detaljer

EKSAMEN. Ingeniør- og Fleksibel ingeniørutdanning.

EKSAMEN. Ingeniør- og Fleksibel ingeniørutdanning. KANDIDATNUMMER: EKSAMEN EMNENAVN: Matematikk. EMNENUMMER: REA42/REA42F EKSAMENSDATO: Mandag 9. august 2 KLASSE: Ingeniør- og Fleksibel ingeniørutdanning. TID: kl. 9. 3.. FAGANSVARLIG: Hans Petter Hornæs

Detaljer

Velkommen til Eksamenskurs matematikk 2

Velkommen til Eksamenskurs matematikk 2 Velkommen til Eksamenskurs matematikk 2 Haakon C. Bakka Institutt for matematiske fag 12.-13. mai 2010 Introduksjon Begin with the end in mind - The 7 Habits of Highly Effective People (Stephen R. Covey)

Detaljer

= (2 6y) da. = πa 2 3

= (2 6y) da. = πa 2 3 TMA45 Matematikk Vår 7 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving Alle oppgavenummer referer til 8. utgave av Adams & Essex alculus: A omplete ourse.

Detaljer

UNIVERSITETET I BERGEN

UNIVERSITETET I BERGEN LØSNINGSFORSLAG UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. H.007. Eksamen i emnet MAT131 - Differensialligninger I 8. september 007 kl. 0900-100 Tillatte hjelpemidler: Ingen (heller

Detaljer

Vi regner først ut de nødvendige partiellderiverte for å se om vektorfeltet er konservativt. z = 2z, F 2 F 2 z = 2y, F 3. x = 2x, F 3.

Vi regner først ut de nødvendige partiellderiverte for å se om vektorfeltet er konservativt. z = 2z, F 2 F 2 z = 2y, F 3. x = 2x, F 3. TMA415 Matematikk Vår 15 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 7 Alle oppgavenummer refererer til 8. utgave av Adams & Essex alculus: A omplete

Detaljer

Løsningsforslag til prøveeksamen i MAT 1110, våren 2006

Løsningsforslag til prøveeksamen i MAT 1110, våren 2006 Løsningsforslag til prøveeksamen i MAT, våren 6 Oppgave : a) Vi har C 5 3 II+( )I a + 3a 3a III+I 3 II 3 3 3 3 a + 3a 3a 3 a + 3a 3a III+II I+( ))II 3 3 3 a + 3a 3a 3 3 3 a + 3a 4 3 3a a + 3a 4 3 3a b)

Detaljer

EKSAMEN. Hans Petter Hornæs og Britt Rystad

EKSAMEN. Hans Petter Hornæs og Britt Rystad KANDIDATNUMMER: EKSAMEN FAGNAVN: Matematikk. FAGNUMMER: F74A EKSAMENSDATO: Mandag. august 2 SENSURFRIST:. september 2 KLASSE:. klassene, ingenørutdanning. TID: kl. 9. 4.. FAGLÆRER: Hans Petter Hornæs og

Detaljer

EKSAMEN BOKMÅL STEMMER. DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember :00-13: FAGKODE: IR Matematikk 1

EKSAMEN BOKMÅL STEMMER. DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember :00-13: FAGKODE: IR Matematikk 1 EKSAMEN BOKMÅL DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember 15 9:-13: FAGKODE: FAGNAVN: IR151 Matematikk 1 HJELPEMIDLER: Del 1: kl 9.-11. Ingen Del : kl 11.-13. Lommeregner Lærebok etter fritt valg Matematisk

Detaljer

EKSAMEN I FAG SIF5005 MATEMATIKK 2

EKSAMEN I FAG SIF5005 MATEMATIKK 2 Norges teknisk naturvitenskapelige universitet Trond Digernes 75957 Berner Larsen 7 59 5 5 Lisa Lorenten 7 59 5 8 Vigdis Petersen 75965 ide av Vedlegg: Formelliste IF55 Matematikk ide av Oppgave Et plant

Detaljer

Eksamensoppgaver og Matematikk 1B

Eksamensoppgaver og Matematikk 1B Eksamensoppgaver 7500 og 750 Matematikk B Samlet for SIF5005 Matematikk våren 00 Samlingen inneholder utvalgte oppgaver gitt i 7500 og 750 Matematikk B ved NTH/NTNU i tiden 993 997. Oppgaver eller punkter

Detaljer

(1 + x 2 + y 2 ) 2 = 1 x2 + y 2. (1 + x 2 + y 2 ) 2, x 2y

(1 + x 2 + y 2 ) 2 = 1 x2 + y 2. (1 + x 2 + y 2 ) 2, x 2y Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA45 Matematikk vår 9 Løsningsforslag til eksamen.5.9 Gitt f(, y) = + +y. a) Vi regner ut f = f y = + + y ( + + y ) = + + y

Detaljer

Anbefalte oppgaver - Løsningsforslag

Anbefalte oppgaver - Løsningsforslag TMA415 Matematikk 2 Anbefalte oppgaver - Løsningsforslag Uke 7 15.1.3: Siden vektorfeltet er gitt ved F(x, y) = yi + xj må feltlinjene tilfredstille differensiallikningen eller y = x y, ( ) 1 2 y2 = x.

Detaljer

Navn/kursparallell skrives her (ved gruppearbeid er det viktig at alle fyller ut):

Navn/kursparallell skrives her (ved gruppearbeid er det viktig at alle fyller ut): MA1103 vår 2008 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Øving 10M Navn/kursparallell skrives her (ved gruppearbeid er det viktig at alle fyller ut): 1. 2. 3. 4. 5.

Detaljer

IR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer

IR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer Eksamen 8. desember 16 Eksamenstid 4 timer IR151 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del uten bruk av hjelpemidler. Du kan bare bruke

Detaljer

Løsningsforslag, midtsemesterprøve MA1103, 2.mars 2010

Løsningsforslag, midtsemesterprøve MA1103, 2.mars 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 5 Løsningsforslag, midtsemesterprøve MA03,.mars 00 Oppgave Tegn figur og finn en parametrisering for skjæringskurven

Detaljer

Eksamen Ma 3 red.pensum 2006

Eksamen Ma 3 red.pensum 2006 Eksamen Ma B høst 6.nb Eksamen Ma red.pensum 6 Oppgave

Detaljer

Fasit til utvalgte oppgaver MAT1110, uka 8-12/2

Fasit til utvalgte oppgaver MAT1110, uka 8-12/2 Fasit til utvalgte oppgaver MAT, uka 8-/ Øyvind Ryan oyvindry@i.uio.no February, Oppgave 3.3.6 Vi har funksjonen fx, y, z xyz og kurven Vi ser at rt e t, e t, t, t. vt e t, e t, vt e t + e t + frt t. e

Detaljer

Separable differensiallikninger.

Separable differensiallikninger. Ukeoppgaver, uke 46, i Matematikk 0, Separable differensiallikninger. Høgskolen i Gjøvik Avdeling for ingeniørfag Matematikk 0 Ukeoppgaver uke 46 I løpet av uken blir løsningsforslag lagt ut på emnesiden

Detaljer

Tillegg om strømfunksjon og potensialstrøm

Tillegg om strømfunksjon og potensialstrøm Kapittel 9 Tillegg om strømfunksjon og potensialstrøm 9.1 Divergensfri strøm 9.1.1 Strømfunksjonen I kompendiet, kap. 4.6 og kap. 9, er det påstått at dersom et todimensjonalt strømfelt v(x y) = v x (x

Detaljer

MAT mars mars mars 2010 MAT Våren 2010

MAT mars mars mars 2010 MAT Våren 2010 MAT 1012 Våren 2010 Mandag Forelesning Vi har tidligere integrert funksjoner langs x-aksen, og vi har integrert funksjoner i flere variable over begrensede områder i xy-planet. I denne forelesningen skal

Detaljer

NTNU. MA1103 Flerdimensjonal Analyse våren Maple-øving 2. Viktig informasjon. Institutt for matematiske fag. maple02 28.

NTNU. MA1103 Flerdimensjonal Analyse våren Maple-øving 2. Viktig informasjon. Institutt for matematiske fag. maple02 28. NTNU Institutt for matematiske fag MA1103 Flerdimensjonal Analyse våren 2011 Maple-øving 2 Fyll inn studieprogram: Fyll inn navn: 1. 2. 3. 4. Viktig informasjon Besvarelsen kan leveres som gruppearbeid

Detaljer

FYS1120 Elektromagnetisme

FYS1120 Elektromagnetisme Det matematisk-naturvitenskapelige fakultet Universitetet i Oslo FY112 Elektromagnetisme Løsningsforslag til ukesoppgave 1 Oppgave 1 a i Her er alternativ 1 riktig. Hvis massetettheten er F, vil et linjestykke

Detaljer

1 Mandag 22. februar 2010

1 Mandag 22. februar 2010 1 Mandag 22. februar 2010 Vi begynner med litt repetisjon fra forrige gang, med å sjekke om et vektorfelt er konservativt og dersom svaret er ja, regne ut potensialfunksjonen. Videre skal vi se på en variant

Detaljer

MAT feb feb mars 2010 MAT Våren 2010

MAT feb feb mars 2010 MAT Våren 2010 MAT 1012 Våren 2010 Mandag 22. februar 2010 Forelesning Vi begynner med litt repetisjon fra forrige gang, med å sjekke om et vektorfelt er konservativt og dersom svaret er ja, regne ut potensialfunksjonen.

Detaljer

Arne B. Sletsjøe. Oppgaver, MAT 1012

Arne B. Sletsjøe. Oppgaver, MAT 1012 Arne B. Sletsjøe Oppgaver, MAT 101 1 En-variabel kalkulus 1.1 I de følgende oppgavene, i) finn alle kritiske punkter til f(x), ii) beskriv monotoniegenskapene til funksjonene ved å se på fortegnet til

Detaljer

Oppgaver og fasit til seksjon

Oppgaver og fasit til seksjon 1 Oppgaver og fasit til seksjon 3.7-3.10 Oppgaver til seksjon 3.7 I oppgave 1 til 7 skal du avgjøre om feltet er konservativt og i så fall finne en potensialfunksjon. 1. F(x, ) = (x + x) i + x j. F(x,

Detaljer

Forkurs, Avdeling for Ingeniørutdanning

Forkurs, Avdeling for Ingeniørutdanning Eksamen i FO99A Matematikk Ordinær Eksamen Dato 8. mai 8 Tidspunkt 9. - 14. Antall oppgaver 4 Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 Deriver følgende

Detaljer

F = x F 1 + y F 2 + z F 3 = y 2 z 2 + x 2. i j k F = xy 2 yz 2 zx 2 = i(0 ( 2yz)) j(2xz 0) + k(0 2xy) = 2yzi 2xzj 2xyk.

F = x F 1 + y F 2 + z F 3 = y 2 z 2 + x 2. i j k F = xy 2 yz 2 zx 2 = i(0 ( 2yz)) j(2xz 0) + k(0 2xy) = 2yzi 2xzj 2xyk. TMA415 Matematikk 2 Vår 215 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 12 Alle oppgavenummer referer til 8. utgave av Adams & Essex alculus: A omplete

Detaljer

Løsning, funksjoner av flere variable.

Løsning, funksjoner av flere variable. Ukeoppgaver, uke 3 Matematikk 3, funksjoner av flere variable 1 Løsning, funksjoner av flere variable Oppgave 1 a) = +=, b) =, =y3 d ) e ) = 3+= 3 Selv om ikke x er med kan det betraktes som funksjon av

Detaljer

Fasit, Separable differensiallikninger.

Fasit, Separable differensiallikninger. Ukeoppgaver, uke 46, i Matematikk 0, Separable differensiallikninger. 3 Fasit, Separable differensiallikninger. a ) Denne er ferdig på formenf(y)y = g(x) medf(y) =3y 2 og g(x) =2x: 3y 2 dy dx =2x 3y2 dy

Detaljer

Obligatorisk oppgave 2

Obligatorisk oppgave 2 MEK Obligatorisk oppgave 2 Nicolai Kristen Solheim Obligatorisk oppgave 2 Oppgave a) Vi kan beregne vektorfluksen Q = F ndσ gjennom en kuleflate σ gitt vektorfeltet σ F = xi + 2y + z j + z + x 2 k. Ved

Detaljer

Prøve i R2 Integrasjonsmetoder

Prøve i R2 Integrasjonsmetoder Del 1 Hjelpemidler: ingen 1 Oppgave 1 Prøve i R Integrasjonsmetoder Caspar W. Hatlevik 19. oktober 1 Finn de ubestemte integralene og regn ut det bestemte integralet a. x + x + 1dx b. e 4x + x dx c. 1

Detaljer

Difflikninger med løsningsforslag.

Difflikninger med løsningsforslag. Repetisjon i Matematikk : Difflikninger med løsningsforslag. Høgskolen i Gjøvik Avdeling TØL Eksamensrepetisjon REA4 Matematikk Difflikninger med løsningsforslag. Difflikninger med løsningsforslag. Dette

Detaljer

Matte 3 (HiB) Tommy Odland. 5. mai Sammendrag

Matte 3 (HiB) Tommy Odland. 5. mai Sammendrag Matte 3 (HiB) Tommy Odland 5. mai 2016 Sammendrag Dette heftet inneholder en rask oppsummering av Matte 3 (HiB), også kalt multivariabel kalkulus. Formålet er å gi studentene litt intuisjon rundt emnene.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MEK 1100 Feltteori og vektoranalyse. Eksamensdag: Torsdag 11 desember 2008. Tid for eksamen: 14:30 17:30. Oppgavesettet er på

Detaljer

Vår TMA4105 Matematikk 2. Løsningsforslag Øving 2. Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag

Vår TMA4105 Matematikk 2. Løsningsforslag Øving 2. Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA415 Matematikk 2 Vår 217 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 2 11.1.9: Den aktuelle kurven er gitt ved r(t) (3 cos t, 4 cos t, 5 sin t).

Detaljer

Løsningsforslag eksamen TMA4105 matematikk 2, 25. mai 2005

Løsningsforslag eksamen TMA4105 matematikk 2, 25. mai 2005 Løsningsforslag eksamen TMA5 matematikk, 5. mai 5 Oppgave Vi finner de partiellderiverte av første og annen orden av f, ) = sin : f = sin, f = cos, f =, f = cos, f = sin. Finner de kritiske punktene ved

Detaljer

Løsning, Oppsummering av kapittel 10.

Løsning, Oppsummering av kapittel 10. Ukeoppgaver, uke 36 Matematikk 3, Oppsummering av kapittel. Løsning, Oppsummering av kapittel. Oppgave a) = +, = + z og z =z +. b) f(,, z) = +, + z,z + så (f(, 3, ) = +3, 3+, +3=7, 3, 5 c ) Gradienten

Detaljer

Sammendrag R2. www.kalkulus.no. 31. mai 2009

Sammendrag R2. www.kalkulus.no. 31. mai 2009 Sammendrag R2 www.kalkulus.no 31. mai 2009 1 1 Trigonometri Definisjon av sinus og cosinus Sirkelen med sentrum i origo og radius 1 kalles enhetssirkelen. La v være en vinkel i grunnstilling, og la P være

Detaljer

Integraler. John Rognes. 15. mars 2011

Integraler. John Rognes. 15. mars 2011 15. mars 2011 forener geometrisk målbare områder Ω og skalarfelt f : Ω R definert på disse områdene. Vi danner produktet f (Ω) Ω av verdien f (Ω) av funksjonen og størrelsen Ω av området. Mer presist deler

Detaljer

dg = ( g P0 u)ds = ( ) = 0

dg = ( g P0 u)ds = ( ) = 0 NTNU Institutt for matematiske fag TMA4105 Matematikk 2, øving 8, vår 2011 Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon,

Detaljer

TMA Tanker omkring innlevering 3 fra en studentassistents perspektiv

TMA Tanker omkring innlevering 3 fra en studentassistents perspektiv TMA15 - Tanker omkring innlevering 3 fra en studentassistents perspektiv April 7, 15 Mesteparten av dere har klart denne øvingen langt bedre enn de to forregående øvingene selv om denne var hakket vanskeligere.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 00 Kalkulus. Eksamensdag: Mandag,. desember 006. Tid for eksamen:.30 8.30. Oppgavesettet er på sider. Vedlegg: Tillatte hjelpemidler:

Detaljer

(s + 1) s(s 2 +2s+2) : 1 2 s s + 2 = 1 2. s 2 + 2s cos(t π) e (t π) sin(t π) e (t π)) u(t π)

(s + 1) s(s 2 +2s+2) : 1 2 s s + 2 = 1 2. s 2 + 2s cos(t π) e (t π) sin(t π) e (t π)) u(t π) NTNU Institutt for matematiske fag Eksamen i TMA4 Matematikk 4K og MA5 Kompl. f.teori med diff.likninger.8.4 Løsningsforslag Laplace-transformasjon av initialverdiproblemet gir y + y + y ut π), y), y )

Detaljer

Tegn en skisse som tydelig viser integrasjonsområdet og grensene: = 1 3. dy = 1 3

Tegn en skisse som tydelig viser integrasjonsområdet og grensene: = 1 3. dy = 1 3 Integral y x Vi har integralet e x dxdy yx y Tegn en skisse som tydelig iser integrasjonsområdet og grensene: Integrassjonsområdet bestemmes a øre og nedre grenser i integralene Integranten har ingen betydning

Detaljer

Vår TMA4105 Matematikk 2. Løsningsforslag Øving 6. 5 Exercise Exercise

Vår TMA4105 Matematikk 2. Løsningsforslag Øving 6. 5 Exercise Exercise TMA405 Matematikk 2 Vår 205 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 6 Alle oppgavenummer referer til 8. utgave av Adams & Essex Calculus: A Complete

Detaljer

Løsningsforslag AA6524 Matematikk 3MX Elever 7. juni eksamensoppgaver.org

Løsningsforslag AA6524 Matematikk 3MX Elever 7. juni eksamensoppgaver.org Løsningsforslag AA654 Matematikk MX Elever 7. juni 004 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i MX er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

NY Eksamen i matematikk III, 5 studiepoeng. August 2007

NY Eksamen i matematikk III, 5 studiepoeng. August 2007 NY Eksamen i matematikk III, 5 studiepoeng. August 7 Oppgave a. Regn ut gradienten til funksjonen f(x, y) = x +y +xy. I hvilken retning øker f mest når x = og y =? b. Regn ut kurveintegralet f(x, y) ds

Detaljer

. 2+cos(x) 0 og alle biter som inngår i uttrykket er kontinuerlige. Da blir g kontinuerlig i hele planet.

. 2+cos(x) 0 og alle biter som inngår i uttrykket er kontinuerlige. Da blir g kontinuerlig i hele planet. MA 1410: Analyse Uke 47, 001 http://home.hia.no/ aasvaldl/ma1410 H01 Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag Oppgave 11.1: 7. f(x, y) = 1 16 x y. a) Definisjonsområde D: f

Detaljer

Ubestemt integrasjon.

Ubestemt integrasjon. Ukeoppgaver, uke 4, i Matematikk 0, Ubestemt integrasjon. Høgskolen i Gjøvik Avdeling for ingeniørfag Matematikk 0 Ukeoppgaver uke 4 I løpet av uken blir løsningsforslag lagt ut på emnesiden http://www.hig.no/toel/allmennfag/emnesider/rea04

Detaljer

MAT1100 - Grublegruppen Uke 36

MAT1100 - Grublegruppen Uke 36 MAT - Grublegruppen Uke 36 Jørgen O. Lye Partiell derivasjon Hvis f : R 2 R er en kontinuerlig funksjon, så kaller man følgende dens partiellderiverte (gitt at de finnes!) f f(x + h, y) f(x, y) (x, y)

Detaljer

Eksamensoppgavehefte 1. MAT1012 Matematikk 2: Mer funksjonsteori i en og flere variabler

Eksamensoppgavehefte 1. MAT1012 Matematikk 2: Mer funksjonsteori i en og flere variabler Eksamensoppgavehefte 1 MAT1012 Matematikk 2: Mer funksjonsteori i en og flere variabler Matematisk institutt, UiO, våren 2010 I dette heftet er det samlet et utvalg av tidligere eksamensoppgaver innenfor

Detaljer

TMA4105 Matematikk 2 Vår 2014

TMA4105 Matematikk 2 Vår 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4105 Matematikk 2 Vår 2014 Løsningsforslag Øving 7 10.4.7 Vi skal finne likningen til et plan gitt to punkter P = (1, 1,

Detaljer

Oppgaver og fasit til seksjon

Oppgaver og fasit til seksjon 1 Oppgaver og fasit til seksjon 3.1-3.3 Oppgaver til seksjon 3.1 1. Regn ut a b når a) a = ( 1, 3, 2) b = ( 2, 1, 7) b) a = (4, 3, 1) b = ( 6, 1, 0) 2. Finn arealet til parallellogrammet utspent av a =

Detaljer

R2 - Eksamen Løsningsskisser

R2 - Eksamen Løsningsskisser R - V0 R - Eksamen 04.06.0 - Løsningsskisser Del - Uten hjelpemidler Oppgave a) ) Kjerneregel: fx 3 sin u, u x f x 3 cosu 6 cosu 6 cosx ) 3) Produktregel: g x x sin x x cosx x sin x x cosx Kjerneregel:

Detaljer

f =< 2x + z/x, 2y, 4z + ln(x) >.

f =< 2x + z/x, 2y, 4z + ln(x) >. MA 40: Analyse Uke 48, 00 http://home.hia.no/ aasvaldl/ma40 H0 Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag Oppgave.5: 5. Vi har gitt funksjon f(x, y) = x + y z + z ln(x) og punkt

Detaljer

Løsningsforslag til Eksamen i fag MA1103 Flerdimensjonal analyse

Løsningsforslag til Eksamen i fag MA1103 Flerdimensjonal analyse Norges teknisk nturvitenskpelige universitet Institutt for mtemtiske fg Side 1 v 5 Løsningsforslg til Eksmen i fg MA113 Flerdimensjonl nlyse 2.5.6 Oppgve 1 Vi hr f(x, y) = (4 x 2 y 2 )e x+y. ) Kritiske

Detaljer

EKSAMEN. Flexibel ingeniørutdanning, 2kl. Bygg.

EKSAMEN. Flexibel ingeniørutdanning, 2kl. Bygg. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. REA 1081F REA1081) EKSAMENSDATO: 1. juni 2010. KLASSE: Flexibel ingeniørutdanning, 2kl. Bygg. TID: kl. 9.00 12.00. FAGLÆRER: Hans Petter Hornæs ANTALL

Detaljer

Integralsatser: Green, Stokes og Gauss

Integralsatser: Green, Stokes og Gauss Kapittel 7 Integralsatser: Green, tokes og Gauss Oppgave 1 Vi har gitt strømfeltet v = ωyi+ωxj der ω er en konstant. a) trømfarten: v = ω 2 y 2 +ω 2 x 2 = ωr, r = x 2 +y 2. Langs sirkelen r 2 = x 2 +y

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger Eksamensdag: 12. desember 2003 Tid for eksamen: 9:00 12:00 Oppgavesettet er på 7 sider.

Detaljer