Eksamen i V139A Matematikk 30

Størrelse: px
Begynne med side:

Download "Eksamen i V139A Matematikk 30"

Transkript

1 Høgskolen i Gjøvik Avdeling for teknologi Eksamen i V139A Matematikk 3 4. juni Fagnummer: V139A Faglærere: Hans Petter Hornæs. Tillatte hjelpemidler: Godkjent kalkulator, Formelsamling. Oppgavesettet består av 6 oppgaver på tilsammen 6 sider inklusiv forside og 2 sider formelsamling. Kontrollér at settet er komplett før du starter arbeidet. Ved innlevering skilles hvit og gul besvarelse, og de legges i hvert sitt omslag. Oppgavetekst, kladd og blå kopi beholdes av kandidaten. Innføring med penn eller blyant som gir gjennomslag. Husk kandidatnummer på hvert ark! LYKKE TIL ME EKAMEN!

2 Eksamen i V139A Matematikk 3 4. juni 22 2 Hvert bokstavpunkt teller likt ved bedømmelsen. Oppgave 1 La funksjonen f være gitt ved funksjonsuttrykket f(x, y =2y x, (x,y. a Finn en likning for tangentplanet til grafen til funksjonen f i punktet ( 4, 2,f(4, 2. b egn ut volumet av legemet i 3 avgrenset av koordinatplanene, planet gitt ved likningen x + y =1,oggrafentilf. Oppgave 2 La vektorfeltet F i planet være gitt ved [ F (x, y = y x 2 +4y 2, ] x x 2 +4y 2 a La være ellipsen parametrisert ved r(t =[2cos(t, sin(t], t 2π. egn ut linjeintegralet F dr. b La være sirkelen parametrisert ved r(t =[3cos(t, 3sin(t], t 2π. egn ut linjeintegralet F dr. Oppgave 3 Feltet F : 3 3 er gitt ved formelen F (x, y, z = [ x 3 + z 3,y 3 + z 3,x 3 + y 3 ]. a egn ut divergensen F. b La legemet T være en sylinder gitt ved følgende ulikheter i sylinderkoordinater: θ 2π, r 2, z 4.. egn ut ( x 2 + y 2 dv. T c La være overflaten til T,ogn enhetsnormalvektoren til som peker ut av T. egn ut fluksen F n d.

3 Eksamen i V139A Matematikk 3 4. juni 22 3 Oppgave 4 Feltet F : 3 3 er gitt ved formelen F (x, y, z =[y z,z x, x y ]. a egn ut F. Er F et konservativt felt? b La W være planet i 3 gitt ved likningen 2x +2y + z =, og la være kurven der W skjærer sylinderen gitt ved likningen (x 1 2 +(y 1 2 =1. Orienter mot klokka, sett ovenifra, og regn ut F dr. c La være den delen av paraboloiden med likning { (x, y, z 3 z = 1 x 2 y 2 } som ligger over planet W,oglan være enhetsnormalvektoren til med positiv k koordinat. egn ut flateintegralet ( F n d. Hint: Vis at randen til er den samme kurven som i b oppgaven. Klarer du ikke vise dette kan du likevel bruke det. Oppgave 5 I hele denne oppgaven er t>og x π. a Et varmelikningsproblem (med forenklede konstanter er b u xx = u t (1 u(,t = 1 (2 u(π, t = 1 (3 u(x, = 1 + sin(2x (4 Finn den entydige løsningsfunksjonen u(x, t. Utregningen med separasjon av variable skal i grove trekk vises. Finn også den entydige løsningsfunksjonen u(x, t i følgende problem, der bare initialbetingelsen (4 er endret fra a oppgaven: u xx = u t (1 u(,t = 1 (2 u(π, t = 1 (3 u(x, = for <x<π (4

4 Eksamen i V139A Matematikk 3 4. juni 22 4 Oppgave 6 La f(r, θ være funksjonsuttrykk for en deriverbar funksjon f ivariablener og θ, som skal tolkes som polarkoordinater. Vis at =cos(θ x r 1 sin(θ r θ upplerende opplysninger: Hint: Bruk kjerneregelen der både ytre funksjon og kjernen er funksjoner av to variable. Eliminer fra likningene. Eksempel: Om f(x, y =x 2 +2y 2 er f(r, θ =(rcos(θ 2 +2(rsin(θ 2 = r ( 2 1+sin 2 (θ. Gradienten er f =[2x, 4y ]=[2rcos(θ, 4r sin(θ] Formelen i oppgaveteksten gir første koordinat fra f(r, θ = r ( 2 1+sin 2 (θ,utenågåveien om xy koordinater. En tilsvarende formel =sin(θ r + 1 r cos(θ θ gir den andre koordinaten. LUTT på oppgavesettet.

5 Eksamen i V139A Matematikk 3 4. juni 22 5 FOMELAMLING, MATEMATIKK 3 1. Koordinatskifte i multiple integraler: obbeltintegral, generelt: } x = x(u, v y = y(u, v der J(u, v =x u y v x v y u. f(x, y dx dy = obbeltintegral, polarkoordinater: } x = r cos θ f(x, y dx dy = y = r sin θ Trippelintegral, generelt: f(x, y, z dx dy dz = x = x(u, v, w y = y(u, v, w z = z(u, v, w der J(u, v, w = Trippelintegral, sylinderkoordinater: x = r cos θ y = r sin θ f(x, y, z dx dy dz = z = z Trippelintegral, kulekoordinater: f(x, y, z dx dy dz = f(x(u, v,y(u, v J(u, v du dv f(r cos θ, r sin θ rdrdθ f(x(u, v, w,y(u, v, w,z(u, v, w J(u, v, w du dv dw x = ρ sin φ cos θ y = ρ sin φ sin θ z = ρ cos φ x u x v x w y u y v y w z u z v z w. f(r cos θ, r sin θ, z rdzdrdθ f(ρ sin φ cos θ, ρ sin φ sin θ, ρ cos φ ρ 2 sin φdρdφdθ 2. Formler for gradient, divergens og curl : grad(f = f = f x i + f y j + f z k div(f = F = P x + Q y + z, curl(f = F = ı j k x z P Q der F = P i + Qj + k =( y Q z i ( x P z j +(Q x P y k

6 Eksamen i V139A Matematikk 3 4. juni To viktige setninger: ivergenssetningen (Gauss setning: F n d = T F dv dersom T er et begrenset legeme, er overflaten til T og er stykkevis glatt, n er den overalt utadrettede enhetsnormalvektor på og F er et vektorfelt hvis komponenter er definert og kontinuerlig deriverbare i hele T og på hele. tokes setning: F T ds = ( F n d dersom er en lukket, begrenset og stykkevis glatt flate, n er en orientering av, er randkurven til positivt orientert m.h.p. n, og F er et vektorfelt hvis komponenter er definert og kontinuerlig deriverbare ienåpen del av rommet som inneholder. 4. ifferensiallikninger 1. ordens lineære, homogene differensiallikninger med konstante koeffisienter: Allmenn løsning av F (z+af (z =erf (z =e az,dera er en gitt og en vilkårlig konstant. 2. ordens lineære, homogene differensiallikninger med konstante koeffisienter: Allmenn løsning av af (z +bf (z +cf (z =dera,bog c er en gitte og 1 og 2 vilkårlige konstanter: 4ac b 2 > ( ( 4ac b F (z =e ( ( bz/(2a 2 4ac b 2 1 cos z + 2 sin z 2a 2a b 2 4ac > b 2 4ac = Alemberts løsningsmetode F (z = 1 e ( b+ b 2 4ac z/(2a + 2 e ( b b 2 4ac z/(2a F (z = 1 e ( bz/(2a + 2 ze (bz/(2a Bølgelikningen c 2 u xx = u tt har allmenn løsning på formenf (x + ct+g(x ct (der F og G er vilkårlige to ganger kontinuerlig deriverbare funksjoner Hvis vi har randbetingelsen u t (x, = er u(x, t =F (x + ct+f (x ct Hvis også u(,t=u(l, t =erf (x en odde funksjon med periode 2L Fourierrekker for halvperiodiske utvidelser Hvis f(x er definert på intervallet (,L, og er stykkevis kontinuerlig og begrenset gjelder for alle x der f(x er kontinuerlig: 1. ( nπ f(x = b n sin L x 2. der a = 1 L der L b n = 2 L f(x =a + n=1 L ( nπ f(xsin L x dx n=1 f(x dx og a n = 2 L ( nπ a n cos L x L ( nπ f(xcos L x dx

7 Fasit, eksamen i V139A Matematikk 3 4. juni 22 1 Løsning, V139A Matematikk 3, 4. juni 22 Oppgave 1 a Grafen er gitt ved likningen z = f(x, y 2y x z =, og dermed er gradienten til g(x, y, z =2y x z en normalvektor til grafen. a f(4, 2 = 4 er tangeringspunktet (4, 2, 4. g = ermed er tangentlikningen [ y x, 2 ] x, 1, g(4, 2, 4 = [ 1, 4, 1] 1 (x (y 2 1 (z 4 x +4y z =8 b 1 V = 1 1 x 2y xdydx= x 1/2 2x 3/2 + x 5/2 dx = 1 [ y 2 ] 1 x x dx = [ 2 3 x3/2 4 5 x5/ x7/2 1 ] 1 (1 x 2 x 1/2 dx = = = Oppgave 2 a Greens setning kan ikke brukes pga. singulariteten i origo. irekte utregning: F dr = y x 2 +4y 2 dx + x x 2 +4y 2 dy. x =2cos(t så dx = 2sin(t dt og y =sin(t så dy =cos(t dt. essuten er x 2 +4y 2 =(2cos(t 2 +4(sin(t 2 =4(cos 2 (t+sin 2 (t = 4. ermed er F dr = 2π 1 2 2π sin(t 4 ( sin 2 (t+cos 2 (t ( 2sin(t + 2cos(t 4 dt = 1 2 2π (cos(t dt = dt = π b Greens setning kan brukes om området er det mellom ellipsen og sirkelen. For slike områder med hull er Greens setning på formen Videre er slik at vi har F dr F dr = Q x P da Q x P = +4y 2 x 2x 1(x2 (x 2 +4y 2 2 1(x2 +4y 2 y 8y (x 2 +4y 2 2 = F dr ( π = da F dr = π

8 Fasit, eksamen i V139A Matematikk 3 4. juni 22 2 Oppgave 3 a F =3x 2 +3y 2 b Bruker sylinderkoordinater, x 2 + y 2 = r 2, dv = rdzdrdθ: 2π 2 4 r 2 rdzdrdθ= 2π 2 4 r 3 dr dθ = 2π [r 4] 2 2π dθ = 16 dθ =32π c ivergenssetningen: F n d = T F dv = T 3x 2 +3y 2 dv =3 x 2 + y 2 dv =96π T Oppgave 4 a F = i j k x z y z z x x y = i( 1 1 j( k( 1 1 = [ 2, 2, 2] iden F er feltet ikke konservativt. b tokes setning: F dr = ( F n d Vi kan la i denne deloppgaven være en del av planet W, med normalvektor n = [2, 2, 1] = 1 [2, 2, 1]. 2 3 c Ved åskrivew s likning som z = 2x 2z og bruke d = vi dermed F dr = 1+( z x 2 + ( z 2 dx dy får [ 2, 2, 2] 1 3 [2, 2, 1] dx dy = 1 dx dy Området er sirkelen i xy-planet gitt ved (x 1 2 +(y 1 2 = 1, som har radius 1 og dermed areal π, så F dr = 1 dx dy = 1π Hvis vi setter inn z =3 x 2 y 2 i likningen for planet får vi 2x+2y+( 1 x 2 y 2 = x 2 +2x 1 y 2 +2y 1 = 1 (x 1 2 +(y 1 2 =1 ette viser at alle punkter på skjæringskurven ligger på sylinderen. a skjæringen mellom en paraboloide og et plan må være en lukket kurve må detværehele. a kan vi ved tokes setning gjøre om flateintegralet til kurveintegralet som er løst i b oppgaven. ( er en annen flate enn der, men er den samme kurven ( F n d = F dr = 1π

9 Fasit, eksamen i V139A Matematikk 3 4. juni 22 3 Oppgave 5 a Begynner med å se etter løsninger på formenx(xt (t, som innsatt i (1 gir X T = XT X X = T T = k Prøver først med k = som gir likningene X =,T = med løsningene X = Ax + B og T = Vi får dermed mulige løsninger på formenxt =(Ax + B = x + E. Ved å sette inn i (2 og (3 finner vi at =,E = 1 som gir løsningsdelen u (x, t =1. enne passer med første ledd i initialbetingelse (4, for åfåtil andre ledd ser vi på tilfellet k<, og kaller k da κ 2. ette gir to difflikninger (idet vi begynner forfra i alfabetet med navn på ubestemte konstanter. X +κ 2 X = med løsning X = A cos(κx+b sin(κx T + κ 2 T = med løsning T = e κ2 t Vi har så langt løsninger på formen u(x, t =X(xT (t =(A cos(κx+b sin(κx e κ2t =( cos(κx+e sin(κx e κ2t. iden u allerede sørger for at (2 og (3 er oppfyllt må de i fortsettelsen erstattes med u(,t=ogu(π, t =: u(,t=( cos(κ + E sin(κ e κ2t = e κ2t = For å få til ikke trivielle løsninger må vi derfor ha =,og dermed Bruker så atu(π, t = for alle t: u(x, t =E sin(κxe κ2t. u(π, t =E sin(κπe κ2t = Får å få ikke trivielle løsninger må vi ha sin(κπ = κ = n, for (positive heltall n. Vi har derfor så langt u(x, t =E sin(nxe n2t som vi skriver u n (x, t =E n sin(nxe n2 t Hvis vi velger n =2,ogE 2 = 2, passer dette med siste ledd i initialbetingelsen (4, og u(x, t =u (x, t+u 2 (x, t =1+sin(2xe 4t b oppfyller alle betingelsene, og er den entydige løsningen. Vi finner u =1ogu n = E n sin(nxe n2t som i a oppgaven. Betingelse (4 er u(x, ==1 1, der vi skriver 1 1 da det første 1 tallet kommer fra u,sommåværemedforåfå oppfyllt (2 og (3. ermed må 1 være en (uendelig sum

10 Fasit, eksamen i V139A Matematikk 3 4. juni 22 4 av u n (x, er. ette kan vi får til som Fourierrekka til en odde, halvperiodisk utvidelse av en funksjon som er konstant lik 1 på intervallet,π. enne har da Fourierkoeffisienter b n = 1 L L f(xsin(nx dx = 1 π π 1 sin(nx dx Ved substitusjonen z = nx, dx = 1 n dz, ØG=nπ og NG= har vi da b n = 1 π 1 n nπ sin(z dz = 1 nπ [cos(z]nπ = 1 (cos(nπ cos( nπ Vi har at cos( = 1, og cos(nπ kan forenkles til ( 1 n, slik at b n = 1 { 2 nπ (( 1n 1 = nπ for n oddetall for n partall Ved å sette E n = b n og summere får vi løsningen u(x, t = 1 1+ nπ (( 1n 1 e n2 t =1 2 π e t sin(x 2 3π e 9 t sin(3x 2 5π e 25 t sin(5x n=1 Oppgave 6 Kjerneregelen brukt på f (r cos(θ,rsin(θ, med x = r cos(θ ogy = r sin(θ, gir r = x x r + θ = x x θ + r θ r = x cos(θ + sin(θ θ = r sin(θ + x r cos(θ For å eliminere kan vi multiplisere første likning med r cos(θ, og andre likning med sin(θ. Når vi da adderer likningene får vi r cos(θ r sin(θ θ = x ( r cos 2 (θ+rsin 2 (θ Ved å dividere begge sider med r (og bruke at cos 2 (θ+sin 2 (θ = 1 ender vi opp med som er formelen som skulle vises. cos(θ r 1 r sin(θ θ = x

EKSAMEN i MATEMATIKK 30

EKSAMEN i MATEMATIKK 30 Eksamen i Matematikk 3 1. desember 1999 1 Høgskolen i Gjøvik Avdeling for teknologi EKAMEN i MATEMATIKK 3 1 desember 1999 kl. 9 14 Fagnummer: V139A Faglærer: Hans Petter Hornæs Tillatte hjelpemidler: Godkjent

Detaljer

Eksamen i V139A Matematikk 30

Eksamen i V139A Matematikk 30 Høgskolen i Gjøvik Avdeling for teknologi Eksamen i V139A Matematikk 3 21. desember 21 9. 14. Fagnummer: V139A Faglærer: Hans Petter Hornæs Tillatte hjelpemidler: Godkjent kalkulator ottmanns formelsamling

Detaljer

EKSAMEN. Valgfag, ingeniørutdanning (3. klasse). ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formelark.)

EKSAMEN. Valgfag, ingeniørutdanning (3. klasse). ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formelark.) KANDIDANUMME: EKAMEN FAGNAVN: Matematikk 3 FAGNUMME: EA32 EKAMENDAO: 1. desember 26 KLAE: Valgfag, ingeniørutdanning (3. klasse). ID: kl. 9. 13.. FAGLÆE: Hans Petter Hornæs ANALL IDE ULEVE: 5 (innkl. forside

Detaljer

EKSAMEN. 3. klassene, ingenørutdanning. ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formelark.)

EKSAMEN. 3. klassene, ingenørutdanning. ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formelark.) KANDIDATNUMME: EKAMEN FAGNAVN: Matematikk 3 FAGNUMME: EA32 EKAMENDATO: 13. desember 25 ENUFIT: 3. januar 26 KLAE: 3. klassene, ingenørutdanning. TID: kl. 9. 13.. FAGLÆE: Hans Petter Hornæs ANTALL IDE UTLEVET:

Detaljer

EKSAMEN. 3. klassene, ingenørutdanning. ANTALL SIDER UTLEVERT: 5 (innkl. forside og formelark)

EKSAMEN. 3. klassene, ingenørutdanning. ANTALL SIDER UTLEVERT: 5 (innkl. forside og formelark) KANDIDATNUMME: EKAMEN EMNENAVN: Matematikk 3 EMNENUMME: EA32 EKAMENDATO: 8.desember 28 KLAE: 3. klassene, ingenørutdanning. TID: kl. 9. 13.. EMNEANVALIG: Hans Petter Hornæs ANTALL IDE UTLEVET: 5 (innkl.

Detaljer

EKSAMEN. 3. klassene, ingenørutdanning. ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formler.)

EKSAMEN. 3. klassene, ingenørutdanning. ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formler.) KANDIDATNUMME: EKAMEN FAGNAVN: Matematikk 3 FAGNUMME: EA32 EKAMENDATO: 25. mars 29 KLAE: 3. klassene, ingenørutdanning. TID: kl. 9. 13.. FAGLÆE: Hans Petter Hornæs ANTALL IDE UTLEVET: 5 (innkl. forside

Detaljer

EKSAMEN. 3. klassene, ingenørutdanning. ANTALL SIDER UTLEVERT: 5 (innkl. forside og formelark)

EKSAMEN. 3. klassene, ingenørutdanning. ANTALL SIDER UTLEVERT: 5 (innkl. forside og formelark) KANDIDANUMME: EKAMEN EMNENAVN: Matematikk 3 EMNENUMME: EA32 EKAMENDAO: 5.desember 27 KLAE: 3. klassene, ingenørutdanning. ID: kl. 9. 13.. EMNEANVALIG: Hans Petter Hornæs ANALL IDE ULEVE: 5 (innkl. forside

Detaljer

EKSAMEN i MATEMATIKK 30

EKSAMEN i MATEMATIKK 30 Eksamen i Matematikk 3 3. mai Høgskolen i Gjøvik Avdeling for teknologi EKSAMEN i MATEMATIKK 3 Onsdag 3. mai kl. 9 4 agnummer: V39A aglærer: Hans Petter Hornæs Tillatte hjelpemidler: Godkjent kalkulator

Detaljer

The full and long title of the presentation

The full and long title of the presentation The full and long title of the presentation Subtitle if you want Øistein Søvik Mai 207 Ø. Søvik Short title Mai 207 / 4 Innholdsfortegnelse Introduksjon Nyttige tips før eksamen Nyttige tips under eksamen

Detaljer

EKSAMEN I FAG SIF5005 MATEMATIKK 2

EKSAMEN I FAG SIF5005 MATEMATIKK 2 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 3 Faglig kontakt under eksamen: Trond Digernes 7359357 Berner Larsen 73 59 35 5 Lisa Lorentzen 73 59 35 48 Vigdis Petersen

Detaljer

Anbefalte oppgaver - Løsningsforslag

Anbefalte oppgaver - Løsningsforslag TMA415 Matematikk 2 Anbefalte oppgaver - Løsningsforslag Uke 14 1.4.5: Vi skal finne fluksen ut overflaten til den solide ballen B med sentrum = (2,, 3) og radius r = 3, av vektorfeltet F = x 2 i + y 2

Detaljer

Eksamensoppgave i MA1103 Flerdimensjonal analyse

Eksamensoppgave i MA1103 Flerdimensjonal analyse Institutt for matematiske fag Eksamensoppgave i MA113 Flerdimensjonal analyse Faglig kontakt under eksamen: Tlf: Eksamensdato: 5. Juni 19 Eksamenstid (fra til): 9: 13: Hjelpemiddelkode/Tillatte hjelpemidler:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: Eksamensdag: Fredag 1. april 2011 Tid for eksamen: 15.00 17.00 Oppgavesettet er på 7 sider. Vedlegg: Tillatte hjelpemidler:

Detaljer

Oppgavesettet har 10 punkter 1, 2ab, 3ab, 4ab, 5abc som teller likt ved bedømmelsen.

Oppgavesettet har 10 punkter 1, 2ab, 3ab, 4ab, 5abc som teller likt ved bedømmelsen. NTNU Institutt for matematiske fag SIF55 Matematikk 2 4. mai 999 Løsningsforslag Oppgavesettet har punkter, 2ab, 3ab, 4ab, 5abc som teller likt ved bedømmelsen. i alternativ (3, ii alternativ (2. 2 a For

Detaljer

Eksamensoppgave i MA1103 Flerdimensjonal analyse

Eksamensoppgave i MA1103 Flerdimensjonal analyse Institutt for matematiske fag Eksamensoppgave i MA1103 Flerdimensjonal analyse Faglig kontakt under eksamen: Mats Ehrnstrøm Tlf: 735 917 44 Eksamensdato: 22. mai 2018 Eksamenstid (fra til): 09:00 13:00

Detaljer

EKSAMEN. Ingeniørstudenter som tar opp igjen eksa- men (6stp.).

EKSAMEN. Ingeniørstudenter som tar opp igjen eksa- men (6stp.). KANDIDATNUMMER: EKSAMEN FAGNAVN: Matematikk FAGNUMMER: F74A EKSAMENSDATO: 6. desember 24 SENSURFRIST: 6. januar 25 Ingeniørstudenter som tar opp igjen eksa- KLASSE: men 6stp.). TID: kl. 9. 4.. FAGLÆRER:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: MAT Kalkulus og lineær algebra Eksamensdag: Fredag. mars Tid for eksamen: 5. 7. Oppgavesettet er på 8 sider. Vedlegg: Tillatte

Detaljer

Løsning, Stokes setning

Løsning, Stokes setning Ukeoppgaver, uke 4 Matematikk, tokes setning 1 Løsning, tokes setning Oppgave 1 a) b) c) F x y z x y z F x x + y y + z z 1+1+1 iden F er feltet konservativt. ( z y y ) ( x i z z z ) ( y x x x ) k i +k

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAGET 5005/7 MATEMATIKK 2 1. august der k er et vilkårlig heltall. Det gir

LØSNINGSFORSLAG TIL EKSAMEN I FAGET 5005/7 MATEMATIKK 2 1. august der k er et vilkårlig heltall. Det gir LØNINGFOLAG IL EKAMEN I FAGE 55/7 MAEMAIKK. august Oppgave. (i Ja. (ii Ja. (iii Nei. Alternativt: (i Ja. (ii Ja. (iii Ja. Oppgave. curlf (x, y F i j k (x, y / x / y / z e y + ye x +x xe y + e x + Altså

Detaljer

Eksamensoppgave i MA1103 Flerdimensjonal analyse

Eksamensoppgave i MA1103 Flerdimensjonal analyse Institutt for matematiske fag Eksamensoppgave i MA3 Flerdimensjonal analyse Faglig kontakt under eksamen: Mats Ehrnstrøm Tlf: 735 97 44 Eksamensdato: 22. mai 28 Eksamenstid (fra til): 9: 3: Hjelpemiddelkode/Tillatte

Detaljer

e y + ye x +2x xe y + e x +1 0 = 0

e y + ye x +2x xe y + e x +1 0 = 0 LØNINGFORLAG TIL EKAMEN I FAGET 55/7 MATEMATIKK. august Oppgave. (i) Ja. (ii) Ja. (iii) Nei. Alternativt: (i) Ja. (ii) Ja. (iii) Ja. Oppgave. a) curlf (x, y) F i j k (x, y) / x / y / z e y + ye x +x xe

Detaljer

EKSAMEN. ANTALL SIDER UTLEVERT: 3 sider inklusiv forside.

EKSAMEN. ANTALL SIDER UTLEVERT: 3 sider inklusiv forside. KANDIDATNUMMER: EKSAMEN FAGNAVN: Matematiske metoder. FAGNUMMER: JøG 0 EKSAMENSDATO: 7. desember 003 SENSURFRIST: 7. januar 004. KLASSE: HIS 003/004. TID: kl. 8.00 3.00. FAGLÆRER: Hans Petter Hornæs ANTALL

Detaljer

Oppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener.

Oppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener. NTNU Institutt for matematiske fag TMA45 Matematikk, øving, vår Løsningsforslag Notasjon og merknader Oppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener. Oppgaver fra kapittel

Detaljer

Randkurva C til flata S orienteres positivt sett ovenfra, og kan parametriseres ved: r (t) = [ sin t, cos t, sin t] dt, 0 t 2π.

Randkurva C til flata S orienteres positivt sett ovenfra, og kan parametriseres ved: r (t) = [ sin t, cos t, sin t] dt, 0 t 2π. Ma - Løsningsforslag til uke 17 i 7 Eks. mai 1999 oppgave 4 ylinderen x + y = 1 skjærer ut ei flate av planet z = x + 1 dvs. x + z = 1 med enhetsnormal i positiv z-retning lik n= 1 [ 1 1]. Flata blir en

Detaljer

EKSAMENSOPPGAVE. KRAFT I og II Hall del 2 Kraft sportssenter Ingen

EKSAMENSOPPGAVE. KRAFT I og II Hall del 2 Kraft sportssenter Ingen Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: MAT-1003 Kalkulus 3 Dato: 11.12.2018 Klokkeslett: 09.00-13.00 Sted: Tillatte hjelpemidler: KRAFT I og II Hall del 2 Kraft sportssenter

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i Eksamensdag: 9. april,. Tid for eksamen: : :. Oppgavesettet er på 9 sider. Vedlegg: Tillatte hjelpemidler: MAT Kalkulus og

Detaljer

Eksamen, høsten 13 i Matematikk 3 Løsningsforslag

Eksamen, høsten 13 i Matematikk 3 Løsningsforslag Eksamen, høsten 3 i Matematikk 3 Løsningsforslag Oppgave. a) Fra ligningen x 5 + y 3 kan vi lese ut store og lille halvakse a 5 og b 3. Fokus til senter avstanden er da gitt ved c a b 5 3 5 9 6 4. ermed

Detaljer

TMA Representasjoner. Funksjoner. Operasjoner

TMA Representasjoner. Funksjoner. Operasjoner TMA 4105 Representasjoner Funksjoner Operasjoner Funksjoner f : D R m! f(d) R n reelle funksjoner kurver flater vektorfelt Funksjoner i) f : D R n! R reell funksjon av n variabler, f(x), f(x,y) eller f(x,y,z)

Detaljer

Løsningsforslag til eksamen i TMA4105 matematikk 2,

Løsningsforslag til eksamen i TMA4105 matematikk 2, Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av Løsningsforslag til eksamen i TMA45 matematikk, 9.5.4 Oppgave La fx, y, z) xy + arctanxz). La P være punktet,, ). a)

Detaljer

Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, vår 2009

Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, vår 2009 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 8 Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, vår 2009 Oppgave 1 Avgjør om grenseverdiene eksisterer:

Detaljer

Oppgaver og fasit til kapittel 6

Oppgaver og fasit til kapittel 6 1 Oppgaver og fasit til kapittel 6 Mange av oppgavene i dette kapitlet brukes for første gang, og det er sannsynligvis flere fasitfeil enn normalt. Finner du en feil, så send en melding til lindstro@math.uio.no.

Detaljer

Løsning IM

Løsning IM Løsning IM 6 Oppgave x + y Grensen lim er ubestemt da både teller og nevner blir Vi skal vise at grensen ( xy, ) (,) x + y ikke eksisterer og bruker rette linjer inn mot origo De enkleste linjene er koordinataksene

Detaljer

EKSAMEN I FAG SIF5005 MATEMATIKK 2

EKSAMEN I FAG SIF5005 MATEMATIKK 2 Norges teknisk naturvitenskapelige universitet Trond Digernes 75957 Berner Larsen 7 59 5 5 Lisa Lorenten 7 59 5 8 Vigdis Petersen 75965 ide av Vedlegg: Formelliste IF55 Matematikk ide av Oppgave Et plant

Detaljer

LØSNINGSFORSLAG TIL ØVING 11, TMA4105, V2008. x = r cos θ, y = r sin θ, z = 2r for 0 θ 2π, 2 2r 6. i j k. 5 r dr dθ = 8

LØSNINGSFORSLAG TIL ØVING 11, TMA4105, V2008. x = r cos θ, y = r sin θ, z = 2r for 0 θ 2π, 2 2r 6. i j k. 5 r dr dθ = 8 LØNINGFORLAG TIL ØVING, TMA45, V8 Oppgave 4.5.9. Parametrisering: x = r cos θ, y = r sin θ, z = r for θ π, r 6. r(r, θ) = r cos θ, r sin θ, r. N = r r r θ = cos θ sin θ = r cos θ, r sin θ, r. r sin θ r

Detaljer

EKSAMEN. Ingeniør- og Fleksibel ingeniørutdanning.

EKSAMEN. Ingeniør- og Fleksibel ingeniørutdanning. KANDIDATNUMMER: EKSAMEN EMNENAVN: Matematikk. EMNENUMMER: REA42/REA42F EKSAMENSDATO: Mandag 9. august 2 KLASSE: Ingeniør- og Fleksibel ingeniørutdanning. TID: kl. 9. 3.. FAGANSVARLIG: Hans Petter Hornæs

Detaljer

LØSNINGSFORSLAG EKSAMEN TMA4105 MATEMATIKK 2 Lørdag 14. aug 2004

LØSNINGSFORSLAG EKSAMEN TMA4105 MATEMATIKK 2 Lørdag 14. aug 2004 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag ide av LØNINGFOLAG EKAMEN TMA4 MATEMATIKK 2 Lørdag 4. aug 24 Oppgave Grenseverdien eksisterer ikke. For eksempel er grenseverdien

Detaljer

dx = 1 1 )dx = 3 y= x . Tangentplanet til hyperboloiden i (2, 1, 3) er derfor gitt ved x 2, y 1, z 3 = 0 x 2 + 2(y 1) 2 (z 3) = 0 x + 2y 2z 3 = 2

dx = 1 1 )dx = 3 y= x . Tangentplanet til hyperboloiden i (2, 1, 3) er derfor gitt ved x 2, y 1, z 3 = 0 x 2 + 2(y 1) 2 (z 3) = 0 x + 2y 2z 3 = 2 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA415 Matematikk vår 9 øsningsforslag til eksamen 15. august 9 1 Treghetsmoment med hensyn på x-aksen er gitt ved x [ ] y I

Detaljer

EKSAMENSOPPGAVE. Eksamen i: MAT-1003 Dato: Tirsdag 15. desember 2015 Tid: Kl 15:00 19:00 Sted: Åsgårdvegen 9

EKSAMENSOPPGAVE. Eksamen i: MAT-1003 Dato: Tirsdag 15. desember 2015 Tid: Kl 15:00 19:00 Sted: Åsgårdvegen 9 EKSAMENSOPPGAVE Eksamen i: MAT-13 Dato: Tirsdag 15. desember 215 Tid: Kl 15: 19: Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Pedersen et al.: Teknisk formelsamling med tabeller, Rottmanns formelsamling,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT Kalkulus og lineær algebra Eksamensdag: Onsdag 9 mai 9 Tid for eksamen: 4:3 8:3 Oppgavesettet er på 7 sider Vedlegg: Tillatte

Detaljer

Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, 8.juni 2010

Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, 8.juni 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Løsningsforslag, eksamen MA11 Flerdimensjonal analyse, 8.juni 21 Oppgave 1 a) Finn og klassifiser alle kritiske

Detaljer

y = x y, y 2 x 2 = c,

y = x y, y 2 x 2 = c, TMA415 Matematikk Vår 17 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 9 Alle oppgavenummer referer til 8. utgave av Adams & Essex alculus: A omplete

Detaljer

Vi regner først ut de nødvendige partiellderiverte for å se om vektorfeltet er konservativt. z = 2z, F 2 F 2 z = 2y, F 3. x = 2x, F 3.

Vi regner først ut de nødvendige partiellderiverte for å se om vektorfeltet er konservativt. z = 2z, F 2 F 2 z = 2y, F 3. x = 2x, F 3. TMA415 Matematikk Vår 15 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 7 Alle oppgavenummer refererer til 8. utgave av Adams & Essex alculus: A omplete

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: John Haugan: Formler og tabeller. Rottmanns formelsamling (tillatt som overgangsordning)

EKSAMEN. TILLATTE HJELPEMIDLER: John Haugan: Formler og tabeller. Rottmanns formelsamling (tillatt som overgangsordning) KANDIDATNUMMER: EKSAMEN FAGNAVN: Matematikk FAGNUMMER: REA4 EKSAMENSDATO: 6. desember 24 SENSURFRIST: 6. januar 25 KLASSE:. klassene, ingenørutdanning. TID: kl. 9. 3.. FAGLÆRER: Hans Petter Hornæs ANTALL

Detaljer

Eksamen IRF30014, våren 16 i Matematikk 3 Løsningsforslag

Eksamen IRF30014, våren 16 i Matematikk 3 Løsningsforslag Oppgave 1. Eksamen IRF314, våren 16 i Matematikk 3 Løsningsforslag Ellipsen vil skal finne er på standardform x a + y b 1 der a > b for styrelinjene er vertikale linjer. Formelen for styrelinjene er x

Detaljer

Løsning til eksamen i ingeniørmatematikk

Løsning til eksamen i ingeniørmatematikk Løsning til eksamen i ingeniørmatematikk 3 78 Oppgave Vektorfeltet har komponenter og er funksjon av variable Jacobimatrisen er av type ( xy) ( xy) x y ( yx) ( yx) xy x y xy Innsatt finner vi JF ( x, y)

Detaljer

Anbefalte oppgaver - Løsningsforslag

Anbefalte oppgaver - Løsningsforslag TMA45 Matematikk Anbefalte oppgaver - Løsningsforslag Uke 5.5.: Kulen er grafen til rφ, θ) asinφ) cosθ)i + sin φ sinθ)j + cosφ)k), φ π, θ < π. Vi har slik at φ θ acosφ) cosθ)i + sinφ) sinθ)j + cosφ)k)

Detaljer

(t) = [ 2 cos t, 2 sin t, 0] = 4. Da z = 2(1 + t) blir kurva C en helix/ei skruelinje på denne flata (se fig side 392).

(t) = [ 2 cos t, 2 sin t, 0] = 4. Da z = 2(1 + t) blir kurva C en helix/ei skruelinje på denne flata (se fig side 392). Ma - Løsningsforslag til uke 5 i 7 Eks. mai 994 oppgave Romkurva er parametrisert for t [, π] ved r (t) = [ + cos t, + sin t, + t ] Hastighets- og akselerasjonsvektorene blir v = r (t) = [ sin t, cos t,

Detaljer

Eksamen, høsten 14 i Matematikk 3 Løsningsforslag

Eksamen, høsten 14 i Matematikk 3 Løsningsforslag Oppgave 1. Fra ligningen Eksamen, høsten 14 i Matematikk 3 Løsningsforslag x 2 64 y2 36 1 finner vi a 64 8 og b 36 6. Fokus til senter avstanden er da gitt ved c a 2 + b 2 64 + 36 1 1. Dermed er fokuspunktene

Detaljer

Oppgaver og fasit til seksjon

Oppgaver og fasit til seksjon 1 Oppgaver og fasit til seksjon 3.4-3.6 Oppgaver til seksjon 3.4 1. Anta at f(x, y) = x 2 y 3 og r(t) = t 2 i + 3t j. Regn ut g (t) når g(t) = f(r(t)). 2. Anta at f(x, y) = x 2 e xy2 og r(t) = sin t i+cos

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. John Haugan: Formler og tabeller. Rottmanns formelsamling (tillatt som overgangsordning)

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. John Haugan: Formler og tabeller. Rottmanns formelsamling (tillatt som overgangsordning) KANDIDATNUMMER: EKSAMEN FAGNAVN: Matematiske metoder 1. FAGNUMMER: JøG10 EKSAMENSDATO: 5. april 00. SENSURFRIST: 16. mai 00. KLASSE: HSIS 00-005. TID: kl. 8.00 1.00. FAGLÆRER: Hans Petter Hornæs ANTALL

Detaljer

Matematikk 4, ALM304V Løsningsforslag eksamen mars da 1 er arealet av en sirkel med radius 2. F = y x = t t r = t t v = r = t t

Matematikk 4, ALM304V Løsningsforslag eksamen mars da 1 er arealet av en sirkel med radius 2. F = y x = t t r = t t v = r = t t Oppgave r( t) v( t) dt t dt, t dt, t dt t +, t +, t +. d d d a( t) v '( t) t, t, t,6 t,t dt dt dt F ma m t t Gitt en hastighetsvektor v( t) t, t, t.,6, Oppgave Greens setning: δq δ P I ( Pdx + Qdy) ( )

Detaljer

Løsningsforslag til prøveeksamen i MAT 1110, våren 2006

Løsningsforslag til prøveeksamen i MAT 1110, våren 2006 Løsningsforslag til prøveeksamen i MAT, våren 6 Oppgave : a) Vi har C 5 3 II+( )I a + 3a 3a III+I 3 II 3 3 3 3 a + 3a 3a 3 a + 3a 3a III+II I+( ))II 3 3 3 a + 3a 3a 3 3 3 a + 3a 4 3 3a a + 3a 4 3 3a b)

Detaljer

EKSAMENSOPPGAVE. Vil det bli gått oppklaringsrunde i eksamenslokalet? Svar: JA Hvis JA: ca. kl.10:00 og 12:00

EKSAMENSOPPGAVE. Vil det bli gått oppklaringsrunde i eksamenslokalet? Svar: JA Hvis JA: ca. kl.10:00 og 12:00 Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: MAT-1003 Kalkulus 3 Dato: Tirsdag 1.1.017 Klokkeslett: 09:00-13:00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Pedersen et al.: Teknisk

Detaljer

Anbefalte oppgaver - Løsningsforslag

Anbefalte oppgaver - Løsningsforslag TMA415 Matematikk 2 Anbefalte oppgaver - Løsningsforslag Uke 7 15.1.3: Siden vektorfeltet er gitt ved F(x, y) = yi + xj må feltlinjene tilfredstille differensiallikningen eller y = x y, ( ) 1 2 y2 = x.

Detaljer

Eksamensoppgaver og Matematikk 1B

Eksamensoppgaver og Matematikk 1B Eksamensoppgaver 7500 og 750 Matematikk B Samlet for SIF5005 Matematikk våren 00 Samlingen inneholder utvalgte oppgaver gitt i 7500 og 750 Matematikk B ved NTH/NTNU i tiden 993 997. Oppgaver eller punkter

Detaljer

SIF5005 Matematikk 2, 13. mai 2002 Løsningsforslag

SIF5005 Matematikk 2, 13. mai 2002 Løsningsforslag SIF55 Matematikk, 3. mai Oppgave Alternativ : At de to ligningene skjærer hverandre vil si at det finnes parameterverdier u og v som, innsatt i de to parametriseringene, gir samme punkt: Vi løser hver

Detaljer

EKSAMEN. Hans Petter Hornæs og Britt Rystad

EKSAMEN. Hans Petter Hornæs og Britt Rystad KANDIDATNUMMER: EKSAMEN FAGNAVN: Matematikk. FAGNUMMER: F74A EKSAMENSDATO: Mandag. august 2 SENSURFRIST:. september 2 KLASSE:. klassene, ingenørutdanning. TID: kl. 9. 4.. FAGLÆRER: Hans Petter Hornæs og

Detaljer

Eksamen IRF30014, høsten 15 i Matematikk 3 Løsningsforslag

Eksamen IRF30014, høsten 15 i Matematikk 3 Løsningsforslag Oppgave 1. Eksamen IRF314, høsten 15 i Matematikk 3 øsningsforslag I denne oppgaven er det to løsningsforslag. Ett med asymptotene som gitt i oppgaveteksten. I dette første tilfellet blir tallene litt

Detaljer

Løsning IM

Løsning IM Løsning IM Oppgave Den retningsderiverte er D f ( a) u f ( a), når funksjonen er deriverbar i punktet u f f ( y ) ( y ) Innsatt f,, ( y, y ) Den derivertes verdi i punktet er f (,) ( ( ),( ) ) (,) (,)

Detaljer

NTNU. MA1103 Flerdimensjonal Analyse våren Maple-øving 2. Viktig informasjon. Institutt for matematiske fag. maple02 28.

NTNU. MA1103 Flerdimensjonal Analyse våren Maple-øving 2. Viktig informasjon. Institutt for matematiske fag. maple02 28. NTNU Institutt for matematiske fag MA1103 Flerdimensjonal Analyse våren 2011 Maple-øving 2 Fyll inn studieprogram: Fyll inn navn: 1. 2. 3. 4. Viktig informasjon Besvarelsen kan leveres som gruppearbeid

Detaljer

Løsning, Trippelintegraler

Løsning, Trippelintegraler Ukeoppgaver, uke 7 Matematikk, rippelintegraler Løsning, rippelintegraler Oppgave a) b) c) 6 x + + ) d d dx x + +/) d dx x) d d dx x + + /] d dx x + /+/] dx x +6)dx 8 6 d ) ) d xdx 6 ) ) ) d d xdx 6 8

Detaljer

SIF5005 MATEMATIKK 2 VÅR r5 drdθ = 1 m. zrdzdrdθ = 1 m. zrdzdrdθ =

SIF5005 MATEMATIKK 2 VÅR r5 drdθ = 1 m. zrdzdrdθ = 1 m. zrdzdrdθ = SIF55 MAEMAIKK Å 3 Løsningsforslag Hjemmeøving 5 Oppgave. Ser at massen fordeler seg symetrisk om z-aksen, derfor vil tyngdepunktet ligge på z-aksen. Det eneste vi da trenger å regne ut er z. zδd = m π

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 11. juni 21. Tid for eksamen: 14.3 17.3. Oppgavesettet er på 7 sider. Vedlegg: Tillatte hjelpemidler: MAT111 Kalkulus

Detaljer

Løsning IM3 15.06.2011.

Løsning IM3 15.06.2011. Løsning IM 15611 1 Oppgave 1 Innsetting viser at både teller og nevner er i origo, så uttrykket er ubestemt Siden det ikke er noen umiddelbar omskriving som forenkler uttrykket satser vi på å vise at grensen

Detaljer

SIF 5005 Matematikk 2 våren 2001

SIF 5005 Matematikk 2 våren 2001 IF 55 Matematikk våren Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Diverse løsningsforslag 75 Matematikk B, mai 994 (side 77 79) 6 a) Vi finner en potensialfunksjon φ(x,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Ny/utsatt eksamen i Eksamensdag: 9. august 2. Tid for eksamen: 9 2. Oppgavesettet er på 8 sider. Vedlegg: Tillatte hjelpemidler: MAT Kalkulus

Detaljer

Løsning, funksjoner av flere variable.

Løsning, funksjoner av flere variable. Ukeoppgaver, uke 3 Matematikk 3, funksjoner av flere variable 1 Løsning, funksjoner av flere variable Oppgave 1 a) = +=, b) =, =y3 d ) e ) = 3+= 3 Selv om ikke x er med kan det betraktes som funksjon av

Detaljer

5 z ds = x 2 +4y 2 4

5 z ds = x 2 +4y 2 4 TMA45 Matematikk 2 Vår 25 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving Alle oppgavenummer referer til 8. utgave av Adams & Essex Calculus: A Complete

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MEK 11 Feltteori og vektoranalyse. Eksamensdag: Torsdag 1 desember 29. Tid for eksamen: 14:3 17:3. Oppgavesettet er på 7 sider.

Detaljer

= (2 6y) da. = πa 2 3

= (2 6y) da. = πa 2 3 TMA45 Matematikk Vår 7 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving Alle oppgavenummer referer til 8. utgave av Adams & Essex alculus: A omplete ourse.

Detaljer

UNIVERSITETET I BERGEN

UNIVERSITETET I BERGEN LØSNINGSFORSLAG UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. H.007. Eksamen i emnet MAT131 - Differensialligninger I 8. september 007 kl. 0900-100 Tillatte hjelpemidler: Ingen (heller

Detaljer

LØSNINGSFORSLAG TMA4105 Matematikk 2 8. August 2005

LØSNINGSFORSLAG TMA4105 Matematikk 2 8. August 2005 LØSNINGSFORSLAG TMA45 Matematikk 8. August 5 Oppgave Vi introduserer funksjonen g(x, y, z) x +y z slik at flaten z x + y er gitt ved g(x, y, z). I dette tilfellet utgjør gradienten til g en normalvektor

Detaljer

F = x F 1 + y F 2 + z F 3 = y 2 z 2 + x 2. i j k F = xy 2 yz 2 zx 2 = i(0 ( 2yz)) j(2xz 0) + k(0 2xy) = 2yzi 2xzj 2xyk.

F = x F 1 + y F 2 + z F 3 = y 2 z 2 + x 2. i j k F = xy 2 yz 2 zx 2 = i(0 ( 2yz)) j(2xz 0) + k(0 2xy) = 2yzi 2xzj 2xyk. TMA415 Matematikk 2 Vår 215 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 12 Alle oppgavenummer referer til 8. utgave av Adams & Essex alculus: A omplete

Detaljer

Løsning til utvalgte oppgaver fra kapittel 13, (16).

Løsning til utvalgte oppgaver fra kapittel 13, (16). Løsning til utvalgte oppgaver fra kapittel, (6) Oppgave 7 ( 67 ) Kurven rt () (, t,), t t ligger i - planet Dette gir alternativ b eller f Setter inn t som gir punktet (, ) som bare er med i alternativ

Detaljer

Obligatorisk oppgåve 1

Obligatorisk oppgåve 1 FYS112 Elektromagnetisme 214 Obligatorisk oppgåve 1 Innleveringsfrist 19. september kl. 23.59 Lars Kristian Henriksen 21. oktober 214 Obligar i FYS112 leverast elektronisk på Devilry http://devilry.ifi.uio.no/.

Detaljer

(1 + x 2 + y 2 ) 2 = 1 x2 + y 2. (1 + x 2 + y 2 ) 2, x 2y

(1 + x 2 + y 2 ) 2 = 1 x2 + y 2. (1 + x 2 + y 2 ) 2, x 2y Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA45 Matematikk vår 9 Løsningsforslag til eksamen.5.9 Gitt f(, y) = + +y. a) Vi regner ut f = f y = + + y ( + + y ) = + + y

Detaljer

Vår TMA4105 Matematikk 2. Løsningsforslag Øving 2. Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag

Vår TMA4105 Matematikk 2. Løsningsforslag Øving 2. Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA415 Matematikk 2 Vår 217 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 2 11.1.9: Den aktuelle kurven er gitt ved r(t) (3 cos t, 4 cos t, 5 sin t).

Detaljer

(s + 1) s(s 2 +2s+2) : 1 2 s s + 2 = 1 2. s 2 + 2s cos(t π) e (t π) sin(t π) e (t π)) u(t π)

(s + 1) s(s 2 +2s+2) : 1 2 s s + 2 = 1 2. s 2 + 2s cos(t π) e (t π) sin(t π) e (t π)) u(t π) NTNU Institutt for matematiske fag Eksamen i TMA4 Matematikk 4K og MA5 Kompl. f.teori med diff.likninger.8.4 Løsningsforslag Laplace-transformasjon av initialverdiproblemet gir y + y + y ut π), y), y )

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT111 Prøveeksamen Eksamensdag: 5. juni 21. Tid for eksamen: 1. 13.3. Oppgavesettet er på 9 sider. Vedlegg: Tillatte hjelpemidler:

Detaljer

Difflikninger med løsningsforslag.

Difflikninger med løsningsforslag. Repetisjon i Matematikk : Difflikninger med løsningsforslag. Høgskolen i Gjøvik Avdeling TØL Eksamensrepetisjon REA4 Matematikk Difflikninger med løsningsforslag. Difflikninger med løsningsforslag. Dette

Detaljer

Løsningsforslag eksamen TMA4105 matematikk 2, 25. mai 2005

Løsningsforslag eksamen TMA4105 matematikk 2, 25. mai 2005 Løsningsforslag eksamen TMA5 matematikk, 5. mai 5 Oppgave Vi finner de partiellderiverte av første og annen orden av f, ) = sin : f = sin, f = cos, f =, f = cos, f = sin. Finner de kritiske punktene ved

Detaljer

EKSAMENSOPPGÅVE. Tilletne hjelpemiddel: Godkjend kalkulator og formelsamling og 2 eigne A4-ark (4 sider totalt)

EKSAMENSOPPGÅVE. Tilletne hjelpemiddel: Godkjend kalkulator og formelsamling og 2 eigne A4-ark (4 sider totalt) EKSAMENSOPPGÅVE/EKSAMENSOPPGAVE EKSAMENSOPPGÅVE Eksamen i: MAT-1003 Kalkulus 3 Dato: Tirsdag 17. 1.013 Tid: Kl 09:00 13:00 Stad: Åsgårdveien 9 Tilletne hjelpemiddel: Godkjend kalkulator og formelsamling

Detaljer

Integraler. John Rognes. 15. mars 2011

Integraler. John Rognes. 15. mars 2011 15. mars 2011 forener geometrisk målbare områder Ω og skalarfelt f : Ω R definert på disse områdene. Vi danner produktet f (Ω) Ω av verdien f (Ω) av funksjonen og størrelsen Ω av området. Mer presist deler

Detaljer

Obligatorisk oppgave 2

Obligatorisk oppgave 2 MEK Obligatorisk oppgave 2 Nicolai Kristen Solheim Obligatorisk oppgave 2 Oppgave a) Vi kan beregne vektorfluksen Q = F ndσ gjennom en kuleflate σ gitt vektorfeltet σ F = xi + 2y + z j + z + x 2 k. Ved

Detaljer

Eksamen R2 høsten 2014 løsning

Eksamen R2 høsten 2014 løsning Eksamen R høsten 04 løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (3 poeng) Deriver funksjonene a) f x cos3x Vi bruker kjerneregelen

Detaljer

EKSAMEN BOKMÅL STEMMER. DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember :00-13: FAGKODE: IR Matematikk 1

EKSAMEN BOKMÅL STEMMER. DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember :00-13: FAGKODE: IR Matematikk 1 EKSAMEN BOKMÅL DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember 15 9:-13: FAGKODE: FAGNAVN: IR151 Matematikk 1 HJELPEMIDLER: Del 1: kl 9.-11. Ingen Del : kl 11.-13. Lommeregner Lærebok etter fritt valg Matematisk

Detaljer

Eksamen Ma 3 red.pensum 2006

Eksamen Ma 3 red.pensum 2006 Eksamen Ma B høst 6.nb Eksamen Ma red.pensum 6 Oppgave

Detaljer

TMA Tanker omkring innlevering 3 fra en studentassistents perspektiv

TMA Tanker omkring innlevering 3 fra en studentassistents perspektiv TMA15 - Tanker omkring innlevering 3 fra en studentassistents perspektiv April 7, 15 Mesteparten av dere har klart denne øvingen langt bedre enn de to forregående øvingene selv om denne var hakket vanskeligere.

Detaljer

Arne B. Sletsjøe. Oppgaver, MAT 1012

Arne B. Sletsjøe. Oppgaver, MAT 1012 Arne B. Sletsjøe Oppgaver, MAT 101 1 En-variabel kalkulus 1.1 I de følgende oppgavene, i) finn alle kritiske punkter til f(x), ii) beskriv monotoniegenskapene til funksjonene ved å se på fortegnet til

Detaljer

Kurve-, flate- og volumintegraler, beregning av trykkraft

Kurve-, flate- og volumintegraler, beregning av trykkraft Kapittel 6 Kurve-, flate- og volumintegraler, beregning av trykkraft Oppgave 1 Vi skal regne ut kurveintegralet λ v dr langs kurven λ: y x3 når 1 x 2 og v xyi+x 2 j. Vi kan parametrisere med x som parameter,

Detaljer

være en rasjonal funksjon med grad p < grad q. La oss skrive p(x) (x a)q(x) = A

være en rasjonal funksjon med grad p < grad q. La oss skrive p(x) (x a)q(x) = A MA 4: Analyse Uke 46, http://homehiano/ aasvaldl/ma4 H Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag Oppgave 73: Først skal vi delbrøkoppspalte (se Eksempel 5 side 558 i boka) 3t

Detaljer

NY Eksamen i matematikk III, 5 studiepoeng. August 2007

NY Eksamen i matematikk III, 5 studiepoeng. August 2007 NY Eksamen i matematikk III, 5 studiepoeng. August 7 Oppgave a. Regn ut gradienten til funksjonen f(x, y) = x +y +xy. I hvilken retning øker f mest når x = og y =? b. Regn ut kurveintegralet f(x, y) ds

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Forelesning 9 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 9 Derivasjon I dagens forelesning skal vi se på følgende: 1 Tilnærminger til små endringer. 2 Vekstfart.

Detaljer

EKSAMEN KANDIDATNUMMER: EKSAMENSDATO: 10. juni Ingeniørutdanning. TID: kl EMNEANSVARLIG: Hans Petter Hornæs

EKSAMEN KANDIDATNUMMER: EKSAMENSDATO: 10. juni Ingeniørutdanning. TID: kl EMNEANSVARLIG: Hans Petter Hornæs KANDIDATNUMMER: EKSAMEN EMNENAVN: EMNENUMMER: Statistikk. Rea181 EKSAMENSDATO: 1. juni 28 KLASSE: Ingeniørutdanning. TID: kl. 9. 13.. EMNEANSVARLIG: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 3 (innkl.

Detaljer

MAT Vår Oblig 2. Innleveringsfrist: Fredag 23.april kl. 1430

MAT Vår Oblig 2. Innleveringsfrist: Fredag 23.april kl. 1430 MAT 00 Vår 00 Oblig Innleveringsfrist: Fredag 3.april kl. 430 Oppgaven leveres stiftet med forsideark på ekspedisjonskontoret til Matematisk institutt i 7. etg. i Niels Henrik Abels hus innen fristen.

Detaljer

Fasit til eksamen i MEK1100 høst 2006

Fasit til eksamen i MEK1100 høst 2006 Fasit til eksamen i MEK11 høst 26 Det er tilsammen 1 delspørsmål. Hvert delspørsmål honoreres med poengsum fra til 1 (1 for fullstendig svar, for blank). Maksimal oppnåelig poengsum er 1. Kontroller at

Detaljer

EKSAMEN. Flexibel ingeniørutdanning, 2kl. Bygg.

EKSAMEN. Flexibel ingeniørutdanning, 2kl. Bygg. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. REA 1081F REA1081) EKSAMENSDATO: 1. juni 2010. KLASSE: Flexibel ingeniørutdanning, 2kl. Bygg. TID: kl. 9.00 12.00. FAGLÆRER: Hans Petter Hornæs ANTALL

Detaljer

Kurve-, flate- og volumintegraler, beregning av trykkraft

Kurve-, flate- og volumintegraler, beregning av trykkraft Kapittel 6 Kurve-, flate- og volumintegraler, beregning av trykkraft Oppgave 1 Vi skal regne ut kurveintegralet λ v dr langs kurven λ: y x3 når 1 x 2 og v xyi+x 2 j. Vi kan parametrisere med x som parameter,

Detaljer

IR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer

IR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer Eksamen 8. desember 16 Eksamenstid 4 timer IR151 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del uten bruk av hjelpemidler. Du kan bare bruke

Detaljer

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8 Innlevering BYFE DAFE Matematikk HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 5. april 6 kl Antall oppgaver: 8 Funksjonen ft) er vist i guren over. Funksjonen F x) er denert som for x. F x)

Detaljer