EKSAMEN. 3. klassene, ingenørutdanning. ANTALL SIDER UTLEVERT: 5 (innkl. forside og formelark)

Størrelse: px
Begynne med side:

Download "EKSAMEN. 3. klassene, ingenørutdanning. ANTALL SIDER UTLEVERT: 5 (innkl. forside og formelark)"

Transkript

1 KANDIDANUMME: EKAMEN EMNENAVN: Matematikk 3 EMNENUMME: EA32 EKAMENDAO: 5.desember 27 KLAE: 3. klassene, ingenørutdanning. ID: kl EMNEANVALIG: Hans Petter Hornæs ANALL IDE ULEVE: 5 (innkl. forside og formelark ILLAE HJELPEMIDLE: John Haugan: Formler og tabeller. Kalkulator. INNFØING MED PENN, evt. trykkblyant som gir gjennomslag. Ved innlevering skilles hvit og gul besvarelse og legges i hvert sitt omslag. Oppgavetekst, kladd og blå kopi beholder kandidaten. Husk kandidatnummer på alle ark.

2 Eksamen i Matematikk 3 5.desember 27 1 Hvert bokstavpunkt teller likt ved bedømmelsen, oppgaver uten bokstavpunkter teller som et bokstavpunkt. Oppgave 1 La funksjonen f : 3 være definert ved funksjonsuttrykket f(x, y, z ( x 2 + y 2 2 z. a Finn gradienten f(x, y, z i et vilkårlig punkt med koordinater (x, y, z, og spesielt i punktet med koordinater (1, 1, 1. b En romkurve med startpunkt i punktet med koordinater (1, 1, 1 og endepunkt i punktet med koordinater (2,, 3 er parametrisert med r(t [1+t 2, cos( π ] 2 t, 3t, t 1. Et vektorfelt F i rommet 3 er gitt ved F (x, y, z [ x(x 2 + y 2, y(x 2 + y 2, ]. c egn ut arbeidsintegralet F ds. Hint: Hvis du ender opp med et komplisert integral har du kanskje oversett noe? En flate i rommet er gitt ved likningen ( x 2 + y 2 2 z, og punktet med koordinater (1, 1, 1 ligger på denne. (egningen til oppgave 2 er et utsnitt av denne flaten. Finn en likning for tangentplanet til flaten i dette punktet. Oppgave 2 La 1 være flaten gitt ved z 1 ( x 2 + y 2 2 (tegnet til høyre, som sammen med planet 2 gitt ved z avgrenseret romlegeme som kalles. Hele overflaten til kalles. Dessuten har vi gitt feltet F i 3 ved F (x, y, z [ 3xz + z y, 3yz + x z + e y,z 2 +1 ze y] a egn ut arbeidsintegralet F ds der er romkurva parametrisert med r(t [t 2,,t], t 1.

3 Eksamen i Matematikk 3 5.desember 27 2 b ett opp et trippelintegral for volumet av uttrykt i sylinderkoordinater (r, θ, z. Det vil si at både integranden, dv og integrasjonsgrensene skal uttrykkes i sylinderkoordinater, men du skal ikke regne ut integralet. c egn ut divergensen F og curlen F. Er F et konservativt felt? d egn ut fluksen ut av legemet, det vil si F n d e der n er enhetsnormalvektorene på som peker ut av legemet. egn ut fluksen til curlen oppover gjennom den krumme flaten 1,detvilsi ( F n d 1 der n er enhetsnormalvektorene på 1 som peker oppover (har positiv z koordinat. Oppgave 3 a Finn (den entydige funksjonen u u(x, t, definert for x, t, som oppfyller alle de følgende betingelsene: 9u xx u tt (1 u(,t (2 u(,t (3 u(x, 2 sin(πx ( u t (x, (5. b Utregningene skal i grove trekk vises. Det er ikke påkrevet med en fullstendig detaljert drøfting, for eksempel av at tilfellene κ 2 og κ 2 > ikke gir noen ikke trivielle bidrag (ledd forskjellig fra til løsningen. Finn (den entydige funksjonen u u(x, t, definert for x, t, som oppfyller betingelsene (1, (2, (3 og (5 fra a oppgaven, mens betingelse ( er erstattet med u(x, x 1 x2 (. Løsningen kan skrives som en uendelig rekke u i1 u i u 1 + u 2 + u 3 +. Det er nok åangi tilnærmingsløsningen du får med å ta med de to første ikke trivielle leddene. En integrasjonsformel som litt hjelp for å redusere regnearbeidet: La a væreenkonstant. Daer (x 1 x2 sin(ax dx ( a 2 axsin(ax+(a2 x 2 a 2 x 2cos(ax a 3 Lykke til.

4 Eksamen i Matematikk 3 5.desember 27 3 HØGKOLEN I GJØVIK FOMELAMLING FO BUK VED EKAMEN I MAEMAIKK 3 Koordinatskifte i multiple integraler: } x x(u, v Dobbeltintegral, generelt: y y(u, v f(x, y dx dy f(x(u, v,y(u, v J(u, v du dv der J(u, v x u y v x v y u. Dobbeltintegral, polarkoordinater: } x r cos θ f(x, y dx dy f(r cos θ, r sin θ rdrdθ y r sin θ x x(u, v, w rippelintegral, generelt: y y(u, v, w z z(u, v, w f(x, y, z dx dy dz f(x(u, v, w,y(u, v, w,z(u, v, w J(u, v, w du dv dw rippelintegral, sylinderkoordinater: x r cos θ y r sin θ f(x, y, z dx dy dz z z rippelintegral, kulekoordinater: f(x, y, z dx dy dz Gradient, divergens og curl : grad(f f f x ı + f y j + f z k x ρ sin φ cos θ y ρ sin φ sin θ z ρ cos φ der J(u, v, w x u x v x w y u y v y w z u z v z w f(r cos θ, r sin θ, z rdzdrdθ f(ρ sin φ cos θ, ρ sin φ sin θ, ρ cos φ ρ 2 sin φdρdφdθ div( F F P x + Q y + z, der F P ı + Q j + k curl( F F ı j k x y z P Q ( y Q z ı ( x P z j +(Q x P y k.

5 Eksamen i Matematikk 3 5.desember 27 o viktige setninger: Divergenssetningen (Gauss setning: F n d F dv dersom er et begrenset legeme, er overflaten til og er stykkevis glatt, n er den overalt utadrettede enhetsnormalvektor på og F er et vektorfelt hvis komponenter er definert og kontinuerlig deriverbare i hele og påhele. tokes setning: F ds ( F n d dersom er en lukket, begrenset og stykkevis glatt flate, n er en orientering av, er randkurven til positivt orientert m.h.p. n, ogf er et vektorfelt hvis komponenter er definert og kontinuerlig deriverbare i en åpen del av rommet som inneholder. Ordinære differensiallikninger: 1.-ordens lineære, homogene, med konstante koeffisienter: Allmenn løsning av F (t+af (t er F (t e at. 2.-ordens lineære, homogene, med konstante koeffisienter: Allmenn løsning av af (t+bf (t+cf (t (dera avhengerava, b og c, slik: (1 Hvis ar 2 + br + c har to forskjellige reelle røtter, r 1 og r 2 : F (t 1 e r1t + 2 e r2t. (2 Hvis ar 2 + br + c harbareén (reell rot, r: F (t ( 1 t + 2 e rt. (3 Hvis ar 2 + br + c har to komplekse røtter, α ± βi: F (t e αt ( 1 cos βt + 2 sin βt. Partielle differensiallikninger, d Alemberts løsning av bølgelikningen c 2 u xx u tt : Allmenn løsning kan skrives slik: F (x + ct+g(x ct. Løsninger som oppfyller randbetingelsen u t (x, kan skrives slik: F (x+ct+f(x ct. Fourierrekker, halvperiodiske utvidelser: Hvis f(x er definert og stykkevis kontinuerlig og begrenset på [,L], da gjelder følgende for de x [,L]derf er kontinuerlig: ( nπ f(x a + a n cos L x, der og: f(x n1 n1 a 1 L L f(x dx og a n 2 L L ( nπ b n sin L x, der b n 2 L ( nπ f(xsin L L x dx. ( nπ f(xcos L x dx,

6 Løsning, eksamen i Matematikk 3 5.desember 27 1 Oppgave 1 a f(x, y, z [ 2(x 2 + y 2 2x, 2(x 2 + y 2 2y, ] [ x(x 2 + y 2, y(x 2 + y 2, ] f(1, 1, 1 [ 1 ( , 1 ( , ] [8, 8, ] b iden F f er feltet et gradientfelt med potensialfunksjon f. Da avhenger arbeidsintegralet bare av endepunktene, ikke av vegen mellom disse, og kan regnes ut ved [2,,3] F ds f(2,, 3 f(1, 1, 1 [1,1,1] ( ( ( ( c Gradienten er normalvektor til flaten og tangentplanet. Likningen for et plan gjennom punktet med koordinater (x,y,z normaltpåvektoren[a, b, c] er a(x x +b(y y +c(z z, og her har vi da (x,y,z (1, 1, 1 og [a, b, c] f(1, 1, 1 [8, 8, ]: 8(x 1 + 8(y 1 (z 1 2x 2+2y 2 z +1 2x +2y z 3 Oppgave 2 a Vi har [ẋ, ẏ,ż] [2t,, 1] så dx 2tdt, dy ogdz dt: F ds Pdx+ Qdy+ dz 1 1 (3 t 2 t + t 2t +(3 t + t 2 t + e +(t 2 +1 te 1 dt 6t +2t 2 +t 2 +1 tdt b Volumet er [ 6 5 t5 + t 3 + t 1 ] 1 2 t dv,meddv rdzdrdθ i sylinderkoordinater. Flaten som danner nedre avgrensning for z er z 1 Øvre avgrensning er z. ( r 2 2 z 1 r Avgrensingen på (x, y er en sirkel som er projeksjonen av lokket ned i xy planet. Ved å sette inn z får vi likningen for denne: 1 ((x2 + y 2 2 ((x 2 + y x 2 + y 2 x 2 + y Det er med andre ord en sirkelskive med sentrunm i origo og radius 2, som med polar- (og sylinder- koordinater er gitt ved r 2, θ 2π. Dette oppsummeres til 2π 2 V dv rdzdrdθ r /

7 Løsning, eksamen i Matematikk 3 5.desember 27 2 c F x (3xz + z y+ y (3yz + x z + ey + z (z2 +1 ze y 3z +3z + e y +2z e y 8z F i j k x y z 3xz + z y 3yz + x z + e y z 2 +1 ze y i y 3yz + x z + e y z z 2 +1 ze y j x 3xz + z y x k 3xz + z y z z 2 +1 ze y y + 3yz + x z + e y i( ze y (3y 1 j( (3x +1+k(1 ( 1 [ ze y 3y +1, 3x +1, 2] d e iden F er feltet ikke konservativt. Ved divergenssetningen har vi F n d F dv 8zdV, og det er nok mye enklere å regne ut trippelintegralet på høyresiden en flateintegralet på venstresiden. Det er naturlig å bruke sylinderkordinater, dv og integrasjonsgrensene blir som i a oppgaven. I tillegg har vi med integranden 8z som også er8z i sylinderkoordinater:: 2π 2 8zdV 8z r dz dr dθ 2π 2 [ z 2 r ] zr / dr dθ 2π 2π 2 [ 32r 2 1 ] 2 r1 dθ r / 6r (r / 2 rdrdθ 2π 2π dθ 6r 1 r9 dr dθ Mellomregning: 2 1 / ( /(5 2 3 ( /5 128/5, og så integralet er 2π dθ 2π π Dette flateintegralet blir komplisert, men ved tokes setning kan det omformes til: ( F n d F ds 1 E der E er randen til 1, med omdreiningsretning mot klokka sett ovenifra.

8 Løsning, eksamen i Matematikk 3 5.desember 27 3 Dette blir imidlertid også litt komplisert, men kan omformes ved å bruke tokes setning en gang til, siden den plane flaten 2 også hare som rand. Da vil jo blant annet bare den enkle 3.-koordinaten i curlen komme med i integranden: ( F n d F ds ( F n d 1 E 2 Dette flateintegralet lar seg forenkle, vi har for eksempel n k på 2, og flateintegraler på plan parallellt med xy planet reduseres til vanlige dobbeltintegraler (ved å sette inn z.løsninger basert på dette er selvfølgelig godtatt, men her tar jeg med løsningen på den generelle måten, med utgangspunkt i at flaten er parametrisert med x og y (en parametrisering direkte med r og θ ville heller ikke vært så dumt: r(x, y [x, y, ] r x [1,, ] r y [, 1, ] Da finner vi lett r x r y [,, 1] k: ( F n d 2 [ ze y 3y +1, 3x +1, 2] [,, 1] dx dy ( F (r x r y dx dy 2 dx dy 2 dx dy Parameterområdet er sirkelen gitt ved x 2 + y 2. Integralet kan løses via polarkordinater, men det er enklere ved å se at dette er arealet av : ( F n d 2 da 2 π 2 2 8π 1 Oppgave 3 a eparasjon av variable, dvs. søker løsninger på formenu X som gir u xx X og u tt X. Dette settes så inn i differensiallikningen (1: 9X X X X 9 Dette er bare mulig hvis begge sider er lik en konstant vi kaller κ 2 : X X κ2 X + κ 2 X og 9 κ2 +9κ 2 Vi finner så langt mulige løsninger påformen u(x, t (A cos(κx+b sin(κx ( cos(3κt+d sin(3κt. etter så innx,ogdermedsin(κx sin( og cos(κx cos( 1 og bruker (2: A ( cos(3κt+d sin(3κt så A Alternativet åvelge D gir bare den trivielle løsningen u(x, t.

9 Løsning, eksamen i Matematikk 3 5.desember 27 å langt har vi da funksjonene u(x, t sin(κx(e cos(3κt+f sin(3κt som oppfyller (1 og (2, der E B og F BD. etter så innx og bruker betingelse (3: sin(κ (E cos(3κt+f sin(3κt så sin(κ. Betingelsen er også oppfyllt om vi velger E F,mendastår vi bare igjen med den trivielle løsningen. iden nullpunktene til sinus er nπ for heltall n (nok å velge de positive heltallene får vi κ nπ κ nπ. Løsningene på formenu X som oppfyller (1, (2 og (3 er dermed u(x, t sin( nπ ( x E cos(3 nπ t+f sin(3nπ t. Deriverer denne med hensyn på t: : u t (x, t sin( nπ ( x E sin(3 nπ t+f cos(3nπ t 3 nπ Og setter inn t forå bruke betingelse (5: sin( nπ x( E sin( + F cos( 3nπ F sin(nπ x 3nπ F Nå kan det være hensiktsmessig åomdøpeu til u n og E til b n, og løsninger som oppfyller (1, (2, (3 og (5 er på formen u n (x, t b n sin( nπ xcos(3nπ t Ved å sette inn t får vi u n (x, b n sin( nπ x. Vi ser at ved åvelgen ogb 2 er også betingelse ( oppfyllt. Da alle betingelsene er oppfyllt har vi løsningen u(x, t 2sin(πxcos(3πt b Det er åpenbart ikke mulig åskrivex 1 x2 som noen endelig sum av ledd på formen u n (x, b n sin( nπ x, så vimå ty til uendelige summer u(x, t b n sin( nπ xcos(3nπ t u(x, b n sin( nπ x n1 For åfå u(x, x 1 x2 måvivelgeb n som Fourierkoeffisientene i sinusrekka til x 1 x2. Formelen for b n finner vi på det vedlagte formelarket: b n 2 L L ( nπ f(xsin L x dx 2 n1 (x 1 ( nπ x2 sin x dx.

10 Løsning, eksamen i Matematikk 3 5.desember 27 5 Formelen i oppgaveteksten, med a nπ, kan brukes til å regne ut integralet: b n 2 [ (a 2axsin(ax+(a 2 x 2 a 2 ] x 2 cos (ax a 3 ( 1 (a 8asin(a+(16a 2 16a 2 2 cos (a 2 a 3 2a sin(a cos(a+1 a 3 2 nπ a sin ( + ( 2 cos ( a 3 sin( nπ cos( nπ +1 ( nπ 3 inusleddet blir sin(nπ og cosinusleddet blir cos(nπ ( 1 n så b n cos(nπ+1 n 3 π π 3 ( 1n +1 n 3 For n 1får vi b 1 16 π π 3. For n 2får vi b 2 16 π For n 3får vi b 3 16 π ,oghardafått med to ledd forskjellig fra. 27π3 Løsningen er derfor u(x, t 32 π 3 sin(π xcos(3π 32 t 27π 3 sin(3π xcos(9π t+ Kommentar: iden vi har n 3 i nevner konvergerer rekken fort og vi får god tilnærmelse med disse to leddene. Dette er rimelig siden parabelen likner på en sinuskurve i utgangspunktet. Du innser vel også atb n for alle partall n, mens den er på formenb n ± 32 n 3 π med pluss og minus 3 annenhver gang for n oddetall.

EKSAMEN. 3. klassene, ingenørutdanning. ANTALL SIDER UTLEVERT: 5 (innkl. forside og formelark)

EKSAMEN. 3. klassene, ingenørutdanning. ANTALL SIDER UTLEVERT: 5 (innkl. forside og formelark) KANDIDATNUMME: EKAMEN EMNENAVN: Matematikk 3 EMNENUMME: EA32 EKAMENDATO: 8.desember 28 KLAE: 3. klassene, ingenørutdanning. TID: kl. 9. 13.. EMNEANVALIG: Hans Petter Hornæs ANTALL IDE UTLEVET: 5 (innkl.

Detaljer

EKSAMEN. Valgfag, ingeniørutdanning (3. klasse). ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formelark.)

EKSAMEN. Valgfag, ingeniørutdanning (3. klasse). ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formelark.) KANDIDANUMME: EKAMEN FAGNAVN: Matematikk 3 FAGNUMME: EA32 EKAMENDAO: 1. desember 26 KLAE: Valgfag, ingeniørutdanning (3. klasse). ID: kl. 9. 13.. FAGLÆE: Hans Petter Hornæs ANALL IDE ULEVE: 5 (innkl. forside

Detaljer

EKSAMEN. 3. klassene, ingenørutdanning. ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formelark.)

EKSAMEN. 3. klassene, ingenørutdanning. ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formelark.) KANDIDATNUMME: EKAMEN FAGNAVN: Matematikk 3 FAGNUMME: EA32 EKAMENDATO: 13. desember 25 ENUFIT: 3. januar 26 KLAE: 3. klassene, ingenørutdanning. TID: kl. 9. 13.. FAGLÆE: Hans Petter Hornæs ANTALL IDE UTLEVET:

Detaljer

EKSAMEN i MATEMATIKK 30

EKSAMEN i MATEMATIKK 30 Eksamen i Matematikk 3 1. desember 1999 1 Høgskolen i Gjøvik Avdeling for teknologi EKAMEN i MATEMATIKK 3 1 desember 1999 kl. 9 14 Fagnummer: V139A Faglærer: Hans Petter Hornæs Tillatte hjelpemidler: Godkjent

Detaljer

EKSAMEN. 3. klassene, ingenørutdanning. ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formler.)

EKSAMEN. 3. klassene, ingenørutdanning. ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formler.) KANDIDATNUMME: EKAMEN FAGNAVN: Matematikk 3 FAGNUMME: EA32 EKAMENDATO: 25. mars 29 KLAE: 3. klassene, ingenørutdanning. TID: kl. 9. 13.. FAGLÆE: Hans Petter Hornæs ANTALL IDE UTLEVET: 5 (innkl. forside

Detaljer

Eksamen i V139A Matematikk 30

Eksamen i V139A Matematikk 30 Høgskolen i Gjøvik Avdeling for teknologi Eksamen i V139A Matematikk 3 4. juni 22 9. 14. Fagnummer: V139A Faglærere: Hans Petter Hornæs. Tillatte hjelpemidler: Godkjent kalkulator, Formelsamling. Oppgavesettet

Detaljer

Eksamen i V139A Matematikk 30

Eksamen i V139A Matematikk 30 Høgskolen i Gjøvik Avdeling for teknologi Eksamen i V139A Matematikk 3 21. desember 21 9. 14. Fagnummer: V139A Faglærer: Hans Petter Hornæs Tillatte hjelpemidler: Godkjent kalkulator ottmanns formelsamling

Detaljer

EKSAMEN i MATEMATIKK 30

EKSAMEN i MATEMATIKK 30 Eksamen i Matematikk 3 3. mai Høgskolen i Gjøvik Avdeling for teknologi EKSAMEN i MATEMATIKK 3 Onsdag 3. mai kl. 9 4 agnummer: V39A aglærer: Hans Petter Hornæs Tillatte hjelpemidler: Godkjent kalkulator

Detaljer

Matematikk 4, ALM304V Løsningsforslag eksamen mars da 1 er arealet av en sirkel med radius 2. F = y x = t t r = t t v = r = t t

Matematikk 4, ALM304V Løsningsforslag eksamen mars da 1 er arealet av en sirkel med radius 2. F = y x = t t r = t t v = r = t t Oppgave r( t) v( t) dt t dt, t dt, t dt t +, t +, t +. d d d a( t) v '( t) t, t, t,6 t,t dt dt dt F ma m t t Gitt en hastighetsvektor v( t) t, t, t.,6, Oppgave Greens setning: δq δ P I ( Pdx + Qdy) ( )

Detaljer

Oppgavesettet har 10 punkter 1, 2ab, 3ab, 4ab, 5abc som teller likt ved bedømmelsen.

Oppgavesettet har 10 punkter 1, 2ab, 3ab, 4ab, 5abc som teller likt ved bedømmelsen. NTNU Institutt for matematiske fag SIF55 Matematikk 2 4. mai 999 Løsningsforslag Oppgavesettet har punkter, 2ab, 3ab, 4ab, 5abc som teller likt ved bedømmelsen. i alternativ (3, ii alternativ (2. 2 a For

Detaljer

Løsning, Stokes setning

Løsning, Stokes setning Ukeoppgaver, uke 4 Matematikk, tokes setning 1 Løsning, tokes setning Oppgave 1 a) b) c) F x y z x y z F x x + y y + z z 1+1+1 iden F er feltet konservativt. ( z y y ) ( x i z z z ) ( y x x x ) k i +k

Detaljer

The full and long title of the presentation

The full and long title of the presentation The full and long title of the presentation Subtitle if you want Øistein Søvik Mai 207 Ø. Søvik Short title Mai 207 / 4 Innholdsfortegnelse Introduksjon Nyttige tips før eksamen Nyttige tips under eksamen

Detaljer

Randkurva C til flata S orienteres positivt sett ovenfra, og kan parametriseres ved: r (t) = [ sin t, cos t, sin t] dt, 0 t 2π.

Randkurva C til flata S orienteres positivt sett ovenfra, og kan parametriseres ved: r (t) = [ sin t, cos t, sin t] dt, 0 t 2π. Ma - Løsningsforslag til uke 17 i 7 Eks. mai 1999 oppgave 4 ylinderen x + y = 1 skjærer ut ei flate av planet z = x + 1 dvs. x + z = 1 med enhetsnormal i positiv z-retning lik n= 1 [ 1 1]. Flata blir en

Detaljer

Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, vår 2009

Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, vår 2009 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 8 Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, vår 2009 Oppgave 1 Avgjør om grenseverdiene eksisterer:

Detaljer

Løsningsforslag til eksamen i TMA4105 matematikk 2,

Løsningsforslag til eksamen i TMA4105 matematikk 2, Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av Løsningsforslag til eksamen i TMA45 matematikk, 9.5.4 Oppgave La fx, y, z) xy + arctanxz). La P være punktet,, ). a)

Detaljer

Oppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener.

Oppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener. NTNU Institutt for matematiske fag TMA45 Matematikk, øving, vår Løsningsforslag Notasjon og merknader Oppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener. Oppgaver fra kapittel

Detaljer

(t) = [ 2 cos t, 2 sin t, 0] = 4. Da z = 2(1 + t) blir kurva C en helix/ei skruelinje på denne flata (se fig side 392).

(t) = [ 2 cos t, 2 sin t, 0] = 4. Da z = 2(1 + t) blir kurva C en helix/ei skruelinje på denne flata (se fig side 392). Ma - Løsningsforslag til uke 5 i 7 Eks. mai 994 oppgave Romkurva er parametrisert for t [, π] ved r (t) = [ + cos t, + sin t, + t ] Hastighets- og akselerasjonsvektorene blir v = r (t) = [ sin t, cos t,

Detaljer

LØSNINGSFORSLAG TIL ØVING 11, TMA4105, V2008. x = r cos θ, y = r sin θ, z = 2r for 0 θ 2π, 2 2r 6. i j k. 5 r dr dθ = 8

LØSNINGSFORSLAG TIL ØVING 11, TMA4105, V2008. x = r cos θ, y = r sin θ, z = 2r for 0 θ 2π, 2 2r 6. i j k. 5 r dr dθ = 8 LØNINGFORLAG TIL ØVING, TMA45, V8 Oppgave 4.5.9. Parametrisering: x = r cos θ, y = r sin θ, z = r for θ π, r 6. r(r, θ) = r cos θ, r sin θ, r. N = r r r θ = cos θ sin θ = r cos θ, r sin θ, r. r sin θ r

Detaljer

dx = 1 1 )dx = 3 y= x . Tangentplanet til hyperboloiden i (2, 1, 3) er derfor gitt ved x 2, y 1, z 3 = 0 x 2 + 2(y 1) 2 (z 3) = 0 x + 2y 2z 3 = 2

dx = 1 1 )dx = 3 y= x . Tangentplanet til hyperboloiden i (2, 1, 3) er derfor gitt ved x 2, y 1, z 3 = 0 x 2 + 2(y 1) 2 (z 3) = 0 x + 2y 2z 3 = 2 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA415 Matematikk vår 9 øsningsforslag til eksamen 15. august 9 1 Treghetsmoment med hensyn på x-aksen er gitt ved x [ ] y I

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAGET 5005/7 MATEMATIKK 2 1. august der k er et vilkårlig heltall. Det gir

LØSNINGSFORSLAG TIL EKSAMEN I FAGET 5005/7 MATEMATIKK 2 1. august der k er et vilkårlig heltall. Det gir LØNINGFOLAG IL EKAMEN I FAGE 55/7 MAEMAIKK. august Oppgave. (i Ja. (ii Ja. (iii Nei. Alternativt: (i Ja. (ii Ja. (iii Ja. Oppgave. curlf (x, y F i j k (x, y / x / y / z e y + ye x +x xe y + e x + Altså

Detaljer

EKSAMEN. Ingeniørstudenter som tar opp igjen eksa- men (6stp.).

EKSAMEN. Ingeniørstudenter som tar opp igjen eksa- men (6stp.). KANDIDATNUMMER: EKSAMEN FAGNAVN: Matematikk FAGNUMMER: F74A EKSAMENSDATO: 6. desember 24 SENSURFRIST: 6. januar 25 Ingeniørstudenter som tar opp igjen eksa- KLASSE: men 6stp.). TID: kl. 9. 4.. FAGLÆRER:

Detaljer

EKSAMEN. ANTALL SIDER UTLEVERT: 3 sider inklusiv forside.

EKSAMEN. ANTALL SIDER UTLEVERT: 3 sider inklusiv forside. KANDIDATNUMMER: EKSAMEN FAGNAVN: Matematiske metoder. FAGNUMMER: JøG 0 EKSAMENSDATO: 7. desember 003 SENSURFRIST: 7. januar 004. KLASSE: HIS 003/004. TID: kl. 8.00 3.00. FAGLÆRER: Hans Petter Hornæs ANTALL

Detaljer

EKSAMEN I FAG SIF5005 MATEMATIKK 2

EKSAMEN I FAG SIF5005 MATEMATIKK 2 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 3 Faglig kontakt under eksamen: Trond Digernes 7359357 Berner Larsen 73 59 35 5 Lisa Lorentzen 73 59 35 48 Vigdis Petersen

Detaljer

EKSAMEN. Ingeniør- og Fleksibel ingeniørutdanning.

EKSAMEN. Ingeniør- og Fleksibel ingeniørutdanning. KANDIDATNUMMER: EKSAMEN EMNENAVN: Matematikk. EMNENUMMER: REA42/REA42F EKSAMENSDATO: Mandag 9. august 2 KLASSE: Ingeniør- og Fleksibel ingeniørutdanning. TID: kl. 9. 3.. FAGANSVARLIG: Hans Petter Hornæs

Detaljer

e y + ye x +2x xe y + e x +1 0 = 0

e y + ye x +2x xe y + e x +1 0 = 0 LØNINGFORLAG TIL EKAMEN I FAGET 55/7 MATEMATIKK. august Oppgave. (i) Ja. (ii) Ja. (iii) Nei. Alternativt: (i) Ja. (ii) Ja. (iii) Ja. Oppgave. a) curlf (x, y) F i j k (x, y) / x / y / z e y + ye x +x xe

Detaljer

SIF 5005 Matematikk 2 våren 2001

SIF 5005 Matematikk 2 våren 2001 IF 55 Matematikk våren Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Diverse løsningsforslag 75 Matematikk B, mai 994 (side 77 79) 6 a) Vi finner en potensialfunksjon φ(x,

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. John Haugan: Formler og tabeller. Rottmanns formelsamling (tillatt som overgangsordning)

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. John Haugan: Formler og tabeller. Rottmanns formelsamling (tillatt som overgangsordning) KANDIDATNUMMER: EKSAMEN FAGNAVN: Matematiske metoder 1. FAGNUMMER: JøG10 EKSAMENSDATO: 5. april 00. SENSURFRIST: 16. mai 00. KLASSE: HSIS 00-005. TID: kl. 8.00 1.00. FAGLÆRER: Hans Petter Hornæs ANTALL

Detaljer

Løsning IM

Løsning IM Løsning IM 6 Oppgave x + y Grensen lim er ubestemt da både teller og nevner blir Vi skal vise at grensen ( xy, ) (,) x + y ikke eksisterer og bruker rette linjer inn mot origo De enkleste linjene er koordinataksene

Detaljer

Løsning til eksamen i ingeniørmatematikk

Løsning til eksamen i ingeniørmatematikk Løsning til eksamen i ingeniørmatematikk 3 78 Oppgave Vektorfeltet har komponenter og er funksjon av variable Jacobimatrisen er av type ( xy) ( xy) x y ( yx) ( yx) xy x y xy Innsatt finner vi JF ( x, y)

Detaljer

EKSAMEN I FAG SIF5005 MATEMATIKK 2

EKSAMEN I FAG SIF5005 MATEMATIKK 2 Norges teknisk naturvitenskapelige universitet Trond Digernes 75957 Berner Larsen 7 59 5 5 Lisa Lorenten 7 59 5 8 Vigdis Petersen 75965 ide av Vedlegg: Formelliste IF55 Matematikk ide av Oppgave Et plant

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: John Haugan: Formler og tabeller. Rottmanns formelsamling (tillatt som overgangsordning)

EKSAMEN. TILLATTE HJELPEMIDLER: John Haugan: Formler og tabeller. Rottmanns formelsamling (tillatt som overgangsordning) KANDIDATNUMMER: EKSAMEN FAGNAVN: Matematikk FAGNUMMER: REA4 EKSAMENSDATO: 6. desember 24 SENSURFRIST: 6. januar 25 KLASSE:. klassene, ingenørutdanning. TID: kl. 9. 3.. FAGLÆRER: Hans Petter Hornæs ANTALL

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: Eksamensdag: Fredag 1. april 2011 Tid for eksamen: 15.00 17.00 Oppgavesettet er på 7 sider. Vedlegg: Tillatte hjelpemidler:

Detaljer

Løsningsforslag til prøveeksamen i MAT 1110, våren 2006

Løsningsforslag til prøveeksamen i MAT 1110, våren 2006 Løsningsforslag til prøveeksamen i MAT, våren 6 Oppgave : a) Vi har C 5 3 II+( )I a + 3a 3a III+I 3 II 3 3 3 3 a + 3a 3a 3 a + 3a 3a III+II I+( ))II 3 3 3 a + 3a 3a 3 3 3 a + 3a 4 3 3a a + 3a 4 3 3a b)

Detaljer

Løsning IM3 15.06.2011.

Løsning IM3 15.06.2011. Løsning IM 15611 1 Oppgave 1 Innsetting viser at både teller og nevner er i origo, så uttrykket er ubestemt Siden det ikke er noen umiddelbar omskriving som forenkler uttrykket satser vi på å vise at grensen

Detaljer

EKSAMENSOPPGAVE. KRAFT I og II Hall del 2 Kraft sportssenter Ingen

EKSAMENSOPPGAVE. KRAFT I og II Hall del 2 Kraft sportssenter Ingen Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: MAT-1003 Kalkulus 3 Dato: 11.12.2018 Klokkeslett: 09.00-13.00 Sted: Tillatte hjelpemidler: KRAFT I og II Hall del 2 Kraft sportssenter

Detaljer

Eksamen, høsten 13 i Matematikk 3 Løsningsforslag

Eksamen, høsten 13 i Matematikk 3 Løsningsforslag Eksamen, høsten 3 i Matematikk 3 Løsningsforslag Oppgave. a) Fra ligningen x 5 + y 3 kan vi lese ut store og lille halvakse a 5 og b 3. Fokus til senter avstanden er da gitt ved c a b 5 3 5 9 6 4. ermed

Detaljer

Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, 8.juni 2010

Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, 8.juni 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Løsningsforslag, eksamen MA11 Flerdimensjonal analyse, 8.juni 21 Oppgave 1 a) Finn og klassifiser alle kritiske

Detaljer

EKSAMENSOPPGAVE. Eksamen i: MAT-1003 Dato: Tirsdag 15. desember 2015 Tid: Kl 15:00 19:00 Sted: Åsgårdvegen 9

EKSAMENSOPPGAVE. Eksamen i: MAT-1003 Dato: Tirsdag 15. desember 2015 Tid: Kl 15:00 19:00 Sted: Åsgårdvegen 9 EKSAMENSOPPGAVE Eksamen i: MAT-13 Dato: Tirsdag 15. desember 215 Tid: Kl 15: 19: Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Pedersen et al.: Teknisk formelsamling med tabeller, Rottmanns formelsamling,

Detaljer

Anbefalte oppgaver - Løsningsforslag

Anbefalte oppgaver - Løsningsforslag TMA415 Matematikk 2 Anbefalte oppgaver - Løsningsforslag Uke 14 1.4.5: Vi skal finne fluksen ut overflaten til den solide ballen B med sentrum = (2,, 3) og radius r = 3, av vektorfeltet F = x 2 i + y 2

Detaljer

Eksamensoppgave i MA1103 Flerdimensjonal analyse

Eksamensoppgave i MA1103 Flerdimensjonal analyse Institutt for matematiske fag Eksamensoppgave i MA113 Flerdimensjonal analyse Faglig kontakt under eksamen: Tlf: Eksamensdato: 5. Juni 19 Eksamenstid (fra til): 9: 13: Hjelpemiddelkode/Tillatte hjelpemidler:

Detaljer

SIF5005 Matematikk 2, 13. mai 2002 Løsningsforslag

SIF5005 Matematikk 2, 13. mai 2002 Løsningsforslag SIF55 Matematikk, 3. mai Oppgave Alternativ : At de to ligningene skjærer hverandre vil si at det finnes parameterverdier u og v som, innsatt i de to parametriseringene, gir samme punkt: Vi løser hver

Detaljer

TMA Representasjoner. Funksjoner. Operasjoner

TMA Representasjoner. Funksjoner. Operasjoner TMA 4105 Representasjoner Funksjoner Operasjoner Funksjoner f : D R m! f(d) R n reelle funksjoner kurver flater vektorfelt Funksjoner i) f : D R n! R reell funksjon av n variabler, f(x), f(x,y) eller f(x,y,z)

Detaljer

LØSNINGSFORSLAG EKSAMEN TMA4105 MATEMATIKK 2 Lørdag 14. aug 2004

LØSNINGSFORSLAG EKSAMEN TMA4105 MATEMATIKK 2 Lørdag 14. aug 2004 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag ide av LØNINGFOLAG EKAMEN TMA4 MATEMATIKK 2 Lørdag 4. aug 24 Oppgave Grenseverdien eksisterer ikke. For eksempel er grenseverdien

Detaljer

EKSAMEN. Hans Petter Hornæs og Britt Rystad

EKSAMEN. Hans Petter Hornæs og Britt Rystad KANDIDATNUMMER: EKSAMEN FAGNAVN: Matematikk. FAGNUMMER: F74A EKSAMENSDATO: Mandag. august 2 SENSURFRIST:. september 2 KLASSE:. klassene, ingenørutdanning. TID: kl. 9. 4.. FAGLÆRER: Hans Petter Hornæs og

Detaljer

Anbefalte oppgaver - Løsningsforslag

Anbefalte oppgaver - Løsningsforslag TMA415 Matematikk 2 Anbefalte oppgaver - Løsningsforslag Uke 7 15.1.3: Siden vektorfeltet er gitt ved F(x, y) = yi + xj må feltlinjene tilfredstille differensiallikningen eller y = x y, ( ) 1 2 y2 = x.

Detaljer

Løsning IM

Løsning IM Løsning IM Oppgave Den retningsderiverte er D f ( a) u f ( a), når funksjonen er deriverbar i punktet u f f ( y ) ( y ) Innsatt f,, ( y, y ) Den derivertes verdi i punktet er f (,) ( ( ),( ) ) (,) (,)

Detaljer

Oppgaver og fasit til kapittel 6

Oppgaver og fasit til kapittel 6 1 Oppgaver og fasit til kapittel 6 Mange av oppgavene i dette kapitlet brukes for første gang, og det er sannsynligvis flere fasitfeil enn normalt. Finner du en feil, så send en melding til lindstro@math.uio.no.

Detaljer

Eksamen, høsten 14 i Matematikk 3 Løsningsforslag

Eksamen, høsten 14 i Matematikk 3 Løsningsforslag Oppgave 1. Fra ligningen Eksamen, høsten 14 i Matematikk 3 Løsningsforslag x 2 64 y2 36 1 finner vi a 64 8 og b 36 6. Fokus til senter avstanden er da gitt ved c a 2 + b 2 64 + 36 1 1. Dermed er fokuspunktene

Detaljer

Eksamensoppgave i MA1103 Flerdimensjonal analyse

Eksamensoppgave i MA1103 Flerdimensjonal analyse Institutt for matematiske fag Eksamensoppgave i MA3 Flerdimensjonal analyse Faglig kontakt under eksamen: Mats Ehrnstrøm Tlf: 735 97 44 Eksamensdato: 22. mai 28 Eksamenstid (fra til): 9: 3: Hjelpemiddelkode/Tillatte

Detaljer

Løsning, Trippelintegraler

Løsning, Trippelintegraler Ukeoppgaver, uke 7 Matematikk, rippelintegraler Løsning, rippelintegraler Oppgave a) b) c) 6 x + + ) d d dx x + +/) d dx x) d d dx x + + /] d dx x + /+/] dx x +6)dx 8 6 d ) ) d xdx 6 ) ) ) d d xdx 6 8

Detaljer

Vi regner først ut de nødvendige partiellderiverte for å se om vektorfeltet er konservativt. z = 2z, F 2 F 2 z = 2y, F 3. x = 2x, F 3.

Vi regner først ut de nødvendige partiellderiverte for å se om vektorfeltet er konservativt. z = 2z, F 2 F 2 z = 2y, F 3. x = 2x, F 3. TMA415 Matematikk Vår 15 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 7 Alle oppgavenummer refererer til 8. utgave av Adams & Essex alculus: A omplete

Detaljer

(1 + x 2 + y 2 ) 2 = 1 x2 + y 2. (1 + x 2 + y 2 ) 2, x 2y

(1 + x 2 + y 2 ) 2 = 1 x2 + y 2. (1 + x 2 + y 2 ) 2, x 2y Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA45 Matematikk vår 9 Løsningsforslag til eksamen.5.9 Gitt f(, y) = + +y. a) Vi regner ut f = f y = + + y ( + + y ) = + + y

Detaljer

Integraler. John Rognes. 15. mars 2011

Integraler. John Rognes. 15. mars 2011 15. mars 2011 forener geometrisk målbare områder Ω og skalarfelt f : Ω R definert på disse områdene. Vi danner produktet f (Ω) Ω av verdien f (Ω) av funksjonen og størrelsen Ω av området. Mer presist deler

Detaljer

NTNU. MA1103 Flerdimensjonal Analyse våren Maple-øving 2. Viktig informasjon. Institutt for matematiske fag. maple02 28.

NTNU. MA1103 Flerdimensjonal Analyse våren Maple-øving 2. Viktig informasjon. Institutt for matematiske fag. maple02 28. NTNU Institutt for matematiske fag MA1103 Flerdimensjonal Analyse våren 2011 Maple-øving 2 Fyll inn studieprogram: Fyll inn navn: 1. 2. 3. 4. Viktig informasjon Besvarelsen kan leveres som gruppearbeid

Detaljer

Eksamensoppgaver og Matematikk 1B

Eksamensoppgaver og Matematikk 1B Eksamensoppgaver 7500 og 750 Matematikk B Samlet for SIF5005 Matematikk våren 00 Samlingen inneholder utvalgte oppgaver gitt i 7500 og 750 Matematikk B ved NTH/NTNU i tiden 993 997. Oppgaver eller punkter

Detaljer

y = x y, y 2 x 2 = c,

y = x y, y 2 x 2 = c, TMA415 Matematikk Vår 17 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 9 Alle oppgavenummer referer til 8. utgave av Adams & Essex alculus: A omplete

Detaljer

EKSAMEN KANDIDATNUMMER: EKSAMENSDATO: 10. juni Ingeniørutdanning. TID: kl EMNEANSVARLIG: Hans Petter Hornæs

EKSAMEN KANDIDATNUMMER: EKSAMENSDATO: 10. juni Ingeniørutdanning. TID: kl EMNEANSVARLIG: Hans Petter Hornæs KANDIDATNUMMER: EKSAMEN EMNENAVN: EMNENUMMER: Statistikk. Rea181 EKSAMENSDATO: 1. juni 28 KLASSE: Ingeniørutdanning. TID: kl. 9. 13.. EMNEANSVARLIG: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 3 (innkl.

Detaljer

Oppgaver og fasit til seksjon

Oppgaver og fasit til seksjon 1 Oppgaver og fasit til seksjon 3.4-3.6 Oppgaver til seksjon 3.4 1. Anta at f(x, y) = x 2 y 3 og r(t) = t 2 i + 3t j. Regn ut g (t) når g(t) = f(r(t)). 2. Anta at f(x, y) = x 2 e xy2 og r(t) = sin t i+cos

Detaljer

LØSNINGSFORSLAG TMA4105 Matematikk 2 8. August 2005

LØSNINGSFORSLAG TMA4105 Matematikk 2 8. August 2005 LØSNINGSFORSLAG TMA45 Matematikk 8. August 5 Oppgave Vi introduserer funksjonen g(x, y, z) x +y z slik at flaten z x + y er gitt ved g(x, y, z). I dette tilfellet utgjør gradienten til g en normalvektor

Detaljer

SIF5005 MATEMATIKK 2 VÅR r5 drdθ = 1 m. zrdzdrdθ = 1 m. zrdzdrdθ =

SIF5005 MATEMATIKK 2 VÅR r5 drdθ = 1 m. zrdzdrdθ = 1 m. zrdzdrdθ = SIF55 MAEMAIKK Å 3 Løsningsforslag Hjemmeøving 5 Oppgave. Ser at massen fordeler seg symetrisk om z-aksen, derfor vil tyngdepunktet ligge på z-aksen. Det eneste vi da trenger å regne ut er z. zδd = m π

Detaljer

Eksamen Ma 3 red.pensum 2006

Eksamen Ma 3 red.pensum 2006 Eksamen Ma B høst 6.nb Eksamen Ma red.pensum 6 Oppgave

Detaljer

Eksamensoppgave i MA1103 Flerdimensjonal analyse

Eksamensoppgave i MA1103 Flerdimensjonal analyse Institutt for matematiske fag Eksamensoppgave i MA1103 Flerdimensjonal analyse Faglig kontakt under eksamen: Mats Ehrnstrøm Tlf: 735 917 44 Eksamensdato: 22. mai 2018 Eksamenstid (fra til): 09:00 13:00

Detaljer

Løsning, funksjoner av flere variable.

Løsning, funksjoner av flere variable. Ukeoppgaver, uke 3 Matematikk 3, funksjoner av flere variable 1 Løsning, funksjoner av flere variable Oppgave 1 a) = +=, b) =, =y3 d ) e ) = 3+= 3 Selv om ikke x er med kan det betraktes som funksjon av

Detaljer

Velkommen til Eksamenskurs matematikk 2

Velkommen til Eksamenskurs matematikk 2 Velkommen til Eksamenskurs matematikk 2 Haakon C. Bakka Institutt for matematiske fag 12.-13. mai 2010 Introduksjon Begin with the end in mind - The 7 Habits of Highly Effective People (Stephen R. Covey)

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: MAT Kalkulus og lineær algebra Eksamensdag: Fredag. mars Tid for eksamen: 5. 7. Oppgavesettet er på 8 sider. Vedlegg: Tillatte

Detaljer

TMA4105 Matematikk 2 Vår 2014

TMA4105 Matematikk 2 Vår 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4105 Matematikk 2 Vår 2014 Løsningsforslag Øving 7 10.4.7 Vi skal finne likningen til et plan gitt to punkter P = (1, 1,

Detaljer

a 2 x 2 dy dx = e r r dr dθ =

a 2 x 2 dy dx = e r r dr dθ = NTNU Institutt for matematiske fag TMA4 Matematikk, øving, vår Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon, språk

Detaljer

Tillegg om strømfunksjon og potensialstrøm

Tillegg om strømfunksjon og potensialstrøm Kapittel 9 Tillegg om strømfunksjon og potensialstrøm 9.1 Divergensfri strøm 9.1.1 Strømfunksjonen I kompendiet, kap. 4.6 og kap. 9, er det påstått at dersom et todimensjonalt strømfelt v(x y) = v x (x

Detaljer

= (2 6y) da. = πa 2 3

= (2 6y) da. = πa 2 3 TMA45 Matematikk Vår 7 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving Alle oppgavenummer referer til 8. utgave av Adams & Essex alculus: A omplete ourse.

Detaljer

Obligatorisk oppgåve 1

Obligatorisk oppgåve 1 FYS112 Elektromagnetisme 214 Obligatorisk oppgåve 1 Innleveringsfrist 19. september kl. 23.59 Lars Kristian Henriksen 21. oktober 214 Obligar i FYS112 leverast elektronisk på Devilry http://devilry.ifi.uio.no/.

Detaljer

Eksamen IRF30014, høsten 15 i Matematikk 3 Løsningsforslag

Eksamen IRF30014, høsten 15 i Matematikk 3 Løsningsforslag Oppgave 1. Eksamen IRF314, høsten 15 i Matematikk 3 øsningsforslag I denne oppgaven er det to løsningsforslag. Ett med asymptotene som gitt i oppgaveteksten. I dette første tilfellet blir tallene litt

Detaljer

EKSAMEN KANDIDATNUMMER: EKSAMENSDATO: 11. juni HiS Jørstadmoen. TID: kl EMNEANSVARLIG: Hans Petter Hornæs

EKSAMEN KANDIDATNUMMER: EKSAMENSDATO: 11. juni HiS Jørstadmoen. TID: kl EMNEANSVARLIG: Hans Petter Hornæs KANDIDATNUMMER: EKSAMEN EMNENAVN: EMNENUMMER: Statistikk. BtG27 EKSAMENSDATO: 11. juni 28 KLASSE: HiS 6-9 Jørstadmoen. TID: kl. 8. 13.. EMNEANSVARLIG: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 4 (innkl.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MEK 11 Feltteori og vektoranalyse. Eksamensdag: Torsdag 1 desember 29. Tid for eksamen: 14:3 17:3. Oppgavesettet er på 7 sider.

Detaljer

Løsningsforslag eksamen TMA4105 matematikk 2, 25. mai 2005

Løsningsforslag eksamen TMA4105 matematikk 2, 25. mai 2005 Løsningsforslag eksamen TMA5 matematikk, 5. mai 5 Oppgave Vi finner de partiellderiverte av første og annen orden av f, ) = sin : f = sin, f = cos, f =, f = cos, f = sin. Finner de kritiske punktene ved

Detaljer

Obligatorisk oppgave 2

Obligatorisk oppgave 2 MEK Obligatorisk oppgave 2 Nicolai Kristen Solheim Obligatorisk oppgave 2 Oppgave a) Vi kan beregne vektorfluksen Q = F ndσ gjennom en kuleflate σ gitt vektorfeltet σ F = xi + 2y + z j + z + x 2 k. Ved

Detaljer

Difflikninger med løsningsforslag.

Difflikninger med løsningsforslag. Repetisjon i Matematikk : Difflikninger med løsningsforslag. Høgskolen i Gjøvik Avdeling TØL Eksamensrepetisjon REA4 Matematikk Difflikninger med løsningsforslag. Difflikninger med løsningsforslag. Dette

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT Kalkulus og lineær algebra Eksamensdag: Onsdag 9 mai 9 Tid for eksamen: 4:3 8:3 Oppgavesettet er på 7 sider Vedlegg: Tillatte

Detaljer

F = x F 1 + y F 2 + z F 3 = y 2 z 2 + x 2. i j k F = xy 2 yz 2 zx 2 = i(0 ( 2yz)) j(2xz 0) + k(0 2xy) = 2yzi 2xzj 2xyk.

F = x F 1 + y F 2 + z F 3 = y 2 z 2 + x 2. i j k F = xy 2 yz 2 zx 2 = i(0 ( 2yz)) j(2xz 0) + k(0 2xy) = 2yzi 2xzj 2xyk. TMA415 Matematikk 2 Vår 215 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 12 Alle oppgavenummer referer til 8. utgave av Adams & Essex alculus: A omplete

Detaljer

Løsningsforslag Eksamen M001 Våren 2002

Løsningsforslag Eksamen M001 Våren 2002 Løsningsforslag Eksamen M Våren Oppgave f(x) = (x )e x Bruker produktregelen i derivasjonen f (x) = e x + (x ) (e x ) For å derivere e x velges kjernen u = x, og vi får (e x ) = e u. f (x) = e x + (x )

Detaljer

TMA Matematikk 4D Fredag 19. desember 2003 løsningsforslag

TMA Matematikk 4D Fredag 19. desember 2003 løsningsforslag Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA Matematikk D Fredag 9. desember 23 løsningsforslag a Vi bruker s-forskyvningsregelen Rottmann L{gte at } Gs a med gt t.

Detaljer

Arne B. Sletsjøe. Oppgaver, MAT 1012

Arne B. Sletsjøe. Oppgaver, MAT 1012 Arne B. Sletsjøe Oppgaver, MAT 101 1 En-variabel kalkulus 1.1 I de følgende oppgavene, i) finn alle kritiske punkter til f(x), ii) beskriv monotoniegenskapene til funksjonene ved å se på fortegnet til

Detaljer

Anbefalte oppgaver - Løsningsforslag

Anbefalte oppgaver - Løsningsforslag TMA45 Matematikk Anbefalte oppgaver - Løsningsforslag Uke 5.5.: Kulen er grafen til rφ, θ) asinφ) cosθ)i + sin φ sinθ)j + cosφ)k), φ π, θ < π. Vi har slik at φ θ acosφ) cosθ)i + sinφ) sinθ)j + cosφ)k)

Detaljer

EKSAMENSOPPGÅVE. Tilletne hjelpemiddel: Godkjend kalkulator og formelsamling og 2 eigne A4-ark (4 sider totalt)

EKSAMENSOPPGÅVE. Tilletne hjelpemiddel: Godkjend kalkulator og formelsamling og 2 eigne A4-ark (4 sider totalt) EKSAMENSOPPGÅVE/EKSAMENSOPPGAVE EKSAMENSOPPGÅVE Eksamen i: MAT-1003 Kalkulus 3 Dato: Tirsdag 17. 1.013 Tid: Kl 09:00 13:00 Stad: Åsgårdveien 9 Tilletne hjelpemiddel: Godkjend kalkulator og formelsamling

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller. KANDIDATNUMMER: EKSAMEN FAGNAVN: Statistikk. FAGNUMMER: Rea 1082 EKSAMENSDATO: 14. mai 2009. KLASSE: Ing. TID: kl. 9.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 3 (innkl. forside) TILLATTE

Detaljer

MAT Vår Oblig 2. Innleveringsfrist: Fredag 23.april kl. 1430

MAT Vår Oblig 2. Innleveringsfrist: Fredag 23.april kl. 1430 MAT 00 Vår 00 Oblig Innleveringsfrist: Fredag 3.april kl. 430 Oppgaven leveres stiftet med forsideark på ekspedisjonskontoret til Matematisk institutt i 7. etg. i Niels Henrik Abels hus innen fristen.

Detaljer

NTNU. MA1103 Flerdimensjonal analyse våren Maple/Matlab-øving 2. Viktig informasjon. Institutt for matematiske fag

NTNU. MA1103 Flerdimensjonal analyse våren Maple/Matlab-øving 2. Viktig informasjon. Institutt for matematiske fag NTNU Institutt for matematiske fag MA1103 Flerdimensjonal analyse våren 2012 Maple/Matlab-øving 2 Fyll inn studieprogram: Fyll inn navn: 1. 2. 3. 4. Viktig informasjon Besvarelsen kan leveres som gruppearbeid

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i Eksamensdag: 9. april,. Tid for eksamen: : :. Oppgavesettet er på 9 sider. Vedlegg: Tillatte hjelpemidler: MAT Kalkulus og

Detaljer

EKSAMEN. Flexibel ingeniørutdanning, 2kl. Bygg.

EKSAMEN. Flexibel ingeniørutdanning, 2kl. Bygg. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. REA 1081F REA1081) EKSAMENSDATO: 1. juni 2010. KLASSE: Flexibel ingeniørutdanning, 2kl. Bygg. TID: kl. 9.00 12.00. FAGLÆRER: Hans Petter Hornæs ANTALL

Detaljer

EKSAMENSOPPGAVE. Vil det bli gått oppklaringsrunde i eksamenslokalet? Svar: JA Hvis JA: ca. kl.10:00 og 12:00

EKSAMENSOPPGAVE. Vil det bli gått oppklaringsrunde i eksamenslokalet? Svar: JA Hvis JA: ca. kl.10:00 og 12:00 Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: MAT-1003 Kalkulus 3 Dato: Tirsdag 1.1.017 Klokkeslett: 09:00-13:00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Pedersen et al.: Teknisk

Detaljer

Navn/kursparallell skrives her (ved gruppearbeid er det viktig at alle fyller ut):

Navn/kursparallell skrives her (ved gruppearbeid er det viktig at alle fyller ut): MA1103 vår 2008 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Øving 10M Navn/kursparallell skrives her (ved gruppearbeid er det viktig at alle fyller ut): 1. 2. 3. 4. 5.

Detaljer

TMA Tanker omkring innlevering 3 fra en studentassistents perspektiv

TMA Tanker omkring innlevering 3 fra en studentassistents perspektiv TMA15 - Tanker omkring innlevering 3 fra en studentassistents perspektiv April 7, 15 Mesteparten av dere har klart denne øvingen langt bedre enn de to forregående øvingene selv om denne var hakket vanskeligere.

Detaljer

Eksamen IRF30014, våren 16 i Matematikk 3 Løsningsforslag

Eksamen IRF30014, våren 16 i Matematikk 3 Løsningsforslag Oppgave 1. Eksamen IRF314, våren 16 i Matematikk 3 Løsningsforslag Ellipsen vil skal finne er på standardform x a + y b 1 der a > b for styrelinjene er vertikale linjer. Formelen for styrelinjene er x

Detaljer

Integralsatser: Green, Stokes og Gauss

Integralsatser: Green, Stokes og Gauss Kapittel 7 Integralsatser: Green, tokes og Gauss Oppgave 1 Vi har gitt strømfeltet v = ωyi+ωxj der ω er en konstant. a) trømfarten: v = ω 2 y 2 +ω 2 x 2 = ωr, r = x 2 +y 2. Langs sirkelen r 2 = x 2 +y

Detaljer

Tegn en skisse som tydelig viser integrasjonsområdet og grensene: = 1 3. dy = 1 3

Tegn en skisse som tydelig viser integrasjonsområdet og grensene: = 1 3. dy = 1 3 Integral y x Vi har integralet e x dxdy yx y Tegn en skisse som tydelig iser integrasjonsområdet og grensene: Integrassjonsområdet bestemmes a øre og nedre grenser i integralene Integranten har ingen betydning

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT111 Prøveeksamen Eksamensdag: 5. juni 21. Tid for eksamen: 1. 13.3. Oppgavesettet er på 9 sider. Vedlegg: Tillatte hjelpemidler:

Detaljer

Kurve-, flate- og volumintegraler, beregning av trykkraft

Kurve-, flate- og volumintegraler, beregning av trykkraft Kapittel 6 Kurve-, flate- og volumintegraler, beregning av trykkraft Oppgave 1 Vi skal regne ut kurveintegralet λ v dr langs kurven λ: y x3 når 1 x 2 og v xyi+x 2 j. Vi kan parametrisere med x som parameter,

Detaljer

Løsning til utvalgte oppgaver fra kapittel 12 (15).

Løsning til utvalgte oppgaver fra kapittel 12 (15). Løsning til utvalgte oppgaver fra kapittel (5) Oppgave 7 ( 5) Vi skal btte integrasjonsrekkefølgen i integralet dd Når vi btter integrasjons- rekkefølgen må integrasjonsområdet beskrives på ntt Dobbelintegralet

Detaljer

Matte 3 (HiB) Tommy Odland. 5. mai Sammendrag

Matte 3 (HiB) Tommy Odland. 5. mai Sammendrag Matte 3 (HiB) Tommy Odland 5. mai 2016 Sammendrag Dette heftet inneholder en rask oppsummering av Matte 3 (HiB), også kalt multivariabel kalkulus. Formålet er å gi studentene litt intuisjon rundt emnene.

Detaljer

5 z ds = x 2 +4y 2 4

5 z ds = x 2 +4y 2 4 TMA45 Matematikk 2 Vår 25 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving Alle oppgavenummer referer til 8. utgave av Adams & Essex Calculus: A Complete

Detaljer

Løsningsforslag Eksamen M100 Våren 2002

Løsningsforslag Eksamen M100 Våren 2002 Løsningsforslag Eksamen M00 Våren 00 Oppgave Evaluerer grensen cos( ) 0 ( sin( ) ) 0 6 0 6 5 0 sin( ) 0 sin( ) = Har brukt l Hôpitals regel (derivert teller og nevner hver for seg) i første og tredje overgang.

Detaljer