I denne øvingen vil vi sammenlikne det teoretiske resultat med et grafisk bilde av konturlinjene til flaten. Vi tegner konturene der
|
|
- Bendik Thoresen
- 9 år siden
- Visninger:
Transkript
1 Øving uke 44 Kritiske punkter Se også Mathematicakompendiet, kap 3.8 En funksjon av to variable kan ha lokale maksimal- og minimalpunkter innenfor definisjonsmengden, akkurat som funksjoner av en variabel. I tillegg kan de ha sadelpunkter. Se for deg et punkt på ryggen av en kamel mellom puklene. En fellesbetegnelse for maks-, min- og sadelpunkter er kritiske punkter. Vi bruker. deriverttesten til å klassifisere typen av kritiske punkter for funksjonen z = f Hx, yl. Vi antar f er kontinuerlig med kontinuerlige deriverte. La Α = f x, Β= f y,γ= f f =, x y y x D = Α Β - Γ I alle kritiske punkter der de partielt deriverte eksisterer, må f x =, f y = begge være oppfylt. Geometrisk betyr dette at to tangenter i ortogonale retninger begge må være horisontale. Dette er en nødvendig, men ikke tilstrekkelig betingelse. Dersom de partielt deriverte er null, behøver ikke punktet være kritisk. (Betingelsen kan f.eks. være oppfylt for alle punkter på en rett linje). Vi beregner Α, Β, Γ og D i alle punkter som er kandidat til å være et kritisk punkt. Testen sier da: Hvis D >, Α <, har vi et lokalt maksimumspunkt Hvis D >, Α >, har vi et lokalt minimumspunkt Hvis D <, har vi et sadelpunkt. Hvis D =, kan ikke testen alene avgjøre klassifiseringen. I tillegg kan du ha ekstremalpunkter der funksjonen ikke er deriverbar. For å bestemme globale ekstremalpunkter innenfor definisjonsmengden må disse også tas med i kandidatlisten. I denne øvingen vil vi sammenlikne det teoretiske resultat med et grafisk bilde av konturlinjene til flaten. Vi tegner konturene der f x = og f y = hver for seg. Der konturene skjærer hverandre, er begge partielt deriverte lik null og vi har et mulig kritisk punkt. Vi leser av skjæringspunktet (evt. beregner det ved numeriske metoder) og sammenlikner med resultatene vi allerede har kommet fram til ved håndregningen.
2 Eksempel y_d := x + H - x L y pl = Plot3D@ f@x, yd, 8x, -, 5<, 8y, - 3, 3<, AxesLabel 8"x", "y", "z"<, BoxRatios 8,, <D y z - x 4 Kan du allerede av grafen se hvor de kritiske punkter er, og hva slags type de er? dfx = D@f@x, yd, xd Factor x - y dfy = D@f@x, yd, yd Factor - Hx - L y soln = Solve@8dfx, dfy <, 8x, y<d 88x, y -<, 8x, y <, 8x, y << Her ekstraheres de kritiske punktene. critpts = 8x, y<. soln - Vi må bestemme alle deriverte av. orden Α = D@f@x, yd, 8x, <D
3 3 Β = D@f@x, yd, 8y, <D H - xl Γ = D@f@x, yd, x, yd - y D = Α Β - Γ Expand -4 x - 4 y + 8 Her beregnes D og Α i de kritiske punkter 88x, y<, D, Α<. soln 8, -< 6 8, < 8 8, < 6 Fra siste output leser vi følgende informasjon : Punktet (,-) er et sadelpunkt. Punktet (,) er et minimumspunkt. Punktet (,) er et sadelpunkt. Vi tegner konturene til funksjonen sammen med nivålinjene for dfx = og dfy =. (Fjern det avsluttende semikolon for å se grafikken) cp = ContourPlot@f@x, yd, 8x, - 3, 3<, 8y, - 3, 3<, Contours 3D; cp = ContourPlot@dfx, 8x, - 3, 3<, 8y, - 3, 3<, ContourStyle 8Yellow, Thick<D; cp = ContourPlot@dfy, 8x, - 3, 3<, 8y, - 3, 3<, ContourStyle 8Green, Thick, Dashed<D; Show@cp, cp, cpd Vi leser av skjæringspunktene mellom den gule linja og de to grønne, stiplede linjene. Det er våre kritiske punkter. Ved å sette markør på en nivålinje, ser du hvilken verdi linjen representerer. Vi ser derfor lett to sadelpunkter og et lokalt mininum på figuren. Dette bekrefter våre beregninger.
4 4 Vi leser av skjæringspunktene mellom den gule linja og de to grønne, stiplede linjene. Det er våre kritiske punkter. Ved å sette markør på en nivålinje, ser du hvilken verdi linjen representerer. Vi ser derfor lett to sadelpunkter og et lokalt mininum på figuren. Dette bekrefter våre beregninger.
5 Eksempel y_d := a x ExpA- x - y E + b Ix - y M ExpA- x - 3 y E Her velger vi konstantene a og b ved en randomgenerator. Det betyr at du får andre verdier enn eksemplet, og nye verdier hver gang du kjører kommandoen. Hvis du vil prøve eksemplet nøyaktig slik det står, skriver du inn: a = og b =.897. a = RandomReal@8-3, 3<D b = RandomReal@8-3, 3<D.897 pl = Plot3D@ f@x, yd, 8x, -, <, 8y, - 4, 4<, AxesLabel 8"x", "y", "z"<, BoxRatios 8,, <, PlotRange AllD 4 y z. - x dfx = D@f@x, yd, xd x ã-x -y x ã- x -3 y x ã- x -3 y Ix - y M ã-x -y dfy = D@f@x, yd, yd y ã- x -3 y x y ã-x -y y ã- x -3 y Ix - y M Likningene dfx =, df y = lar seg bare løse numerisk. For å benytte Newton s metode, trenger vi gode startverdier. Det finner vi fra konturplottet. cp = ContourPlot@f@x, yd, 8x, -, <, 8y, -, <, Contours 4, FrameLabel 8"x", "y"<, ColorFunction Hue, PlotRange AllD; 5
6 cp = ContourPlot@dfx, 8x, -, <, 8y, -, <, ContourStyle 8Yellow, Thick<D; cp = ContourPlot@dfy, 8x, -, <, 8y, -, <, ContourStyle 8Black, Thick, Dashed<D; Show@cp, cp, cpd y x Newton' s metode er implementert i Mathematica ved kommandoen FindRoot. Du trenger en nærliggende startverdi som du leser av fra konturplottet. Du må løse likningene for et punkt ad gangen. sol = FindRoot@8dfx, dfy <, 8x, <, 8y, <D 8x.777, y.< sol = FindRoot@8dfx, dfy <, 8x, -.5<, 8y,.5<D 8x , y.56768< sol3 = FindRoot@8dfx, dfy <, 8x, -.5<, 8y, -.5<D 8x , y < sol4 = FindRoot@8dfx, dfy <, 8x, -.9<, 8y, <D 8x -.777, y.< critpts = 8x, y<. 8sol, sol, sol3, sol4<
7 Α = D@f@x, yd, 8x, <D x ã- x -3 y x ã-x -y x I4 x ã-x -y - ã-x -y M ã- x -3 y I6 x ã- x -3 y - 4 ã- x -3 y M Ix - y M Β = D@f@x, yd, 8y, <D y ã- x -3 y ã- x -3 y Ix - y M I36 y ã- x -3 y - 6 ã- x -3 y M x I4 y ã-x -y - ã-x -y M Γ = D@f@x, yd, x, yd x y ã-x -y x y ã- x -3 y x y ã- x -3 y Ix - y M y ã-x -y D = Α Β - Γ Simplify ã-4 x -6 y Iã x +4 y Ix I y M x y M + x6 I y M + x4 I y y M + x I y y y M + x ãx + y Ix4 I y M + x I y y +.855M y y +.989M y y y M 8D, Α<. 8sol, sol, sol3, sol4< Vi leser av type = {maksima, minima, minima, maksima} Oppgave Gitt funksjonen f Hx, yl = 3 x3-9 x + x y. Beregn de partielt deriverte av.orden og angi mulige kritiske punkter ( håndregning). Klassifiser de kritiske punktene etter.deriverttesten (håndregning). Følg framgangsmåten i eksemplet og la programmet beregne og klassifisere de kritiske punkter. Kontroller svarene ved å lage konturplott over flaten og nivåkurvene dfx =, dfy =. Kommenter hva du leser av plottene. Oppgave Gitt funksjonen f Hx, yl = ã-x - y - 3 ã- x -y. Lag et plott av funksjonen f Hx, yl. Hvilke kritiske punkter ser du? Bestem mulige kritiske punkter ved å sette de partielt deriverte lik null. Denne del skal du gjøre for hånd og kontrollere ved å skrive programkode som i eksemplet. Klassifiseringen overlater vi til programmet å gjøre, da uttrykkene blir omfattende. Lag konturplott av flaten sammen med nivåkurvene for dfx = og dfy = og les av posisjon og type for dine kritiske punkter. Sammenlign med håndregningen. Oppgave 3 Ingen håndregning i denne oppgaven! Gitt funksjonen f Hx, yl = a Ix - y M ã-x - y + b y ã- x Velg a, b som tilfeldige heltall mellom -3 og 3. -y.
8 8 Gitt funksjonen f Hx, yl = a Ix - y M ã-x - y + b y ã- x -y. Velg a, b som tilfeldige heltall mellom -3 og 3. a = RandomInteger@8-3, 3<D b = RandomInteger@8-3, 3<D Bestem og klassifiser de kritiske punkter slik som gjennomført i eksempel. Hvis det er mange punkter, holder med et utvalg. Skulle du mot formodning få kurver der det er tvil om nivåkurvene skjærer hverandre, dropper du disse punktene. Det er lov å prøve alternative verdier av a og b
Teori. Eksempel 1 (E.P ) En funksjon av to variable z f x, y har kritisk punkt der hvor z. 0 samtidig. Kritiske punkter kan være et.
Teori En funksjon av to variable z f x, y har kritisk punkt der hvor z x maksimalpunkt, sadelpunkt eller minimalpunkt. La a z x, b z x y, c z y, a c b Dersom , a < har
DetaljerØving 6 Tallfølger og differenslikninger
Øving Tallfølger og differenslikninger Teori Se også Mathematicakompendiet kap. En tallfølge er en liste av elementer satt opp i en bestemt rekkefølge { a[0]a[]a[]...a[n]... } = {a[n]} 0. Vi kaller elementet
DetaljerNotater nr 9: oppsummering for uke 45-46
Notater nr 9: oppsummering for uke 45-46 Bøkene B (læreboken): Tor Gulliksen og Arne Hole, Matematikk i Praksis, 5. utgave. K (kompendium): Amir M. Hashemi, Brukerkurs i matematikk MAT, høsten. Oppsummering
DetaljerMAT feb feb feb MAT Våren 2010
MAT 1012 Våren 2010 Forelesning Vi er ferdig med en-variabel-teorien, og vi kan begynne å jobbe med funksjoner i flere variable. Det første vi skal gjøre er å gå gjennom de vanlige analysene vi gjør for
Detaljer1 Mandag 8. februar 2010
1 Mandag 8. februar 2010 Vi er ferdig med en-variabel-teorien, og vi kan begynne å jobbe med funksjoner i flere variable. Det første vi skal gjøre er å gå gjennom de vanlige analysene vi gjør for funksjoner
DetaljerMAT 100a - LAB 3. Vi skal først illustrerere hvordan Newtons metode kan brukes til å approksimere n-te roten av et positivt tall.
MAT 100a - LAB 3 I denne øvelsen skal vi bruke Maple til å illustrere noen anvendelser av derivasjon, først og fremst Newtons metode til å løse likninger og lokalisering av min. og max. punkter. Vi skal
DetaljerTMA4105 Matematikk 2 Vår 2008
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4105 Matematikk 2 Vår 2008 Øving 1 Navn/kursparallell skrives her (ved gruppearbeid er det viktig at alle fyller ut): 1.
DetaljerNTNU. TMA4105 Matematik 2 våren 2011. Maple-øving 1. Viktig informasjon. Institutt for matematiske fag. maple01 1.
NTNU Institutt for matematiske fag TMA4105 Matematik 2 våren 2011 Maple-øving 1 Fyll inn studieprogram: Fyll inn navn: 1. 2. 3. 4. Viktig informasjon Besvarelsen kan leveres som gruppearbeid med maksimalt
DetaljerOPPGAVESETT MAT111-H16 UKE 44. Oppgaver til seminaret 4/11
OPPGAVESETT MAT111-H16 UKE 44 Avsn. 5.5: 19, 41, 47 Avsn. 5.6: 9, 17, 47 Avsn. 5.7: 15 På settet: S.1, S.2. Oppgaver til seminaret 4/11 Oppgaver til gruppene uke 45 Løs disse først så disse Mer dybde Avsn.
DetaljerTangenten svarer til lineær approksimasjon av funksjonen. Likningen for tangenten finnes derfor fra 1. ordens Taylorutvikling:
Newton' s metode Teori Bisektormetoden og sekantmetoden benytter begge skjæringspunkter mellom x - aksen og approksimerende linjer til funksjonen f som tilnærmede verdier til løsningen av likningen f (x)
DetaljerFaktor. Eksamen høst 2005 SØK 1001- Innføring i matematikk for økonomer Besvarelse nr 1: -en eksamensavis utgitt av Pareto
Faktor -en eksamensavis utgitt av Pareto Eksamen høst 005 SØK 00- Innføring i matematikk for økonomer Besvarelse nr : OBS!! Dette er en eksamensbevarelse, og ikke en fasit. Besvarelsene er uten endringer
Detaljerdg = ( g P0 u)ds = ( ) = 0
NTNU Institutt for matematiske fag TMA4105 Matematikk 2, øving 8, vår 2011 Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon,
Detaljer: subs x = 2, f n x end do
Oppgave 2..5 a) Vi starter med å finne de deriverte til funksjonen av orden opp til og med 5 i punktet x = 2. Det gjør vi ved å bruke kommandoen diff f x, x$n der f x er uttrykket som skal deriveres, x
Detaljercappelendamm.no Funksjoner av to variable 7.1 FIGUR 7.1 FIGUR 7.2 FIGUR 7.3 Matematikk for økonomi og samfunnsfag 9. utgave kapittel 7 1
7. Funksjoner av to variable Df FIGUR 7. FIGUR 7. FIGUR 7. Matematikk for økonomi og samfunnsfag 9. utgave kapittel 7 FIGUR 7. FIGUR 7.5 FIGUR 7.6 Matematikk for økonomi og samfunnsfag 9. utgave kapittel
Detaljerf =< 2x + z/x, 2y, 4z + ln(x) >.
MA 40: Analyse Uke 48, 00 http://home.hia.no/ aasvaldl/ma40 H0 Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag Oppgave.5: 5. Vi har gitt funksjon f(x, y) = x + y z + z ln(x) og punkt
DetaljerLøsningsforslag. e n. n=0. 3 n 2 2n 1. n=1
Eksamen i BYPE2000 - Matematikk 2000 Dato: 6. juni 2014 Målform: Bokmål Antall oppgaver: 7 (20 deloppgaver) Antall sider: 4 Vedlegg: Noen formler Hjelpemiddel: Ingen Alle svarene skal grunngis. Alle deloppgavene
DetaljerVelg mellom disse kommandoene: Dersom[<Vilkår>, <Så>, <Ellers>] Funksjon[<Funksjon>, <Start>, <Slutt>]
442 Grafer Å tegne grafen til en funksjon Nullpunkter Velg mellom disse kommandoene: Dersom[, , ] Funksjon[, , ] GeoGebra finner nullpunktene til en innlagt
DetaljerInstitutt for Samfunnsøkonomi. Utlevering: 29.04.2015 Kl. 09:00 Innlevering: 29.04.2015 Kl. 14:00
SENSORVEILEDNING MET 803 Matematikk Institutt for Samfunnsøkonomi Utlevering: 9.04.05 Kl. 09:00 Innlevering: 9.04.05 Kl. 4:00 For mer informasjon om formalia, se eksamensoppgaven. Oppgave Beregn følgende
Detaljer. 2+cos(x) 0 og alle biter som inngår i uttrykket er kontinuerlige. Da blir g kontinuerlig i hele planet.
MA 1410: Analyse Uke 47, 001 http://home.hia.no/ aasvaldl/ma1410 H01 Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag Oppgave 11.1: 7. f(x, y) = 1 16 x y. a) Definisjonsområde D: f
DetaljerEksamen i emnet MAT111/M100 - Grunnkurs i matematikk I Mandag 15. desember 2003, kl. 09-13(15) LØYSINGSFORSLAG OPPGÅVE 2:
Eksamen i emnet MAT/M00 - Grunnkurs i matematikk I Mandag 5. desember 2003, kl. 09-3(5) LØYSINGSFORSLAG Finn dei deriverte til i) f(x) = x 2 ln x OPPGÅVE : exp(u 2 )du, x, ii) f(x) = x cos(x). i) d x 2
DetaljerEksamensoppgavehefte 1. MAT1012 Matematikk 2: Mer funksjonsteori i en og flere variabler
Eksamensoppgavehefte 1 MAT1012 Matematikk 2: Mer funksjonsteori i en og flere variabler Matematisk institutt, UiO, våren 2010 I dette heftet er det samlet et utvalg av tidligere eksamensoppgaver innenfor
DetaljerChebyshev interpolasjon
Chebyshev interpolasjon Chebyshev polynomer Vi vil studere polynomapproksimasjon på intervallet [-, ]. Målet er å minimalisere den største verdien av feilestimatet E HxL = f HxL - P HxL, hvor maksimum
DetaljerLøsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2005. eksamensoppgaver.org
Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2005 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det er lastet
DetaljerEksempeloppgave 1T, Høsten 2009
Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne
Detaljern=0 n=1 n + 1 Vi får derfor at summen er lik 1/2. c)
Eksamen i BYPE2000 - Matematikk 2000 Dato: 204 Målform: Bokmål Antall oppgaver: 7 (20 deloppgaver) Antall sider: 4 Vedlegg: Noen formler Hjelpemiddel: Ingen Alle svarene skal grunngis. Alle deloppgavene
DetaljerInnlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Tirsdag 1. april 2014 kl. 12:45 Antall oppgaver: 8+2
Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Tirsdag 1. april 2014 kl. 12:45 Antall oppgaver: 8+2 1 Bestem den naturlige denisjonsmengden til følgende funksjoner.
DetaljerLøsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2
Prøve i FO929A - Matematikk Dato: 1. juni 2012 Målform: Bokmål Antall oppgaver: 5 (20 deloppgaver) Antall sider: 2 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver
DetaljerInnlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Tirsdag 1. april 2014 kl. 12:45 Antall oppgaver: 8+2
Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Tirsdag 1. april 2014 kl. 12:45 Antall oppgaver: 8+2 1 Bestem den naturlige denisjonsmengden til følgende funksjoner.
DetaljerSpørsmål og svar om GeoGebra, versjon 2.7 bokmål
Spørsmål og svar om GeoGebra, versjon 2.7 bokmål Jeg har lastet ned en installasjonsfil fra www.geogebra.org og installert programmet, men får det ikke til å fungere. Hva kan dette skyldes? Den vanligste
DetaljerLøsningsforslag til underveisvurdering i MAT111 vår 2005
Løsningsforslag til underveisvurdering i MAT111 vår 5 Beregn grenseverdien Oppgave 1 (x 1) ln x x x + 1 Svar: Merk at nevneren er lik (x 1), så vi kan forkorte (x 1) oppe og nede og får (x 1) ln x ln x
Detaljer3x ( x. x 1 x a 3 = 1 2 x2. a) Bestem rekkens kvotient og rekkens første ledd.
Oppgave 1 Løs likningen x 2 + x 6 = 0. b) Løs likningen c) Løs ulikheten x 2 + 4x 5 < 0. 3x 2 + 7 x 2 1 ) = 8. d) Løs ulikheten Oppgave 2 x 1 x 2 4 0. Deriver g x) = 3x + ln x) 3. b) Deriver h x) = e x
DetaljerMA0002 Brukerkurs i matematikk B Vår 2017
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2017 Løsningsforslag Øving 11 Oppgaver fra boken: 10.6 :, 8, 12, 19, 1, (valgfritt - 9,
DetaljerLøsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Oppgave 1 Løs ulikheten x + 6 5 x + 2 Strategien er å
DetaljerFasit til eksamen i emnet MAT102 - Brukerkurs i matematikk II Mandag 21.september 2015
Fasit til eksamen i emnet MAT02 - Brukerkurs i matematikk II Mandag 2.september 205 Fasit. (a) Løs ligningssystemene. i) 5x + 7y = 4 3x + 2y = ii) 3x + 4y + z = 2 2x + 3y + 3z = 7 Svar: i) x = 85/, y =
DetaljerEKSAMEN. Emne: Metode 1: Grunnleggende matematikk og statistikk (Deleksamen i matematikk)
EKSAMEN Emnekode: SFB10711 Dato: 2.6.2014 Hjelpemidler: Kalkulator Utlevert formelsamling Emne: Metode 1: Grunnleggende matematikk og statistikk (Deleksamen i matematikk) Eksamenstid: kl. 09.00 til kl.
DetaljerBokmål. Eksamensinformasjon
Eksamen 27052010 REA022 Matematikk R1 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på del 1: Hjelpemidler på del 2: Vedlegg: Framgangsmåte: Veiledning om vurderingen: 5 timer: Del
DetaljerØvelse, eksamensoppgaver MAT 1050 mars 2018
Øvelse, eksamensoppgaver MAT 5 mars 8 Oppgave. La f være funksjonen gitt ved f (x) = x 8 x, x a) Finn alle kritiske punkter for funksjonen f. f (x) = 8 x + x 8 x ( x) = (8 8 x x x ) = (4 8 x x ) = gir
DetaljerFasit MAT102 juni 2016
Fasit MAT02 juni 206. (a) Finn egenverdiene og egenvektorene til matrisen ( ) 6 A = 2 7 Svar: λ = 8 og ( ) x = y y ( ) /2, λ = 5 og ( ) x = y y ( ) for alle y 0. (b) Finn den generelle løsningen på systemet
DetaljerEksamen REA3028 S2, Høsten 2012
Eksamen REA308 S, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (6 poeng) Deriver funksjonene 3x x a) gx 3 3x x 3x
Detaljer4 ( ( ( / ) 2 ( ( ( / ) 2 ( ( / 45 % + 25 ( = 4 25 % + 35 / + 35 ( = 2 25 % + 5 / 5 ( =
MA Brukerkurs i matematikk B Eksamen 8. mai 6 Løsningsforslag Oppgave a) Viser at! # $ ved å vise at #!!# ' (. Nedenfor er matrisemultiplikasjonen #! vist (du må vise at!# gir det samme). ( + + + / ( +
DetaljerLøsningsforslag MAT102 Vår 2018
Løsningsforslag MAT102 Vår 2018 Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet MAT102 Tirsdag 12 juni 2018, kl 0900-1400 Oppgavesettet har fem oppgaver Hver deloppgave
DetaljerLøsningsforslag, midtsemesterprøve MA1103, 2.mars 2010
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 5 Løsningsforslag, midtsemesterprøve MA03,.mars 00 Oppgave Tegn figur og finn en parametrisering for skjæringskurven
Detaljer3x + 2y 8, 2x + 4y 8.
Oppgave En møbelfabrikk produserer bord og stoler Produksjonen av møbler skjer i to avdelinger, avdeling I og avdeling II Alle møbler må innom både avdeling I og avdeling II Det å produsere et bord tar
DetaljerOppsummering om hva som kreves ved bruk av digitale verktøy
1 Oppsummering om hva som kreves ved bruk av digitale verktøy Graftegner Det skal gå klart fram av den grafiske framstillingen hvilken skala og hvilken enhet som er brukt, på hver av aksene. Det er en
Detaljera) f(x) = 3 cos(2x 1) + 12 LF: Vi benytter (lineær) kjerneregel og får f (x) = (sin(7x + 1)) (sin( x) + x) sin(7x + 1)(sin( x) + x) ( sin(x) + x) 2 =
Innlevering ELFE KJFE MAFE Matematikk 1000 HIOA Obligatorisk innlevering 4 Innleveringsfrist Mandag 12. oktober 2015 før forelesningen 12:30 Antall oppgaver: 7 + 3 Løsningsforslag 1 Deriver de følgende
DetaljerHøgskolen i Telemark Fakultet for estetiske fag, folkekultur og lærerutdanning BOKMÅL 23. mai 2014
Høgskolen i Telemark Fakultet for estetiske fag, folkekultur og lærerutdanning BOKMÅL 23. mai 2014 ORDINÆR EKSAMEN I MATEMATIKK 2 Modul 1 15 studiepoeng Tid: 5 timer Oppgavesettet er på 7 sider (inkludert
DetaljerMA0002 Brukerkurs i matematikk B. Eksamen 28. mai 2016 Løsningsforslag. Oppgave 1
MA000 Brukerkurs i matematikk B Eksamen 8. mai 06 Løsningsforslag Oppgave a) Viser at B = A ved å vise at AB = BA = I. Nedenfor er matrisemultiplikasjonen AB vist (du må vise at BA gir det samme). ( )
DetaljerOppgave 2 Løs oppgavene I og II, og kryss av det alternativet (a, b eller c) som passer best. En funksjon er ikke deriverbar der:
Oppgave a) Si kort hva deriverte til en funksjon forteller oss. Hva handler deriverbarhet om? b) Er f (x) = deriverbar for alle reelle x-verdier? x Bestem deriverte til f i sin definisjonsmengde. c) Tegn
Detaljer+ (y b) F y. Bruker vi det siste på likningen z = f(x, y) i punktet (a, b, f(a, b)) kan vi velge F (x, y, z) = f(x, y) z.
Vi husker fra sist Gradientvektoren F ( a) peker i den retningen u der den retningsderiverte D u F ( a) er størst, og der er D u F ( a) = u F ( a) = F ( a). Gradientvektoren er normalvektoren til (hyper)flata
DetaljerMAT1100 - Grublegruppen Uke 36
MAT - Grublegruppen Uke 36 Jørgen O. Lye Partiell derivasjon Hvis f : R 2 R er en kontinuerlig funksjon, så kaller man følgende dens partiellderiverte (gitt at de finnes!) f f(x + h, y) f(x, y) (x, y)
DetaljerHøgskolen i Telemark Fakultet for estetiske fag, folkekultur og lærerutdanning BOKMÅL 25. mai 2012
Høgskolen i Telemark Fakultet for estetiske fag, folkekultur og lærerutdanning BOKMÅL 25. mai 2012 EKSAMEN I MATEMATIKK 2 Modul 1 15 studiepoeng Tid: 5 timer Oppgavesettet er på 8 sider (inkludert formelsamling).
DetaljerLøsningsforslag til Obligatorisk innlevering 7
Løsningsforslag til Obligatorisk innlevering 7 Oppgave a) Likningen e 2x 6e x + 5 = 0 er en annengradslikning i e x. Siden ( ) ( 5) = 5 og 5 = 6 så faktoriserer annengradsuttrykket som (e x 5)(e x ). Dette
DetaljerLØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101)
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA0/MA60) Fredag 2. desember 202 Tid: 09:00 3:00 Hjelpemidler: Kode
DetaljerOppgave x d 1.0 for n from 1 by 1 to 200 do x d sin x end do
Oppgave 7.2.6 a) x d 1.0 for n from 1 by 1 to 200 do x d sin x Iterasjonen ser ut til å konvergere sakte mot null som er det eneste fikspunktet for sin x. d) Det er klart at f x = 0 hvis og bare hvis x
DetaljerOppgave Iterasjonen ser ut til å konvergere sakte mot null som er det eneste fikspunktet for sin x.
Oppgave 7.2.6 a) x d 1.0 x := 1.0 (1) for n from 1 by 1 to 20 do x d sin x end do x := 0.8170988 x := 0.7562117 x := 0.6783077 x := 0.6275718321 x := 0.5871809966 x := 0.550163908 x := 0.5261070755 x :=
DetaljerHøgskolen i Telemark Eksamen Matematikk 2 modul Mai Fakultet for estetiske fag, folkekultur og lærerutdanning BOKMÅL 24.
Høgskolen i Telemark Eksamen Matematikk 2 modul 24. Mai 203 Høgskolen i Telemark Fakultet for estetiske fag, folkekultur og lærerutdanning BOKMÅL 24. mai 203 EKSAMEN I MATEMATIKK 2 Modul 5 studiepoeng
DetaljerDerivasjon ekstremverdier Forelesning i Matematikk 1 TMA4100
Derivasjon ekstremverdier Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 6. september 20 Kapittel 3.. Hyperbolske funksjoner 3 Hyperbolske funksjoner Definisjon (Grunndefinisjoner)
DetaljerChebyshev interpolasjon
Chebyshev interpolasjon Chebyshev polynomer Vi vil studere polynomapproksimasjon på intervallet [-, ]. Målet er å minimalisere den største verdien av feilestimatet E HxL = f HxL - P HxL, hvor maksimum
DetaljerLøsningsforslag, eksamen MA1103 Flerdimensjonal analyse, 8.juni 2010
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Løsningsforslag, eksamen MA11 Flerdimensjonal analyse, 8.juni 21 Oppgave 1 a) Finn og klassifiser alle kritiske
DetaljerEkstraoppgave 11.6.1. with plots. Vi plotter først de to flatene x 2 C y 2 = 1 og z = 4 K x for å få en ide om hvordan T ser ut.
Ekstraoppgave 11.6.1. a) with plots Vi plotter først de to flatene x 2 C y 2 = 1 og z = 4 K x for å få en ide om hvordan T ser ut. P1 d plot3d x, sqrt 1 K x 2, z, x = 0..4, z = 0..4, color = blue, style
DetaljerKontinuerlige sannsynlighetsfordelinger.
Kontinuerlige sannsynlighetsfordelinger. Dekkes av kap. 6 og deler av kap. 8.5 i boka. Husk: f(x er sannsynlighetstettheten til en kontinuerlig X dersom:. f(x 0 for alle x R 2. f(xdx = 3. P (a
Detaljer3.1. Ensidige grenser FIGUR 3.2. cappelendamm.no. La oss studere funksjonen f(x) = x x + 2, Hvis vi nå spør hva funksjons-
3. Ensidige grenser La oss studere funksjonen f() =, Hvis vi nå spør hva funksjons- kr 8 6 5 5 5 335 gr FIGUR 3. 3 FIGUR 3. 3 3 3 5 3 FIGUR 3.3 Matematikk for økonomi og samfunnsfag 9. utgave kapittel
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler På Del 1 av eksamen kan du få bruk for formlene nedenfor Binomisk fordeling: ( ) n k P X k p (1 p k ) n k Antall uavhengige forsøk er n X er antall ganger A inntreffer p i hvert
DetaljerMAT jan jan jan MAT Våren 2010
MAT 1012 Våren 2010 Mandag 18. januar 2010 Forelesning I denne første forelesningen skal vi friske opp litt rundt funksjoner i en variabel, se på hvordan de vokser/avtar, studere kritiske punkter og beskrive
DetaljerEmnenavn: Eksamenstid: 4 timer. Faglærer: Hans Kristian Bekkevard
EKSAMEN Emnekode: SFB10711 Dato: 2. mars 2018 Hjelpemidler: Godkjent kalkulator og utdelt formelsamling Emnenavn: Metodekurs 1, deleksamen i matematikk Eksamenstid: 4 timer Faglærer: Hans Kristian Bekkevard
DetaljerNicolai Kristen Solheim
Oppgave 1. 1a) 1, 0, 2, sin 5 4cos sin 54cos sin 8 sin cos cos 54cos 8 sin cos 5cos 4cos 8sin cos 5cos 4cos Dersom vi plotter grafen for vil vi se hvor vokser og avtar. 1 Fra grafen for ser vi følgende
Detaljerx 2 2 x 1 =±x 2 1=x 2 x 2 = y 3 x= y 3
Obligatorisk om funksjonar og deriverte Oppgåve f 3 f = ±, =R Funksjonen f er ein parabel med botnpunkt på (,y) = (0,3) og definisjonsmengda er difor heile tallinja. Sidan f = f er funksjonen symmeterisk
DetaljerDel 1. Oppgave 1. a) Løs ulikheten 2x+ 4 4x+ b) Løs ulikheten. 1) Løs likningen f( x ) = 4 grafisk og ved regning.
Del 1 Oppgave 1 a) Løs ulikheten + 4 4+ 8 b) Løs ulikheten + > + + 10 10 5 c) Vi har gitt funksjonen f( ) = lg + 3. Figuren viser grafen til f. 7 6 5 4 3 1-1 1 3 4 5 6 7-1 1) Løs likningen f( ) = 4 grafisk
DetaljerMA0003-8. forelesning
Implisitt derivasjon og 31. august 2009 Outline Implisitt derivasjon 1 Implisitt derivasjon 2 Outline Implisitt derivasjon 1 Implisitt derivasjon 2 Outline Implisitt derivasjon 1 Implisitt derivasjon 2
DetaljerLøsningsforslag AA6516 Matematikk 2MX Privatister 10. desember 2003. eksamensoppgaver.org
Løsningsforslag AA6516 Matematikk MX Privatister 10. desember 003 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i MX er gratis, og det er lastet
DetaljerLøsningsforslag for eksempeloppgave REA3026 Matematikk S1 - April 2007. eksamensoppgaver.org
Løsningsforslag for eksempeloppgave REA3026 Matematikk S1 - April 2007 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i S1 er gratis, og det er
DetaljerEksamen 29.11.2011. REA3028 Matematikk S2. Nynorsk/Bokmål
Eksamen 9.11.011 REA308 Matematikk S Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del : 5 timer: Del 1 skal leveres inn etter timer. Del skal leveres inn
DetaljerKontinuitet og derivasjon Forelesning i Matematikk 1 TMA4100
Kontinuitet og derivasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 25. august 2010 2 Dagens pensum I dag vil vi se på følgende: Kontinuerlige funksjoner Den deriverte
DetaljerNY Eksamen i matematikk III, 5 studiepoeng. August 2007
NY Eksamen i matematikk III, 5 studiepoeng. August 7 Oppgave a. Regn ut gradienten til funksjonen f(x, y) = x +y +xy. I hvilken retning øker f mest når x = og y =? b. Regn ut kurveintegralet f(x, y) ds
DetaljerEksamen S1 Va ren 2014 Løsning
Eksamen S1 Va ren 014 Løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (3 poeng) Løs likningene a) x 3x 3 3 x x x x 3 3 3 0 x
Detaljer1 2 3 4 5 Innendørs temperatursvingninger.nb 1 Innendørs temperaturoscillasjoner Eksempel på lineær første ordens differensiallikning E:P.6 ed. s. 57 1.5 Application. La innetemperaturen i et hus være
DetaljerHøgskoleni østfold EKSAMEN. Faglærer: Hans Kristian Bekkevard
Høgskoleni østfold EKSAMEN Emnekode: SFB10711 Emne: Metode 1 (Deleksamen i matematikk) Dato: 23.11.15 Eksamenstid: 4 timer, kl. 9.00-13.00 Hjelpemidler: Kalkulator Utlevert formelsamling (4 siste sider
DetaljerLær å bruke GeoGebra 4.0
Lær å bruke GeoGebra 4.0 av Sigbjørn Hals Innhold: Generelt om GeoGebra... 2 Innstillinger... 2 Likninger og ulikheter... 5 Implisitte likninger... 5 Ulikheter... 9 Statistikkberegninger i regnearket...
Detaljer1 OPPGAVE 2 OPPGAVE. a) Hva blir kontobeløpet den 2. januar 2040? b) Hvor mye penger blir det i pengeskapet den 2. januar 2040?
OPPGAVE Den. januar 0 satte Ola Normann 00 tusen kroner på en bankkonto med faste renter 3% per år. Han planlegger å ta ut halvparten av rentebeløpet den. januar hvert år, og å legge kontantene til et
Detaljera) Blir produktet av to vilkårlige oddetall et partall eller et oddetall? Bevis det.
Prøve i R1 04.1.15 Del 1 Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Husk å begrunne alle svar. Det skal gå klart frem av besvarelsen hvordan du har tenkt. Oppgave
DetaljerInstitutt for Samfunnsøkonomi. Utlevering: Kl. 09:00 Innlevering: Kl. 14:00
SENSORVEILEDNING MET 11803 Matematikk Institutt for Samfunnsøkonomi Utlevering: 17.12.2014 Kl. 09:00 Innlevering: 17.12.2014 Kl. 14:00 For mer informasjon om formalia, se eksamensoppgaven. Oppgave 1 Finn
DetaljerMET Matematikk for siviløkonomer
SENSORVEILEDNING - Skriftlig eksamen MET 11803 Matematikk for siviløkonomer Institutt for Samfunnsøkonomi Utlevering: 18.1.017 Kl. 14:00 Innlevering: 18.1.017 Kl. 19:00 For mer informasjon om formalia,
DetaljerEksamen matematikk S1 løsning
Eksamen matematikk S1 løsning Oppgave 1 (3 poeng) Løs likningene a) 6 4 0 6 6 44 6 36 3 4 6 4 1 b) lg lg lg4 lg lg4 lg 10 10 lg4 4 8 0 4 4 8 6 4 må være større enn null fordi den opprinnelige likningen
DetaljerUiO MAT1012 Våren Ekstraoppgavesamling
UiO MAT1012 Våren 2011 Ekstraoppgavesamling I tillegg til eksamen og prøveeksamen fra våren 2010 inneholder denne samlingen en del oppgaver som er blitt gitt til eksamen i diverse andre emner ved UiO i
DetaljerOppgave 1. (a) Vi løser det lineære systemet for a = 1 ved Gauss-eliminasjon. Vi nner først den utvidede matrisen: x A =
Løsning MET 803 Matematikk for siviløkonomer Dato 8. desember 07 kl 400-900 Oppgave. (a) Vi løser det lineære systemet for a = ved Gauss-eliminasjon. Vi nner først den utvidede matrisen: 7 3 y = 9 6 7
Detaljerwith plots plot sin x, x =KPi..Pi Pi 3 eval tan eval cos K1 1 > evalf sin 3 2 K 2 $Pi
with plots Maple har en rekke innebygde funksjoner. Kommandoen plot brukes til å tegne grafen til en funksjon, og kommandoene eval og evalf brukes til å beregne funksjonsverdier for en funskjon. Den første
DetaljerR2 - Løsningsskisser til noen oppgaver i kapittel 4.1 og 4.2
R2 - Løsningsskisser til noen oppgaver i kapittel 4. og 4.2 405, 406, 4, 43, 49, 420, 422, 424 Versjon: 04..4 405 a) Kjerneregel: f x sin u,u x 2 2x f x cos u 2x 2 2x 2 cos x 2 2x b) Produktregel: uv u
DetaljerRepetisjon i Matematikk 1: Derivasjon 2,
Repetisjon i Matematikk 1: Derivasjon 2, 201. 1 Høgskolen i Gjøvik Avdeling TØL Repetisjonsoppgaver MATEMATIKK 1 REA1141 og REA1141F Derivasjon 2, 201. Oppgave 1 Denne oppgaven har forholdsvis enkle derivasjoner,
DetaljerEksamen REA3026 S1, Våren 2013
Eksamen REA306 S1, Våren 013 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Løs likningene a) lg x 3 5 lg x 3 5 lg x
DetaljerMA0002 Brukerkurs i matematikk B Vår 2014
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2014 Løsningsforslag Øving 10 Oppgaver fra boken: 10.6 : 1, 8, 9, 12, 19, 26, 29,, 4 Det
DetaljerMA1103. Partiellderivert, derivert og linearisering
MA1103 4/2 2013 Partiellderivert, derivert og linearisering Partiellderivert i en koordinatretning: Tenk på alle de andre variablene som konstanter. f : A R n R m, a = (a 1,..., a n ) A f 1 f x 1 (a)...
Detaljer1 C z I G + + = + + 2) Multiplikasjon av et tall med en parentes foregår ved å multiplisere tallet med alle leddene i parentesen, slik at
Ekstranotat, 7 august 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser og brøker... Funksjoner...3 Tilvekstform (differensialregning)...4 Telleregelen...7 70-regelen...8
DetaljerEkstremverdier Mellomverdisatsen Forelesning i Matematikk 1 TMA4100
Ekstremverdier Mellomverdisatsen Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 9. september 2011 Kapittel 4.1. Funksjoners ekseremverdier fra og med lokale ekstrema
DetaljerMA0002 Brukerkurs i matematikk B Vår 2016
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2016 Løsningsforslag Øving 11 Oppgaver fra boken: 10.6 : 1, 8, 9, 12, 19, 26, 29,, 4 Det
DetaljerEksamen R1, Va ren 2014, løsning
Eksamen R1, Va ren 014, løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (4 poeng) Deriver funksjonene a) f x lnx x Vi bruker
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) 1,0 g salt inneholder 0,4 g natrium. Helsemyndighetene anbefaler et inntak av natrium på maksimalt 2,4 g per dag. a) Hvor mange gram salt kan du maksimalt innta
DetaljerTDT4102 Prosedyreog objektorientert programmering Vår 2016
Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap TDT4102 Prosedyreog objektorientert programmering Vår 2016 Øving 4 Frist: 2016-02-12 Mål for denne øvingen:
DetaljerTMA4100 Matematikk 1, høst 2013
TMA4100 Matematikk 1, høst 2013 Forelesning 9 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 9 Derivasjon I dagens forelesning skal vi se på følgende: 1 Tilnærminger til små endringer. 2 Vekstfart.
DetaljerLøsningsforslag heldagsprøve 1T 19.05.2011 DEL 1 OPPGAVE 1. a1) Regn ut 10 8 2 2 3 2 2 3 10 8 2 2 3 2 2 3 10 8 2 2 1 10 32 22 22.
c) Løs likningen 6 4 x 4 x 6 4 x 4 x Løsningsforslag heldagsprøve 1T 19.05.011 DEL 1 OPPGAVE 1 a1) Regn ut 10 8 3 3 10 8 3 3 10 8 1 10 3 a) 3 5 4 5 3 5 5 4 5 3 5 5 3 5 5 4 5 1 3 5 1 5 1 1 3 1 5 1 3 3 5
Detaljer