Undervisningsopplegg i matematikk. Med fokus på bruk av IKT

Størrelse: px
Begynne med side:

Download "Undervisningsopplegg i matematikk. Med fokus på bruk av IKT"

Transkript

1 Undervisningsopplegg i matematikk Med fokus på bruk av IKT

2 Innholdsfortegnelse Innledning... 3 Målsetning... 3 Valg av programvare... 3 Evaluering... 4 Undervisningsopplegget... 5 Arbeidsmetoder... 5 Temaliste... 5 Prosjekt... 5 Time Time Time Time Time Time Time Time Time Time Kommentarer... 7 Kilder... 9 NTNU 2

3 Innledning Målsetning Jeg har valgt å sette opp et 10 timers undervisningsopplegg for fjerde klasse i matematikk. Jeg har også valgt å fokusere på disse læreplanmålene: Kjenne igjen og beskrive trekk ved sirkler, mangekanter, kuler, sylindrer og enkle polyeder Tegne og bygge geometriske figurer og modeller i praktiske sammenhenger, medregna teknologi og design Jeg ønsker å gi elevene en grundig forståelse av de grunnlegende egenskapene ved sirkler samt gi dem mulighet til å utforske disse i GEONexT og danne sin egen definisjon på hva som må til for at noe skal være en sirkel. Valg av programvare Jeg har valgt å bruke GEONexT for å hjelpe elevene å oppnå disse læreplanmålene. GEONexT er en dynamisk og allsidig matematikkprogramvare til utforskning av geometriske konstruksjoner og egenskaper. Det har mye til felles med storebroren Cabri Geometri II, men den store fordelen med GEONexT er at det er gratis. Som fri programvare er GEONexT GNU lisensiert, noe som vil si at hvem som helst kan bruke den i en hvilken som helst sammenheng uten noen restriksjoner. En annen forutsetning for GNU lisensen er at programvaren skal være open source, altså at hvem som helst kan endre programkoden for gjøre programvaren mer egnet for dem selv. GEONexT er Java basert som i tillegg gir ytterligere fleksibilitet ved at programvaren for eksempel enkelt kan implementeres i HTML og brukes i applikasjoner på nettet. Ved å bruke GEONexT ønsker jeg å gi elevene en mer håndfast og visuell forklaring på oppførselen til aktuelle figurer. Jeg vil også gi elevene mulighet til å utfolde seg fritt i programmet og på den måten gi dem muligheten til å oppdage forskjellige sammenhenger mellom forskjellige attributter ved figuren. NTNU 3

4 En ulempe med programmet er mangel på muligheter for å bygge figurer i 3D og dermed får ikke elevene like store muligheter til å utforske egenskaper ved kuler og sylindre digitalt. Dette må vi i så fall gjøre på den gammeldagse måten. Evaluering Til å evaluere elevenes prestasjoner vil jeg lage en automatisk skriftlig prøve ved bruk av oppgavedatabasen til Erlend Thune. Dette er en database opprettet av en lærer for andre lærere. Den er dugnadsbasert, det vil si at lærere selv går inn og legge til oppgaver de ønsker å ha med i databasen. Etter at denne databasen har bygd seg opp en stund begynner det å bli en betydelig mengde oppgaver der, disse er sortert etter klassetrinn, læreplanmål og tema. Det er også funksjonalitet til å relativt enkelt sette opp en egnet prøve med oppgaver fra databasen som vil designe seg selv og gjøre oppgaven med å lage prøver såre enkelt. Når det også er 9000 oppgaver innen et tema og læreplanmål gjør det ingenting at elever får tilgang til databasen for å øve på oppgaver. Det er faktisk lagt inn en øvingsfunksjon som gjør at elever eller andre som ønsker repetisjonsoppgaver innen et tema eller årstrinn kan løse oppgaver rett i nettleseren ved å klikke øv ved det temaet eller temaet eller årstrinnet. Eventuelt kan en også løse oppgaver til et spesielt læreplanmål ved å bla seg ned til dette nivået i databasen. Noe som er verdt å merke seg ved databasen er at det krever en viss datakyndighet for å bruke den. Oppgaver som ønskes i databasen må skrives i MathML og for å laste dette opp i databasen må det hele skrives i XHTML. Grafikk som ønskes i oppgaver må skrives i SVG og ettersom alt er nettbasert må man skrive ting i XHTML dersom en ønsker spesielle tegn, stor skrift og liknende. Oppgavene i databasen kan også hentes ut i XML format slik at det blir lett tilgjengelig for tredjeparts programvare. Dette er spesielt interessant i forhold til standardisering av formater hvor XML er en god kandidat i mange sammenhenger. I følge Thune er grunnen til at det er så innviklet å bruke databasen at han ønsker fleksibilitet i datasystemet ikke brukervennlighet. NTNU 4

5 Undervisningsopplegget Arbeidsmetoder Tavleundervisning/forelesning Oppgaveløsing Oppgaveløsning i GEONexT Fri utfoldelse og lek i GEONexT Prosjektarbeid Temaliste Radius i en sirkel Diameter i en sirkel Omkrets av sirkler Areal av sirkler Prosjekt Tema: Hva er en sirkel? Lengde: 3 timer Gruppestørrelse: 3 Produkt: Figur i GEONexT sammen med en forklaring av figuren skal fremføres for klassen gruppevis For å gi elevene mulighet til å utforske temaet så godt som mulig på egenhånd ønsker jeg å la dem få et kort prosjekt som gjør at de blir nødt til å tenke over temaet på egenhånd. Selv om sirkler har blitt gjennomgått den siste uka eller så er det ikke sikkert de har gjort seg opp noen klar mattematisk definisjon av hva som definerer en sirkel, gjennom dette prosjektet vil jeg dermed at hver gruppe skal komme frem til sin egen definisjon og at de sammen kommer frem til hvilken de selv synes er mest passende. Gjennom hele prosjektet skal elevene ha tilgang på datamaskin og GEONexT, samt andre hjelpemidler de måtte ønske eller synes å trenge. NTNU 5

6 Time 1 Introduksjon av sirkelen ved forelesning 20min Oppgaveløsning: Forskjellen på sirkler og ellipser 15min Gjennomgang av oppgavene med spørsmål 10min Time 2 Forelesning om radius og diameter i en sirkel 20min Oppgaveløsning: Finne radius og diameter i sirkler 15min Gjennomgang av oppgavene med spørsmål 10min Time 3 Forelesning om omkrets av en sirkel 20min Oppgaveløsning: Bruk av radius og diameter for å finne omkrets av sirkler 15min Gjennomgang av oppgavene med spørsmål 10min Time 4 Forelesning om areal av en sirkel 20min Oppgaveløsning: Bruk av radius og diameter for å finne areal av sirkler 15min Gjennomgang av oppgavene med spørsmål 10min Time 5 Innføring i grunnlegende bruk av GEONexT og konstruksjon av sirkler i programmet 15min Oppgaveløsning: Finne sammenhengene mellom diverse egenskaper ved sirkler 10min Inndeling i grupper til prosjekt i de resterende timene 5 min Fri lek i GEONexT 10min Gjennomgang av oppgavene med spørsmål 5min Time 6 Starte og arbeide med prosjektet prosjekt 45min Time 7 Samtale med lærer og veiledning gruppe for gruppe gjennom denne timen Jobbe med prosjekt 45min NTNU 6

7 Time 8 Jobbe med og fullføre prosjekt 30min Presentasjon av de prosjektene vi rekker 15min Time 9 Presentasjon av resten av prosjektene 20min Diskusjon rundt presentasjonene hvor elevene skal få stemme over hvilken forklaring de synes fungerte best 15 min Rask repetisjon av omkrets og areal av en sirkel 10min Time 10 Skriftlig prøve 45min Kommentarer Litt usikker på hvor høy eller lav intensiteten i 4. klasse mattepensum er. Derfor har jeg undersøkt litt for å finne ut av hvor mange timer som kan brukes pr. mål og dermed hvor mye av pensum jeg bør ha med i de 10 timene jeg har til rådighet. De utregningene jeg har gjort ut ifra data hentet fra utdanningsdirektoratets hjemmesider gir meg en grov skisse som tilsier maksimal timebruk pr. læreplanmål. I grunnskolen skal elevene ha 812 mattetimer av 60 min hvert år. I fjerde klasse er det 3 hovedtema i mattepensum, disse er tall og algebra, geometri og måling. Dersom vi antar at alle temaene er like store og krever like mange timer gjennomgang gir det oss ca. 270 timer for hvert hovedtema i pensum. I geometripensum er det 5 delmål. Dersom vi antar igjen at hvert av disse er like viktige vil det si at hvert læreplanmål kan tildeles 54 timer. Dermed vil jeg påstå at det trygt kan tildeles 10 timer til gjennomgangen av sirkler alene. Jeg trenger ikke engang gå gjennom hele temaet ettersom disse utregningene trolig har en stor feilmargin som er garantert å gi oss bedre tid siden egenskaper ved geometriske konstruksjoner helt klart er et hovedtema i mattepensum i fjerde klasse og at flere læreplanmål som regel blir oppfylt samtidig.. Jeg har valgt å bruke et veldig fast tidsoppsett i de første 4 timene for å gi elevene en følelse av struktur og gjøre det lettere for dem å holde oversikt, slik at de kan forvente hva som skjer når. På den måten vil det skje færre missforståelser og det er lettere å være mentalt forberedt til timene. NTNU 7

8 Når det gjelder bruk av IKT i de første 4 timene i undervisningsopplegget har jeg tatt utgangspunkt i at hver elev ikke har egen bærbar eller stasjonær pc i timene. Hadde dette vært tilfelle ville jeg brukt Thune s oppgavedatabase som standard i oppgaveløsning for å gi elevene mulighet til å få raskere tilbakemelding på arbeidet sitt. Når elevene gjør oppgaver fra databasen til Thune vil elevene likevel gjøre utregninger på ark, men skrive inn svaret sitt på data og dermed få øyeblikkelig tilbakemelding på om de har rett eller galt svar, samtidig som de har et mål med oppgavene de gjøre ved at de har et antall oppgaver de skal gjennom sammen med en statistikk som kan gi en konkuransefølelse og øke interessen for oppgavene. Bruken av GEONexT fungerer best når den brukes til et formål, og ikke som et verktøy for å løse andre oppgaver siden den er lite konkret og ikke er veldig oversiktlig i konkrete oppgaver. En annen teknologi som er interessant i forhold til tavleundervisning er bruk av smartboard. Disse er interaktive tavler som er koblet via en datamaskin og gjør at du kan bruke hendene rett på tavla i stedet for å styre en musepeker fra PC-en. Du kan for eksempel simulere sammenhenger i forskjellige geometriske konstruksjoner i sanntid på tavla, mens du på en vanlig tavle bare kunne tegne opp en og en figur og få elevene til å forestille seg bevegelse. I tillegg kan klassen for eksempel spille mattebaserte spill sammen på en slik tavle, noe som garantert vil sørge for økt deltakelse og interesse i ethvert fag. Prinsippet for bruk av tavlen er at den kan brukes i samsvar med hva det måtte være av programvare og nettsteder samtidig som interaksjon med datamaskinen som kjører programvaren blir unødvendig. NTNU 8

9 Kilder &visning=5&sortering=2&kmsid= NTNU 9

ÅRSPLAN I MATEMATIKK: SKOLEÅRET 2016/2017

ÅRSPLAN I MATEMATIKK: SKOLEÅRET 2016/2017 ÅRSPLAN I MATEMATIKK: SKOLEÅRET 2016/2017 Faglærer: Dorthea Ledang Fagbøker/lærestoff: Radius 3a grunnbok og Radius 3b grunnbok. Mnd August Læreplanmål (kunnskapsløftet) Delmål Tema/emne Kunne dele hele

Detaljer

ÅRSPLAN I MATEMATIKK FOR 3. TRINN HØSTEN 2013 Læreverk: Multi Faglærer: Astrid Løland Fløgstad MÅL (K06) TEMA ARBEIDSFORM VURDERING Data og statistikk

ÅRSPLAN I MATEMATIKK FOR 3. TRINN HØSTEN 2013 Læreverk: Multi Faglærer: Astrid Løland Fløgstad MÅL (K06) TEMA ARBEIDSFORM VURDERING Data og statistikk 34 35 36 37 38 39 40 42 43 44 45 46 ÅRSPLAN I MATEMATIKK FOR 3. TRINN HØSTEN 2013 Læreverk: Multi Faglærer: Astrid Løland Fløgstad MÅL (K06) TEMA ARBEIDSFORM VURDERING Data og statistikk samle, sortere,

Detaljer

Halvårsplan høsten 2015

Halvårsplan høsten 2015 34-38 -samle, sortere, notere og illustrere data på formålstenlege måtar med teljestrekar, tabellar og søylediagram, med og utan digitale verktøy, og samtale om prosess og framstilling 39-41 -beskrive

Detaljer

For å gjøre det enklere for eleven å finne hjelp, kan man knytte oppgavene opp mot lenker til eksisterende nettressurser.

For å gjøre det enklere for eleven å finne hjelp, kan man knytte oppgavene opp mot lenker til eksisterende nettressurser. Er du lat? Dataprogrammerere er late av natur. I stedet for å gjøre jobben, prøver de å lage programmer som gjør jobben for dem. Jeg er dataprogrammerer. Og for et par år siden tok jeg pedagogikk, så nå

Detaljer

ÅRSPLAN I MATEMATIKK FOR 7. TRINN, SKOLEÅRET

ÅRSPLAN I MATEMATIKK FOR 7. TRINN, SKOLEÅRET ÅRSPLAN I MATEMATIKK FOR 7. TRINN, SKOLEÅRET 2016-2017 Faglærer: Cato Olastuen Fagbøker/lærestoff: Grunntall 7a og 7b Uker 34 35 36 37 Læreplanmål (kunnskapsløftet) Delmål Tema/emne Tall og algebra Beskrive

Detaljer

Forord... 3. Introduksjon til studentresponssystem... 3. Hva er et studentresponssystem?... 3. Hvorfor bruke SRS?... 3

Forord... 3. Introduksjon til studentresponssystem... 3. Hva er et studentresponssystem?... 3. Hvorfor bruke SRS?... 3 Innholdsfortegnelse Forord... 3 Introduksjon til studentresponssystem... 3 Hva er et studentresponssystem?... 3 Hvorfor bruke SRS?... 3 Hvordan blir undervisningen ved bruk av SRS?... 3 Hva slags enhet

Detaljer

Mars Robotene (5. 7. trinn)

Mars Robotene (5. 7. trinn) Mars Robotene (5. 7. trinn) Lærerveiledning Informasjon om skoleprogrammet Gjennom dette skoleprogrammet skal elevene oppleve og trene seg på et teknologi og design prosjekt, samt få erfaring med datainnsamling.

Detaljer

Modul nr. 1203 Gjør Matte! 1-4 trinn.

Modul nr. 1203 Gjør Matte! 1-4 trinn. Modul nr. 1203 Gjør Matte! 1-4 trinn. Tilknyttet rom: Newton Alta 1203 Newton håndbok - Gjør Matte! 1-4 trinn. Side 2 Kort om denne modulen Formålet med denne modulen er å skape interesse og plante en

Detaljer

Læringsressurser På www.vilvite.no finner du følgende ressurser til Brann i matteboken:

Læringsressurser På www.vilvite.no finner du følgende ressurser til Brann i matteboken: Veiledning til læringstilbudene Brann i matteboken del 1, 2 og 3 Trinn, fagområde og kompetansemål Matematikk, alle hovedområder for fjerde trinn. Opplegget berører mål i læreplanen som omhandler posisjonssystemet,

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 9. TRINN SKOLEÅR 2014-2015

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 9. TRINN SKOLEÅR 2014-2015 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 9. TRINN SKOLEÅR 2014-2015 Periode 1: UKE 34-38 Tema: Kap.1 «Tall og tallforståelse» sammenligne og omregne hele tall ( ) og tall på standardform,

Detaljer

Hovedtema Kompetansemål Delmål Arbeidsmetode Vurdering

Hovedtema Kompetansemål Delmål Arbeidsmetode Vurdering Kyrkjekrinsen skole Plan for perioden: 2012-2013 Fag: Matematikk År: 2012-2013 Trinn og gruppe: 9. trinn Lærer: Torill Birkeland Uke Årshjul Geometri Hovedtema Kompetansemål Delmål Arbeidsmetode Vurdering

Detaljer

Årsplan Matematikk Årstrinn: 9. årstrinn Lena Veimoen, Michael Solem og Ole André Ljosland

Årsplan Matematikk Årstrinn: 9. årstrinn Lena Veimoen, Michael Solem og Ole André Ljosland Årsplan Matematikk 2016 2017 Årstrinn: 9. årstrinn Lærere: Lena Veimoen, Michael Solem og Ole André Ljosland Akersveien 4, 0177 OSLO Tlf: 23 29 25 00 Kompetansemål Tidspunkt Tema/Innhold Lærestoff Arbeidsmåter

Detaljer

arbeide med konkreter praktisk arbeid stasjoner uteskole pc samtale samarbeid gruppearbeid arbeide i læreverket andre skriftlige oppgaver

arbeide med konkreter praktisk arbeid stasjoner uteskole pc samtale samarbeid gruppearbeid arbeide i læreverket andre skriftlige oppgaver Årsplan i matematikk for 3. trinn 2015/2016 Lærerverk og bøker: Tusen millioner, oppgavebok og tallbok Uke Mål: eleven skal kunne Tema Arbeidsform Vurdering 34,35,36 T.M s. 4-21 tallene, bruke positive

Detaljer

Årsplan Matematikk 2014 2015 Årstrinn: 7. årstrinn Lærere:

Årsplan Matematikk 2014 2015 Årstrinn: 7. årstrinn Lærere: Årsplan Matematikk 2014 2015 Årstrinn: 7. årstrinn Lærere: Cordula Norheim, Åsmund Gundersen, Renate Dahl Akersveien 4, 0177 OSLO, Tlf: 23 29 25 00 Kompetansemål Tidspunkt Tema/Innhold Lærestoff Arbeidsmåter

Detaljer

Modul nr. 1095 Gjør matte! 5-7 trinn

Modul nr. 1095 Gjør matte! 5-7 trinn Modul nr. 1095 Gjør matte! 5-7 trinn Tilknyttet rom: Ikke tilknyttet til et rom 1095 Newton håndbok - Gjør matte! 5-7 trinn Side 2 Kort om denne modulen Formålet med denne modulen er å skape interesse

Detaljer

Bedre vurderingspraksis. Utprøving av kjennetegn på måloppnåelse i fag. Slik jobber vi i Tana (Seida og Austertana)

Bedre vurderingspraksis. Utprøving av kjennetegn på måloppnåelse i fag. Slik jobber vi i Tana (Seida og Austertana) Bedre vurderingspraksis Utprøving av kjennetegn på måloppnåelse i fag. Slik jobber vi i Tana (Seida og Austertana) Bedre vurderingspraksis Prosjekt Bedre vurderingspraksis skal arbeide for å få en tydeligere

Detaljer

Er det forskjell på ml og mg? Yrkesretting i praksis for HO

Er det forskjell på ml og mg? Yrkesretting i praksis for HO Er det forskjell på ml og mg? Yrkesretting i praksis for HO Susanne Stengrundet 17. 11.2014 1 Utfordring for matematikklæreren Vi må lære elevene noe som de "har hatt"! Alt som vi skal lære dem i geometri

Detaljer

Geometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI Geometri i skolen Geometri etter 4.

Geometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI Geometri i skolen Geometri etter 4. Geometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI 15-Apr-07 Geometri i skolen dreier seg blant annet om å analysere egenskaper ved to- og tredimensjonale

Detaljer

Moro med former trinn 90 minutter

Moro med former trinn 90 minutter Lærerveiledning Passer for: Varighet: Moro med former 5. - 7. trinn 90 minutter Moro med former er et skoleprogram hvor elevene får utforske og leke seg med geometrien. Vi vil arbeide med geometriske figurer

Detaljer

ÅRSPLAN 2015-2016. Arbeidsmåter ( forelesing, individuelt elevarbeid, gruppearbeid, forsøk, ekskursjoner ) - Felles tavleundervisning

ÅRSPLAN 2015-2016. Arbeidsmåter ( forelesing, individuelt elevarbeid, gruppearbeid, forsøk, ekskursjoner ) - Felles tavleundervisning Øyslebø oppvekstsenter ÅRSPLAN 2015-2016 Fag: Matematikk Trinn: 9. klasse Lærer: Tove Mørkesdal og Tore Neerland Tidsrom (Datoer/ ukenr, perioder..) Tema Lærestoff / læremidler (lærebok kap./ s, bøker,

Detaljer

Kurshefte GeoGebra. Barnetrinnet

Kurshefte GeoGebra. Barnetrinnet Kurshefte GeoGebra Barnetrinnet GeoGebra Geometri og algebra Dynamisk geometriverktøy Algebraisk verktøy Gratis Brukes på alle nivåer i utdanningssystemet Finnes på både bokmål og nynorsk Kan lastes ned

Detaljer

Fagplan i matematikk for 9. trinn 2014/15. Faglærer: Terje Tønnessen

Fagplan i matematikk for 9. trinn 2014/15. Faglærer: Terje Tønnessen Fagplan i matematikk for 9. trinn 2014/15. Faglærer: Terje Tønnessen Standarder (gjennom hele semesteret) : - Å kunne uttrykke seg muntlig. Å forstå og kunne bruke det matematiske språket, implementeres

Detaljer

Geometri Verktøylinja i GeoGebra Konstruksjon / tegning Konstruksjonsforklaring Normaler, paralleller og vinkler Mangekant, areal og omkrets

Geometri Verktøylinja i GeoGebra Konstruksjon / tegning Konstruksjonsforklaring Normaler, paralleller og vinkler Mangekant, areal og omkrets 2 Geometri Verktøylinja i GeoGebra Konstruksjon / tegning Konstruksjonsforklaring Normaler, paralleller og vinkler Mangekant, areal og omkrets Eksamensoppgaver 0 Innholdsfortegnelse INTRODUKSJON GEOGEBRA...

Detaljer

ÅRSPLAN Arbeidsmåter ( forelesing, individuelt elevarbeid, gruppearbeid, forsøk, ekskursjoner )

ÅRSPLAN Arbeidsmåter ( forelesing, individuelt elevarbeid, gruppearbeid, forsøk, ekskursjoner ) Øyslebø oppvekstsenter ÅRSPLAN 2015-2016 Fag: Matematikk Trinn: 3 Lærer: Nils Harald Sør-Reime Tidsrom (Datoer/ ukenr, perioder..) Tema Lærestoff / læremidler (lærebok kap./ s, bøker, filmer, annet stoff..)

Detaljer

ROSSELAND SKOLE LÆREPLAN I MATEMATIKK 2. TRINN

ROSSELAND SKOLE LÆREPLAN I MATEMATIKK 2. TRINN ROSSELAND SKOLE LÆREPLAN I MATEMATIKK 2. TRINN Årstimetallet i faget: 133 Songdalen for livskvalitet Generell del av læreplanen, grunnleggende ferdigheter og prinsipper for opplæringen er innarbeidet i

Detaljer

Oppgaver og løsningsforslag i undervisning. av matematikk for ingeniører

Oppgaver og løsningsforslag i undervisning. av matematikk for ingeniører Oppgaver og løsningsforslag i undervisning av matematikk for ingeniører Trond Stølen Gustavsen 1 1 Høgskolen i Agder, Avdeling for teknologi, Insitutt for IKT trond.gustavsen@hia.no Sammendrag Denne artikkelen

Detaljer

ÅRSPLAN Arbeidsmåter ( forelesing, individuelt elevarbeid, gruppearbeid, forsøk, ekskursjoner )

ÅRSPLAN Arbeidsmåter ( forelesing, individuelt elevarbeid, gruppearbeid, forsøk, ekskursjoner ) Øyslebø oppvekstsenter ÅRSPLAN 2016-2017 Fag: Matematikk Trinn: 3 Lærer: Hilde Cathrine Eikeland Tidsrom (Datoer/ ukenr, perioder..) Tema Lærestoff / læremidler (lærebok kap./ s, bøker, filmer, annet stoff..)

Detaljer

HOVEDPROSJEKT 2010 - HIO IU - DATA FORPROSJEKTRAPPORT GRUPPE 18

HOVEDPROSJEKT 2010 - HIO IU - DATA FORPROSJEKTRAPPORT GRUPPE 18 HOVEDPROSJEKT 2010 - HIO IU - DATA FORPROSJEKTRAPPORT GRUPPE 18 INNHOLDSFORTEGNELSE 1. PRESENTASJON 2. SAMMENDRAG 3. DAGENS SITUASJON 4. MÅL OG RAMMEBETINGELSER 5. LØSNINGER \ ALTERNATIVER 6. ANALYSE AV

Detaljer

Årsplan Matematikk Årstrinn: 7. årstrinn Lærere:

Årsplan Matematikk Årstrinn: 7. årstrinn Lærere: Årsplan Matematikk 2016 2017 Årstrinn: 7. årstrinn Lærere: Måns Bodemar, Jan Abild, Birgitte Kvebæk Akersveien 4, 0177 OSLO, Tlf: 23 29 25 00 Kompetansemål Tidspunkt Tema/Innhold Lærestoff Arbeidsmåter

Detaljer

Modul nr. 1094 Gjør Matte! 1-4 trinn.

Modul nr. 1094 Gjør Matte! 1-4 trinn. Modul nr. 1094 Gjør Matte! 1-4 trinn. Tilknyttet rom: Ikke tilknyttet til et rom 1094 Newton håndbok - Gjør Matte! 1-4 trinn. Side 2 Kort om denne modulen Formålet med denne modulen er å skape interesse

Detaljer

Grunnleggende ferdigheter i faget (fra Kunnskapsløftet)

Grunnleggende ferdigheter i faget (fra Kunnskapsløftet) Årsplan for Matematikk 2013/2014 Klasse 10A, 10B og 10C Lærere: Lars Hauge, Rayner Nygård og Hans Dillekås Læreverk: Nye Mega 10A og 10B Grunnleggende ferdigheter i (fra Kunnskapsløftet) Å uttrykke seg

Detaljer

Læreverk: Multi grunnbok 3A og 3B, Oppgavebok, Multi kopiperm, Multi 1-4 grublishefte og Multi sine nettsider.

Læreverk: Multi grunnbok 3A og 3B, Oppgavebok, Multi kopiperm, Multi 1-4 grublishefte og Multi sine nettsider. ÅRSPLAN I MATEMATIKK FOR 3. TRINN 2014/2015 Utarbeidet av: Elly Østensen Rørvik Læreverk: Multi grunnbok 3A og 3B, Oppgavebok, Multi kopiperm, Multi 1-4 grublishefte og Multi sine nettsider. UKE TEMA KOMPETANSEMÅL

Detaljer

Lokal læreplan «Matematikk»

Lokal læreplan «Matematikk» Lokal læreplan «Matematikk» Årstrinn: 3. årstrinn Akersveien 4, 0177 OSLO Tlf: 23 29 25 00 Kompetansemål Tal Tidspunkt Tema Lærestoff Arbeidsmåter Vurdering beskrive og bruke plassverdisystemet for dei

Detaljer

Geometriske morsomheter 8. 10. trinn 90 minutter

Geometriske morsomheter 8. 10. trinn 90 minutter Lærerveiledning Passer for: Varighet: Geometriske morsomheter 8. 10. trinn 90 minutter Geometriske morsomheter er et skoleprogram hvor elevene får trening i å definere figurer ved hjelp av geometriske

Detaljer

Læreplan i matematikk fellesfag kompetansemål Kompetansemål etter 4. årstrinn

Læreplan i matematikk fellesfag kompetansemål Kompetansemål etter 4. årstrinn Læreplan i matematikk fellesfag kompetansemål etter 4. årstrinn Tal Hovudområdet tal og algebra handlar om å utvikle talforståing og innsikt i korleis tal og talbehandling inngår i system og mønster. Med

Detaljer

Norge blir til. - IKT i naturfag

Norge blir til. - IKT i naturfag Norge blir til - IKT i naturfag Gruppeoppgave 4 av Eirik Melby Eivind Aakvik Magne Svendsen Læring med digitale medier Universitetet i Nordland 2014 Innholdsfortegnelse INNLEDNING... 3 IKT I NATURFAG...

Detaljer

E-læring hvordan? Botnane Bedriftsutvikling AS

E-læring hvordan? Botnane Bedriftsutvikling AS E-læring hvordan? Det er mange forskjellige metoder og former Disse kan tilpasses de ulike behov bedriften har For å få best utbytte kan en benytte flere virkemidler Det kan lages moduler som bruker går

Detaljer

VELKOMMEN TIL MAT-INF 1100

VELKOMMEN TIL MAT-INF 1100 VELKOMMEN TIL MAT-INF 1100 1 Foreleser Knut Mørken, Institutt for informatikk Kontor nr. 155 i Forskningsparken I (flytter snart til 10. etg. i Abels hus) Email: knutm@ifi.uio.no Arbeider med numerisk

Detaljer

LEGO NXT. Lærerveiledning

LEGO NXT. Lærerveiledning Lærerveiledning LEGO NXT Passer for: Antall elever: Varighet: 8. - 10. trinn Hel klasse 150 minutter LEGO NXT er et skoleprogram hvor elevene skal bygge en robot ved hjelp av byggebeskrivelser og programmere

Detaljer

Læreplan i matematikk fellesfag kompetansemål Kompetansemål etter 4. årstrinn

Læreplan i matematikk fellesfag kompetansemål Kompetansemål etter 4. årstrinn Læreplan i matematikk fellesfag kompetansemål etter 4. årstrinn Tal Hovudområdet tal og algebra handlar om å utvikle talforståing og innsikt i korleis tal og talbehandling inngår i system og mønster. Med

Detaljer

Læreplan i matematikk fellesfag kompetansemål

Læreplan i matematikk fellesfag kompetansemål Læreplan i matematikk fellesfag kompetansemål etter 2. trinn Tal Hovudområdet tal og algebra handlar om å utvikle talforståing og innsikt i korleis tal og talbehandling inngår i system og mønster. Med

Detaljer

OBLIG 2 WEBUTVIKLING

OBLIG 2 WEBUTVIKLING OBLIG 2 WEBUTVIKLING Oppgave 1 Design ved hjelp av skisser eller wireframes et nettsted med et "avansert" design. Lag spesifikke design for ulike skjermstørrelser og utskrift. Fokuser spesielt på å få

Detaljer

ÅRSPLAN I MATTE 2. TRINN BREIVIKBOTN SKOLE 2011-2012

ÅRSPLAN I MATTE 2. TRINN BREIVIKBOTN SKOLE 2011-2012 ÅRSPLAN I MATTE 2. TRINN BREIVIKBOTN SKOLE 2011-2012 Lærer: Knut Brattfjord Læreverk: Grunntall 2 a og b, av Bakke og Bakke, Elektronisk Undervisningsforlag AS Målene er fra Lærerplanverket for kunnskapsløftet

Detaljer

Fag : MATEMATIKK Trinn 7. klasse Tidsperiode: Uke 1-2 Tema: Måleenheter og måleusikkerhet

Fag : MATEMATIKK Trinn 7. klasse Tidsperiode: Uke 1-2 Tema: Måleenheter og måleusikkerhet Fag : MATEMATIKK Trinn 7. klasse Tidsperiode: Uke 1-2 Tema: Måleenheter og måleusikkerhet -Kunne lese og tolke en Mål for opplæringa er at eleven skal kunne rutetabell Måling: -velje høvelege målereiskapar

Detaljer

Grafisk løsning av ligninger i GeoGebra

Grafisk løsning av ligninger i GeoGebra Grafisk løsning av ligninger i GeoGebra Arbeidskrav 2 Læring med digitale medier 2013 Magne Svendsen, Universitetet i Nordland Innholdsfortegnelse INNLEDNING... 3 GRAFISK LØSNING AV LIGNINGER I GEOGEBRA...

Detaljer

KOMPETANSEMÅL I MATEMATIKK 1. KLASSE.

KOMPETANSEMÅL I MATEMATIKK 1. KLASSE. KOMPETANSEMÅL I MATEMATIKK 1. KLASSE. Tal telje til 100, dele opp og byggje mengder opp til 10, setje saman og dele opp tiargrupper opp til 100 og dele tosifra tal i tiarar og einarar. bruke tallinja til

Detaljer

1.7 Digitale hjelpemidler i geometri

1.7 Digitale hjelpemidler i geometri 1.7 Digitale hjelpemidler i geometri Geometri handler om egenskapene til punkter, linjer og figurer i planet og i rommet. I alle tider har blyant og papir samt passer og linjal vært de viktigst hjelpemidlene

Detaljer

Kurshefte GeoGebra. Ungdomstrinnet

Kurshefte GeoGebra. Ungdomstrinnet Kurshefte GeoGebra Ungdomstrinnet GeoGebra Geometri og algebra Dynamisk geometriverktøy Algebraisk verktøy Gratis Brukes på alle nivåer i utdanningssystemet Finnes på både bokmål og nynorsk Kan lastes

Detaljer

Innføring i GeoGebra (2 uv-timer)

Innføring i GeoGebra (2 uv-timer) 03/06/17 1/5 Innføring i GeoGebra (2 uv-timer) Innføring i GeoGebra (2 uv-timer) GeoGebra er et dynamisk matematikkprogram for skolebruk som forener geometri, algebra og funksjonslære. Programmet er utviklet

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅR 2015-2016

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅR 2015-2016 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅR 2015-2016 Side 1 av 7 Periode 1: UKE 34 - UKE 37 Sammenligne og regne om mellom hele tall, desimaltall, brøker,

Detaljer

Årsplan i matematikk ved Blussuvoll skole.

Årsplan i matematikk ved Blussuvoll skole. Årsplan i matematikk ved Blussuvoll skole. Hovedområder i faget: Målinger Statistikk, sannsynlighet og Funksjoner Undervisningstimetall per uke: 8.trinn 9.trinn 10.trinn 3,00 2,25 3,00 Læreverk/materiell:

Detaljer

Årsplan Matematikk 2015 2016 Årstrinn: 5. årstrinn

Årsplan Matematikk 2015 2016 Årstrinn: 5. årstrinn Akersveien 4, 0177 OSLO oppdatert 27.08. 15 Tlf: 23 29 25 00 Årsplan Matematikk 2015 2016 Årstrinn: 5. årstrinn Eli Aareskjold, Kjetil Kolvik, Cordula K. Norheim Kompetansemål Tidspunkt Tema/Innhold Læreverk

Detaljer

Elevaktiv matematikk. hvorfor og hvordan? Retningslinjer for undervisningen. Intensjoner med ny læreplan. Hvilke utfordringer gir dette lærerne?

Elevaktiv matematikk. hvorfor og hvordan? Retningslinjer for undervisningen. Intensjoner med ny læreplan. Hvilke utfordringer gir dette lærerne? Elevaktiv matematikk Hvordan får vi aktive, engasjerte og motiverte elever og lærere i matematikk? hvorfor og hvordan? Mona Røsseland Leder i Lamis Nasjonalt senter for matematikk i opplæringen Lærebokforfatter

Detaljer

Geometriske morsomheter trinn 90 minutter

Geometriske morsomheter trinn 90 minutter Lærerveiledning Passer for: Varighet: Geometriske morsomheter 8. 10. trinn 90 minutter Geometriske morsomheter er et skoleprogram hvor elevene får trening i å definere figurer ved hjelp av geometriske

Detaljer

ÅRSPLAN I MATEMATIKK 1. KLASSE BREIVIKBOTN SKOLE

ÅRSPLAN I MATEMATIKK 1. KLASSE BREIVIKBOTN SKOLE ÅRSPLAN I MATEMATIKK 1. KLASSE BREIVIKBOTN SKOLE 2012-2013 MÅLENE ER FRA LÆREPLANVERKET FOR KUNNSKAPSLØFTET 2006 OG VEKTLEGGER HVA ELEVENE SKAL HA TILEGNET SEG ETTER 2. KLASSE Grunnleggende ferdigheter

Detaljer

ÅRSPLAN Arbeidsmåter ( forelesing, individuelt elevarbeid, gruppearbeid, forsøk, ekskursjoner ) - Felles tavleundervisning

ÅRSPLAN Arbeidsmåter ( forelesing, individuelt elevarbeid, gruppearbeid, forsøk, ekskursjoner ) - Felles tavleundervisning Øyslebø oppvekstsenter ÅRSPLAN 2016-2017 Fag: Matematikk Trinn: 9. klasse Lærer: Tove Mørkesdal og Siri Trygsland Solås Tidsrom (Datoer/ ukenr, perioder..) Tema Lærestoff / læremidler (lærebok kap./ s,

Detaljer

Kjennetegn på måloppnåelse TALL OG ALGEBRA. Kunne plassverdisystemet for hele- og desimaltall

Kjennetegn på måloppnåelse TALL OG ALGEBRA. Kunne plassverdisystemet for hele- og desimaltall MATEMATIKK 6.trinn KOMPETANSEMÅL Mål for opplæringen er at eleven skal kunne: VURDERINGSKRITERIER Kjennetegn på måloppnåelse TALL OG ALGEBRA Elevene skal: Beskrive og bruke plassverdisystemet for desimaltall.

Detaljer

Årsplan «Matematikk» Kompetansemål. Tema Lærestoff Arbeidsmåter Vurdering Hele året

Årsplan «Matematikk» Kompetansemål. Tema Lærestoff Arbeidsmåter Vurdering Hele året Årsplan «Matematikk» Årstrinn: 3.trinn Ingvil Sivertsen, Monika Szabo, Rovena Vasquez og Elisabet Breivik Langeland Akersveien 4, 0177 OSLO Tlf: 23 29 25 00 Kompetansemål Tidspunkt Tema Lærestoff Arbeidsmåter

Detaljer

Matematisk visualisering

Matematisk visualisering 02/01/17 1/5 Matematisk visualisering Matematisk visualisering GLU 1.-7. trinn: Matematisk visualisering og konstruksjon - GeoGebra Innføring i GeoGebra (2 uv-timer) Denne delen er direkte knyttet til

Detaljer

RENDALEN KOMMUNE Fagertun skole. Årsplan i Matematikk for 9. trinn 2015/16. TID TEMA KOMPETANSEMÅL Eleven skal kunne:

RENDALEN KOMMUNE Fagertun skole. Årsplan i Matematikk for 9. trinn 2015/16. TID TEMA KOMPETANSEMÅL Eleven skal kunne: RENDALEN KOMMUNE Fagertun skole Årsplan i Matematikk for 9 trinn 2015/16 TID TEMA KOMPETANSEMÅL Eleven skal kunne: 34-37 38-43 Tall og tallforståelse utvikle, bruke og gjøre greie for ulike metoder i hoderegning,

Detaljer

ConTre. Teknologi og Design. En introduksjon. Utdrag fra læreplaner. Tekst og foto: JJJ Consult As

ConTre. Teknologi og Design. En introduksjon. Utdrag fra læreplaner. Tekst og foto: JJJ Consult As ConTre Teknologi og Design En introduksjon Utdrag fra læreplaner Tekst og foto: JJJ Consult As Teknologi i skolen Teknologi på timeplanen Teknologi utgjør en stadig større del av folks hverdag. Derfor

Detaljer

Undervisningsopplegg for ungdomstrinnet om likninger og annen algebra

Undervisningsopplegg for ungdomstrinnet om likninger og annen algebra Undervisningsopplegg for ungdomstrinnet om likninger og annen algebra Kilde: www.clipart.com 1 Likninger og annen algebra. Lærerens ark Hva sier læreplanen? Tall og algebra Mål for opplæringen er at eleven

Detaljer

Digitale verktøy og matematisk kompetanse

Digitale verktøy og matematisk kompetanse 21. november 2008 IKT i læreplanene M87 M87, Læremiddel i matematikk: Datamaskin vil vere eit slik hjelpemiddel til å illustrere matematiske forhold og til å granske matematiske samanhengar. Slik bruk

Detaljer

Gjennomføring av muntlig-praktisk eksamen i Teknologi og Forskningslære 1 Privatister

Gjennomføring av muntlig-praktisk eksamen i Teknologi og Forskningslære 1 Privatister Gjennomføring av muntlig-praktisk eksamen i Teknologi og Forskningslære 1 Privatister Utdanningsprogram: Studiespesialisering Realfag Fagkode og fagnavn: REA3018 Teknologi og forskningslære 1 Type fag

Detaljer

Digitale verktøy eller pedagogikk kan vi velge?

Digitale verktøy eller pedagogikk kan vi velge? Digitale verktøy eller pedagogikk kan vi velge? Førstelektor Tor Arne Wølner, Skolelederkonferansen Lillestrøm, fredag 11. november, 13:40 14:5 1 Læreren er opptatt av: Læreren at elevene skal være trygge

Detaljer

Årsplan «Matematikk» 2015-2016

Årsplan «Matematikk» 2015-2016 Årsplan «Matematikk» 2015-2016 Årstrinn: 1. årstrinn Lærere: Therese Majdall Nilsen, Ingebjørg Hillestad, Karin Macé og Guri Skrettingland Akersveien 4, 0177 OSLO Tlf: 23 29 25 00 Kompetansemål Tids- Tema

Detaljer

Årsplan matematikk 3. trinn 2015/2016

Årsplan matematikk 3. trinn 2015/2016 Årsplan matematikk 3. trinn 2015/2016 Katrine Hansen Tidspunkt (uke ) Kompetansemål: (punkter fra K-06) Delmål: Arbeidsmetode: Vurderingsmetode: 34-35 kap 1 samle, sortere, notere og illustrere data på

Detaljer

Ønsker å få til: -Elevmedvirkning for å lykkes med egenvurdering differensiering, mestring og progresjon -Utvikle vurdering for læring

Ønsker å få til: -Elevmedvirkning for å lykkes med egenvurdering differensiering, mestring og progresjon -Utvikle vurdering for læring Overordnet plan for fagene. Fag: MATEMATIKK Trinn: 9 KLASSE Skole: LINDESNES UNGDOMSSKOLE År: 2015-2016 Lærestoff: MEGA 9A OG 9B Vurdering. Prinsipper i vurdering. 1. Elevene forstår hva de skal lære og

Detaljer

Årsplan i matematikk 6.trinn Læreverk: MULTI Uke Kompetansemål Tema Delmål Arbeidsmåte Vurdering

Årsplan i matematikk 6.trinn Læreverk: MULTI Uke Kompetansemål Tema Delmål Arbeidsmåte Vurdering Årsplan i matematikk 6.trinn 2016-17 Læreverk: MULTI Uke Kompetansemål Tema Delmål Arbeidsmåte Vurdering i kunnskapsløftet. 33-38 beskrive og plassverdisystem et for regne med positive og brøker og prosent,

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR Side 1 av 9

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR Side 1 av 9 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR 2016-2017 Side 1 av 9 Periode 1: UKE 33-UKE 39 Tema: Tall og tallforståelse sammenligne og omregne hele tall,

Detaljer

Årsplan «Matematikk»

Årsplan «Matematikk» Årsplan «Matematikk» 2016-2017 Årstrinn: 1. trinn Lærere: Ingebjørg Hillestad, Trude Thun og Selma Hartsuijker Akersveien 4, 0177 OSLO Tlf: 23 29 25 00 Kompetansemål Tidspunkt Tema Lærestoff Forslag Arbeidsmåter

Detaljer

ÅRSPLAN. Grunnleggende ferdigheter

ÅRSPLAN. Grunnleggende ferdigheter ÅRSPLAN Skoleåret: 2015/16 Trinn: 5 Fag: Matematikk Utarbeidet av: Trine og Ulf Mnd. Kompetansemål Læringsmål (delmål) kriterier for måloppnåelse Aug Sep Okt Nov Beskrive og bruke plassverdisystemet for

Detaljer

Plan for grunnopplæring i IKT, Trones skole. 2010-2011.

Plan for grunnopplæring i IKT, Trones skole. 2010-2011. Plan for grunnopplæring i IKT, Trones skole. 2010-2011. I tabellen under vises skolens hovedfokus for hvert trinn. Trinn Hovedinnhold Gjennomgående innhold. 1. Lek med datamaskinen. Nettvett, Filbehandling

Detaljer

Spørreskjema for Matematikk

Spørreskjema for Matematikk Spørreskjema for Matematikk Skole Navn på skole:.0 Grunnlagsinformasjon. Alder og kjønn.. Hvor gammel er du? År 0-9 X 0-9 0-9 0-0 Mer enn 0.. Hvilket kjønn er du? Svar Mann X Kvinne.0 Lærerens kompetanse.

Detaljer

Læreplanene for Kunnskapsløftet

Læreplanene for Kunnskapsløftet Læreplanene for Kunnskapsløftet Hvordan få samsvar mellom intensjon og praksis? Mona Røsseland Nasjonalt senter for matematikk i opplæringen Leder i Lamis Lærebokforfatter; MULTI 21-Mar-06 Intensjoner

Detaljer

Halvårsplan våren 2015. Læreverk: Multi. informasjon

Halvårsplan våren 2015. Læreverk: Multi. informasjon Halvårsplan våren 2015 Fag: Matematikk Trinn: 1.trinn Læreverk: Multi Faglærer(e): Linda Lauritsen Uke Kompetansemål i Kunnskapsløftet etter 2. årstinn Tema Utfyllende informasjon 2 Repetisjon av alle

Detaljer

Inspirasjon og motivasjon for matematikk

Inspirasjon og motivasjon for matematikk Dagsoversikt Inspirasjon og motivasjon for matematikk Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Matematikk i IKT og uteskole Om digitale ferdigheter i matematikk Presentasjon av ulike

Detaljer

Grunnleggende geometri

Grunnleggende geometri Grunnleggende geometri Elevene skal lære navn på og egenskaper ved kjente figurer som kvadrat, rektangel, parallellogram, generelle firkanter, likebeint og likesidet trekant og generelle trekanter. Det

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR 2015-2016. Side 1 av 9

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR 2015-2016. Side 1 av 9 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR 2015-2016 Side 1 av 9 Periode 1: UKE 34-UKE 39 Tema: Statistikk gjennomføre undersøkelser og bruke databaser

Detaljer

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Institutt for informatikk

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Institutt for informatikk Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Institutt for informatikk BOKMÅL EKSAMEN I EMNET INF 112 Systemkonstruksjon Torsdag 7. juni 2007 Tid: 09:00 12:00 Tillatte hjelpemidler:

Detaljer

ÅRSPLAN FAG: MATEMATIKK

ÅRSPLAN FAG: MATEMATIKK Begby barne- og ungdomsskole ÅRSPLAN FAG: MATEMATIKK TRINN: 8 Tid Kompetansemål Tema med emner Fokus/grunnleggende STATISTIKK 5 uker - hente fakta ut av tabeller - lese av, tolke og lage ulike diagrammer

Detaljer

Håndbok for besøkslærer

Håndbok for besøkslærer Håndbok for besøkslærer I en Newton-modul inngår forarbeid, besøk i Newton-rom og etterarbeid. I denne håndboka finner du en didaktisk beskrivelse av det for- og etterarbeidet som besøkslærer er ansvarlig

Detaljer

Matematikk 7. trinn 2014/2015

Matematikk 7. trinn 2014/2015 Matematikk 7. trinn 2014/2015 Tid Emne Kompetansemål Delmål Arbeidsmåte Vurdering 34- Tall 39 - beskrive for desimaltall, rekne med positive og negative heile tal, desimaltall, brøker og prosent, og plassere

Detaljer

GeoGebraøvelser i geometri

GeoGebraøvelser i geometri GeoGebraøvelser i geometri av Peer Andersen Peer Andersen 2014 Innhold Innledning... 3 Øvelse 1. Figurer i GeoGebra... 4 Øvelse 2. Noen funksjoner i GeoGebra... 8 Øvelse 3. Omskrevet sirkelen til en trekant...

Detaljer

Geometri med GeoGebra

Geometri med GeoGebra Geometri med GeoGebra GeoGebra er et dynamisk geometriprogram. Det vil si at vi kan gjøre en del endringer på figurene vi tegner uten å måtte tegne dem på nytt. Dette gir oss mange muligheter til å utforske

Detaljer

Lokal læreplan 9 trinn matematikk

Lokal læreplan 9 trinn matematikk Lokal læreplan 9 trinn matematikk Lærebok: Gruntal Antall uker Geometri i planet Gruntall 9 153-198 11 utføre, beskrive og grunngi geometriske konstruksjoner med passer og linjal (og dynamiske geometriprogram)

Detaljer

Inspirasjon og motivasjon for matematikk

Inspirasjon og motivasjon for matematikk Dagsoversikt Inspirasjon og motivasjon for matematikk Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Matematikk i IKT og uteskole Om digitale ferdigheter i matematikk Presentasjon av ulike

Detaljer

Elektroniske arbeidsark i Cabri

Elektroniske arbeidsark i Cabri Anne Berit Fuglestad Elektroniske arbeidsark i Cabri Dynamisk geometri her er det noe i bevegelse. Vi kan flytte på figurer eller dra i dem, forandre form eller størrelser. Vi starter i utgangspunktet

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅRET Side 1 av 8

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅRET Side 1 av 8 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅRET 2016-2017 Side 1 av 8 Periode 1: UKE 33 - UKE 39 Sammenligne og regne om mellom hele tall, desimaltall, brøker,

Detaljer

Pytagoras, Pizza og PC

Pytagoras, Pizza og PC Øistein Gjøvik Pytagoras, Pizza og PC Skal vi bestille en stor eller to små? Eller kanskje en medium og en liten? Magnus har helt klart tenkt seg å få mest for pengene. Kan du regne ut hvor stor forskjellen

Detaljer

I dette undervisningsopplegget skal elevene bruke forhold og kunnskap om geometriske figurer til å innrede en vegg med plakater og ei dartskive.

I dette undervisningsopplegget skal elevene bruke forhold og kunnskap om geometriske figurer til å innrede en vegg med plakater og ei dartskive. Geometri og måling I dette undervisningsopplegget skal elevene bruke forhold og kunnskap om geometriske figurer til å innrede en vegg med plakater og ei dartskive. ARTIKKEL SIST ENDRET: 27.10.2015 Hovedområde

Detaljer

- lese og skrive tallene til 100 000 - plassverdisystemet: verdien til et siffer er. Materiell: Abakus avhengig av hvor i tallet det står

- lese og skrive tallene til 100 000 - plassverdisystemet: verdien til et siffer er. Materiell: Abakus avhengig av hvor i tallet det står Hovedområde: Tall. Kompetansemål etter 4. trinn MÅL: beskrive plassverdisystemet for dei heile tala, bruke positive og negative heile tal, enkle brøkar og desimaltal i praktiske samanhengar, og uttrykkje

Detaljer

Kurs. Kapittel 2. Bokmål

Kurs. Kapittel 2. Bokmål Kurs 8 Kapittel 2 Bokmål D.8.2.1 1 av 4 Introduksjon til dynamisk geometri med GeoGebra Med et dynamisk geometriprogram kan du tegne og konstruere figurer som du kan trekke og dra i. I noen slike programmer

Detaljer

Introduksjon og installasjon Tegninger i motsetning til geometriske konstruksjoner

Introduksjon og installasjon Tegninger i motsetning til geometriske konstruksjoner Introduksjon og installasjon Tegninger i motsetning til geometriske konstruksjoner GeoGebra arbeidsark 2 Judith og Marcus Hohenwarter www.geogebra.org Oversatt av Anders Sanne og Jostein Våge Tilpasset

Detaljer

Ny eksamensordning for sentralt gitt skriftlig eksamen i matematikk fra og med våren Anne Seland

Ny eksamensordning for sentralt gitt skriftlig eksamen i matematikk fra og med våren Anne Seland Ny eksamensordning for sentralt gitt skriftlig eksamen i matematikk fra og med våren 2015 Anne Seland Ny eksamensordning Fra og med våren 2015 Ingen overgangsordninger Elever og privatister Sentralt gitt

Detaljer

EKSAMEN 2015. Endringer norsk skriftlig (eksamen 2014) Endringer matematikk (eksamen 2015) Muntlig eksamen (presisert for skolene høsten 2014)

EKSAMEN 2015. Endringer norsk skriftlig (eksamen 2014) Endringer matematikk (eksamen 2015) Muntlig eksamen (presisert for skolene høsten 2014) EKSAMEN 2015 Endringer norsk skriftlig (eksamen 2014) Endringer matematikk (eksamen 2015) Muntlig eksamen (presisert for skolene høsten 2014) Hvilke fag? Skriftlig eksamen Matematikk Norsk Engelsk Muntlig

Detaljer

GeoGebra på mellomtrinnet

GeoGebra på mellomtrinnet GeoGebra på mellomtrinnet innføring + UTFORSKING + problemløsing Mattelyst Vågå, 16. sept. 2015 Anne-Gunn Svorkmo og Susanne Stengrundet I LK06 for matematikk fellesfag står det følgende om digitale ferdigheter:

Detaljer

Årsplan i matematikk for 9. trinn

Årsplan i matematikk for 9. trinn Årsplan i matematikk for 9. trinn Uke 34-40 Geometri undersøkje og beskrive eigenskapar ved to- og tredimensjonale figurar og bruke eigenskapane i samband med konstruksjonar og berekningar Begreper. Utregning

Detaljer

Matematisk juleverksted

Matematisk juleverksted GLASSMALERI Matematisk juleverksted Mona Røsseland 1 2 GLASSMALERI GLASSMALERI Slik går du frem: Fremgangsmåte for å lage ramme Lag en ramme av svart papp. Lag strimler av svart papp, som skal brukes til

Detaljer

6: Trigonometri. Formlikhet bør kanskje repeteres. Og Pytagoras læresetning. Se nettsidene! Oppgaver Innhold Dato

6: Trigonometri. Formlikhet bør kanskje repeteres. Og Pytagoras læresetning. Se nettsidene! Oppgaver Innhold Dato Plan for hele året: - Kapittel 7: Mars - Kapittel 8: Mars/april 6: Trigonometri - Repetisjon: April/mai - Økter, prøver, prosjekter: Mai - juni Ordet geometri betyr egentlig jord- (geos) måling (metri).

Detaljer