Løsningsforslag til øving 6
|
|
- Hans Annar Austad
- 9 år siden
- Visninger:
Transkript
1 Ogave 1 FY1005/FY4165 ermisk fysikk Institutt for fysikk NNU åren 2015 Entroiendring for kloss 1: Entroiendring for kloss 2: 1 2 Løsningsforslag til øving dq 0 2 dq 0 Cd 1 0 Cd 2 C ln 0 1 C ln 0 2 iden total entroi ikke forandrer seg ved reversible rosesser i et termisk isolert system har vi dvs Cln 0 / 1 +ln 0 / 2 Cln 2 0/ Her er altså 0 og vi har også 0 siden volumutvidelsen kan neglisjeres Dermed er dvs G U U 1 + U 2 C 0 1 +C 0 2 C W max G U C C C Med andre ord alltid ositiv eksergi dersom 1 2 som ventet Og likevektstemeraturen er som ventet størst dersom vi ikke tar ut noe energi i form av arbeid: I 0 R > 0 Ogave 2 a Maksimalt arbeid er gitt ved W max 0 U 0 G For ideell gass har vi tidligere vist at C ln +nrln så med 0 får en 0 C ln 0 / For ideell gass er C konstant og U er uavhengig av volumet Dermed er endringen i indre energi U U 0 U C 0 Dermed: W max C 0 C 0 ln/ 0 b For toatomig ideell gass er C 5nR/2 dvs 5R/2 for ett mol gass n 1 arme avgitt til omgivelsene blir Q 0 Q U W max 0 C 0 ln/ kj 1
2 Maksimalt arbeid: W max U Q J c i kan drive en Carnotmaskin med varmen som trekkes ut av den ideelle gassen Omgivelsene er da lavtemeraturreservoaret med fast temeratur 0 mens den ideelle gassen er høytemeraturreservoaret med varierende temeratur τ der τ avtar fra til 0 Når gassen avkjøles fra τ til τ + dτ avgis varmen dq C dτ tilomgivelsenedτ < 0irkningsgradenerητ 1 0 /τslikatdw 1 0 /τ C dτ Utført arbeid blir: 0 W dw 1 0 /τc dτ C 0 C 0 ln/ 0 d ed adiabatisk eksansjon er γ konstant og γ 1 konstant med γ C /C for ideell gass og vi har dessuten nr Dermed: W a 0 1 d 1 0 / 1 γ d 1 γ 1 [ 1/ 0 γ 1 +1 nr γ 1 0/ +1 C 0 ed isoterm komresjon med temeratur 0 er nr 0 slik at W i 0 1 d 1 nr 0 d nr 0 ln/ 0 nr 0 γ 1 ln/ 0 γ 1 C 0 ln/ 0 Her er / 0 skrevet om til / 0 γ 1/γ 1 i omskrivingen i siste linje for å kunne innføre / 0 Og faktoren γ 1 kan skrives som C /C 1 C C /C nr/c i ser at summen av W a og W i tilsvarer W max Ogave 3 a i starter med som gir ved differensiering og bruk av DI H U + Fra dette finner vi d dh d H d + H d d d 1 H + d 1 [ H d + d d 2
3 ed å sammenligne koeffisientene foran d og d ser vi at 1 H 1 [ H Nå bruker vi at Dette betyr at 1 [ 2 H [ H + 1 [ 2 H 1 Leddene med andrederiverte kansellerer å hver side ed å ordne litt å de resterende leddene får vi H som skulle vises Dette er entali-analogen til ligning 418 i PCH Ligning 418 var svært nyttig når en skulle finne et uttrykk for entroi-endringen i en generell reversibel rosess i et gass-system der en kontrollerer temeratur og volum Entali-motstykket til ligning 418 i PCH er en nyttig relasjon for systemer med sesifisert trykk Den er også svært nyttig for å finne tilsvarende uttrykk i magnetiske systemer Dette skyldes at det finnes en analogi mellom gass- og magnetsystemer der en assosierer trykk med ytre magnetfelt og volum med magnetisering I et magnetisk system er det ytre åtrykt magnetfelt som en vanligvis kontrollerer mens magnetiseringen er en resons å ytre felt Derfor er en analogi til systemer med sesifisert trykk istedet for sesifisert volum det mest hensiktsmessige Ligningen over er nyttig for å finne uttrykk for å beregne entroi-endringen i en generell reversibel rosess i et gass-system der en kan kontrollere trykk og temeratur Magnet-analogen til ligningen over er svært nyttig når en skal beregne entroi-endringen til i en generell reversibel rosess i et magnetsystem der en kontrollerer temeratur og ytre magnetfelt b Denne ogaven er ment å gi litt trening i bruk av differensialene til termodynamiske otensialer og for å gjøre seg litt kjent med relasjoner mellom ulike tisltandsfunksjonerog hvordan disse relasjonene fremkommer eknikkene vi bruker har vært nyttige i andre sammenhenger se ogaven over i starter med differensialet du d d U d + ed å sammenligne koeffisientene foran d og d finner vi U U 3 U d
4 Da har vi Dermed har vi idere ved å bruke differensialet [ U [ U 2 U 2 U df d d F F d + d og så sammenligne koeffisientene til d og d finner vi F F På samme måte som over har vi [ F [ F 2 F 2 F De to andre følger nå et velkjent mønster Differensialet for entalien H gir H H Dermed finner vi [ H [ H 2 H 2 H 4
5 Differensialet for Gibbs energi G gir Dermed finner vi [ G [ G G G 2 G 2 G 5
Figur 1: Isoterm ekspansjon. For en gitt temperatur T endrer trykket seg langs den viste kurven.
Fysikk / ermodynamikk åren 00 6. Gassers termodynamikk 6.. Ekspansjon av ideelle gasser vslutningsvis skal vi se på noen viktige prosesser som involverer ideelle gasser. isse prosessene danner i sin tur
DetaljerKJ1042 Øving 5: Entalpi og entropi
KJ1042 Øving 5: Entalpi og entropi Ove Øyås Sist endret: 17. mai 2011 Repetisjonsspørsmål 1. Hva er varmekapasitet og hva er forskjellen på C P og C? armekapasiteten til et stoff er en målbar fysisk størrelse
DetaljerKJ1042 Øving 3: Varme, arbeid og termodynamikkens første lov
KJ1042 Øving 3: arme, arbeid og termodynamikkens første lov Ove Øyås Sist endret: 17. mai 2011 Repetisjonsspørsmål 1. Hvordan ser Ideell gasslov ut? Ideell gasslov kan skrives P nrt der P er trykket, volumet,
DetaljerEKSAMEN I FY1005 og TFY4165 TERMISK FYSIKK: LØSNINGSFORSLAG
NORGES TEKNISK-NATURITENSKAPELIGE UNIERSITET INSTITUTT FOR FYSIKK EKSAMEN I FY1005 og TFY4165 TERMISK FYSIKK: LØSNINGSFORSLAG Mandag 11. august 2014 kl. 0900-1300 Ogave 1. 25 flervalgsogaver. (Poeng: 2
Detaljerr+r TFY4115 Fysikk Eksamenstrening: Løsningsforslag
TFY45 Fysikk Eksamenstrening: Løsningsforslag ) I oljebransjen tilsvarer fat ca 0.59 m 3. I går var risen for WTI Crude Oil 97.44 US dollar r fat. Hva er dette i norske kroner r liter, når NOK tilsvarer
DetaljerEksamen TFY4165 Termisk fysikk kl torsdag 15. desember 2016 Bokmål
FY4165 15. desember 2016 Side 1 av 7 Eksamen FY4165 ermisk fysikk kl 09.00-13.00 torsdag 15. desember 2016 Bokmål Ogave 1. (armeledning. Poeng: 10+10+10=30) Kontinuitetsligningen for energitetthet u og
DetaljerT L) = ---------------------- H λ A T H., λ = varmeledningsevnen og A er stavens tverrsnitt-areal. eks. λ Al = 205 W/m K
Side av 6 ΔL Termisk lengdeutvidelseskoeffisient α: α ΔT ------, eks. α Al 24 0-6 K - L Varmekapasitet C: Q mcδt eks. C vann 486 J/(kg K), (varmekapasitet kan oppgis pr. kg, eller pr. mol (ett mol er N
DetaljerFysikk for ingeniører. 11. Termiske egenskaper. Løsninger på blandede oppgaver. Side 11-1
Fysikk for ingeniører ermiske egenskaer Løsninger å landede ogaver Side - Ogave : a) Forutsetter at stemelet står i ro etrakter kreftene å undersiden av stemelet: = + mg mg kg 98m/s = + = Pa + = 6 Pa m
DetaljerFORELESNING I TERMODYNAMIKK ONSDAG Tema for forelesningen var studiet av noen viktige reversible prosesser som involverer ideelle gasser.
FORELESNING I TERMODYNMIKK ONSDG.03.00 Tema for forelesningen var studiet av noen viktige reversible prosesser som involverer ideelle gasser. Følgende prosesser som involverte ideelle gasser ble gjennomgått:.
DetaljerEksamen TFY4165 Termisk fysikk kl mandag 7. august 2017 Bokmål
FY4165 7. august 2017 Side 1 av 7 Eksamen FY4165 ermisk fsikk kl 09.00-13.00 mandag 7. august 2017 Bokmål Ogave 1. (armeledning. Poeng: 5+10+5=20) Kontinuitetsligningen for energitetthet u og energistrømtetthet
DetaljerLøsningsforslag til ukeoppgave 7
Oppgaver FYS1001 Vår 2018 1 Løsningsforslag til ukeoppgave 7 Oppgave 11.35 Virkningsgraden er 63,1 % Oppgave 11.37 W = 16, 6 kj Q L = 9, 70 kj Q H = W + Q L = 16, 6 kj + 9, 70 kj = 26, 3 kj η = W Q H =
DetaljerEksamen FY1005/TFY4165 Termisk fysikk kl torsdag 6. juni 2013
TFY4165/FY1005 6. juni 2013 Side 1 av 8 Eksamen FY1005/TFY4165 Termisk fysikk kl 15.00-19.00 torsdag 6. juni 2013 Ogave 1. Ti flervalgsogaver. (Poeng: 2 r ogave) a. T arme tilføres et rent stoff i en lukket
DetaljerLøsningsforslag til øving 10
FY1005/TFY4165 Termisk fysikk Institutt for fysikk, NTNU Våren 2015 Løsningsforslag til øving 10 Oppgave 1 a) Helmholtz fri energi er F = U TS, slik at df = du TdS SdT = pdv SdT +µdn, som viser at Entalpien
DetaljerSAMMENDRAG AV FORELESNING I TERMODYNAMIKK ONSDAG 23.02.00
SAMMENDRAG A FORELESNING I TERMODYNAMIKK ONSDAG 3.0.00 Tema for forelesningen var termodynamikkens 1. hovedsetning. En konsekvens av denne loven er: Energien til et isolert system er konstant. Dette betyr
Detaljer2. Termodynamikkens lover Termodynamikkens 1. lov Energiutveksling i form av varme og arbeid Trykk-volum arbeid
Fysikk / Termodynamikk åren 2001 2. Termodynamikkens lover 2.1. Termodynamikkens 1. lov Termodynamikkens første lov kan formuleres å mange måter. En vanlig formulering er: Energien til et isolert system
DetaljerTermofysikk: Ekstraoppgaver om varmekapasitet for gasser og termodynamikkens 1. lov uke 47-48
1. Finn hastigheten til rgon atomer i en gass som har temeraturen 1. kt RT v eller der m er masen til et ekyl m og massen til et. N! begge størrelsene må angis i, ellers stemmer ikke enhetene. v 8.1 0.0
DetaljerLøsningsforslag eksamen TFY desember 2010.
Løsningsforslag eksamen TFY4115 10. desember 010. Oppgave 1 a) Kreftene på klossene er vist under: Siden trinsene og snorene er masseløse er det bare to ulike snordrag T 1 og T. b) For å finne snordraget
DetaljerKretsprosesser. 2. hovedsetning
Ka0 Kretsrosesser.. hovedsetning Reversible og irreversible rosesser (0.) diabatisk rosess (9.8) Kretsrosesser: varmekraftmaskiner (0.+3) kjølemaskiner (0.4) Carnotsyklusen (0.6) Eks: Ottosyklus (0.3).
DetaljerInnhold. Innledning 13
Innledning 13 13 Temperatur, varme og tilstand 17 13.1 Temperatur 19 13.2 Varme 21 13.3 Ideelle gasser; tilstandsligningen 26 13.4 Reelle gasser 29 13.5 Arbeid 33 13.6 Indre energi 36 13.7 Reversible og
DetaljerReversible prosesser: Termisk likevekt under hele prosessen Langsomt og kontrollert. [H&S] Kap.11. (1. hovedsetning.) Kretsprosesser.
ka [H&S] Ka.. (. hovedsetning.) Kretsrosesser. Forelest tidligere:. Energibevarelse:. hovedsetning Y&F 9.-4. rbeid og (,V)-diagram Y&F 9.2.5 Gassers C og C V Y&F 9.7 Foreleses nå:.2 Reversible rosesser
DetaljerKJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2012 Løsninger
Side 1 av 10 KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2012 Løsninger Oppgave 1 a) Et forsøk kan gjennomføres som vist i figur 1. Røret er isolert, dvs. at det ikke tilføres varme
DetaljerA 252 kg B 287 kg C 322 kg D 357 kg E 392 kg. Velg ett alternativ
1 n sugekopp har tre sirkulære "skiver", hver med diameter 115 mm. Hva er sugekoppens maksimale (teoretiske) løfteevne ved normale betingelser (dvs lufttrykk 1 atm)? 252 kg 287 kg 322 kg 357 kg 392 kg
DetaljerEKSAMENSOPPGAVE. Eksamen i: Kje-1005 Termodynamikk og Kinetikk Dato: Torsdag 6.juni 2013 Tid: Kl 09:00 14:00 Sted: Teorifagbygget, hus 1, plan 3
EKSAMENSOPPGAVE Eksamen i: Kje-1005 Termodynamikk og Kinetikk Dato: Torsdag 6.juni 2013 Tid: Kl 09:00 14:00 Sted: Teorifagbygget, hus 1, plan 3 Tillatte hjelpemidler: Enkel lommeregner Millimeterpapir
DetaljerRetningen til Spontane Prosesser
Retningen til Spontane Prosesser Termodynamikkens 2. Lov 5-1 Prosessers Retning Spontane Prosesser har en definert Retning u Inverse motsatte Prosesser kan ikke skje uten ekstra hjelp i form av Utstyr
DetaljerKJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2011 Løsninger
Side 1 av 11 KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2011 Løsninger Oppgave 1 a) Gibbs energi for et system er definert som og entalpien er definert som Det gir En liten endring
DetaljerTFY4106 Fysikk Eksamen 17. august V=V = 3 r=r ) V = 3V r=r ' 0:15 cm 3. = m=v 5 = 7:86 g=cm 3
TFY4106 Fysikk Eksamen 17. august 2018 Lsningsforslag 1) C: V = 4r 3 =3 = 5:575 cm 3 For a ansla usikkerheten i V kan vi regne ut V med radius hhv 11.1 og 10.9 mm. Dette gir hhv 5.729 og 5.425 cm 3, sa
DetaljerTermodynamikk ΔU = Q - W. 1. Hovedsetning = Energibevarelse: (endring indre energi) = (varme inn) (arbeid utført)
Termodynamikk 1. Hovedsetning = Energibevarelse: ΔU = Q - W (endring indre energi) = (varme inn) (arbeid utført) 2. Hovedsetning = Mulige prosesser: Varme kan ikke strømme fra kaldt til varmt legeme Prosesser
DetaljerOppgave 1 V 1 V 4 V 2 V 3
Oppgave 1 Carnot-syklusen er den mest effektive sykliske prosessen som omdanner termisk energi til arbeid. I en maskin som anvender Carnot-syklusen vil arbeidssubstansen være i kontakt med et varmt reservoar
DetaljerLØSNINGSFORSLAG EKSAMEN TEP 4115 TERMODYNAMIKK 1 Lørdag 21. mai 2011 Tid: kl. 09:00-13:00
Side a 7 NORGES EKNISK-NAURVIENSKAPELIGE UNIVERSIE (NNU) - RONDHEIM INSIU FOR ENERGI OG PROSESSEKNIKK OPPGAVE (3%) LØSNINGSFORSLAG EKSAMEN EP 45 ERMODYNAMIKK Lørdag. mai id: kl. 9: - 3: a) ermodynamikkens.
DetaljerLøsningsskisse EKSAMEN i FYSIKK, 30. mai 2006
Løsningsskisse EKSAMEN i FYSIKK, 30. mai 2006 Oppgave 1. Flervalgsspørsmål Fasit 1. C 2. D 3. D 4. B 5. C 6. E 7. E 8. B 9. E 10. D 11. B 12. D Løsningsforslag Oppgave 2 a) Reversibel prosess: En prosess
DetaljerDe viktigste formlene i KJ1042
De viktigste formlene i KJ1042 Kollisjonstall Midlere fri veilengde Z AB = πr2 AB u A 2 u 2 B 1/2 N A N B 2πd 2 V 2 Z A = A u A N A V λ A = u A z A = V 2πd 2 A N A Ideell gasslov. Antar at gassmolekylene
Detaljera) Stempelet står i en posisjon som gjør at V 1 = 0.0200 m 3. Finn det totale spesikte volumet v 1 til inneholdet i tanken. Hva er temperaturen T 1?
00000 11111 00000 11111 00000 11111 DET TEKNISK-NATURVITENSKAPELIGE FAKULTET EKSAMEN I BIT 130 Termodynamikk VARIGHET: 900 1300 (4 timer). DATO: 22/5 2007 TILLATTE HJELPEMIDLER: Godkjent lommekalkulator
DetaljerSIO 1027 Termodynamikk I Noen formler og uttrykk som er viktige, samt noen stikkord fra de forskjellige kapitler,, Versjon 25/
SIO 1027 Termodynamikk I Noen formler og uttrykk som er viktige, samt noen stikkord fra de forskjellige kapitler,, Versjon 25/11-2001 Geir Owren November 25, 2001 Som avtalt med referansegruppen, er det
DetaljerLØSNINGSFORSLAG EKSAMEN TEP 4120 TERMODYNAMIKK 1 Tirsdag 9. desember 2008 Tid: kl. 09:00-13:00
Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK LØSNINGSFORSLAG EKSAMEN TEP 410 TERMODYNAMIKK 1 Tirsdag 9. desember 008 Tid: kl. 09:00-13:00
DetaljerLØSNINGSFORSLAG EKSAMEN TEP 4120 TERMODYNAMIKK 1 Mandag 6. desember 2010 Tid: kl. 09:00-13:00
Side av 8 NORGES EKNISK-NAURVIENSKAPELIGE UNIVERSIE (NNU) - RONDHEIM INSIU FOR ENERGI OG PROSESSEKNIKK LØSNINGSFORSLAG EKSAMEN EP 40 ERMODYNAMIKK Mandag 6. desember 00 id: kl. 09:00 - :00 OPPGAVE (40%)
DetaljerEKSAMEN I FY1005 og TFY4165 TERMISK FYSIKK: LØSNINGSFORSLAG
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK EKSAMEN I FY1005 og TFY4165 TERMISK FYSIKK: LØSNINGSFORSLAG Torsdag 6 juni 013 kl 1500-1900 Oppgave 1 Ti flervalgsoppgaver Poeng: pr
DetaljerInstitutt for fysikk. Eksamen i TFY4106 FYSIKK Torsdag 6. august :00 13:00
NTNU Side 1 av 5 Institutt for fysikk Faglig kontakt under eksamen: Professor Johan S. Høye/Professor Asle Sudbø Telefon: 91839082/40485727 Eksamen i TFY4106 FYSIKK Torsdag 6. august 2009 09:00 13:00 Tillatte
DetaljerProsessteknikk eksamen 22/5-99. Løsningsforslag
Prosessteknikk eksamen /-99. Løsningsforslag Revidert: 7. juni 1999 Foreslått fordeling ved karaktersetting. Og.1 : 1% Og. : 4% ( 1 1 1) Og.3 : % ( ) Og.4 : 1% Og. : 1% (78) Ogave 1 a) mg b) F k l l c)
DetaljerLøysingsframlegg kontinuasjonseksamen TFY 4104 Fysikk august 2011
NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Løysingsframlegg kontinuasjonseksamen TFY 4104 Fysikk august 011 Faglærar: Professor Jens O Andersen Institutt for Fysikk, NTNU Telefon:
DetaljerSpråkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.: (direkte) / (mobil) / (sekretær)
Side 1 av 9 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK Faglig kontakt under eksamen: Språkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk
DetaljerTil slutt skal vi se på termodynamikkens 2. hovedsetning, som gir retningslinjer for hvilken vei prosesser kan gå.
ermodynamikk Side - ermodynamikk Den industrielle revolusjonen startet med at man klarte å omforme varme til arbeid I dette kaitlet skal vi først sette o termodynamikkens lov, som gir sammenhengen mellom
DetaljerLøsningsforslag til øving 4
1 Oppgve 1 FY1005/TFY4165 Termisk fysikk Institutt for fysikk, NTNU åren 2015 Løsningsforslg til øving 4 For entomig gss hr vi c pm = 5R/2 og c m = 3R/2, slik t γ = C p /C = 5/3 Lngs dibten er det (pr
DetaljerFysikkolympiaden Norsk finale 2017
Norsk fysikklærerforening Fysikkolympiaden Norsk finale 7 Fredag. mars kl. 8. til. Hjelpemidler: abell/formelsamling, lommeregner og utdelt formelark Oppgavesettet består av 6 oppgaver på sider Lykke til!
DetaljerUNIVERSITETET I OSLO
NIVERSIEE I OSO Det matematisk-naturvitenskapelige fakultet Eksamen i: Fys60 Eksamensdag: Fredag 6. desember 03 id for eksamen: 430 830 Oppgavesettet er på: 4 sider Vedlegg: ingen ilatte hjelpemidler Godkjente
DetaljerEKSAMEN I EMNE TFY4125 FYSIKK
Bokmål NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Studentnummer: Studieretning: Bokmål, Side 1 av 1 Faglig kontakt under eksamen: Institutt for fysikk, Gløshaugen Professor Steinar
DetaljerEksamen TFY4165 Termisk fysikk kl august 2018 Nynorsk
TFY4165 9. august 2018 Side 1 av 7 Eksamen TFY4165 Termisk fysikk kl 09.00-13.00 9. august 2018 Nynorsk Oppgåve 1. Partiklar med tre diskrete energi-nivå. (Poeng: 6+6+8=20) Eit system består av N uavhengige
DetaljerKretsprosesser. 2. hovedsetning
Ka20 05..205 Kretsrosesser. 2. hovedsetning Reversible og irreversible rosesser (20.) diabatisk rosess (9.8) Kretsrosesser: varmekraftmaskiner (20.2+3) kjølemaskiner (20.4) Carnotsyklusen (20.6) Eks: Ottosyklus
DetaljerFlervalgsoppgave. Kollisjoner. Kap. 6. Arbeid og energi. Energibevaring. Konstant-akselerasjonslikninger REP
Kap. 6. Arbeid og energi. Energibevaring. Arbeid = dw = F ds Kinetisk energi E k = ½ m v 2 Effekt = arbeid/tid = P = dw /dt Arbeid på legeme øker E k : dw = de k Potensiell energi E p (x,y,z) (Tyngdefelt:
DetaljerDET TEKNISK-NATURVITENSKAPELIGE FAKULTET
DET TEKNISK-NATURVITENSKAPELIGE FAKULTET EKSAMEN I BIT 130 Termodynamikk VARIGHET: 9.00 13.00 (4 timer). DATO: 1/12 2005 TILLATTE HJELPEMIDLER: Lommekalkulator OPPGAVESETTET BESTÅR AV: 2 oppgaver på 5
DetaljerLøsningsforslag: Kontinuasjonseksamen TFY4115, august 2008
Institutt for fysikk, NTNU TFY4115 Fysikk, høsten 200 Løsningsforslag: Kontinuasjonseksamen TFY4115, august 2008 I tilknytning til oppgavene finner du her mer utførlige diskusjoner og kommentarer enn det
DetaljerFaglig kontakt under eksamen: Navn: Anne Borg Tlf. 93413 BOKMÅL. EKSAMEN I EMNE TFY4115 Fysikk Elektronikk og Teknisk kybernetikk
Side 1 av 10 NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Navn: Anne Borg Tlf. 93413 BOKMÅL EKSAMEN I EMNE TFY4115 Fysikk Elektronikk og Teknisk kybernetikk
DetaljerTermisk fysikk består av:
Termisk fysikk består av: 1. Termodynamikk: (= varmens kraft ) Makroskopiske likevektslover ( slik vi ser det ) Temperatur. 1. og. hovedsetning. Kinetisk gassteori: Mekanikkens lover på mikrokosmos Uttrykk
DetaljerEKSAMENSOPPGAVE I FYS-2001
Side 1 of 7 EKSAMENSOPPGAVE I FYS-001 Eksamen i : Fys-001 Statistisk fysikk og termodynamikk Eksamensdato : Onsdag 5. desember 01 Tid : kl. 09.00 13.00 Sted : Adm.bygget, B154 Tillatte hjelpemidler: K.
DetaljerEksamen i: Fys-2001 Statistisk fysikk og termodynamikk Dato: Tirsdag 26. februar 2013 Tid: Kl 09:00 13:00
EKSAMENSOPPGAVE Eksamen i: Fys-2001 Statistisk fysikk og termodynamikk Dato: irsdag 26. februar 2013 id: Kl 09:00 13:00 Sted: B154 illatte jelpemidler: K. Rottmann: Matematisk Formelsamling, O. Øgrim:
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskaelige fakultet Eksamen i: Fys6 Eksamensdag: Fredag 6. desember 3 Tid for eksamen: 43 83 Ogavesettet er å: 4 sider Vedlegg: ingen Tilatte hjelemidler Elektronisk
DetaljerLøsningsforslag Prøveeksamen i MAT-INF 1100, Høsten 2003
Løsningsforslag Prøveeksamen i MAT-INF 1100, Høsten 003 Denne prøveeksamenen har samme format som den virkelige eksamenen, og inneholder oppgaver av samme type og vanskelighetsgrad. Første del av eksamen
DetaljerEKSAMEN I EMNE TFY4125 FYSIKK
Bokmål NORGES TEKNSK- NATURVTENSKAPELGE UNVERSTET NSTTUTT FOR FYSKK Studentnummer: Bokmål, Side av Faglig kontakt under eksamen: nstitutt for fysikk, Gløshaugen Professor Steinar Raaen, 73593635, mob.4896758
DetaljerSpesial-Oppsummering Høsten 2009 basert på Innspill fra Studenter
Spesial- Høsten 2009 basert på Innspill fra Studenter på Hjemmesiden (fra 2008) - formidler kvintessensen av TEP4120 - omhandler Kap. 1-6, Eksergi Light og Kap. 8-9 - mangler altså (fortsatt) Kap. 10 -
Detaljer3. Massevirkningsloven eller likevektsuttrykk for en likevekt
apittel 8 jemisk likevekt 1. Reversible reaksjoner. Hva er likevekt? 3. Massevirkningsloven eller likevektsuttrykk for en likevekt 4. Likevektskonstanten (i) Hva sier verdien oss? (ii) Sammenhengen mellom
DetaljerKONTINUASJONSEKSAMEN I EMNE TFY 4102 FYSIKK
BOKMÅL NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Magnus Borstad Lilledahl Telefon: 73591873 (kontor) 92851014 (mobil) KONTINUASJONSEKSAMEN I EMNE
DetaljerKJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2013 Løsninger
Side 1 av 6 KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2013 Løsninger Oppgave 1 a) Termodynamikkens tredje lov kan formuleres slik: «Entropien for et rent stoff i perfekt krystallinsk
DetaljerKjemisk likevekt. La oss bruke denne reaksjonen som et eksempel når vi belyser likevekt.
Kjemisk likevekt Dersom vi lar mol H-atomer reager med 1 mol O-atomer så vil vi få 1 mol H O molekyler (som vi har diskutert tidligere). H + 1 O 1 H O Denne reaksjonen er irreversibel, dvs reaksjonen er
DetaljerNorges teknisk-naturvitenskapelige universitet Institutt for fysikk. EKSAMEN I FAG TFY 4102 FYSIKK Fakultet for Naturvitenskap og teknologi
okmål Studentnummer: Studieretning: Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Ola Hunderi Tlf.: 95143671 EKSAMEN I FAG TFY 4102 FYSIKK Fakultet
DetaljerNORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON
Side 1 av 7 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON Faglig kontakt under eksamen: Navn: Helge E. Engan Tlf.: 94420 EKSAMEN I EMNE TFE4130 BØLGEFORPLANTNING
Detaljergass Faglig kontakt under eksamen/fagleg kontakt under eksamen: Professor Edd A.Blekkan, tlf.:
NORGES TEKNISKE NTUR- VITENSKPELIGE UNIVERSITETET INSTITUTT FOR KJEMISK PROSESSTEKNOLOGI Side 1 av 5 Faglig kontakt under eksamen/fagleg kontakt under eksamen: Professor Edd.Blekkan, tlf.: 73594157 EKSMEN
DetaljerLøsningsforslag til avsluttende eksamen i AST1100, høsten 2013
Løsningsforslag til avsluttende eksamen i AST1100, høsten 013 Oppgave 1 a) I ligningen for hyostatisk likevekt er P trykket, M(r) massen innenfor en avstand r fra sentrum og ρ(r) er tettheten i en avstand
DetaljerHØGSKOLEN I STAVANGER
EKSAMEN I TE 335 Termodynamikk VARIGHET: 9.00 14.00 (5 timer). DATO: 24/2 2001 TILLATTE HJELPEMIDLER: Lommekalkulator OPPGAVESETTET BESTÅR AV 2 oppgaver på 5 sider (inklusive tabeller) HØGSKOLEN I STAVANGER
DetaljerSpråkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.: (direkte) / (mobil) / (sekretær)
Side 1 av 11 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK Faglig kontakt under eksamen: Språkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk
DetaljerFolkevandringstelling
Termisk fysikk består av: 1. Termodynamikk: (= varmens kraft ) Makroskopiske likevektslover ( slik vi ser det ) Temperatur. 1. og. hovedsetning. Kinetisk gassteori: Mekanikkens lover på mikrokosmos Uttrykk
Detaljer1 C z I G + + = + + 2) Multiplikasjon av et tall med en parentes foregår ved å multiplisere tallet med alle leddene i parentesen, slik at
Ekstranotat, 7 august 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser og brøker... Funksjoner...3 Tilvekstform (differensialregning)...4 Telleregelen...7 70-regelen...8
DetaljerEKSAMENSOPPGAVE. Eksamen i: FYS- 1002 Elektromagnetisme Fredag 31. august 2012 Kl 09:00 13:00 adm. Bygget, rom B154
side 1 av 6 sider FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI EKSAMENSOPPGAVE Eksamen i: FYS- 1002 Elektromagnetisme Dato: Tid: Sted: Fredag 31. august 2012 Kl 09:00 13:00 adm. Bygget, rom B154 Tillatte hjelpemidler:
DetaljerFlervalgsoppgave. Arbeid og energi. Energibevaring. Kollisjoner REP Konstant-akselerasjonslikninger. Vi har sett på:
Arbeid og energi. Energibevaring. Arbeid = dw = F ds Kinetisk energi E k = ½ m v 2 Effekt = arbeid/tid = P = dw /dt Arbeid på legeme øker E k : dw = de k Potensiell energi E p (x,y,z) (Tyngdefelt: E p
DetaljerSpråkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.: (direkte) / (mobil) / (sekretær)
Side 1 av 12 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK Faglig kontakt under eksamen: Språkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk
DetaljerUniversitetet i Oslo Det matematisk-naturvitenskapelige fakultet
Universitetet i Oslo Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS60 ermodynamikk og statistisk fysikk Dato: irsdag 9 desember 003 id for eksamen: 0900-00 Oppgavesettet: 3 sider illatte hjelpemidler:
DetaljerLØSNINGSFORSLAG EKSAMEN TEP 4120 TERMODYNAMIKK 1 Mandag 17. desember 2012 Tid: kl. 09:00-13:00
Side 1 av 8 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK LØSNINGSFORSLAG EKSAMEN TEP 4120 TERMODYNAMIKK 1 Mandag 17. desember 2012 Tid: kl. 09:00-13:00
DetaljerVi skal se på reaksjonen mellom hydrogengass og oksygengass til vanndamp:
3. Termodynamikk I mange mekaniske og fysiske rosesser (som de vi behandlet i forrige kaittel) og i kjemiske reaksjoner har vi utveksling av energi, og ofte ovarming eller avkjøling. Vi kan gjerne si at
DetaljerLøysingsframlegg TFY 4104 Fysikk Hausten 2009
NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Løysingsframlegg TFY 4104 Fysikk Hausten 2009 Faglærar: Professor Jens O Andersen Institutt for Fysikk, NTNU Telefon: 73593131 Mandag 30
DetaljerRepetisjonsoppgaver kapittel 5 løsningsforslag
Repetisjonsoppgaver kapittel løsningsforslag Termofysikk Oppgave 1 a) Fra brennkammeret overføres varme til fyrkjelen, i henhold til termofysikkens andre lov. Når vannet i kjelen koker, vil den varme dampen
DetaljerEnkel matematikk for økonomer 1. Innhold. Parenteser, brøk og potenser. Ekstranotat, februar 2015
Ekstranotat, februar 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser, brøk og potenser... Funksjoner...4 Tilvekstform (differensialregning)...5 Nyttige tilnærminger...8
DetaljerKap. 24 Kapasitans og dielektrika. Van de Graaff generator. Kap 24 15.05.2015. Van de Graaff-generator i Gamle fysikk, 1952
Kap. 4 Kapasitans og dielektrika Grunnleggende forståelse for HA en kondensator er, HORFOR den virker som den gjør, hvilke BEGRENSINGER den har og hvorfor et DIELEKTRIKUM er påkrevd i en kondensator. Kapasitans
DetaljerØvelsen går ut på å bestemme lydhastiheten i luft ved å undersøke stående bølger i et rør. Figur 2.1: Kundts rør med lydkilde og lydmåler.
Øvelse Lydbølger i luft Øvelsen går ut på å bestemme lydhastiheten i luft ved å undersøke stående bølger i et rør. Figur.: Kundts rør med lydkilde og lydmåler.. Apparatur Måleapparaturen er vist i Fig...
DetaljerOppsummering av første del av kapitlet
Forelesningsnotater om eksergi Siste halvdel av kapittel 7 i Fundamentals of Engineering Thermodynamics, M.J. Moran & H.N. Shapiro Rune N. Kleiveland, oktober Notatene følger presentasjonen i læreboka,
DetaljerTFE4101 Vår 2016. Løsningsforslag Øving 3. 1 Teorispørsmål. (20 poeng)
TFE411 Vår 216 Norges teknisk naturvitenskapelige universitet Institutt for elektronikk og telekommunikasjon Løsningsforslag Øving 3 1 Teorispørsmål. (2 poeng) a) Beskriv følgende med egne ord: Nodespenningsmetoden.
DetaljerFysikkonkurranse 1. runde 6. - 17. november 2000
Norsk Fysikklærerforening Norsk Fysisk Selskaps faggruppe for undervisning Fysikkonkurranse 1. runde 6. - 17. november 000 Hjelpemidler: Tabeller og formler i fysikk og matematikk Lommeregner Tid: 100
DetaljerT 2. + RT 0 ln p 2 K + 0, K ln. kg K. 2) Først må vi nne massestraumen av luft frå energibalansen: 0 = ṁ 1 (h 1 h 2 ) + ṁ 3 (h 3 h 4 ) kg s
LØYSINGSFORSLAG, eksamen 4. mai 208 i fag TEP425 TERMODYNAMIKK 2 v. Ivar S. Ertesvåg, sist endra 5. mai 208. Dette er eit UTKAST. Det kan vere skrive- og reknefeil her. Endring i spesikk eksergi konstant
Detaljer- Kinetisk og potensiell energi Kinetisk energi: Bevegelses energi. Kinetiske energi er avhengig av masse og fart. E kin = ½ mv 2
Kapittel 6 Termokjemi (repetisjon 1 23.10.03) 1. Energi - Definisjon Energi: Evnen til å utføre arbeid eller produsere varme Energi kan ikke bli dannet eller ødelagt, bare overført mellom ulike former
DetaljerRetningen til Spontane Prosesser. Prosessers Retning
Retningen til Spontane Prosesser T. Gundersen 5-1 Prosessers Retning Spontane Prosesser har en definert Retning Inverse Prosesser kan ikke skje uten ekstra hjelp i form av Utstyr og Energi i en eller annen
DetaljerSpråkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.: (direkte) / (mobil) / (sekretær)
Side 1 av 9 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK Faglig kontakt under eksamen: Språkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk
DetaljerSammendrag, forelesning onsdag 17/ Likevektsbetingelser og massevirkningsloven
Sammendrag, forelesning onsdag 17/10 01 Kjemisk likevekt og minimumspunkt for G Reaksjonsligningen for en kjemisk reaksjon kan generelt skrives: ν 1 X 1 + ν X +... ν 3 X 3 + ν 4 X 4 +... 1) Utgangsstoffer
DetaljerFasit oppdatert 10/9-03. Se opp for skrivefeil. Denne fasiten er ny!
Fasit odatert 10/9-03 Se o for skrivefeil. Denne fasiten er ny! aittel 1 1 a, b 4, c 4, d 4, e 3, f 1, g 4, h 7 a 10,63, b 0,84, c,35. 10-3 aittel 1 Atomnummer gir antall rotoner, mens masse tall gir summen
DetaljerKap Termisk fysikk (varmelære, termodynamikk)
TFY4115 Fysikk Mekanikk: (kap.ref Young & Freedman) SI-systemet (kap. 1); Kinematikk (kap. 2+3). (Rekapitulasjon) Newtons lover (kap. 4+5) Arbeid og energi (kap. 6+7) Bevegelsesmengde, kollisjoner (kap.
DetaljerArbeid og energi. Energibevaring.
Arbeid og energi. Energibevaring. Arbeid = dw = F ds Kinetisk energi E k = ½ m v 2 Effekt = arbeid/tid = P = dw /dt Arbeid på legeme øker E k : Potensiell energi E p (x,y,z) dw = de k (Tyngdefelt: E p
DetaljerSide 1 av 3/nyn. Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839. EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 Onsdag 22. mai 2013 Tid: 09.00 13.
Side 1 av 3/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 Onsdag
DetaljerVeiledning oppgave 4 kap. 3 (seminaruke 42): ECON 3610/4610
Jon Vislie; oktober 007 Veiledning ogave 4 ka. 3 (seminaruke 4): ECON 360/460 I en økonomi roduseres én konsumvare i mengde x, kun ved hjel av elektrisitet, symboliseret ved E. Produksjonsteknologien for
DetaljerFAG: Fysikk FYS121 LÆRER: Fysikk : Per Henrik Hogstad (fellesdel) Kjetil Hals (linjedel)
UNIVERSITETET I AGDER Grimstad E K S A M E N S O P P G A V E : FAG: Fysikk FYS121 LÆRER: Fysikk : Per Henrik Hogstad (fellesdel) Kjetil Hals (linjedel) Klasse(r): Dato: 22.05.18 Eksamenstid, fra-til: 09.00
DetaljerLøsningsforslag til øving 1
Oppgave 1 FY1005/TFY4165 Termisk fysikk. Institutt for fysikk, NTNU. åren 2013. a) i deriverer på begge sider og finner ( ) α p ( ) κt T T p Løsningsforslag til øving 1 = p = T ( 1 ( 1 ) = 1 T ) = 1 p
DetaljerEKSAMENSOPPGAVE. Eksamen i:kje-1005 Termodynamikk og kinetikk Dato: Torsdag 05. juni 2014 Tid: Kl 09:00 14:00 Sted: Teorifagbygget, hus 1, plan 2
EKSAMENSOPPGAVE Eksamen i:kje-1005 Termodynamikk og kinetikk Dato: Torsdag 05. juni 2014 Tid: Kl 09:00 14:00 Sted: Teorifagbygget, hus 1, plan 2 Tillatte hjelpemidler: Enkel lommeregner Oppgavesettet er
DetaljerSpørretime TEP Høsten Spørretime TEP Høsten 2009
Spørsmål knyttet til en Kjølekrets (Oppgave 3 på Eksamen August 2005) T 44ºC 3 11.6 bar 4 4 bar 2 1 15ºC 12 bar pv 1.01 = k s 3 4 Kjølevann 20ºC 30ºC Kondenser R134a Q C Fordamper Q inn =35 kw 2 1 W C
DetaljerTMA4100 Matematikk 1, 4. august 2014 Side 1 av 12. x 2 3x +2. x 2
TMA4 Matematikk, 4. august 24 Side av 2 Oppgave Den rasjonale funksjonen p er definert som p(x) x2 3x +2 3x 2 5x +2. Finn de tre grenseverdiene lim xæ p(x), lim xæ p(x) og lim xæœ p(x). Løsning: x 2 3x
Detaljer