Flervalgsoppgave. Arbeid og energi. Energibevaring. Kollisjoner REP Konstant-akselerasjonslikninger. Vi har sett på:
|
|
- Inger-Lise Dahlen
- 7 måneder siden
- Visninger:
Transkript
1 Arbeid og energi. Energibevaring. Arbeid = dw = F ds Kinetisk energi E k = ½ m v 2 Effekt = arbeid/tid = P = dw /dt Arbeid på legeme øker E k : dw = de k Potensiell energi E p (x,y,z) (Tyngdefelt: E p = mgz; Fjærpotensial: E p = ½ k x 2 ) Konservative krefter kan avledes fra pot.energi: F,, Ep( x, y, z) Ep ( x, y, z) x y z (Tyngdekraft: F = - mg; Fjærkraft: F = - k x ) de p = - F ds Arbeid av konservativ kraft reduserer tilhørende potensiell energi: dw = - de p Energibevaring i konservativt felt: d( ½ m v 2 + E p (x,y,z)) = 0 Energibevaring når friksjon: d( ½ m v 2 + E p (x,y,z)) = dw f = friksjonsarbeid < 0 Translasjon: (konstant akselerasjon a) v = v 0 + a t Konstant-akselerasjonslikninger s = s 0 + v 0 t + ½ a t 2 v 2 v 02 = 2as s -s 0 = <v>t = ½(v+v 0 ) t Rotasjon om fast akse: (konstant vinkelakselerasjon α) ω = ω 0 + α t θ = θ 0 + ω 0 t + ½ α t 2 ω 2 ω 02 = 2αθ θ θ 0 = <ω>t = ½(ω+ω 0 ) t Vi har sett på: Kollisjoner Når ingen ytre krefter (i bevegelsesretning): Bevegelsesmengde (impuls) er bevart Når ingen ytre kraftmoment om akse A: Spinn er bevart om akse A Flervalgsoppgave Elastisk støt: Bevegelsesmengde bevart. Kinetisk energi bevart Uelastisk støt: Bevegelsesmengde bevart. Kinetisk energi avtar (varme) 1
2 Flervalgsoppgave Spinn: L = I ω Konstant! Personer inn mot sentrum I = Σ m i r i2 avtar ω må øke! Kinetisk energi: E k = ½ I ω 2 = ½ L ω = ½ L 2 / I Personer inn mot sentrum I avtar, L konstant E k øker! Flervalgsoppgave Øving 7. E bevart? Nei: fullstendig uelastisk støt (sitter sammen etter støtet) p bevart? Nei: p etter = 0 (ingen translasjon). Eller: F ytre fra akslingen L bevart? Ja: F ytre virker i akslingen, og har derfor ingen moment: τ ytre = 0 2
3 Oppgave Friksjon: Friksjon: Hvilefriksjon F T =,max ( ukjent ),max = μ s F N Glidefriksjon: F T = μ k F N μ s F N μ k F N akselerasjon F T = trekkraft ω ω uendret v = konst. =0 reduserer ω øker ω ω ω F f mg sinα endrer v gir moment til rotasjonen Y&F Opg. Y&F Opg. M Vi fant med (N2) og (N2-rot): a = g/3 Nå med energi h v 3
4 Eksamen TFY4115 des 2011, opg. 2 Oppgave Snittresultat Vektlegging (totalt 30) 2a 58 % 8 Skli: ω = 0 Bowlingkule 2b 90 % 4 A F 2c 79 % 6 f s 2d 58 % 6 Om A: 2e 34 % 6 L A = r m v + I 0 ω Ingen krefter har moment => L A = konst. = mrv 0 B R v 0 r ω < v/r (liknende i Ø7, opg. 1) Rulle: ω = v rull /R v rull L start = L slutt => v rull = v 0 5/7 (*) -- uten å kjenne! Om B: L B = I 0 ω τ f = R => L B ikke konst. men I 0 dω/dt = R, må kjenne Skli: ω = 0 Bowlingkule ω < v/r Rulle: ω = v rull /R Øving 7. R A v 0 r v rull = -ma R = Iα sluring = μ k mg (uavhengig v) a = -μ k mg/m = -μ k g α = μ k mgr/(2/5)mr 2 = - (5/2) a/r rulling, konst v = 0 t 4
5 Translasjon: Bevegelsesmengde (linear momentum): p = m v N2-trans: F = dp/dt Stivt legeme (konst. m): F = m dv/dt = m a F = 0 => p = konstant (N1) stivt legeme: v = konst Rotasjon: Spinn (angular momentum): L = r X m v L = I ω Stivt legeme N2-rot (spinnsatsen): τ = dl/dt Stivt legeme (konst. I ): τ = I dω/dt = I α τ = 0 => L = konstant (N1-rot) stivt legeme: ω = konst 6. Mekaniske svingninger. Oppsummering Udempet harmonisk oscillasjon (SHM) Kriterium SHM: Krafta som trekker mot likevekt er prop. med avstand x (eks. F = - kx ) Dette gir fra Newton 2: d 2 /dt 2 x +ω 02 x = 0 med løsning: x(t) = A cos (ω 0 t + φ) masse/fjær: ω 02 = k/m tyngependel (matematisk): ω 02 = g/l fysisk pendel: ω 02 = mgl/i (seinere) 6.2 Dempet harmonisk oscillasjon d 2 /dt 2 x + 2γ d/dt x + ω 02 x = 0 med løsning: x(t) = A e -γt cos (ω d t + φ) (svak dempning γ < ω 0 ) ω d2 = ω 02 - γ 2 Termodynamikk Prosesser i tilstandsflata Hovedsetning = Energibevarelse: ΔU = Q - W (endring indre energi) = (varme inn) (arbeid utført) Hovedsetning = Mulige prosesser: Varme kan ikke strømme fra kaldt til varmt legeme Y&F Figure
6 Termodynamiske kretsprosesser Reversible prosesser: Alltid likevekt Irreversible prosesser: Ikke likevekt. Varmekraftmaskiner Virkningsgrad η = W/Q H. Carnotmaskin η C = 1 - T L /T H Kjølemaskiner η K = Q L / W Varmepumper η V = Q H / W 2. hovedsetning: Det er umulig at varme strømmer fra kaldt til varmt å overføre varme 100% til arbeid å senke entropien i et lukket system Entropi er en tilstandsfunksjon, def: ΔS = dq rev /T Entropi Entropi er en tilstandsfunksjon, def: ΔS = dq rev /T S øker når varme tilføres S «produseres» ved irreversible prosesser S øker for universet, følge av: 2. hovedsetning: Det er umulig at varme strømmer fra kaldt til varmt å overføre varme 100% til arbeid å senke entropien i et lukket system Kinetisk teori. Oppsummering Spørretime før eksamen --? Ideell gasslov + trykk pga. kollisjoner (Newton 2) gir: Indre energi = middelverdi av kinetisk translasjonsenergi: Enatomige molekyler, kun translasjonsenergi: U = W k (trans) = N (1/2) m <v 2 > = N 3 k B T / 2 Frihetsgrader: n f = 3 Toatomige molekyler, translasjonsenergi + rotasjonsenergi: U = W k (trans) + W k (rot) = N 5 k B T / 2 Frihetsgrader: n f = 5 Varmekapasiteter ideell gass Konstant volum: n C V = ΔU/ΔT, C V = n f R/2 Konstant trykk: n C p = (ΔU + p Δ V)/ΔT, C p = (n f +2) R/2 Adiabatiske prosesser: pv γ = konstant under prosessen, med γ = C p /C V Dato Eksamen Spørretime? man 7. des tir 8. des ons 9. des tor 10. des fre 11.des TMA4100(nano) TMA4120(tk+elsys) Dato Eksamen Spørretime? man 14. des TTK4240(tk) / TTT4265(elsys) tir 15. des ons 16. des TDT4105 (nano) tor 17. des fre 18.des LØR 19. des TFY4115 6
7 Eksamen TFY4115 des 2014, opg. 1 Flervalgs - de dårligst besvarte: Avgitte svar: Rett svar Oppgave % % % % % % % % Snittresultat Opg: A B C D E blank Sum Snittres. 29 % 39 % 38 % 27 % 44 % 47 % 37 % 49 % Snitt: 32 % (de dårligst besvarte) Svar under eksamen: (ubesvart) Snitt: 43 % c. For et stivt legeme faller tyngdepunktet og massesenteret sammen dersom 30 A) legemet er i rotasjonslikevekt 4 B) legemet er i translasjonslikevekt 24 C) legemet er både i rotasjonslikevekt og i translasjonslikevekt 67 D) tyngdens akselerasjon er lik over hele legemet 3 E) enhver kraft som kan akselerere legemet er konstant 52 (ubesvart) e. To enatomige gasser, helium og neon, blir blanda i forholdet 2:1 og er i termisk likevekt ved temperaturen T. Molar masse til neon er 5x molar masse til helium. Hvis den midlere kinetiske energien per heliumatom er U, er den midlere kinetiske energien per neonatom lik 80 A) U 4 B) U/2 9 C) 2U 34 D) 5U 13 E) U/5 40 (ubesvart) Kinetisk gassteori Snitt: 49 % U = <E k > = ½ m <v 2 > = 3/2 k B T lik for begge ( minst m (helium) har høyest <v 2 > ) 7
8 g. Ei massiv kule som holder temperatur T stråler ut energi med en rate P (i W = watt). Hvis radius til kula dobles (mens temperaturen holdes konstant) vil P øke med en faktor: 10 A) Forbli uendra 7 B) C) 4 16 D) 8 3 E) (ubesvart) h. Hvis lufttrykket er lavere enn trippelpunkt-trykket for et visst stoff, kan dette stoffet eksistere (avhengig av temperaturen) 16 A) som væske eller gass, men ikke faststoff 29 B) som væske eller faststoff, men ikke som gass 106 C) som faststoff eller gass, men ikke som væske 3 D) som faststoff, men ikke væske eller gass 14 E) som faststoff, væske eller gass 12 (ubesvart) Snitt: 73 % Snitt: 60 % p atm 8
Arbeid og energi. Energibevaring.
Arbeid og energi. Energibevaring. Arbeid = dw = F ds Kinetisk energi E k = ½ m v 2 Effekt = arbeid/tid = P = dw /dt Arbeid på legeme øker E k : Potensiell energi E p (x,y,z) dw = de k (Tyngdefelt: E p
Flervalgsoppgave. Kollisjoner. Kap. 6. Arbeid og energi. Energibevaring. Konstant-akselerasjonslikninger REP
Kap. 6. Arbeid og energi. Energibevaring. Arbeid = dw = F ds Kinetisk energi E k = ½ m v 2 Effekt = arbeid/tid = P = dw /dt Arbeid på legeme øker E k : dw = de k Potensiell energi E p (x,y,z) (Tyngdefelt:
Oppsummert: Kap 1: Størrelser og enheter
Oppsummert: Kap 1: Størrelser og enheter s = 3,0 m s = fysisk størrelse 3,0 = måltall = {s} m = enhet = dimensjon = [s] OBS: Fysisk størrelse i kursiv (italic), enhet opprettet (roman) (I skikkelig teknisk
Kap. 3 Arbeid og energi. Energibevaring.
Kap. 3 Arbeid og energi. Energibevaring. Definisjon arbeid, W Kinetisk energi, E k Potensiell energi, E p. Konservative krefter Energibevaring Energibevaring når friksjon. Arbeid = areal under kurve F(x)
Kap. 6+7 Arbeid og energi. Energibevaring.
TFY4145/FY11 Mekanisk fysikk Størrelser og enheter (Kap 1) Kinematikk i en, to og tre dimensjoner (Kap. +3) Posisjon, hastighet, akselerasjon. Sirkelbevegelse. Dynamikk (krefter): Newtons lover (Kap. 4)
Kap Rotasjon av stive legemer
Kap. 9+10 Rotasjon av stive legemer Vi skal se på: Vinkelhastighet, vinkelakselerasjon (rep) Sentripetalakselerasjon, baneakselerasjon (rep) Rotasjonsenergi E k Treghetsmoment I Kraftmoment τ Rulling Spinn
Termisk fysikk består av:
Termisk fysikk består av: 1. Termodynamikk: (= varmens kraft ) Makroskopiske likevektslover ( slik vi ser det ) Temperatur. 1. og. hovedsetning. Kinetisk gassteori: Mekanikkens lover på mikrokosmos Uttrykk
Kap Rotasjon av stive legemer
Kap. 9+10 Rotasjon av stive legemer Vi skal se på: Vinkelhastighet, vinkelakselerasjon (rask rekap) Sentripetalakselerasjon, baneakselerasjon (rask rekap) Rotasjonsenergi E k Treghetsmoment I Kraftmoment
T L) = ---------------------- H λ A T H., λ = varmeledningsevnen og A er stavens tverrsnitt-areal. eks. λ Al = 205 W/m K
Side av 6 ΔL Termisk lengdeutvidelseskoeffisient α: α ΔT ------, eks. α Al 24 0-6 K - L Varmekapasitet C: Q mcδt eks. C vann 486 J/(kg K), (varmekapasitet kan oppgis pr. kg, eller pr. mol (ett mol er N
Sykloide (et punkt på felgen ved rulling)
Kap. 9+10 Rotasjon av stive legemer Vi skal se på: Vinkelhastighet, vinkelakselerasjon (rep) Sentripetalakselerasjon, baneakselerasjon (rep) Rotasjonsenergi E k Treghetsmoment I Kraftmoment τ Spinn (dreieimpuls):
Kap. 14 Mekaniske svingninger. 14. Mekaniske svingninger. Vi skal se på: Udempet harmonisk svingning. kap
kap14 1.11.1 Kap. 14 Mekaniske svingninger Mye svingning i dagliglivet: Pendler Musikkinstrument Elektriske og magnetiske svingninger Klokker Termiske vibrasjoner (= temperatur) Måner og planeter Historien
A) 1 B) 2 C) 3 D) 4 E) 5
Side 2 av 5 Oppgave 1 Hvilket av de følgende fritt-legeme diagrammene representerer bilen som kjører nedover uten å akselerere? Oppgave 2 A) 1 B) 2 C) 3 D) 4 E) 5 En lampe med masse m er hengt opp fra
EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Eksamensdato: Torsdag 11. desember 2008 Eksamenstid: 09:00-13:00
Norges teknisk-naturvitenskapelige universitet Institutt for fysikk BOKMÅL Eksamensteksten består av 6 sider inklusiv denne frontsida EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Eksamensdato:
Kap. 8 Bevegelsesmengde. Kollisjoner. Massesenter.
Kap. 8 Bevegelsesmengde. Kollisjoner. Massesenter. Vi skal se på: Newtons 2. lov på ny: Definisjon bevegelsesmengde Kollisjoner: Kraftstøt, impuls. Impulsloven Elastisk, uelastisk, fullstendig uelastisk
Kap Rotasjon av stive legemer
Kap. 9+10 otasjon av stive legeme Vi skal se på: Vinkelhastighet, vinkelakseleasjon (ep) Sentipetalakseleasjon, baneakseleasjon (ep) otasjonsenegi E k Teghetsmoment I Kaftmoment τ ulling Spinn (deieimpuls):
Kap Termisk fysikk (varmelære, termodynamikk)
TFY4115 Fysikk Mekanikk: (kap.ref Young & Freedman) SI-systemet (kap. 1); Kinematikk (kap. 2+3). (Rekapitulasjon) Newtons lover (kap. 4+5) Arbeid og energi (kap. 6+7) Bevegelsesmengde, kollisjoner (kap.
Kap. 8 Bevegelsesmengde. Kollisjoner. Massesenter.
Kap. 8 Bevegelsesmengde. Kollisjoner. Massesenter. Vi skal se på: Newtons 2. lov på ny: Definisjon bevegelsesmengde Kollisjoner: Kraftstøt, impuls. Impulsloven Elastisk, uelastisk, fullstendig uelastisk
Newtons 3.lov. Kraft og motkraft. Kap. 4+5: Newtons lover. kap Hvor er luftmotstanden F f størst? F f lik i begge!!
TFY4115 Fysikk Mekanikk: (kap.ref Young & Freedman) SI-systemet (kap. 1); Kinematikk (kap. 2+3). (Rekapitulasjon) Newtons lover (kap. 4+5) Energi, bevegelsesmengde, kollisjoner (kap. 6+7+8) Rotasjon, spinn
Fysikkk. Støvneng Tlf.: 45. Andreas Eksamensdato: Rottmann, boksen 1 12) Dato. Sign
Instituttt for fysikk Eksamensoppgave i TFY4115 Fysikkk Faglig kontakt under eksamen: Jon Andreas Støvneng Tlf.: 45 45 55 33 Eksamensdato: 18. desember 2013 Eksamenstid (fra-til): 0900-1300 Hjelpemiddelkode/Tillattee
Løysingsframlegg TFY 4104 Fysikk Kontinuasjonseksamen august 2010
NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Løysingsframlegg TFY 404 Fysikk Kontinuasjonseksamen august 200 Faglærar: Professor Jens O Andersen Institutt for Fysikk, NTNU Telefon:
EKSAMEN I EMNE TFY4125 FYSIKK
Bokmål NORGES TEKNSK- NATURVTENSKAPELGE UNVERSTET NSTTUTT FOR FYSKK Studentnummer: Bokmål, Side av Faglig kontakt under eksamen: nstitutt for fysikk, Gløshaugen Professor Steinar Raaen, 73593635, mob.4896758
EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK
TFY4145/FY1001 18. des. 2012 Side 1 av 8 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Kontakt under eksamen: Jon Andreas Støvneng, telefon: 45 45 55 33 / 73 59 36 63 EKSAMEN I FY1001
Eksamensoppgave i TFY4108 Fysikk
Institutt for fysikk Eksamensoppgave i TFY4108 Fysikk Faglig kontakt under eksamen: Førsteamanuensis John Ove Fjærestad Tlf: 97 94 00 36 Eksamensdato: 16 august 2013 Eksamenstid (fra-til): 9-13 Hjelpemiddelkode/Tillatte
EKSAMEN i TFY4108 FYSIKK
Side 1 av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk BOKMÅL EKSAMEN i TFY4108 FYSIKK Eksamensdato: Fredag 14 desember 01 Eksamenstid: 09:00-13:00 Faglig kontakt under eksamen:
EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK
TFY4145/FY1001 18. des. 2012 Side 1 av 8 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Kontakt under eksamen: Jon Andreas Støvneng, telefon: 45 45 55 33 / 73 59 36 63 EKSAMEN I FY1001
UNIVERSITETET I OSLO
Side 1 av 4 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK1110 Eksamensdag: Onsdag 6. juni 2012 Tid for eksamen: Kl. 0900-1300 Oppgavesettet er på 4 sider + formelark
Vi skal se på: Lineær bevegelsesmengde, kollisjoner (Kap. 8)
kap8.ppt 03.0.203 TFY445/FY00 ekanisk fysikk Størrelser og enheter (Kap ) Kinematikk i en, to og tre dimensjoner (Kap. 2+3) Posisjon, hastighet, akselerasjon. Sirkelbevegelse. Dynamikk (krefter): Newtons
MEKANISK FYSIKK INKL SVINGNINGER. Newtons andre lov: F = dp/dt p = mv = mṙ. Konstant akselerasjon: v = v 0 + at x = x 0 + v 0 t at2
TFY4106 Fysikk Eksamen 9. juni 2016 (Foreløpig versjon pr 7. mai 2016.) FORMLER: Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighetsområde og de ulike symbolenes
Kap. 14 Mekaniske svingninger
Kap. 14 21.11.213 Kap. 14 Mekaniske svingninger Mye som svinger i dagliglivet: Pendler Musikkinstrument Elektriske og magnetiske svingninger Klokker Termiske vibrasjoner (= temperatur) Måner og planeter
Aristoteles (300 f.kr): Kraft påkrevd for å opprettholde bevegelse. Dvs. selv UTEN friksjon må oksen må trekke med kraft S k
TFY4115 Fysikk Mekanikk: (kap.ref Young & Freedman) SI-systemet (kap. 1); Kinematikk (kap. 2+3). (Rekapitulasjon) Newtons lover (kap. 4+5) Energi, bevegelsesmengde, kollisjoner (kap. 6+7+8) Rotasjon, spinn
Kap. 4+5 Rotasjon av stive legemer. L = r m v. L = mr 2 ω = I ω. ri 2 ω = I ω. L = r m v sin Φ = r 0 mv. L = r m v = 0
Kap. 4+5 Rotasjon av stive legeme Vi skal se på: Vinkelhastighet, vinkelakseleasjon (ep) Sentipetalakseleasjon, baneakseleasjon (ep) Rotasjonsenegi E k Teghetsmoment I Kaftmoment τ (N2-ot) stive legeme:
Løsningsforslag: Kontinuasjonseksamen TFY4115, august 2008
Institutt for fysikk, NTNU TFY4115 Fysikk, høsten 200 Løsningsforslag: Kontinuasjonseksamen TFY4115, august 2008 I tilknytning til oppgavene finner du her mer utførlige diskusjoner og kommentarer enn det
Eksamensoppgave i TFY4115 FYSIKK
Institutt for fysikk Eksamensoppgave i TFY4115 FYSIKK for MTNANO, MTTK og MTELSYS Faglig kontakt under eksamen: Institutt for fysikk v/arne Mikkelsen Tlf: 486 05 392 Eksamensdato: Tirsdag 13 desember 2016
UNIVERSITETET I OSLO
Side av 5 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK Eksamensdag: Onsdag. juni 2 Tid for eksamen: Kl. 9-3 Oppgavesettet er på 5 sider + formelark Tillatte hjelpemidler:
TFY4102 Fysikk Eksamen 16. desember 2017 Foreløpig utgave Formelside 1 av 6
TFY4102 Fysikk Eksamen 16. desember 2017 Foreløpig utgave Formelside 1 av 6 FORMLER: Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighetsområde og de ulike symbolenes
Aristoteles (300 f.kr): Kraft påkrevd for å opprettholde bevegelse. Dvs. selv UTEN friksjon må oksen trekke med kraft R O =S k
TFY4115 Fysikk Mekanikk: (kap.ref Young & Freedman) SI-systemet (kap. 1); Kinematikk (kap. 2+3). (Rekapitulasjon) Newtons lover (kap. 4+5) Energi, bevegelsesmengde, kollisjoner (kap. 6+7+8) Rotasjon, spinn
Kap. 4+5: Newtons lover. Newtons 3.lov. Kraft og motkraft. kap Hvor er luftmotstanden F f størst?
TFY4115 Fysikk Mekanikk: (kap.ref Young & Freedman) SI-systemet (kap. 1); Kinematikk (kap. 2+3). (Rekapitulasjon) Newtons lover (kap. 4+5) Energi, bevegelsesmengde, kollisjoner (kap. 6+7+8) Rotasjon, spinn
EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK
Norges teknisk-naturvitenskapelige universitet Institutt for fysikk BOKMÅL Oppgaver og formler på 5 vedleggsider EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Eksamensdato: Tirsdag 11 desember
Kap. 14 Mekaniske svingninger
Kap. 14 Mekaniske svingninger Mye svingning i dagliglivet: Pendler Musikkinstrument Elektriske og magnetiske svingninger Klokker Termiske vibrasjoner (= temperatur) Måner og planeter Historien og økonomien
EKSAMEN I FAG SIF 4002 FYSIKK Mandag 7. mai 2001 Tid: Sensur: Uke 22
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK [bokmål] Faglig kontakt under eksamen: Navn: Helge Redvald Skullerud Tlf: 73593625 EKSAMEN I FAG SIF 4002 FYSIKK Mandag 7 mai 2001 Tid:
Kap. 14 Mekaniske svingninger. 14. Mekaniske svingninger
Kap. 14 8.1.215 Kap. 14 Mekaniske svingninger Mye svingning i dagliglivet: Pendler Musikkinstrument Elektriske og magnetiske svingninger Klokker Termiske vibrasjoner (= temperatur) Måner og planeter Historien
Repetisjon
Repetisjon 18.05.017 Eksamensverksted: Mandag, 9.5., kl. 1 16, Origo Onsdag, 31.5., kl. 1 16, Origo FYS-MEK 1110 18.05.017 1 Lorentz transformasjon ( ut) y z y z u t c t 1 u 1 c transformasjon tilbake:
Løysingsframlegg kontinuasjonseksamen TFY 4104 Fysikk august 2011
NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Løysingsframlegg kontinuasjonseksamen TFY 4104 Fysikk august 011 Faglærar: Professor Jens O Andersen Institutt for Fysikk, NTNU Telefon:
TFY4104 Fysikk Eksamen 28. november 2016 Side 13 av 22
TFY4104 Fysikk Eksamen 28. november 2016 Side 13 av 22 FORMLER: Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighetsområde og de ulike symbolenes betydning antas
EKSAMEN i TFY4115 FYSIKK
Side 1 av 8 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk BOKMÅL EKSAMEN i TFY4115 FYSIKK for MTNANO, MTTK og MTEL Eksamensdato: Fredag 14 desember 2012 Eksamenstid: 09:00-13:00 Faglig
MEKANISK FYSIKK INKL SVINGNINGER. Newtons andre lov: F = dp/dt. p = mv = mṙ. Konstant akselerasjon: v = v 0 +at
TFY4106 Fysikk Eksamen 17. desember 2014 FORMLER: Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighetsområde og de ulike symbolenes betydning antas forøvrig å
Løsningsforslag Eksamen i Fys-mek1110 våren 2009
Løsningsforslag Eksamen i Fys-mek våren 9 Side av 8 Oppgave a) Du skyver en kloss med konstant hastighet bortover et horisontalt bord. Identifiser kreftene på klossen og tegn et frilegemediagram for klossen.
TFY4104 Fysikk Eksamen 28. november 2016 Side 13 av 22
TFY4104 Fysikk Eksamen 28. november 2016 Side 13 av 22 FORMLER: Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighetsområde og de ulike symbolenes betydning antas
Løsningsskisse EKSAMEN i FYSIKK, 30. mai 2006
Løsningsskisse EKSAMEN i FYSIKK, 30. mai 2006 Oppgave 1. Flervalgsspørsmål Fasit 1. C 2. D 3. D 4. B 5. C 6. E 7. E 8. B 9. E 10. D 11. B 12. D Løsningsforslag Oppgave 2 a) Reversibel prosess: En prosess
Løysingsframlegg TFY 4104 Fysikk Hausten 2009
NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Løysingsframlegg TFY 4104 Fysikk Hausten 2009 Faglærar: Professor Jens O Andersen Institutt for Fysikk, NTNU Telefon: 73593131 Mandag 30
Eksamensoppgave i TFY4115 FYSIKK
Institutt for fysikk Eksamensoppgave i TFY45 FYSIKK for MTNANO, MTTK og MTELSYS Faglig kontakt under eksamen: Institutt for fysikk v/arne Mikkelsen Tlf: 486 05 92 Eksamensdato: Lørdag 9 desember 205 Eksamenstid:
KJ1042 Øving 3: Varme, arbeid og termodynamikkens første lov
KJ1042 Øving 3: arme, arbeid og termodynamikkens første lov Ove Øyås Sist endret: 17. mai 2011 Repetisjonsspørsmål 1. Hvordan ser Ideell gasslov ut? Ideell gasslov kan skrives P nrt der P er trykket, volumet,
Stivt legeme, reeksjonssymmetri mhp rotasjonsaksen: L = L b + L s = R CM M V + I 0!
TFY40 Fysikk Eksamen 6. desember 07 Formelside av 7 FORMLER: Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighetsomrade og de ulike symbolenes betydning antas
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 0 Eksamensdag: 6 juni 0 Tid for eksamen: 4:30 8:30 (4 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark Tillatte
Faglig kontakt under eksamen: Navn: Anne Borg Tlf. 93413 BOKMÅL. EKSAMEN I EMNE TFY4115 Fysikk Elektronikk og Teknisk kybernetikk
Side 1 av 10 NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Navn: Anne Borg Tlf. 93413 BOKMÅL EKSAMEN I EMNE TFY4115 Fysikk Elektronikk og Teknisk kybernetikk
Eksamensoppgave i TFY4145 MEKANISK FYSIKK FY1001 MEKANISK FYSIKK
Institutt for fysikk Eksamensoppgave i TFY4145 MEKANISK FYSIKK FY1001 MEKANISK FYSIKK Faglig kontakt under eksamen: Institutt for fysikk v/arne Mikkelsen, Tlf: 486 05 392 / 7359 3433 Eksamensdato: Mandag
KONTINUASJONSEKSAMEN I EMNE TFY FYSIKK. 10. august 2012 Tid:
ide 1 av 8 BOKMÅL Kandidatnr.. tudieretning... ide. Norges teknisk-naturvitenskapelige universitet Institutt for fysikk, NTNU Faglig kontakt under eksamen: Navn: Dag W. Breiby Tlf.: 984 54 13 KONTINUAJONEKAMEN
Eksamensoppgave i TFY4108 Fysikk
Institutt for fysikk Eksamensoppgave i TFY4108 Fysikk Faglig kontakt under eksamen: Førsteamanuensis John Ove Fjærestad Tlf.: 97 94 00 36 Eksamensdato: 13. august 2014 Eksamenstid (fra-til): 9-13 Hjelpemiddelkode/Tillatte
EKSAMENSOPPGAVE. Fagnr: FO 443A Dato: Antall oppgaver:
Avdeling for ingeniørutdanning EKSAMENSOPPGAVE Fag: FYSIKK/TERMODYNAMIKK Gruppe(r): 1 KA Eksamensoppgaven består av Tillatte hjelpemidler: Oppgave 1 Antall sider inkl forside: 4 Fagnr: FO 443A Dato: 80501
Eksamensoppgave i TFY4108 Fysikk
Institutt for fysikk Eksamensoppgave i TFY4108 Fysikk Faglig kontakt under eksamen: Førsteamanuensis John Ove Fjærestad Tlf.: 97 94 00 36 Eksamensdato: 7. august 2015 Eksamenstid (fra-til): 9-13 Hjelpemiddelkode/Tillatte
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 6 juni 2017 Tid for eksamen: 14:30 18:30 (4 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark Tillatte
Løsningsforslag Eksamen i Fys-mek1110 våren 2010
Side av Løsningsforslag Eksamen i Fys-mek våren Oppgave (Denne oppgaven teller dobbelt) Ole og Mari vil prøve om lengdekontraksjon virkelig finner sted. Mari setter seg i sitt romskip og kjører forbi Ole,
Stivt legemers dynamikk
Stivt legemers dnamikk 3.04.04 FYS-MEK 0 3.04.04 kraftmoment: O r F O rf sin F F R r F T F sin r sin O kraftarm N for rotasjoner: O, for et stivt legeme med treghetsmoment translasjon og rotasjon: F et
a) Vis at startvolumet er V 0 = 1, 04m 3 Gassen presses deretter sammen til et volum på V 1 = 0, 80m 3 mens temperaturen i gassen holdes konstant.
NB: Alle deloppgavene teller like mye i vurderingen. Dvs. oppgave 1a teller like mye som oppgave 4. Oppgave 1 I en beholder er 50,0 mol luft avstengt av et stempel som kan bevege seg uten friksjon mot
Stivt legemers dynamikk
Stivt legemers dynamikk.4.4 FYS-MEK.4.4 Forelesning Tempoet i forelesningene er: Presentasjonene er klare og bra strukturert. Jeg ønsker mer bruk av tavlen og mindre bruk av powerpoint. 6 35 5 5 3 4 3
FYSMEK1110 Eksamensverksted 31. Mai 2017 (basert på eksamen 2004, 2013, 2014, 2015,)
YSMEK1110 Eksamensverksted 31. Mai 2017 (basert på eksamen 2004, 2013, 2014, 2015,) Oppgave 1 (2014), 10 poeng To koordinatsystemer og er orientert slik at tilsvarende akser peker i samme retning. System
EKSAMEN I TFY4145 OG FY1001 MEKANISK FYSIKK
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK LØSNINGSFORSLAG (5 sider): EKSAMEN I TFY445 OG FY00 MEKANISK FYSIKK Fredag 8. desember 2009 kl. 0900-00 Oppgave. Tolv flervalgsspørsmål
TFY4106 Fysikk Eksamen 18. mai 2017 Formelside 1 av 6
TFY4106 Fysikk Eksamen 18. mai 2017 Formelside 1 av 6 FORMLER: Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighetsområde og de ulike symbolenes betydning antas
EKSAMEN i TFY4115 FYSIKK
Side 1 av 7 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk BOKMÅL EKSAMEN i TFY4115 FYSIKK for MTNANO, MTTK og MTEL Eksamensdato: Lørdag 17 desember 2011 Eksamenstid: 09:00-13:00 Faglig
Side 1/12 KONTINUASJONSEKSAMEN I EMNE TFY FYSIKK. Torsdag 6. august 2009 Tid:
ide / Bokmål Kandidatnr.. tudieretning... ide. Norges teknisk-naturvitenskapelige universitet Institutt for fysikk, NTNU Faglig kontakt under eksamen: Navn: Dag W. Breiby Tlf.: 9845 43 KONTINUAJONEKAMEN
Arbeid = kraft vei hvor kraft = masse akselerasjon. Hvis kraften F er konstant og virker i samme retning som forflytningen (θ = 0) får vi:
Klassisk mekanikk 1.1. rbeid rbeid som utføres kan observeres i mange former: Mekanisk arbeid, kjemisk arbeid, elektrisk arbeid o.l. rbeid (w) kan likevel alltid beskrives som: rbeid = kraft vei hvor kraft
Side 1/10. EKSAMEN I EMNE TFY4125 FYSIKK Fredag 10. juni 2011 Tid:
ide 1/1 BOKMÅL Norges teknisk-naturvitenskapelig universitet Institutt for fysikk, NTNU TFY415 Fysikk, vår 11 Kandidatnr.. tudieretning... Faglig kontakt under eksamen: Navn: Dag W. Breiby Tlf.: 984 5413
TFY4106 Fysikk Løsningsforslag til Eksamen 12. august M k = ρv = ρ 4πR 3 /3 = π /3 = 2.10kg. E) 2.10 kg
TFY4106 Fysikk Løsningsforslag til Eksamen 12. august 2016 1) M k = ρv = ρ 4πR 3 /3 = 7850 4π 0.0400 3 /3 = 2.10kg. E) 2.10 kg 2) Med indre radius r og ytre radius R er kuleskallets masse dvs M = ρ 4 3
TFY4108 Fysikk, haust 2013: Løysing til ordinær eksamen 18. des.
TFY408 Fysikk, haust 0: Løysing til ordinær eksamen 8. des. Oppgåve Den følgjande diskusjonen av denne oppgåva er ganske lang. Grunnen er at for fleire av deloppgåvene diskuterer eg alternative løysingsmetodar.
Kap. 9+10 Rotasjon av stive legemer
Kap. 9+10 Rotasjon a stie legemer Vi skal se på: Vinkelhastighet, inkelakselerasjon (rask rekap) Sentripetalakselerasjon, baneakselerasjon (rask rekap) Rotasjonsenergi E k Treghetsmoment I Kraftmoment
Stivt legemers dynamikk
Stivt legemers dynamikk 5.04.05 FYS-MEK 0 5.04.05 Forelesning Tempoet i forelesningene er: Presentasjonene er klare og bra strukturert. Det er bra å vise utregninger på smart-board / tavle Diskusjonsspørsmålene
UNIVERSITETET I OSLO
Side 1 av 4 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK111 Eksamensdag: Mandag 22. mars 21 Tid for eksamen: Kl. 15-18 Oppgavesettet er på 4 sider + formelark Tillatte
EKSAMENSOPPGA VE. Fagnr: FO 44JA Dato: Antall oppgaver:
Høgsko/l'n imm m Avdeling for ingeniørutdanning EKSAMENSOPPGA VE Fag: FYSIKK / TERMODYNAMIKK Gruppe(r) KA,3K Eksamensoppgaven består av Tillatte hjelpemidler: Antall sider inkl forside: 7 Fagnr: FO 44JA
Stivt legemers dynamikk
Stivt legemers dnamikk 3.04.03 FYS-MEK 0 3.04.03 kraftmoment: O r F O rf sin F F R r F T F sin r sin O kraftarm NL for rotasjoner: O, I for et stivt legeme med treghetsmoment I translasjon og rotasjon:
Vektorstørrelser (har størrelse og retning):
Kap..1. Kinematikk Posisjon: rt () = xtx () + yt () y + zt () z Hastighet: v(t) = dr(t)/dt = endring i posisjon per tid Akselerasjon: a(t) = dv(t)/dt = endring i hastighet per tid Vektorstørrelser (har
FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014
FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014 Oppgave 1 (4 poeng) Forklar hvorfor Charles Blondin tok med seg en lang og fleksibel stang når han balanserte på stram line over Niagara fossen i 1859. Han
TFY4108 Fysikk: Løysing kontinuasjonseksamen 13. aug. 2014
TFY48 Fysikk: Løysing kontinuasjonseksamen 3. aug. 4 Oppgåve (a) Reknar først ut venstresida av TUSL. Sidan bølgjefunksjonen i dette tilfellet er uavhengig av θ og φ, forsvinn ledda som involverer deriverte
KJ1042 Øving 5: Entalpi og entropi
KJ1042 Øving 5: Entalpi og entropi Ove Øyås Sist endret: 17. mai 2011 Repetisjonsspørsmål 1. Hva er varmekapasitet og hva er forskjellen på C P og C? armekapasiteten til et stoff er en målbar fysisk størrelse
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 0 Eksamensdag: 3 juni 205 Tid for eksamen: 4:30 8:30 (4 timer) Oppgavesettet er på 5 sider Vedlegg: Formelark Tillatte
EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK: LØSNINGSFORSLAG
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK EKSAMEN I FY og TFY445 MEKANISK FYSIKK: LØSNINGSFORSLAG Fredag 6. desember 2 kl. 9-3 Oppgave. Ti flervalgsspørsmål (teller 2.5 25 % a.
Oppsummering - Kap. 5 Termodynamikkens 2. Lov
EP 410 ermodynamikk 1 Spontane Prosesser Varmeoverføring ( > omg ), Ekspansjon (P > P omg ), og Frigjort Masse i Gravitasjonsfelt er Eksempler Energibalanser kan ikke prediktere Retning Hva kan ermodynamikkens.
Eksamensoppgave i TFY4108 Fysikk
Institutt for fysikk Eksamensoppgave i TFY4108 Fysikk Faglig kontakt under eksamen: Førsteamanuensis John Ove Fjærestad Tlf.: 97 94 00 36 Eksamensdato: 11. desember 2014 Eksamenstid (fra-til): 9-13 Hjelpemiddelkode/Tillatte
Breivika Tromsø maritime skole
Breivika Tromsø maritime skole F-S-Fremdriftsplan 00TM01F - Fysikk på operativt nivå Utgave: 1.01 Skrevet av: Knut Magnus Sandaker Gjelder fra: 18.09.2015 Godkjent av: Jarle Johansen Dok.id.: 2.21.2.4.3.2.6
EKSAMENSOPPGAVE. Karl Rottmann: Matematisk formelsamling Kalkulator med tomt dataminne
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: FYS-0100 Generell fysikk Dato: 21. februar 2017 Klokkeslett: kl. 09:00-13:00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Karl Rottmann:
EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Eksamensdato: Torsdag 16. desember 2010 Eksamenstid: 09:00-13:00
Norges teknisk-naturvitenskapelige universitet Institutt for fysikk BOKÅL Eksamensteksten består av 6 sider inklusiv denne frontsida EKSAEN I TFY4145 EKANISK FYSIKK OG FY1001 EKANISK FYSIKK Eksamensdato:
EKSAMEN I FAG TFY4105 FYSIKK for studenter ved Linje for bygg- og miljøteknikk
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET, INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Institutt for fysikk, Gløshaugen Professor Arne Mikkelsen, 73593433 Studentnummer: Studieretning: NYNORSK
EKSAMENSOPPGAVE. Eksamen i: FYS 0100 Generell fysikk Dato: Onsdag 26.feb 2014 Tid: Kl 09:00 13:00 Sted: Aud max.
EKSAMENSOPPGAVE Eksamen i: FYS 0100 Generell fysikk Dato: Onsdag 26.feb 2014 Tid: Kl 09:00 13:00 Sted: Aud max. Tillatte hjelpemidler: Kalkulator med tomt dataminne Rottmann: Matematisk Formelsamling Oppgavesettet
Eksamen TFY 4104 Fysikk Hausten 2009
NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Eksamen TFY 404 Fysikk Hausten 2009 Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU Telefon: 735933 Mandag 30. november
Impuls, bevegelsesmengde, energi. Bevaringslover.
Impuls, bevegelsesmengde, energi. Bevaringslover. Kathrin Flisnes 19. september 2007 Bevegelsesmengde ( massefart ) Når et legeme har masse og hastighet, viser det seg fornuftig å definere legemets bevegelsesmengde
FORELESNING 4/5 09, REPETISJON Kapittel 2: Bevegelseslære (kinematikk) langs en rett linje
FORELESNING 4/5 09, REPETISJON Kapittel 2: Bevegelseslære (kinematikk) langs en rett linje Bevegelsen er fullstendig beskrevet av x(t) Gjennomsnittshastighet: 1 Hastighet: stigningstall til tangenten til
Løsningsforslag Eksamen i Fys-mek1110/Fys-mef1110 høsten 2007
Løsningsforslag Eksamen i Fys-mek0/Fys-mef0 høsten 007 Side av 9 Oppgave a) En kule ruller med konstant hastighet bortover et horisontalt bord Gjør rede for og tegn inn kreftene som virker på kulen Det
r+r TFY4115 Fysikk Eksamenstrening: Løsningsforslag
TFY45 Fysikk Eksamenstrening: Løsningsforslag ) I oljebransjen tilsvarer fat ca 0.59 m 3. I går var risen for WTI Crude Oil 97.44 US dollar r fat. Hva er dette i norske kroner r liter, når NOK tilsvarer
UNIVERSITETET I OSLO
Side 1 UNIVERSITETET I OSO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: mars 017 Tid for eksamen: 14:30 17:30 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark
Kretsprosesser. 2. hovedsetning
Kretsprosesser. 2. hovedsetning Reversible og irreversible prosesser (20.1) Adiabatisk prosess (19.8) Kretsprosesser: varmekraftmaskiner (20.2+3) Virkningsgrad kjølemaskiner (20.4) Effektfaktor Carnotsyklusen
EKSAMEN TFY4102 FYSIKK Fredag 10. juni 2011 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 8 Kontakt under eksamen: Arne Løhre Grimsmo Telefon: 91 33 38 72 EKSAMEN TFY4102 FYSIKK Fredag 10. juni 2011 kl. 0900-1300