Hensikten med studien:

Størrelse: px
Begynne med side:

Download "Hensikten med studien:"

Transkript

1 Elevenes første møte med multiplikasjon på småskoletrinnet En sosiokulturell tilnærming til appropriering av multiplikasjon i klasserommet Odd Tore Kaufmann Hensikten med studien:. er å gi teoretiske og empiriske bidrag til beskrivelser av hvordan elever lærer seg å beherske multiplikasjon i deres første møte med det i den norske skolen. Det vil være et fokus på elevers forståelse av multiplikasjon og hvordan de lærer å resonnere omkring ulike egenskaper ved denne aritmetiske operasjon. 1

2 Hensikten med studien forts: å skaffe ny innsikt om multiplikasjon i skolen ved å ta i bruk en sosiokulturell teoretisk og metodisk tilnærming. å beskrive og forklare spenninger som oppstår i elevers bruk av redskap og i dialogen mellom aktørene i klasserommet. Forskningsspørsmål Hvordan møter og approprierer elevene multiplikasjon på småskoletrinnet? Hvordan presenteres multiplikasjon på småskoletrinnet? Hvilke artefakter brukes i elevenes møte med multiplikasjon? Hvordan approprierer elevene multiplikasjon: hvilke steg kan beskrives i denne prosessen? Hvilke spenninger kan identifiseres når elevene tilegner og forsøker å bruke kulturelle redskap som har med multiplikasjon å gjøre (i konkrete situasjoner)? 2

3 Teoretisk perspektiv Kunnskap blir konstruert gjennom samhandling og i en kontekst, og ikke primært gjennom individuelle prosesser. Derfor blir interaksjon og samarbeid sett på som helt grunnleggende for læring. Det å kunne er i sosiokulturell læringsteori nært knyttet til praksisfelleskap og individets evne til å delta i disse. I et sosiokulturelt perspektiv forstår en læring som et spørsmål om hvordan individer nyttiggjør seg (det vil si approprierer) kunnskaper og ferdigheter de blir eksponert for (Säljö, 2005). Man må analysere aktiviteter, hvordan individet agerer i disse og hvilke erfaringer det gjør. Metode Metoden er basert på en dyptgående dokumentasjon i en etnografisk tradisjon for å studere matematikkaktiviteter i en naturlig klasseromssetting. Syv lærere fra fem forskjellige skoler og totalt 144 elever fra 3. trinn ble med på dette prosjektet. De ble observert i deres tre første undersvisningsøkter med multiplikasjon. Alle disse undervisningstimene ble dokumentert ved hjelp av feltnotater og bruk av videoopptaker og lydopptaker. Forskningsstrategien går ut på og prøve å forstå hva informantene forstår, samt utvikle kategorier og begreper som kan gi en bedre forståelse av det som studeres. 3

4 Metode (forts) Analysen kan karakteriseres som en veksling mellom induktive og deduktive faser, det vil si en abduktiv forskningsstrategi. I en slik karakteristikk vil forskeren veksle mellom inspeksjon av data og utvikling av idéer fra overordnede teoretiske perspektiver. Den er foretatt ut i fra sosiokulturelle begreper som er relevante ut i fra problemstillingen; appropriering, bruk av redskaper, interaksjon og samspill er fundamentale begreper i et sosiokulturelt perspektiv. Metode (forts) Det er fokus på et dialogisk perspektiv, analyser av hvordan deltakerne gjensidig påvirker hverandre ved bruk av ulike kulturelle redskap der språket er det viktigste medierende redskap. Gjennom samtaler bygger deltakerne på hverandres ytringer og utvikler ny kunnskap i fellesskap. Ytringene får mening gjennom den konteksten de blir skapt i. 4

5 Metode (forts) Det å klassifisere data var en vesentlig del av analysen. Klassifiseringen utføres ved at man danner kategorier, tilskriver kategoriene til datamaterialet, og bryter opp og spleiser sammen kategorier. - Når klassifiseringen ble foretatt kjente jeg til tidligere forskning om multiplikasjon og innhold i læreplaner og lærebøker. - Kategoriene var ikke bestemt på forhånd, men ut i fra hvordan elever og lærer brukte multiplikasjon i klasserommet. Resultat og diskusjon Hvordan presenteres multiplikasjon på småskoletrinnet? I samtaler med elevene Ofte ved å knytte det til spesifikke kontekst og problemer(jmfr Vygotsky; hverdagslige og vitenskaplige begrep.) Sentralt er overgangen mellom gjentatt addisjon og multiplikasjon 5

6 Resultat og diskusjon (forts) Hvilke pedagogiske hjelpemidler brukes som redskap i elevenes møte med multiplikasjon? Eks: Tellebrikker, centikuber, terninger, blyanter. De fleste fysiske redskapene som ble brukt er tidligere benyttet i for eksempel telling og addisjon. Resultat og diskusjon (forts) Hvilke spenninger kan identifiseres når elevene tilegner og forsøker å bruke kulturelle redskap som har med multiplikasjon å gjøre (i konkrete situasjoner)? Appropriering omfatter spenning mellom redskapet og hvordan redskapet er nyttegjort. I de fleste episoder i analysen klarer elevene å overvinne motstanden slik at redskapet gir dem nye muligheter innen multiplikasjon (for eksempel tellebrikkene som før ble brukt til å addere, kan nå brukes til å multiplisere) 6

7 Resultat og diskusjon (forts) Det er åpenbart at allerede på dette tidlige stadium fremkommer tydelige individuelle forskjeller i beherskningen av multiplikasjon. Dette kom av at redskapene har multiple meninger for dem. Analysen viser at det kunne oppstå en begrepslig spenning i dialogen mellom lærer og elev på grunn av forskjellig tolkning av redskapet, der elevene ofte knyttet redskapet til telling og addisjon. 7

8 Resultat og diskusjon (forts) Hvordan approprierer elevene multiplikasjon: hvilke steg kan beskrives i denne prosessen? En operasjonalisering av appropriering avklarer og beskriver hva det er elevene approprierer slik det fungerer i bestemte matematiske områder, det vil si at eleven deltar i diskusjonen for å løse oppgavene/problemene som oppstår med egne ord og forklaringer. 8

9 Resultat og diskusjon (forts) Gjennom en analyse av datamaterialet ble det avdekket forskjellige kategorier, som viser hva det samtales om i klasserommet i innføringsfasen i multiplikasjon. De forskjellige kategoriene blir dermed sentrale når man skal beskrive en approprieringsprosess for aktivitetene i klasserommet i multiplikasjon. Prosessen der elevene deltar i klasserommet kan da beskrives som en approprieringsprosess mot en stadig økende beherskelse av aktivitetene som omhandler multiplikasjon. Resultat og diskusjon (forts) Fra analysen er det blitt identifisert syv kategorier av måter å resonnere på. Ofte veksler deltakernes måte å resonere i et veldig tempo, det vil si at de bytter måter å håndtere problemene på: - Elevene teller en og en - Elevene benytter addisjon - Elevene benytter gjentatt addisjon - Elevene benytter rekketelling - Elevene benytter fordobling - Elevene multipliserer - Elevene kan føre samtaler om forskjellige egenskaper ved multiplikasjon 9

10 10

11 11

12 Konklusjon Det sentrale i analysen av disse kategoriene er forskjellen på å løse et problem når læreren stiller eleven et spørsmål (ofte formulert som et kort svar hvor bare tallene og operasjonen inngår), og å kunne samtale om multiplikasjon (hva er det, hva trenger vi det til, hvordan er sammenhengen mellom multiplikasjon og andre strategier). Denne siste kategorien skiller seg også ut i forhold til andre forskningsrapporter jeg har lest om multiplikasjon. Nye funn Det er avdekket kategorier som tidligere ikke er beskrevet; addisjon og at elevene kan utføre samtaler om forskjellige egenskaper ved multiplikasjon. Gjennom en sosiokulturell teoretisk og metodisk tilnærming gir denne studien en grundigere beskrivelse av hvordan elevene møter og approprierer multiplikasjon på småskoletrinnet. 12

Kristina Halkidis s Refleksjonsnotat 3. Refleksjonsnotat 3. vitenskapsteori

Kristina Halkidis s Refleksjonsnotat 3. Refleksjonsnotat 3. vitenskapsteori Refleksjonsnotat 3 vitenskapsteori Diskuter om IKT-støttet læring er en vitenskap og problematiser etiske aspekter ved forskning i dette feltet. Kristina Halkidis S199078 Master i IKT-støttet læring Høyskolen

Detaljer

Innføring i sosiologisk forståelse

Innføring i sosiologisk forståelse INNLEDNING Innføring i sosiologisk forståelse Sosiologistudenter blir av og til møtt med spørsmål om hva de egentlig driver på med, og om hva som er hensikten med å studere dette faget. Svaret på spørsmålet

Detaljer

Dybdelæring: hva er det - og hvordan kan det utvikles? Sten Ludvigsen, UiO

Dybdelæring: hva er det - og hvordan kan det utvikles? Sten Ludvigsen, UiO Dybdelæring: hva er det - og hvordan kan det utvikles? Sten Ludvigsen, UiO Metaforer om læring Meteforer om læring Læring som distribuert kognisjon Metaforer om læring Metaforer om læring Multiple perspektiver

Detaljer

MATEMATIKK 1, 4MX15-10E1 A

MATEMATIKK 1, 4MX15-10E1 A Skriftlig eksamen i MATEMATIKK 1, 4MX15-10E1 A 15 studiepoeng ORDINÆR EKSAMEN 20. desember 2010. Sensur faller innen 11. januar 2011. BOKMÅL Resultatet blir tilgjengelig på studentweb første virkedag etter

Detaljer

Hvordan hjelpe elever til å utvikle teoretisk kunnskap når de gjør praktisk arbeid i naturfag?

Hvordan hjelpe elever til å utvikle teoretisk kunnskap når de gjør praktisk arbeid i naturfag? Hvordan hjelpe elever til å utvikle teoretisk kunnskap når de gjør praktisk arbeid i naturfag? Western Graduate School of Research (WNGER), november 2010 ElevForsk Hvordan kan elever bli mer forskende

Detaljer

Telle med 0,3 fra 0,3

Telle med 0,3 fra 0,3 Telle med 0,3 fra 0,3 Mål Generelt: Søke etter mønster og sammenhenger. Gi grunner for at mønstrene oppstår. Lage nye mønstre ved å utnytte mønstre en allerede har funnet. Utfordre elevene på å resonnere

Detaljer

Telle med 4 fra 4. Mål. Gjennomføring. Telle i kor Telle med 4 fra 4 Planleggingsdokument

Telle med 4 fra 4. Mål. Gjennomføring. Telle i kor Telle med 4 fra 4 Planleggingsdokument Telle med 4 fra 4 Mål Generelt: Søke etter mønster og sammenhenger. Gi grunner for at mønstrene oppstår. Lage nye mønster ved å utnytte mønster en allerede har funnet. Utfordre elevene på å resonnere og

Detaljer

Telle med 120 fra 120

Telle med 120 fra 120 Telle med 120 fra 120 Mål Generelt: Søke etter mønstre og sammenhenger. Gi grunner for at mønstrene oppstår. Lage nye mønstre ved å utnytte mønstre en allerede har funnet. Utfordre elevene på å resonnere

Detaljer

Dialogisk undervisning: Å organisere produktive dialoger i helklasseøkter

Dialogisk undervisning: Å organisere produktive dialoger i helklasseøkter Dialogisk undervisning: Å organisere produktive dialoger i helklasseøkter Dialogisk undervisning: å organisere produktive dialoger i helklasseøkter gir en introduksjon til spørsmålet hva er dialogisk undervisning?,

Detaljer

Kvikkbilde Mål. Gjennomføring. Planleggingsdokument Kvikkbilde 4 12

Kvikkbilde Mål. Gjennomføring. Planleggingsdokument Kvikkbilde 4 12 Kvikkbilde 4 12 Mål Generelt: Sammenligne og diskutere ulike måter å se et antall på. Utfordre elevene på å resonnere omkring tallenes struktur og egenskaper, samt egenskaper ved regneoperasjoner. Spesielt:

Detaljer

Kvikkbilder i arbeid med tallforståelse. Forfatter Astrid Bondø

Kvikkbilder i arbeid med tallforståelse. Forfatter Astrid Bondø Forfatter Astrid Bondø Publisert dato: April 2016 Matematikksenteret Kvikkbilde Aktiviteten Kvikkbilde er designet for å engasjere elever i å visualisere tall og å forme mentale representasjoner av en

Detaljer

2MPEL PEL 2, emne 3: Den profesjonelle lærer

2MPEL PEL 2, emne 3: Den profesjonelle lærer 2MPEL5101-3 PEL 2, emne 3: Den profesjonelle lærer Emnekode: 2MPEL5101-3 Studiepoeng: 15 Språk Norsk Krav til forkunnskaper Emner 2MPEL5101-1 PEL 1, emne 1 og 2MPEL5101-2 PEL 1, emne 2 eller tilsvarende,

Detaljer

Læreplan i fremmedspråk

Læreplan i fremmedspråk Læreplan i fremmedspråk Status: Bearbeidet versjon etter høring Om faget Fagets relevans og sentrale verdier Fremmedspråk handler om å forstå og bli forstått. Faget skal bidra til å fremme elevenes personlige

Detaljer

Telle med 19 fra 19. Mål. Gjennomføring. Telle i kor Telle med 19 fra 19 Planleggingsdokument

Telle med 19 fra 19. Mål. Gjennomføring. Telle i kor Telle med 19 fra 19 Planleggingsdokument Telle med 19 fra 19 Mål Generelt: Søke etter mønstre og sammenhenger. Gi grunner for at mønstrene oppstår. Lage nye mønstre ved å utnytte mønstre en allerede har funnet. Utfordre elevene på å resonnere

Detaljer

Program for 1.februar 2019

Program for 1.februar 2019 Program for 1.februar 2019 Hva er russisk Utviklende opplæring i matematikk? Hva legges vekt på i læreprosessen? De fem pedagogiske prinsippene som undervisningen bygger på God læringskultur- en forutsetning

Detaljer

Program for 1.februar 2019

Program for 1.februar 2019 Program for 1.februar 2019 Hva er russisk Utviklende opplæring i matematikk? Hva legges vekt på i læreprosessen? De fem pedagogiske prinsippene som undervisningen bygger på God læringskultur- en forutsetning

Detaljer

Språk og kommunikasjon

Språk og kommunikasjon Språk og kommunikasjon Begrep og representasjoner 13. februar 2019 Mål Hva begreper er og hvordan de kan bidra til at barna utvikler forståelse for matematiske begreper. Representasjoner og hvorfor barn

Detaljer

Foreldremøte 28. september og 4. oktober Kjersti Melhus. Institutt for grunnskolelærerutdanning, idrett og spesialpedagogikk.

Foreldremøte 28. september og 4. oktober Kjersti Melhus. Institutt for grunnskolelærerutdanning, idrett og spesialpedagogikk. Foreldremøte 28. september og 4. oktober 2017 Kjersti Melhus Institutt for grunnskolelærerutdanning, idrett og spesialpedagogikk Gerd Inger Moe Tidligere lærer ved Smeaheia skole Vårt utgangspunkt Barn

Detaljer

Foreldremøte 5.september 2017

Foreldremøte 5.september 2017 Foreldremøte 5.september 2017 Hva er russisk matematikk Utviklende opplæring i matematikk? - Prinsippene og tenkningen bak - Eksempel på noen oppgaver - Hva legges vekt på? - Hva bør elevene ha lært på

Detaljer

Forståelse og bruk av fagbegreper - differensiert undervisning

Forståelse og bruk av fagbegreper - differensiert undervisning Forståelse og bruk av fagbegreper - differensiert undervisning Differensiering er en viktig strategi for å tilpasse opplæringen til elevenes ulike faglige behov. Derfor er det viktig å differensiere arbeidet

Detaljer

Kvikkbilde 8 6. Mål. Gjennomføring. Planleggingsdokument Kvikkbilde 8 6

Kvikkbilde 8 6. Mål. Gjennomføring. Planleggingsdokument Kvikkbilde 8 6 Kvikkbilde 8 6 Mål Generelt: Sammenligne og diskutere ulike måter å se et antall på. Utfordre elevene på å resonnere omkring tallenes struktur og egenskaper, samt egenskaper ved regneoperasjoner. Spesielt:

Detaljer

ELEVAKTIVE METODER: Snakke matte, samarbeidslæring og problemløsing. PÅBYGG TIL GENERELL STUDIEKOMPETANSE Skolering av lærere

ELEVAKTIVE METODER: Snakke matte, samarbeidslæring og problemløsing. PÅBYGG TIL GENERELL STUDIEKOMPETANSE Skolering av lærere ELEVAKTIVE METODER: Snakke matte, samarbeidslæring og problemløsing PÅBYGG TIL GENERELL STUDIEKOMPETANSE Skolering av lærere MATEMATIKK 2P-Y 15.januar 2013 Tone Elisabeth Bakken tone.bakken@ohg.vgs.no

Detaljer

Foreldremøte 25. september og 3. oktober Kjersti Melhus. Institutt for grunnskolelærerutdanning, idrett og spesialpedagogikk.

Foreldremøte 25. september og 3. oktober Kjersti Melhus. Institutt for grunnskolelærerutdanning, idrett og spesialpedagogikk. Foreldremøte 25. september og 3. oktober 2019 Kjersti Melhus Institutt for grunnskolelærerutdanning, idrett og spesialpedagogikk Gerd Inger Moe Tidligere lærer ved Smeaheia skole Vårt utgangspunkt Barn

Detaljer

MAM Mestre Ambisiøs Matematikkundervisning. Realfagskonferansen Trondheim,

MAM Mestre Ambisiøs Matematikkundervisning. Realfagskonferansen Trondheim, MAM Mestre Ambisiøs Matematikkundervisning Realfagskonferansen Trondheim, 03.05.16 Mestre Ambisiøs Matematikkundervisning matematikksenteret.no Utvikle en modell med tilhørende ressurser for skolebasert

Detaljer

Last ned Læringssamtalen i matematikkfagets praksis. Last ned

Last ned Læringssamtalen i matematikkfagets praksis. Last ned Last ned Læringssamtalen i matematikkfagets praksis Last ned ISBN: 9788290898590 Antall sider: 230 Format: PDF Filstørrelse:25.32 Mb "Læringssamtalen i matematikkfagets praksis. Bok II er den andre av

Detaljer

ALU i 6 K regionen. Å tenke igjennom egne forkunnskaper

ALU i 6 K regionen. Å tenke igjennom egne forkunnskaper ALU i 6 K regionen Å tenke igjennom egne forkunnskaper 3. samling 01.02.201 Vigdis Refsahl Bredtvet kompetansesenter Lesing Avkode Forstå Indre holdepunkter Ytre holdepunkter Språk og struktur Bevisste

Detaljer

BARNEHAGEN SOM IDENTITETSSKAPENDE KONTEKST

BARNEHAGEN SOM IDENTITETSSKAPENDE KONTEKST FORSKNINGSDAGENE 2009 BARNEHAGEN SOM IDENTITETSSKAPENDE KONTEKST - ET FORSKNINGSPROSJEKT I STARTFASEN BAKGRUNN Behov for forskning på barnehager Barnehager har fått en betydelig posisjon som utdanningsinstitusjon

Detaljer

Click to edit Master title style

Click to edit Master title style Click to edit Master title style Mestre Ambisiøs Matematikkundervisning København, 9. april 2019 astrid.bondo@matematikksenteret.no Et innblikk i MAM-prosjektet hva vi legger i ambisiøs matematikkundervisning

Detaljer

Matematisk kompetanse en aktivitet

Matematisk kompetanse en aktivitet Matematisk kompetanse en aktivitet Matematisk kompetanse - Aktivitet Hvor mange røde kvadrater? Matematisk kompetanse - Aktivitet Hvor mange røde kvadrater? Prinsipper for god regneopplæring 1. Sett klare

Detaljer

TJORA: TIØ10 + TIØ11 FORELESNING 1 - HØSTEN 2003

TJORA: TIØ10 + TIØ11 FORELESNING 1 - HØSTEN 2003 : TIØ10 + TIØ11 FORELESNING 1 - HØSTEN 2003 TIØ10 + TIØ11 læringsmål Velkommen til TIØ10 + TIØ11 Metode Høsten 2003 1-1 Ha innsikt i empiriske undersøkelser Kunne gjennomføre et empirisk forskningsprosjekt

Detaljer

Planlegging, prosess & produkt

Planlegging, prosess & produkt MAM Mestre Ambisiøs Matematikkundervisning Planlegging, prosess & produkt Novemberkonferansen 2016 Ambisiøs matematikkundervisning En undervisningspraksis hvor lærerne engasjerer seg i elevens tenkning,

Detaljer

Bruk av digitale læringsmidler, læringsressurser og læringsomgivelser. Sten Ludvigsen, InterMedia, Universitetet ioslo Udir, Nov 2011

Bruk av digitale læringsmidler, læringsressurser og læringsomgivelser. Sten Ludvigsen, InterMedia, Universitetet ioslo Udir, Nov 2011 Bruk av digitale læringsmidler, læringsressurser og læringsomgivelser Sten Ludvigsen, InterMedia, Universitetet ioslo Udir, Nov 2011 Digitale Elever: lære om globale klimaendringer 66% virtuelle forsøk,

Detaljer

Læreplan i fremmedspråk programfag i utdanningsprogram for studiespesialisering

Læreplan i fremmedspråk programfag i utdanningsprogram for studiespesialisering Læreplan i fremmedspråk programfag i utdanningsprogram for studiespesialisering Status: Bearbeidet versjon etter høring. Fastsettes av Utdanningsdirektoratet. Om faget Fagets relevans og sentrale verdier

Detaljer

MAM Mestre Ambisiøs Matematikkundervisning. Novemberkonferansen 2015

MAM Mestre Ambisiøs Matematikkundervisning. Novemberkonferansen 2015 MAM Mestre Ambisiøs Matematikkundervisning Novemberkonferansen 2015 Eksempel: Telle i kor Film Kort omtale av aktiviteten Oversikt Introduksjon av aktiviteten Eksempler på aktiviteter Link til plandokument

Detaljer

Last ned Å forske på egen praksis. Last ned. Last ned e-bok ny norsk Å forske på egen praksis Gratis boken Pdf, ibook, Kindle, Txt, Doc, Mobi

Last ned Å forske på egen praksis. Last ned. Last ned e-bok ny norsk Å forske på egen praksis Gratis boken Pdf, ibook, Kindle, Txt, Doc, Mobi Last ned Å forske på egen praksis Last ned ISBN: 9788245020052 Antall sider: 243 Format: PDF Filstørrelse:19.92 Mb I dag er skoler utsatt for en stadig økende forventning om å drive forsknings- og utviklingsarbeid

Detaljer

REGNEPLAN FOR LANDÅS SKOLE

REGNEPLAN FOR LANDÅS SKOLE 1 REGNEPLAN FOR LANDÅS SKOLE På Landås skole har alle lærere, i alle fag, på alle trinn ansvar for elevenes regneutvikling. Å kunne regne er å bruke matematikk på en rekke livsområder. Å kunne regne innebærer

Detaljer

Matematisk samtale Multiaden 2015. Tine Foss Pedersen

Matematisk samtale Multiaden 2015. Tine Foss Pedersen Matematisk samtale Multiaden 2015 Tine Foss Pedersen Matematisk samtale - muntlige ferdigheter Vi bør vektlegge bruk av ulike uttrykksmåter, strategier og løsningsmetoder. Det skaper grunnlag for diskusjon:

Detaljer

vitenskapsteori En diskusjon om IKT-støttet læring er en vitenskap og en problematisering av etiske aspekter ved forskning i dette feltet.

vitenskapsteori En diskusjon om IKT-støttet læring er en vitenskap og en problematisering av etiske aspekter ved forskning i dette feltet. vitenskapsteori En diskusjon om IKT-støttet læring er en vitenskap og en problematisering av etiske aspekter ved forskning i dette feltet. Figur 1: "Je pense donc je suis". (Kilde: Filosofi & Vitenskap,

Detaljer

Regning er en grunnleggende ferdighet som går på tvers av fag. Ferdigheten å kunne regne er å bruke matematikk på en rekke livsområder

Regning er en grunnleggende ferdighet som går på tvers av fag. Ferdigheten å kunne regne er å bruke matematikk på en rekke livsområder Aspekter ved regning som skal vektlegges i ulike fag Regning er en grunnleggende ferdighet som går på tvers av fag. Ferdigheten å kunne regne er å bruke matematikk på en rekke livsområder ARTIKKEL SIST

Detaljer

Høgskolen i Vestfold (HiVe) Hvordan kan bruk av en interaktiv tavle medvirke til endring i skolen og bedre tilpasset opplæring?

Høgskolen i Vestfold (HiVe) Hvordan kan bruk av en interaktiv tavle medvirke til endring i skolen og bedre tilpasset opplæring? Høgskolen i (HiVe) Hvordan kan bruk av en interaktiv tavle medvirke til endring i skolen og bedre tilpasset opplæring? På hvilken måte kan bruk av Smart Board være en katalysator for å sette i gang pedagogisk

Detaljer

Inspirasjon og motivasjon for matematikk

Inspirasjon og motivasjon for matematikk Inspirasjon og motivasjon for matematikk Hvordan får vi aktive, engasjerte og motiverte elever og lærere i matematikk? Bjørnar Alseth Høgskolen i Oslo Styremedlem i Lamis Lærebokforfatter; MULTI Mona Røsseland

Detaljer

Bruk av nettressurser i utvikling av matematikkundervisning. Seminar Realfagskommuner Pulje 1, 26. september 2016

Bruk av nettressurser i utvikling av matematikkundervisning. Seminar Realfagskommuner Pulje 1, 26. september 2016 Bruk av nettressurser i utvikling av matematikkundervisning Seminar Realfagskommuner Pulje 1, 26. september 2016 Hva er matematikk? Måter å se matematikk på: Regler resonnering Redskap eget fag Huske kreativitet

Detaljer

Læreplan i religion og etikk fellesfag i studieforberedende utdanningsprogram

Læreplan i religion og etikk fellesfag i studieforberedende utdanningsprogram Læreplan i religion og etikk fellesfag i studieforberedende utdanningsprogram Status: Bearbeidet versjon etter høring Om faget Fagets relevans og sentrale verdier Religion og etikk er et sentralt fag for

Detaljer

Telle med 15 fra 4. Mål. Gjennomføring. Telle i kor Telle med 15 fra 4 Planleggingsdokument

Telle med 15 fra 4. Mål. Gjennomføring. Telle i kor Telle med 15 fra 4 Planleggingsdokument Telle med 15 fra 4 Mål Generelt: Søke etter mønster og sammenhenger. Gi grunner for at mønstrene oppstår. Lage nye mønstre ved å utnytte mønstre en allerede har funnet. Utfordre elevene på å resonnere

Detaljer

Læreren som forskende i egen praksis FoU- kompetanse (May Britt Postholm) Hvordan samle inn informasjon/data

Læreren som forskende i egen praksis FoU- kompetanse (May Britt Postholm) Hvordan samle inn informasjon/data Læreren som forskende i egen praksis FoU- kompetanse (May Britt Postholm) Hvordan samle inn informasjon/data 1 2 Observasjon 3 4 5 6 7 Summeoppgave: Hva er det som gjør at vi ser forskjellig? Hva gjør

Detaljer

DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK

DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK Oppgaveveiledning Oppgave 10 Hoderegningsstrategier. Addisjon og subtraksjon. Notatark til kartleggingsleder og Elevark DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK For elever fra 5. 10. trinn og elever i videregående

Detaljer

Kvifor? Matematikksamtalen Munnlege arbeidsmetodar Munnleg kompetanse i matematikk?

Kvifor? Matematikksamtalen Munnlege arbeidsmetodar Munnleg kompetanse i matematikk? Kvifor? Matematikksamtalen Munnlege arbeidsmetodar Munnleg kompetanse i matematikk? Læreplan i matematikk fellesfag - formål Matematisk kompetanse inneber å bruke problemløysing og modellering til å analysere

Detaljer

Praksiseksempel fra Høgskolen i Lillehammer

Praksiseksempel fra Høgskolen i Lillehammer Praksiseksempel fra Høgskolen i Lillehammer Berit Dahl Prosessveileder Senter for Livslang Læring Utdrag fra rammeverket: UH skal bidra med kompetanse og faglig veiledning i nettverkene. Det faglige bidraget

Detaljer

Hvordan kan vi sikre oss at læring inntreffer

Hvordan kan vi sikre oss at læring inntreffer Hvordan kan vi sikre oss at læring inntreffer Morten Sommer 18.02.2011 Modell for læring i beredskapsarbeid Innhold PERSON Kontekst Involvering Endring, Bekreftelse og/eller Dypere forståelse Beslutningstaking

Detaljer

Last ned Læringssamtalen i matematikkfagets praksis. Last ned

Last ned Læringssamtalen i matematikkfagets praksis. Last ned Last ned Læringssamtalen i matematikkfagets praksis Last ned ISBN: 9788290898682 Antall sider: 228 Format: PDF Filstørrelse:36.21 Mb Boken er knyttet til forskningsprosjektet Læringssamtalen i matematikkfagets

Detaljer

Hvordan tenker Jonas i matematikk? Dynamisk kartlegging

Hvordan tenker Jonas i matematikk? Dynamisk kartlegging Hvordan tenker Jonas i matematikk? Dynamisk kartlegging Sinus matematikkseminar Oslo, 17. mars 2017 Svein Aastrup, Statped midt 1 Utgangspunkt for all kartlegging: At man, naar det i Sandhet skal lykkes

Detaljer

DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK

DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK Oppgaveveiledning Oppgave 11 Hoderegningsstrategier. Multiplikasjon og divisjon. Notatark til kartleggingsleder og Elevark DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK For elever fra 5. 10. trinn og elever

Detaljer

Foreldremøte 13.september 2017

Foreldremøte 13.september 2017 Foreldremøte 13.september 2017 Hva er russisk matematikk Utviklende opplæring i matematikk? - Prinsippene og tenkningen bak - Eksempel på noen oppgaver - Hva legges vekt på? - Hva bør elevene ha lært på

Detaljer

Hva kjennetegner god matematikkundervisning? Sammen om oppdraget! Gardermoen Airport hotel, 15. november 2017 Astrid Bondø, NSMO

Hva kjennetegner god matematikkundervisning? Sammen om oppdraget! Gardermoen Airport hotel, 15. november 2017 Astrid Bondø, NSMO Hva kjennetegner god matematikkundervisning? Sammen om oppdraget! Gardermoen Airport hotel, 15. november 2017 Astrid Bondø, NSMO Hvem skal ut? pen pil ku penn Hvem skal ut? Hva kan være felles for denne

Detaljer

Du betyr en forskjell. (Fritt etter foredrag av Brynhild Farbrot)

Du betyr en forskjell. (Fritt etter foredrag av Brynhild Farbrot) Du betyr en forskjell (Fritt etter foredrag av Brynhild Farbrot) Dere foreldre, er like viktige som undervisningen. Gi barnet ditt allsidig erfaringer fra dagliglivet. Barn som har et godt begrepsinnhold

Detaljer

Læreplanen: Ønsker vi oss forandringer og eventuelt hvilke? Innspill v/ Tor Jan Aarstad

Læreplanen: Ønsker vi oss forandringer og eventuelt hvilke? Innspill v/ Tor Jan Aarstad Læreplanen: Ønsker vi oss forandringer og eventuelt hvilke? Innspill v/ Tor Jan Aarstad ToF X, ToF 1, ToF 2 ToF X ToF 1 Hvor skal vi legge listen? ToF 2 Elevenes forventninger og lærerens ønsker Hvordan

Detaljer

8. trinn, Høst Jørgen Eide og Christine Steen

8. trinn, Høst Jørgen Eide og Christine Steen 8. trinn, Høst 2018. Jørgen Eide og Christine Steen 33-37 Hovedemne TALLÆRE OG GRUNNLEGGE NDE REGNING Mål Innhold Læringsressurser Vurdering Titallssystemet med heltall og desimaltall Regning med potenser

Detaljer

Kartleggingslogg med fokus på inkludering

Kartleggingslogg med fokus på inkludering Kartleggingslogg med fokus på inkludering Vedlegg 3 Kartleggingslogg med fokus på inkludering Det har vist seg å være krevende å observere og systematisere observasjoner som skal ha inkludering i fokus.

Detaljer

Last ned Profesjonsveiledning - Eva Bjerkholt. Last ned. Last ned e-bok ny norsk Profesjonsveiledning Gratis boken Pdf, ibook, Kindle, Txt, Doc, Mobi

Last ned Profesjonsveiledning - Eva Bjerkholt. Last ned. Last ned e-bok ny norsk Profesjonsveiledning Gratis boken Pdf, ibook, Kindle, Txt, Doc, Mobi Last ned Profesjonsveiledning - Eva Bjerkholt Last ned Forfatter: Eva Bjerkholt ISBN: 9788202482886 Antall sider: 252 Format: PDF Filstørrelse:39.13 Mb Denne boka handler om veiledning som fagfelt og om

Detaljer

Sigrunn Askland (UiA)

Sigrunn Askland (UiA) Grammatikkundervisningens rolle i spansk som fremmedspråk i norsk skole. -Resultater fra en undersøkelse. Sigrunn Askland (UiA) sigrunn.askland@uia.no 5. FELLES SPRÅKL ÆRERDAG 2017 LØRDAG 1. APRIL 2017

Detaljer

Grunnlagsdokument for arbeidet med barnehage- og skolemiljø, mobbing og andre krenkelser

Grunnlagsdokument for arbeidet med barnehage- og skolemiljø, mobbing og andre krenkelser Grunnlagsdokument for arbeidet med barnehage- og skolemiljø, mobbing og andre krenkelser Nina Grini Læringsmiljøsenteret.no Delmål, forankring og oppbygning av dokumentet Dokumentet skal vise sammenhengen

Detaljer

Oppgaver knyttet til filmen

Oppgaver knyttet til filmen Mål Barnehage Gjennom arbeid med kommunikasjon, språk og tekst skal barnehagen bidra til at barna - lytter, observerer og gir respons i gjensidig samhandling med barn og voksne - videreutvikler sin begrepsforståelse

Detaljer

Mappeoppgave 6: Ulike perspektiv på læring

Mappeoppgave 6: Ulike perspektiv på læring Mappeoppgave 6: Ulike perspektiv på læring Innledning Den nyere forskning viser at god klasseledelse har svært stor påvirkning på både atferdsproblem og læring i skolen (Nordahl, Mausethagen, Kostøl, 2009

Detaljer

MATEMATISK KOMPETANSE PRINSIPPER FOR EFFEKTIV UNDERVISNING

MATEMATISK KOMPETANSE PRINSIPPER FOR EFFEKTIV UNDERVISNING MATEMATISK KOMPETANSE PRINSIPPER FOR EFFEKTIV UNDERVISNING Svein H. Torkildsen Ny GIV 2012-13 Dette har vi fokus på God regning effektiv undervisning 10. trinn underyterne Elevers tenking Grunnleggende

Detaljer

Regning i alle fag. Hva er å kunne regne? Prinsipper for god regneopplæring. 1.Sett klare mål, og form undervisningen deretter

Regning i alle fag. Hva er å kunne regne? Prinsipper for god regneopplæring. 1.Sett klare mål, og form undervisningen deretter Regning i alle fag Hva er å kunne regne? Å kunne regne er å bruke matematikk på en rekke livsområder. Å kunne regne innebærer å resonnere og bruke matematiske begreper, fremgangsmåter, fakta og verktøy

Detaljer

Å studere læreres tenkning en kilde til å forstå deres praksis. Wenche Rønning Nordlandsforskning

Å studere læreres tenkning en kilde til å forstå deres praksis. Wenche Rønning Nordlandsforskning Å studere læreres tenkning en kilde til å forstå deres praksis Wenche Rønning Nordlandsforskning Grunnlag for presentasjonen To ulike forskningsprosjekter: Aktiv Læring i Skolen (ALiS); finansiert av NFR

Detaljer

LÆREPLAN I FREMMEDSPRÅK

LÆREPLAN I FREMMEDSPRÅK LÆREPLAN I FREMMEDSPRÅK Formål med faget Språk åpner dører. Når vi lærer andre språk, får vi mulighet til å komme i kontakt med andre mennesker og kulturer, og dette kan øke vår forståelse for hvordan

Detaljer

Aktiv læring gjennom Newton

Aktiv læring gjennom Newton Aktiv læring gjennom Newton Newton-rom som arena for tilrettelagt opplæring i realfag og teknologi Wenche Rønning, Nordlandsforskning Disposisjon Begrepet aktiv læring Newton-rom og aktiv læring Elevens

Detaljer

LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2016

LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2016 LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2016 TID EMNE DELMÅL LÆRINGSKJENNETEGN/ VURDERINGSKRITERIER Høy Middels Lav måloppnåelse måloppnåelse måloppnåelse KJØP OG SALG Lære om : - Sedler og mynters

Detaljer

LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2018

LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2018 LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2018 TID EMNE DELMÅL LÆRINGSKJENNETEGN/ VURDERINGSKRITERIER Høy Middels Lav måloppnåelse måloppnåelse måloppnåelse J A N U A R KJØP OG SALG Læringsstrategier:

Detaljer

HELHETLIG PLAN I REGNING VED OLSVIK SKOLE.

HELHETLIG PLAN I REGNING VED OLSVIK SKOLE. HELHETLIG PLAN I REGNING VED OLSVIK SKOLE. Prinsipper og strategier ved Olsvik skole. FORORD Olsvik skole har utarbeidet en helhetlig plan i regning som viser hvilke mål og arbeidsmåter som er forventet

Detaljer

Samfunnsvitenskapelig metode. SOS1120 Kvantitativ metode. Teori data - virkelighet. Forelesningsnotater 1. forelesning høsten 2005

Samfunnsvitenskapelig metode. SOS1120 Kvantitativ metode. Teori data - virkelighet. Forelesningsnotater 1. forelesning høsten 2005 SOS1120 Kvantitativ metode Forelesningsnotater 1. forelesning høsten 2005 Per Arne Tufte Samfunnsvitenskapelig metode Introduksjon (Ringdal kap. 1, 3 og 4) Samfunnsvitenskapelig metode Forskningsspørsmål

Detaljer

Oppfølging og opplæring gjennom skoleløpet

Oppfølging og opplæring gjennom skoleløpet Oppfølging og opplæring gjennom skoleløpet Disposisjon Kunnskapsløftet inn i klasserommet Læringsmål, underveisvurdering og halvårsvurdering. Hvordan jobbe med kollektiv kompetanseheving til beste for

Detaljer

(K06) TEMA INNHOLD ARBEIDSFORM VURDERING

(K06) TEMA INNHOLD ARBEIDSFORM VURDERING ÅRSPLAN I MATEMATIKK FOR 6. TRINN 2018/2019 Læreverk: Multi Lærer: Anne Marte Urdal Uke MÅL (K06) TEMA INNHOLD ARBEIDSFORM VURDERING 34-40 - Finne verdien av et siffer avhengig av hvor i tallet det står

Detaljer

RENDALEN KOMMUNE Fagertun skole. Årsplan i matematikk for 1.og 2.trinn. Grunnleggende ferdigheter i faget:

RENDALEN KOMMUNE Fagertun skole. Årsplan i matematikk for 1.og 2.trinn. Grunnleggende ferdigheter i faget: RENDALEN KOMMUNE Fagertun skole Årsplan i matematikk for 1.og 2.trinn Grunnleggende ferdigheter i faget: Muntlige ferdigheter: å skape meining gjennom å lytte, tale og samtale om matematikk.( )-være med

Detaljer

Vurdering for læring. Lillehammer mars 2011

Vurdering for læring. Lillehammer mars 2011 Vurdering for læring Lillehammer mars 2011 Gode skoler og dårlige Alle vil ha en god skole, men hva er en god skole, og hvordan kan vi få det? Hva kjennetegner gode skoler? Skolene har fokus på læring

Detaljer

Vurdering for og av læring

Vurdering for og av læring Vurdering for og av læring Skolens nye trendord? Svein H. Torkildsen, NSMO Dagens program Arbeidet legges opp rundt 1. læreplanens kompetansemål 2. arbeidsmåter i faget 3. læreboka og pedagogens arbeid

Detaljer

Viktige læringsaktiviteter

Viktige læringsaktiviteter Viktige læringsaktiviteter Læringsaktiviteter som dekkes av Aktiviteter Stille spørsmål. Utvikle og bruke modeller. = dekkes Planlegge og gjennomføre undersøkelser. Analysere og tolke data. Bruke matematikk,

Detaljer

Emne Multiplikativ tenking (proporsjonalitet, målestokk, forstørring, brøk som operator).

Emne Multiplikativ tenking (proporsjonalitet, målestokk, forstørring, brøk som operator). Tittel Puslespill Seilbåt Plass til bilde Tidsbruk En skoletime Antall elever Hele klassen. To og to elever samarbeider. Emne Multiplikativ tenking (proporsjonalitet, målestokk, forstørring, brøk som operator).

Detaljer

Utviklende læring - Alternativ matematikkundervisning for småskoletrinnet

Utviklende læring - Alternativ matematikkundervisning for småskoletrinnet Utviklende læring - Alternativ matematikkundervisning for småskoletrinnet Skolemøtet for Rogaland 14. november 2014 Kjersti Melhus, Silje Bakke, Gerd Inger Moe Disposisjon for presentasjonen Kjersti Melhus:

Detaljer

Grunnlagsdokument for oppfølging av NOU 2015:2 «Å høre til» - hvilken betydning får det for oss?

Grunnlagsdokument for oppfølging av NOU 2015:2 «Å høre til» - hvilken betydning får det for oss? Grunnlagsdokument for oppfølging av NOU 2015:2 «Å høre til» - hvilken betydning får det for oss? Veiledersamling i Læringsmiljøprosjektet, Oslo, 24. januar 2017 Læringsmiljøsenteret.no Om arbeidet og prosessen

Detaljer

Refleksjonsnotat 1. - Et nytt fagområde. Av Kristina Halkidis S199078

Refleksjonsnotat 1. - Et nytt fagområde. Av Kristina Halkidis S199078 Refleksjonsnotat 1 - Et nytt fagområde Av Kristina Halkidis S199078 Innholdsfortegnelse Innledning... 3 Felleskurs i IKT- støttet læring... 3 Participatory Design... 3 Deltakeraktive læringsformer... 4

Detaljer

8 årstrinn, vår Christine Steen & Trond Even Wanner

8 årstrinn, vår Christine Steen & Trond Even Wanner 1-9 ALGEBRA Periode 8 årstrinn, vår 2018. Christine Steen & Trond Even Wanner Hovedemne Mål Innhold Læringsressurser Vurdering Elevene skal lære om Enkle algebraiske uttrykk Regning med uttrykk eller formler

Detaljer

En definisjon (von Glaserfeld): Er din modell av verden en direkte avspeiling av verden slik den er? 1. Kunnskap mottas ikke passivt, men bygges aktiv

En definisjon (von Glaserfeld): Er din modell av verden en direkte avspeiling av verden slik den er? 1. Kunnskap mottas ikke passivt, men bygges aktiv KONSTRUKTIVISME Hvordan lærer elever? Er noen arbeidsmåter mer effektive enn andre? Stein Dankert Kolstø Inst. for fysikk og teknikk Universitetet i Bergen 22. Februar 2007 Hvorfor skårer vi middelmådig

Detaljer

Klassesamtaler og undervisning

Klassesamtaler og undervisning Klassesamtaler og undervisning Klassesamtaler og undervisning tilbyr en introduksjon til betydningen av produktive samtaler I et klasserom. Forskjeller mellom dialog og vanlige samtaler er også vurdert,

Detaljer

L06. Den gode matematikkundervisning. - hva er det? Hvordan bli en motiverende lærer? Intensjonene med den nye læreplanen

L06. Den gode matematikkundervisning. - hva er det? Hvordan bli en motiverende lærer? Intensjonene med den nye læreplanen Den gode matematikkundervisning Hvordan får vi aktive, engasjerte og motiverte elever og lærere i matematikk? - hva er det? Mona Røsseland Nasjonalt senter for matematikk i opplæringen 1-May-06 1-May-06

Detaljer

Etterutdanningskurs "Mestre Ambisiøs Matematikkundervisning" høst 2015 - vår 2016

Etterutdanningskurs Mestre Ambisiøs Matematikkundervisning høst 2015 - vår 2016 Etterutdanningskurs "Mestre Ambisiøs Matematikkundervisning" høst 2015 - vår 2016 Om kurset Prosjektet "Mestre Ambisiøs Matematikkundervisning" (MAM) er et treårig prosjekt ved Matematikksenteret med oppstart

Detaljer

Muntlighet i opplæringen

Muntlighet i opplæringen 17. NOVEMBER 2015 Muntlighet i opplæringen NAFO 12.november 2015 Førstelektor Beate Børresen Generelt Muntlighet er en av fem grunnleggende ferdigheter i LK06 Ferdighetene skal være midler til læring Vi

Detaljer

Læring og undervisning. - didaktikk og didaktisk relasjonsmodell

Læring og undervisning. - didaktikk og didaktisk relasjonsmodell 30. JANUAR 2016 Læring og undervisning - didaktikk og didaktisk relasjonsmodell VEITV6100 vår 2016 Et skifte i høyere utdanning fra undervisning til læring endringer inne studie- og vurderingsformer vekt

Detaljer

Læring med digitale medier

Læring med digitale medier Læring med digitale medier Arbeidskrav 3- Undervisningsopplegg Dato: 15.12-13 Av: Elisabeth Edvardsen Innholdsfortegnelse Innholdsfortegnelse... i Innledning... 1 Kunnskapsløftet... 2 Beskrivelse undervisningsopplegg...

Detaljer

Normer og kommunikasjon i matematikklasserommet NOVEMBER 2015

Normer og kommunikasjon i matematikklasserommet NOVEMBER 2015 Normer og kommunikasjon i matematikklasserommet NOVEMBER 2015 Eva Norén, Stockholms universitet og Pia Thornberg, Högskolan Kristianstad OVERSATT OG BEARBEIDET AV INGUNN VALBEKMO, MATEMATIKKSENTERET NTNU

Detaljer

Høring - læreplaner i fremmedspråk

Høring - læreplaner i fremmedspråk Høring - læreplaner i fremmedspråk Uttalelse - ISAAC NORGE Status Innsendt til Utdanningsdirektoratet Innsendt og bekreftet av instansen via: vebeto11@gmail.com Innsendt av Bente Johansen Innsenders e-post:

Detaljer

Misoppfatninger knyttet til tallregning

Misoppfatninger knyttet til tallregning Misoppfatninger knyttet til tallregning 17.04.18 Olav Dalsegg Tokle, Astrid Bondø og Roberth Åsenhus MATEMATIKKSENTERET, NTNU Innholdsfortegnelse INNLEDNING... 3 FJERNE OG LEGGE TIL NULLER... 4 OPPGAVER...

Detaljer

Kommunikasjon og muntlig aktivitet

Kommunikasjon og muntlig aktivitet Kommunikasjon og muntlig aktivitet 1. 4. trinn Ann-Christin Arnås ann-christin.arnas@gyldendal.no Kunnskapsløftet: Det er en del av den matematiske kompetansen å kunne kommunisere i og med matematikk.

Detaljer

Kjerneelementer i matematikk

Kjerneelementer i matematikk Tom Lindstrøm Leder for kjerneelementgruppen i matematikk Bodø, 28. september 2017 Bakgrunn Det går mot nye læreplaner, men før arbeidet settes i gang, skal det defineres kjerneelementer i hvert enkelt

Detaljer

DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK

DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK Oppgaveveiledning Oppgave 1 Grunnleggende forståelse av antall og størrelse, Notatark til kartleggingsleder og Elevark DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK For elever fra 1. 5. trinn Utarbeidet av Svein

Detaljer

Eksempel på grubliser

Eksempel på grubliser Utviklende læring 3. trinn innhold eksempel på ukeplan og oppgaver 4. trinn innhold eksempel på ukeplan og oppgaver 5. trinn - hva nå? Tilpasset opplæring Erfaring fra ulike perspektiv - foreldre - lærer

Detaljer

Levanger kommune innvandrertjenesten Opplæring av deltakere med lite eller ingen skolebakgrunn

Levanger kommune innvandrertjenesten Opplæring av deltakere med lite eller ingen skolebakgrunn Opplæring av deltakere med lite eller ingen skolebakgrunn Toril Sundal Leirset 1 Betegnelser: Analfabet: person som ikke har knekt lesekoden Person uten funksjonell lese- og skriveferdigheter Forskere

Detaljer