Braggdiffraksjon. Nicolai Kristen Solheim

Størrelse: px
Begynne med side:

Download "Braggdiffraksjon. Nicolai Kristen Solheim"

Transkript

1 Braggdiffraksjon Nicolai Kristen Solheim Abstract Gjennom denne øvelsen skal vi gjøre oss kjent med røntgenstråling og elektrondiffraksjon. Herunder finner vi bremsestråling, karakteristisk stråling, energispektrum, røntgenspektroskopi og Braggspredning. Vi ser her på braggdiffraksjon både teoretisk og i praksis. 1 Introduksjon Denne øvelsen er todelt. I de tre første oppgavene tar vi for oss røntgenstråling og aspekter ved dette, mens vi i de tre siste oppgavene ser på elektrondiffraksjon og Braggspredning. Vi kan se på disse delene hver for seg. I første del bruker vi et røntgenspektrometer, mens vi i andre del bruker en elektronkanon med fokuseringssystem og karbonfilm som er montert i en evakuert glassbeholder. 1.1 Røntgenstråling Røntgenstråling er elektromagnetisk stråling med bølgelengde i området eller fotonenergi i området Denne typen stråling oppstår når elektroner bremses i et stoff, som kan skje ved to forskjellige prosesser. Den første prosessen kalles bremsestråling. Her oppstår røntgenstråling når elektronene støter mot andre elektroner eller avbøyes i feltet rundt atomkjernene. Her kan bremsestrålingsfotonene ha alle energier mindre enn elektronets kinetiske energi. Energispektret fra bremsestråling er med andre ord kontinuerlig. Siden den maksimale energien er avhengig av elektronets kinetiske energi, kan vi i prinsippet lage bremsestråling med så høy energi vi ønsker. Den andre prosessen kalles karakteristisk stråling. Den prosessen oppstår når hurtige elektroner som går gjennom et stoff eksiterer eller ioniserer stoffets atomer eller molekyler. Atomene eller molekylene faller så tilbake i sin laveste energitilstand slik at stoffe deeksiteres, for så å sende ut elektromagnetisk stråling. Fotonene i denne strålingen har diskret energi, tilsvarende forskjellen mellom atomenes energinivåer. Energispektret blir et linjespektrum hvor linjene svarer til bestemte overganger i atomene i det stoffet som bremser elektronene. Disse helt bestemte energiene er karakteristiske for stoffet, og kan derfor brukes til å identifisere atomer i et stoff. Bremsestrålingen og den karakteristiske strålingen kan inneholde både synlig lys og stråling utenfor det synlige spektret. Stråling med kortere bølgelengde enn lys kalles ultrafolett stråling hvis den kan undersøkes med optiske metoder, f.eks. med mekanisk fremstilte strekgitre. Røntgenstråling er stråling med så kort bølgelengde at optiske metoder ikke kan benyttes. Vi må derfor studere denne strålingen med krystallspektrometre. Skillet mellom røntgenstråling og ultrafiolett stråling er ikke satt ved noen bestemt bølgelengde. Det er den adekvate målemetoden som avgjør om strålingen skal kalles Side 1 av 12

2 optisk lys eller røntgenstråling. Optiske metoder kan benyttes for bølgelengder ned til omlag 10, røntgenspektroskopiske metoder for bølgelengder opp til ca. 60. Røntgenstråling har som regel lavere energi, altså lengre bølgelengde, enn -stråling, men forskjellen mellom røntgen- og -stråling avgjøres av selve strålingsmekanismen. Røntgenstråling oppstår ved prosesser i elektronbanene, mens -stråling oppstår i atomkjerner eller ved desintegrasjon av elementærpartikler. For å måle bølgelengder benytter vi optikken i forskjellige typer gitre some er mekanisk framstilt, slik at gitterkonstanten er av samme størrelsesorden som bølgelengden. For røntgenstråling kan vi som sagt ikke benytte oss av mekaniske gitre, og heller bruke krystaller med naturlige gitre. I krystallene vi benytter oss av, er atomene ordnet i et enkelt kubisk gitter hvor overflaten er et gitterplan. Når strålingen treffer et gitterplan, virket dette som et speil og strålingen blir reflektert med hensyn på innfallsvinkelen. Det har seg videre slik at stråling som spres mot de enkelte atomer i et plan vil interferere konstruktivt dersom dersom refleksjonsvinkelen er lik innfallsvinkelen. Dette gjelder alle bølgelengder, og vi kaller dette speilbetingelsen. Vi kan i figur en se hvilken type krystaller vi har, og hvordan vi betrakter gitterplanet. Figur 1: Refleksjon fra krystall med gitterplanavstand. Tilsvarer figur 17.3 i oppgaveteksten. Videre vil også stråling som reflekteres fra to forskjellige gitterplan interferere. Vi vil også få konstruktiv interferens dersom gangforskjellen mellom den reflekterte strålingen fra de to planene er et helt antall bølgelengder. Fra figur 1 over ser vi at gangforskjellen mellom stråling som reflekteres fra to gitterplan med en avstand fra hverandre vil være gitt som 2 sin, der er vinkelen mellom innfallende/reflektert stråling og gitterplanene. Dersom det benyttes et monoenergisk røntgenstråling vil vinkelen variere mellom innfallende stråle og gitterplanet, og vi vil observere den reflekterte strålen i en retning 2 i forhold til den innfallende. På denne måten vil vi se skarpe maksima i bestemte retninger, altså for bestemte verdier av. Vi kaller det maksimum som svarer til at gangforskjellen mellom bølger fra to naboplan er for første ordens maksimum. En gangforskjell 2 gir annen ordens maksimum og videre gir 3 tredje ordens maksimum For å gjennomføre denne praktiske oppgaven bruker vi et røntgenspektrometer. Dette spektrometeret består av tre deler: et røntgenrør, en krystall og en detektor for røntgenstråling. Spektrometeret må dessuten inneholde spalter eller blendere som avgrenser strålingen, og krystallen og røntgendetektoren er plassert på et dreiebord slik at innfallsvinkelen og den reflekterte vinkelen blir like store. Oppsettet for spektrometeret er vist i figur 2 under. Side 2 av 12

3 Figur 2: Bragg-type røntgenspektrometer med GM-detektor. Røntgenstråling fra anoden A passerer to spalter, og treffer krystallen i vinkelen. Den reflekterte strålen som danner vinkelen 2 med den innfallende, går inn i GM-røret. Foran GM-røret er det to spalter som skjermer mot spredt stråling fra veggene i spektrometeret. Tilsvarer figur 17.4 i oppgaveteksten. Dette spektrometeret danner røntgenstråling ved hjelp av vakumrør og en glødekatode. Elektroner fra katoden vil akselereres i feltet mellom anoden og katoden og treffer anoden med en energi, hvor er spenningen over røret. Når elektronene treffer anoden bremses de, og det produseres røntgenstråling. Det produseres både bremsestråling og karakteristisk stråling. Den minste bølgelengden eller maksimale frekvensen i spekteret svarer til at hele elektronenergien er overført til et enkelt foton. Energien til den karakteristiske strålingen er kun bestemt av anodematerialet og er derved uavhengig av spenningen over røret. Røntgenrøret som benyttes i denne øvelsen har en anode av kopper, og spenningen over røret holdes på 20. Den karakteristiske strålingen fra kopperanoden i vårt måleområde består av fire linjer listet i tabell 1 under. Tabell 1: Karakteristiske linjer for kommer i vårt måleområde Linje # Bølgelengde Det bør også påpekes at krystallen som brukes har en matt og en plank flate. For å oppnå størst mulig intensitet i den reflekterte strålen skal krystallen monteres ned den blanke flaten ut. En bør da passe på at krystallen blir stilt riktig slik at den treffer GM-røret. 1.2 Elektrondiffraksjon Elektrondiffraksjon skjer når elektroner blir spredt fra atomene i et krystallgitter. Dette vil skape diffraksjonsmønstre som kan beskrives ved elektronenes bølgeegenskaper. I denne praktiske øvelsen måler vi to gitteravstander i polykrystallinsk grafitt (karbon) ved bruk av denne effekten. Vi betrakter her de Broglies berømte hypotese fra Denne går ut på at atomære partikler har bølgeegenskaper og kan knyttes til kvanteteorien. Her ser vi også på Braggspredning, som på samme måte som røntgendiffraksjon gir en første ordens spredning når 2 sin der er gitterplanavstanden. I denne oppgaven treffer de spredte elektronene en kuleformet skjerm med radius. Geometrien for dette er vist i figur 3 under. Side 3 av 12

4 Figur 3: Geometrien for måling av småvinkel elektrondiffraksjon fra en krystall. Tilsvarer figur 17.6 i oppgaveteksten. Avstanden 2 mellom punktet der strålen treffer krystallen og skjermen er for denne praktiske øvelsen. 2 Teori Røntgenstrålingen karakteriseres ved bølgelengden, frekvensen eller fotonenergien, og energien gis vanligvis i elektronvolt,. For omregning gjelder følgende Videre vil har vi for et røntgenspektrometer at det oppstår konstruktiv interferens mellom strålingene fra de to gitterplanene dersom 2 sin 4 der kvantetallet er en helt tall og er bølgelenden for strålingen. Vi kjenner dette som Braggs lov, alternativt som Braggs betingelse for refleksjon av røntgenstråler. Når det kommer til elektrondiffraksjon kan vi se på elektronenes de Broglie bølgelengde. Han postulerte at en partikkel med en impuls har en bølgelengde som kan skrives på formen. 5 Dersom en så akselererer elektroner gjennom en potensialforskjell, kan vi finne hastigheten fra uttrykket 6 som videre gir der og Side 4 av 12 7

5 . 9 Videre kan vi betrakte geometrien i figur 3. For små vinkler vil relasjonen 10 gjelde, som videre gir at 11 med hensyn på 4. 3 Eksperimentelt 3.1 Oppgave 1 I denne første oppgaven benytter vi en LiF-krystall som har 2 401, og vi velger den nominelle verdien for spenningen over røntgenrøret 20. Det første vi ønsker å gjøre er å måle intensiteter for hver halve grad fra 2 12 inntil intensiteten flater ut. Vi har gitt at dette vil skje ved cirka Vi bruker en måletid på 60 sekunder. Videre fremstiller vi måleresultatene grafisk, for så å benytte grafen til å bestemme spenningen over røntgenrøret. Vi sammenlikner til slutt denne verdien med den nominelle verdien. 3.2 Oppgave 2 Deretter bytter vi ut LiF-krystallen med en RbCl-krystall. Dette gjør en veileder for oss. Vi beregner så 2 og 2 for 1,2 og 3. Totalt skal det være 6 topper, og vi bruker verdiene i tabell 1. Vi antar her at og. Vi får også oppgitt fra oppgaveteksten at Vi bruker så 4 for å løser for og med hensyn på. 3.3 Oppgave 3 I denne oppgaven ser vi på spekteret fra RbCl-krystallen, for å se om vi eksperimentelt kan påvise topper i nærheten av av vinklene vi beregnet i oppgave 2. Vi bruker måletid på 10 sekunder. Måten vi gjør dette på er at vi sjekker områdene rundt toppene vi allerede har beregnet i forrige oppgave. Vi skulle egentlig ha sjekket for hver halve grad, men da dette var den siste oppgaven som ble gjort under tidspress sjekket vi kun hver grad, som likevel viste topper rundt vinklene som ble beregnet i forrige oppgave. Et annet spørsmål i denne deloppgaven er om toppenes posisjoner på vinkelskalaen er avhengig av den valgte spenningen over røntgenrøret. 3.4 Oppgave 4: Relativistisk korreksjon Videre beregner vi verdien av den relativistiske korreksjonsfaktoren for 1, 5, 20, 50 og 100. Vi løser her med 9. Side 5 av 12

6 3.5 Oppgave 5: Måling av ringenes diametere Når anodespenningen overstiger 3 ses to lysende ringer på skjermen som en følge av gittergeometrien. Denne geometrien er vist i figur 4. Figur 4: Skisse som viser de to spredningsretningene for ytre og indre ring. Tilsvarer figur 17.7 i oppgaveteksten. Vi ønsker å måle ytre og indre diameter for hver av disse to ringene, og bruker middelverdien av to diametre ved utregning av gitterplanavstandene. For å ikke forstyrre elektronstrålen benyttes et skyvemål av plast. Vi måler ringenes diametre for 11 verdier av mellom 6.0 og 8.0. Totalt måler vi altså fire forskjellige diametre per valgte. 3.6 Oppgave 6: Gitterplanavstandene Til slutt beregner vi (svarende til indre ring) og (svarende til ytre ring) for alle målingene i oppgave 5. Vi finner deretter de to middelverdiene med den statistiske og eksperimentelle usikkerheten hver for seg, før vi legger usikkerhetene sammen. Helt til slutt beregner vi forholdet mellom gitterplanavstandene (se figur 4) og sammenligner med det målte forholdet. 4 Resultater 4.1 Oppgave 1 Vi har her målt intensiteten til hver halve grad fra 2 12 inntil intensiteten flater ut. Den samlede dataen er vist i tabell 2. Måletiden er 60 s. Tabell 2: Intensiteter med hensyn på. Tellinger Side 6 av 12

7 Vi kan videre fremstille dette grafisk, både med målte og relativt. Dette er vist i hhv. figur 5 og 6 under. Figur 5: Grafisk fremstilling av data. Side 7 av 12

8 Figur 6: Relativ fremstilling av data. Fra figurene 5 og 6 over ser vi at vi får en knekk rundt cirka Videre er det slik at vi vil finne ved. Vi har fra oppgaveteksten oppgitt at og at den nominelle verdien 20. Videre har vi fra 1 at gis i slik at vi kan kombinere med 4 og få at 12 hvor er verdien vi skal beregne. Fra 4 får vi at , som er en akseptabel bølgelengde og ligger innenfor området for røntgenstråler. Setter vi dette inn i (1) gir dette at Den målte er med andre ord 2 større enn den nominelle. 4.2 Oppgave 2 Vi har her antatt at og, og bruker middelverdien av disse, altså og Videre beregner vi 2 og 2 for 1,2 og 3 ved hjelp av 4, slik at sin 13 der og er definert ved og. Resultatene som er funnet for 2 og 2 er gitt i tabell 3. Tabell 3: Beregning av vinkel for topper Side 8 av 12

9 Fra tabell 3 ser vi at vi har en topp for hver verdi av med hensyn på og. Totalt gir dette 6 topper. 4.3 Oppgave 3 Deretter undersøkte vi spekteret til RbCl-krystallen for å se om vi eksperimentelt kunne påvise topper rundt vinklene vi har beregnet i oppgave 2. Grunnet dårlig tid ble det foretatt ferre målinger enn det som ble anbefalt, men vi kan fra dataen i tabell 4 se topper rundt verdiene vi fant i oppgave 2. Måletiden for hver vinkelverdi er 10 sekunder. Tabell 4: Data for spekteret fra RbCl krystallen (måletid: 10 sekunder) Fra dataen i tabell 4 ser vi at vi har topper i nærheten av de 6 toppene vi beregnet i forrige oppgave. Vi har også en topp ved Vi har med dette eksperimentelt påvist at det er topper i nærheten av vinklene vi beregnet. Videre vil toppenes posisjoner på vinkelskalaen ikke avhenge av den valgte spenningen over røntgenrøret. Dette skyldes at energien til den karakteristiske strålingen kun er bestemt av anodematerialet, og derved uavhengig av spenningen over røret. 4.4 Oppgave 4 Vi beregner så den relativistiske korreksjonsfaktoren, se 9, for 1, 5, 20, 50 og 100. Vi bruker her og Side 9 av 12

10 Tabell 5: Relativistiske korreksjonsfaktorer Tabell 5 over viser den relativistiske korreksjonsfaktoren med hensyn på. 4.5 Oppgave 5 Vi måler så diameteren på de to lysende ringene vi ser på skjermen, når anodespenningen overstiger 3. Den ytre og indre diameteren for hver ring er vist i tabell 6. Tabell 6: Verdier for diameterne til ringene Indre ring Ytre ring I tabellen over er indre diameter, er ytre diameter og / er middelverdien av disse. Vi har videre at lengden Denne dataen skal brukes for å beregne gitterplanavstandene i neste oppgave. 4.5 Oppgave 6 Får å beregne gitterplanavstanden tar vi utgangspunkt i 7, hvor vi neglisjerer da denne varierer lite for små verdier. Bruker vi dataen fra oppgave 5, gir dette oss verdiene i tabell 7. Tabell 7: Bølgelengde og gitterplanavstander med hensyn på Side 10 av 12

11 Videre kan vi beregne middelverdi, standardavvik og den statistiske usikkerheten for dataen ved hjelp av MATLAB. Vi her her brukt funksjonene mean(a), std(a) og std(a)/sqrt(length(a)) der A er en vektor. Funksjonene tilsvarer hhv. uttrykkene, 14, og 15 / 16 der. Tabell 8: middelverdi, standardavvik og statistisk usikkerhet Fra tabell 8 er standardavviket og den statistiske usikkerheten for middelverdien. Herfra mangler vi kun den eksperimentelle dataen. Denne er gitt ved, hvor usikkerheten. Dette gir 4.7 og 2.7. Herfra vil den totale usikkerheten være gitt ved For den indre ringen, vil vi da få at mens vi for den ytre ringen vil få at Fra dette har vi at mens Dette gir et forhold Videre kan vi beregne forholdet mellom gitterplanavstandene i figur 4. Antar vi at dette er en likesidet 6-kant og at lengden for en av sidene,, er 1, kan vi beregne lengden på. Fra geometri kan vi bruke cosinus til å løse dette, slik at 2 19 der er gitt ved Side 11 av 12

12 cos 30 cos Fra dette har vi at 1.73, og forholdet mellom disse er gitt ved 1.73 som er tilnærmet det vi har funnet eksperimentelt. 5 Diskusjon Vi så i oppgave 1 hvor vi skulle bestemme spenningen at vi fikk en verdi som var 2 større enn den nominelle verdien. Hva dette kan komme av er usikkert, men vi kan kanskje ha valgt feil verdier. Eventuelt kan det også være en mulighet for at vi har misforstått måten vi skulle bruke grafen på. Utover dette virker grafen og data riktig. Det må igjen påpekes at vi i oppgave 3 foretok ferre målinger enn hva som var forventet. Et aspekt her er jo hvor nøyaktig vi kan skille disse toppene fra hverandre. Dersom vi hadde tatt dobbelt så mange målinger, altså med hensyn på hver halve grad, ville vi sett toppene mer nøyaktig. Et annet aspekt ved denne oppgaven er toppen som vi observerte ved 15. Da det var gitt at det bare skulle være 6 topper, var dette litt uventet. Selvom det er lite sannsynlig at dette er en feil, kunne det vært interessant å foreta en ny måling på samme område for å bekrefte denne intensitetstoppen. Når det gjelder toppenes posisjon på vinkelskalaen, vil de ikke avhenge av den valgte spenningen over røntgenrøret da energien til den karakteristiske strålingen kun er bestemt av anodematerialet, og derved uavhengig av spenningen over røret. I oppgave 4 ser vi på relativistisk korreksjon fra 1 til 100. Vi ser her (jmf. tabell 1) at korreksjonsfaktoren ikke varierer mye i det området vi betrakter. Det vil derfor ikke være nødvendig å regne relativistisk for så små verdier som vi bruker her i denne øvelsen. 6 Konklusjon Gjennom denne øvelsen har vi gjort oss kjent med røntgenstråling og elektrondiffraksjon. Vi har sett på forskjellige prosesser ved røntgenstråling, herunder bremsestråling og karakteristisk stråling. I tillegg har vi gjort oss kjent med røntgenspektroskopi og Braggspredning, og sett på dette i praksis. 7 Kilder - Oppgavetekst: FYS2150, øvelse 17, Braggdiffraksjon Side 12 av 12

FYS 2150.ØVELSE 17 BRAGGDIFFRAKSJON

FYS 2150.ØVELSE 17 BRAGGDIFFRAKSJON FYS 2150.ØVELSE 17 BRAGGDIFFRAKSJON Fysisk institutt, UiO 17.1 Røntgenstråling 17.1.1 Bremsestråling og karakteristisk stråling Røntgenstråling er elektromagnetisk stråling med bølgelengde i området 10

Detaljer

Braggdiffraksjon. Ole Ivar Ulven, Carsten Lutken, Alexander Read, mfl. Sist endret 1. mars 2017 Fysisk institutt, UiO

Braggdiffraksjon. Ole Ivar Ulven, Carsten Lutken, Alexander Read, mfl. Sist endret 1. mars 2017 Fysisk institutt, UiO Braggdiffraksjon Ole Ivar Ulven, Carsten Lutken, Alexander Read, mfl. Sist endret 1. mars 2017 Fysisk institutt, UiO Målene i denne oppgaven er å lære om egenskapene til elektromagnetisk stråling, herunder

Detaljer

Braggdiffraksjon. Ole Ivar Ulven, Carsten Lutken, Alexander Read, mfl. Sist endret 10. april 2017 Fysisk institutt, UiO

Braggdiffraksjon. Ole Ivar Ulven, Carsten Lutken, Alexander Read, mfl. Sist endret 10. april 2017 Fysisk institutt, UiO Braggdiffraksjon Ole Ivar Ulven, Carsten Lutken, Alexander Read, mfl. Sist endret 10. april 2017 Fysisk institutt, UiO Målene i denne oppgaven er å lære om egenskapene til elektromagnetisk stråling, herunder

Detaljer

Materiebølger - Elektrondiffraksjon

Materiebølger - Elektrondiffraksjon FY100 Bølgefysikk Institutt for fysikk, NTNU FY100 Bølgefysikk, øst 007 Laboratorieøvelse 3 Materiebølger - Elektrondiffraksjon Oppgave Besteelse av Planck`s konstant ved elektrondiffraksjon. Forslag til

Detaljer

FYS2140 Kvantefysikk, Obligatorisk oppgave 2. Nicolai Kristen Solheim, Gruppe 2

FYS2140 Kvantefysikk, Obligatorisk oppgave 2. Nicolai Kristen Solheim, Gruppe 2 FYS2140 Kvantefysikk, Obligatorisk oppgave 2 Nicolai Kristen Solheim, Gruppe 2 Obligatorisk oppgave 2 Oppgave 1 a) Vi antar at sola med radius 6.96 10 stråler som et sort legeme. Av denne strålingen mottar

Detaljer

Gammastråling. Nicolai Kristen Solheim

Gammastråling. Nicolai Kristen Solheim Gammastråling Nicolai Kristen Solheim Abstract Med denne praktiske øvelsen ønsker vi å gjøre oss kjent med Geiger-Müller-telleren og gammaspektroskopi. Formålet for GM-telleren er å se på statistisk spredning,

Detaljer

FYS2140 Kvantefysikk, Løsningsforslag for Oblig 2

FYS2140 Kvantefysikk, Løsningsforslag for Oblig 2 FYS2140 Kvantefysikk, Løsningsforslag for Oblig 2 12. februar 2018 Her finner dere løsningsforslag for Oblig 2 som bestod av Oppgave 2.6, 2.10 og 3.4 fra Kompendiet. Til slutt finner dere også løsningen

Detaljer

FYS2140 Kvantefysikk, Oblig 2. Lars Kristian Henriksen Gruppe 3

FYS2140 Kvantefysikk, Oblig 2. Lars Kristian Henriksen Gruppe 3 FYS2140 Kvantefysikk, Oblig 2 Lars Kristian Henriksen Gruppe 3 6. februar 2015 Obliger i FYS2140 merkes med navn og gruppenummer! Denne obligen har oppgaver som tar for seg fotoelektrisk effekt, Comptonspredning

Detaljer

Løsningsforslag for FYS2140 Kvantemekanikk, Torsdag 16. august 2018

Løsningsforslag for FYS2140 Kvantemekanikk, Torsdag 16. august 2018 Løsningsforslag for FYS140 Kvantemekanikk, Torsdag 16. august 018 Oppgave 1: Materiens bølgeegenskaper a) De Broglie fikk Nobelprisen i 199 for sin hypotese. Beskriv med noen setninger hva den går ut på.

Detaljer

Løsningsforslag til ukeoppgave 15

Løsningsforslag til ukeoppgave 15 Oppgaver FYS1001 Vår 2018 1 Løsningsforslag til ukeoppgave 15 Oppgave 18.11 Se. s. 544 Oppgave 18.12 a) Klorofyll a absorberer fiolett og rødt lys: i figuren ser vi at absorpsjonstoppene er ved 425 nm

Detaljer

FYS2140 Kvantefysikk, Oblig 2. Sindre Rannem Bilden, Gruppe 3

FYS2140 Kvantefysikk, Oblig 2. Sindre Rannem Bilden, Gruppe 3 FYS2140 Kvantefysikk, Oblig 2 Sindre Rannem Bilden, Gruppe 3 6. februar 2015 Obliger i FYS2140 merkes med navn og gruppenummer! Denne obligen har oppgaver som tar for seg fotoelektrisk eekt, Comptonspredning

Detaljer

Solcellen. Nicolai Kristen Solheim

Solcellen. Nicolai Kristen Solheim Solcellen Nicolai Kristen Solheim Abstract Med denne oppgaven ønsker vi å oppnå kunnskap om hvordan man rent praktisk kan benytte en solcelle som generator for elektrisk strøm. Vi ønsker også å finne ut

Detaljer

Enkel introduksjon til kvantemekanikken

Enkel introduksjon til kvantemekanikken Kapittel Enkel introduksjon til kvantemekanikken. Kort oppsummering. Elektromagnetiske bølger med bølgelengde og frekvens f opptrer også som partikler eller fotoner med energi E = hf, der h er Plancks

Detaljer

FORSØK I OPTIKK. Forsøk 1: Bestemmelse av brytningsindeks

FORSØK I OPTIKK. Forsøk 1: Bestemmelse av brytningsindeks FORSØK I OPTIKK Forsøk 1: Bestemmelse av brytningsindeks Hensikt I dette forsøket skal brytningsindeksen bestemmes for en sylindrisk linse ut fra måling av brytningsvinkler og bruk av Snells lov. Teori

Detaljer

AST1010 En kosmisk reise. Forelesning 5: Fysikken i astrofysikk, del 2

AST1010 En kosmisk reise. Forelesning 5: Fysikken i astrofysikk, del 2 AST1010 En kosmisk reise Forelesning 5: Fysikken i astrofysikk, del 2 Innhold Synkrotronstråling Bohrs atommodell og Kirchhoffs lover Optikk: Refleksjon, brytning og diffraksjon Relativitetsteori, spesiell

Detaljer

Ioniserende stråling. 10. November 2006

Ioniserende stråling. 10. November 2006 Ioniserende stråling 10. November 2006 Tema: Hva mener vi med ioniserende stråling? Hvordan produseres den? Hvordan kan ioniserende stråling stoppes? Virkning av ioniserende stråling på levende vesener

Detaljer

Eksamen i: FYS145 - Kvantefysikk og relativitetsteori Eksamensdag: Mandag 10. mai 2004, kl. 14.00-17.00 (3 timer)

Eksamen i: FYS145 - Kvantefysikk og relativitetsteori Eksamensdag: Mandag 10. mai 2004, kl. 14.00-17.00 (3 timer) 1 NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi Eksamen i: FYS145 - Kvantefysikk og relativitetsteori Eksamensdag: Mandag 1. mai 24, kl. 14.-17. (3 timer) Tillatte hjelpemidler:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVEITETET I OLO Det matematisk-naturvitenskapelige fakultet Midtveisksamen i: FY1000 Eksamensdag: 17. mars 2016 Tid for eksamen: 15.00-18.00, 3 timer Oppgavesettet er på 6 sider Vedlegg: Formelark (2

Detaljer

Løsningsforslag til øving 12

Løsningsforslag til øving 12 FY12/TFY416 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 28. Løsningsforslag til øving 12 Oppgave 1 a) Hovedmaksima får vi i retninger som tilsvarer at både teller og nevner blir null, dvs φ = nπ, der

Detaljer

Laboratorieøvelse 2 N 63 58 51 46 42 37 35 30 27 25

Laboratorieøvelse 2 N 63 58 51 46 42 37 35 30 27 25 Laboratorieøvelse Fys Ioniserende stråling Innledning I denne oppgaven skal du måle noen egenskaper ved ioniserende stråling ved hjelp av en Geiger Müller(GM) detektor. Du skal studere strålingens statistiske

Detaljer

Løsningsforslag til eksamen i FYS1000, 14/8 2015

Løsningsforslag til eksamen i FYS1000, 14/8 2015 Løsningsforslag til eksamen i FYS000, 4/8 205 Oppgave a) For den første: t = 4 km 0 km/t For den andre: t 2 = = 0.4 t. 2 km 5 km/t + 2 km 5 km/t Den første kommer fortest fram. = 0.53 t. b) Dette er en

Detaljer

Bølgeegenskaper til lys

Bølgeegenskaper til lys Bølgeegenskaper til lys Alexander Asplin og Einar Baumann 30. oktober 2012 1 Forord Denne rapporten er skrevet som et ledd i lab-delen av TFY4120. Forsøket ble utført under oppsyn av vitenskapelig assistent

Detaljer

AST1010 En kosmisk reise. De viktigste punktene i dag: Elektromagnetisk bølge 1/23/2017. Forelesning 4: Elektromagnetisk stråling

AST1010 En kosmisk reise. De viktigste punktene i dag: Elektromagnetisk bølge 1/23/2017. Forelesning 4: Elektromagnetisk stråling AST1010 En kosmisk reise Forelesning 4: Elektromagnetisk stråling De viktigste punktene i dag: Sorte legemer og sort stråling. Emisjons- og absorpsjonslinjer. Kirchhoffs lover. Synkrotronstråling Bohrs

Detaljer

Diffraksjonsgitter (diffraction grating)

Diffraksjonsgitter (diffraction grating) Diffraksjonsgitter (diffraction grating) Et diffraksjonsgitter består av et stort antall parallelle spalter med konstant avstand d. Det finnes to hovedtyper, transmisjonsgitter og refleksjonsgitter. Et

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1000 Eksamensdag: 12. juni 2017 Tid for eksamen: 9.00-13.00, 4 timer Oppgavesettet er på 5 sider Vedlegg: Formelark (2 sider).

Detaljer

Laboppgave i FYS3710 høsten 2014 Stråleterapi Medisinsk fysikk

Laboppgave i FYS3710 høsten 2014 Stråleterapi Medisinsk fysikk Laboppgave i FYS3710 høsten 2014 Stråleterapi Medisinsk fysikk Lineærakseleratoren Under og etter 2. verdenskrig ble det utviklet mikrobølgekilder med høy effekt og høy frekvens for anvendelser innen radarteknologi.

Detaljer

Elektrondiffraksjon. Hanne Synnøve Pettersen Linde, Magnus Holter-Sørensen Dahle Institutt for fysikk, NTNU, N-7491 Trondheim, Norge.

Elektrondiffraksjon. Hanne Synnøve Pettersen Linde, Magnus Holter-Sørensen Dahle Institutt for fysikk, NTNU, N-7491 Trondheim, Norge. Elektrondiffraksjon Hanne Synnøve Pettersen Linde, Magnus Holter-Sørensen Dahle Institutt for fysikk, NTNU, N-7491 Trondheim, Norge Februar 2013 Sammendrag Det ble i dette forsøket fremstilt bilder av

Detaljer

Fysikk 3FY AA6227. Elever. 6. juni Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag

Fysikk 3FY AA6227. Elever. 6. juni Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag E K S A M E N LÆRINGSSENTERET Fysikk 3FY AA6227 Elever 6. juni 2003 Bokmål Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag Les opplysningene på neste side. Eksamenstid:

Detaljer

FYS2140 Hjemmeeksamen Vår Ditt kandidatnummer

FYS2140 Hjemmeeksamen Vår Ditt kandidatnummer FYS2140 Hjemmeeksamen Vår 2018 Ditt kandidatnummer 15. mars 2018 Viktig info: Elektronisk innlevering på devilry med frist fredag 23. mars 2018 kl. 16:00. Leveringsfristen er absolutt. Innleveringen (pdf)

Detaljer

AST1010 En kosmisk reise. Forelesning 5: Fysikken i astrofysikk, del 2

AST1010 En kosmisk reise. Forelesning 5: Fysikken i astrofysikk, del 2 AST1010 En kosmisk reise Forelesning 5: Fysikken i astrofysikk, del 2 De viktigste punktene i dag: Sorte legemer og sort stråling. Emisjons- og absorpsjonslinjer. Kirchhoffs lover. Synkrotronstråling Bohrs

Detaljer

Laboppgave i FYS3710 høsten 2017 Stråleterapi Medisinsk fysikk

Laboppgave i FYS3710 høsten 2017 Stråleterapi Medisinsk fysikk Laboppgave i FYS3710 høsten 2017 Stråleterapi Medisinsk fysikk Lineærakseleratoren På midten av 1900-tallet ble det utviklet radio- og mikrobølgekilder med høy effekt og høy frekvens, der den primære anvendelsen

Detaljer

Hvor kommer magnetarstråling fra?

Hvor kommer magnetarstråling fra? Hvor kommer magnetarstråling fra? Fig 1 En nøytronstjerne Jeg kom over en interessant artikkel i januar 2008 nummeret av det norske bladet Astronomi (1) om magnetarstråling. Magnetarer er roterende nøytronstjerner

Detaljer

Experiment Norwegian (Norway) Hoppende frø - En modell for faseoverganger og ustabilitet (10 poeng)

Experiment Norwegian (Norway) Hoppende frø - En modell for faseoverganger og ustabilitet (10 poeng) Q2-1 Hoppende frø - En modell for faseoverganger og ustabilitet (10 poeng) Vennligst les de generelle instruksjonene som ligger i egen konvolutt, før du begynner på denne oppgaven. Introduksjon Faseoverganger

Detaljer

Hensikt I dette forsøket skal brytningsindeksen bestemmes for en sylindrisk linse ut fra målinger av brytningsvinkler og bruk av Snells lov.

Hensikt I dette forsøket skal brytningsindeksen bestemmes for en sylindrisk linse ut fra målinger av brytningsvinkler og bruk av Snells lov. FORSØK I OPTIKK Oppgaven består av 3 forsøk Forsøk 1: Bestemmelse av brytningsindeks Hensikt I dette forsøket skal brytningsindeksen bestemmes for en sylindrisk linse ut fra målinger av brytningsvinkler

Detaljer

FYS 2150.ØVELSE 13 MAGNETISKE FENOMENER

FYS 2150.ØVELSE 13 MAGNETISKE FENOMENER FYS 250.ØVELSE 3 MAGNETISKE FENOMENER Fysisk institutt, UiO 3. Avmagnetiseringsfaktoren En rotasjonssymmetrisk ellipsoide av et homogent ferromagnetisk materiale anbringes i et opprinnelig uniformt magnetfelt

Detaljer

KJM Molekylmodellering. Introduksjon. Molekylmodellering. Molekylmodellering

KJM Molekylmodellering. Introduksjon. Molekylmodellering. Molekylmodellering KJM3600 - Vebjørn Bakken Kjemisk institutt, UiO Introduksjon KJM3600 - p.1/29 Introduksjon p.2/29 Flere navn på moderne teoretisk kjemi: Theoretical chemistry (teoretisk kjemi) Quantum chemistry (kvantekjemi)

Detaljer

FYS2140 Kvantefysikk, Obligatorisk oppgave 10. Nicolai Kristen Solheim, Gruppe 2

FYS2140 Kvantefysikk, Obligatorisk oppgave 10. Nicolai Kristen Solheim, Gruppe 2 FYS2140 Kvantefysikk, Obligatorisk oppgave 10 Nicolai Kristen Solheim, Gruppe 2 Obligatorisk oppgave 10 Oppgave 1 a) Ligningene 1, 2 og 3 er egenverdifunksjoner, mens ligning 4 er en deltafunksjon. b)

Detaljer

Løsningsforslag til eksamen FY0001 Brukerkurs i fysikk Fredag 29. mai 2009

Løsningsforslag til eksamen FY0001 Brukerkurs i fysikk Fredag 29. mai 2009 Løsningsforslag til eksamen FY000 Brukerkurs i fysikk Fredag 9. mai 009 Oppgave a) Newtons. lov, F = m a sier at kraft og akselerasjon alltid peker i samme retning. Derfor er A umulig. Alle de andre er

Detaljer

Brownske bevegelser. Nicolai Kristen Solheim

Brownske bevegelser. Nicolai Kristen Solheim Brownske bevegelser Nicolai Kristen Solheim Abstract Med denne oppgaven ønsker vi å lære grunnleggende statistisk fysikk, mikroskopi, avbilding og billedanalyse. Vi blir her introdusert til den mikroskopiske

Detaljer

Michelson Interferometer

Michelson Interferometer Michelson Interferometer Hensikt Bildet ovenfor viser et sa kalt Michelson interferometer, der laserlys sendes inn mot en bikonveks linse, før det treffer et delvis reflekterende speil og splittes i to

Detaljer

Frå klassisk mekanikk til kvantemekanikk: Litt bakgrunn/historie

Frå klassisk mekanikk til kvantemekanikk: Litt bakgrunn/historie Så langt i kurset: Klassisk mekanikk. Frå klassisk mekanikk til kvantemekanikk: Litt bakgrunn/historie Klassisk mekanikk vart i hovudsak utvikla av Newton og andre på 16- og 1700-talet. Denne teorien var

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNVERSTETET OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1000 Eksamensdag: 14. august 2015 Tid for eksamen: 14.30-18.30, 4 timer Oppgavesettet er på 5 sider Vedlegg: Formelark (2 sider).

Detaljer

FYS2130 Svingninger og bølger, Obligatorisk oppgave I. Nicolai Kristen Solheim

FYS2130 Svingninger og bølger, Obligatorisk oppgave I. Nicolai Kristen Solheim FYS2130 Svingninger og bølger, Obligatorisk oppgave I Nicolai Kristen Solheim 29.03.2011 UiO Webmail :: Re: Spørsmål om utset Subject Re: Spørsmål om utsettelse oblig I Sender Arnt Inge Vistnes

Detaljer

AST1010 En kosmisk reise. Forelesning 4: Elektromagnetisk stråling

AST1010 En kosmisk reise. Forelesning 4: Elektromagnetisk stråling AST1010 En kosmisk reise Forelesning 4: Elektromagnetisk stråling De viktigste punktene i dag: Sorte legemer og sort stråling. Emisjons- og absorpsjonslinjer. Kirchhoffs lover. Synkrotronstråling Bohrs

Detaljer

Kollokvium 4 Grunnlaget for Schrödingerligningen

Kollokvium 4 Grunnlaget for Schrödingerligningen Kollokvium 4 Grunnlaget for Scrödingerligningen 10. februar 2016 I dette kollokviet skal vi se litt på grunnlaget for Scrödingerligningen, og på når den er relevant. Den første oppgaven er en diskusjonsoppgave

Detaljer

NORGE. Utlegningsskrift nr. 126192 STYRET FOR DET INDUSTRIELLE RETTSVERN

NORGE. Utlegningsskrift nr. 126192 STYRET FOR DET INDUSTRIELLE RETTSVERN NORGE Utlegningsskrift nr. 126192 Int. Cl. H Ol 0 33/02 Kl. 21g-13/22 Patentsøknad nr. 802/69 Inngitt 26.2.1969 Løpedag STYRET FOR DET INDUSTRIELLE RETTSVERN Søknaden ålment tilgjengelig fra 29.8.1969

Detaljer

AST1010 En kosmisk reise. Forelesning 4: Fysikken i astrofysikk, del 1

AST1010 En kosmisk reise. Forelesning 4: Fysikken i astrofysikk, del 1 AST1010 En kosmisk reise Forelesning 4: Fysikken i astrofysikk, del 1 Innhold Mekanikk Termodynamikk Elektrisitet og magnetisme Elektromagnetiske bølger Mekanikk Newtons bevegelseslover Et legeme som ikke

Detaljer

Løsningsforslag til ukeoppgave 12

Løsningsforslag til ukeoppgave 12 Oppgaver FYS1001 Vår 018 1 Løsningsforslag til ukeoppgave 1 Oppgave 16.0 Loddet gjør 0 svingninger på 15 s. Frekvensen er da f = 1/T = 1,3 T = 15 s 0 = 0, 75 s Oppgave 16.05 a) Det tar et døgn for jorda

Detaljer

TFY4215 Kjemisk fysikk og kvantemekanikk - Øving 1 1 ØVING 1. En liten briefing om forventningsverdier, usikkerheter osv

TFY4215 Kjemisk fysikk og kvantemekanikk - Øving 1 1 ØVING 1. En liten briefing om forventningsverdier, usikkerheter osv TFY4215 Kjemisk fysikk og kvantemekanikk - Øving 1 1 Frist for innlevering: mandag 26. januar ØVING 1 En liten briefing om forventningsverdier, usikkerheter osv Eksempel: Terningkast Ved terningkast er

Detaljer

KJM Molekylmodellering

KJM Molekylmodellering KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO KJM3600 - Molekylmodellering p.1/29 Introduksjon Introduksjon p.2/29 Introduksjon p.3/29 Molekylmodellering Flere navn på moderne teoretisk

Detaljer

Bølgeegenskaper til lys

Bølgeegenskaper til lys Bølgeegenskaper til lys Laboratorieøvelse i TFY4120 Ina Molaug og Anders Leirpoll 14.10.2011 1 Forord Denne rapporten er skrevet som et ledd i laboratorie-delen av TFY4120. Forsøket ble utført under oppsyn

Detaljer

FY1006/TFY4215 Innføring i kvantefysikk - Øving 1 1 ØVING 1. En liten briefing om forventningsverdier, usikkerheter osv

FY1006/TFY4215 Innføring i kvantefysikk - Øving 1 1 ØVING 1. En liten briefing om forventningsverdier, usikkerheter osv FY16/TFY4215 Innføring i kvantefysikk - Øving 1 1 Frist for innlevering: mandag 28. januar (jf Åre) ØVING 1 En liten briefing om forventningsverdier, usikkerheter osv Eksempel: Terningkast Ved terningkast

Detaljer

TFY4106_M2_V2019 1/6

TFY4106_M2_V2019 1/6 1/6 rstatt denne teksten med ditt innhold... 1 n bil kjører på en rett vei. ilens posisjon ved tidspunktet er gitt ved funksjonen med m/s og s. Hvor langt kjører bilen før den snur? 12.4 m 14.4 m 16.4

Detaljer

Noen presiseringer mhp Diskret Fourier Transform. Relevant for oblig 1.

Noen presiseringer mhp Diskret Fourier Transform. Relevant for oblig 1. FYS2130 Våren 2008 Noen presiseringer mhp Diskret Fourier Transform. Relevant for oblig 1. Vi har på forelesning gått gjennom foldingsfenomenet ved diskret Fourier transform, men ikke vært pinlig nøyaktige

Detaljer

Løsningsforslag til øving 9

Løsningsforslag til øving 9 NTNU Institutt for Fysikk Løsningsforslag til øving 9 FY0001 Brukerkurs i fysikk Oppgave 1 a) Etter første refleksjon blir vinklene (i forhold til positiv x-retning) henholdsvis 135 og 157, 5, og etter

Detaljer

NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK

NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 7 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Institutt for fysikk, Realfagbygget Professor Catharina Davies 73593688 BOKMÅL EKSAMEN I EMNE

Detaljer

EKSAMEN I FAG SIF4065 ATOM- OG MOLEKYLFYSIKK Fakultet for naturvitenskap og teknologi 13. august 2002 Tid:

EKSAMEN I FAG SIF4065 ATOM- OG MOLEKYLFYSIKK Fakultet for naturvitenskap og teknologi 13. august 2002 Tid: Side 1 av 5 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Ola Hunderi Tlf.: 93411 EKSAMEN I FAG SIF465 ATOM- OG MOLEKYLFYSIKK Fakultet for naturvitenskap

Detaljer

Løsningsforslag til eksamen i FYS1000, 13/6 2016

Løsningsforslag til eksamen i FYS1000, 13/6 2016 Løsningsforslag til eksamen i FYS1000, 13/6 2016 Oppgave 1 a) Sola skinner både på snøen og på treet. Men snøen er hvit og reflekterer det meste av sollyset. Derfor varmes den ikke så mye opp. Treet er

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Midtveisksamen i: FYS1000 Eksamensdag: 27. mars 2014 Tid for eksamen: 15.00-17.00, 2 timer Oppgavesettet er på 6 sider Vedlegg: Formelark

Detaljer

2. Teoretisk grunnlag

2. Teoretisk grunnlag 1 1. Innledning Denne rapporten baserer seg på laboratorieforsøket «Bølgeegenskaper i Lys» der vi, som tittelen tilsier, har sett på bølgeegenskaper i lys. Dette ble gjort ved hjelp av en laser og forskjellige

Detaljer

Fysikkolympiaden 1. runde 23. oktober 3. november 2017

Fysikkolympiaden 1. runde 23. oktober 3. november 2017 Norsk Fysikklærerforening i samarbeid med Skolelaboratoriet Universitetet i Oslo Fysikkolympiaden 1. runde 3. oktober 3. november 017 Hjelpemidler: Tabell og formelsamlinger i fysikk og matematikk Lommeregner

Detaljer

Hvordan skal vi finne svar på alle spørsmålene?

Hvordan skal vi finne svar på alle spørsmålene? Hvordan skal vi finne svar på alle spørsmålene? Vi trenger et instrument til å: studere de minste bestanddelene i naturen (partiklene) gjenskape forholdene rett etter at universet ble skapt lære om det

Detaljer

Mal for rapportskriving i FYS2150

Mal for rapportskriving i FYS2150 Mal for rapportskriving i FYS2150 Ditt navn January 21, 2011 Abstract Dette dokumentet viser hovedtrekkene i hvordan vi ønsker at en rapport skal se ut. De aller viktigste punktene kommer i en sjekkliste

Detaljer

FYS2140 Kvantefysikk, Obligatorisk oppgave 3. Nicolai Kristen Solheim, Gruppe 2

FYS2140 Kvantefysikk, Obligatorisk oppgave 3. Nicolai Kristen Solheim, Gruppe 2 FYS2140 Kvantefysikk, Obligatorisk oppgave 3 Nicolai Kristen Solheim, Gruppe 2 Obligatorisk oppgave 3 Oppgave 1 a) Fra Bohrs formel for energinivåene i H-atomet kan vi vise at det emitterte lyset vil ligge

Detaljer

Fysikk 3FY AA6227. Elever og privatister. 26. mai 2000. Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag

Fysikk 3FY AA6227. Elever og privatister. 26. mai 2000. Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag E K S A M E N EKSAMENSSEKRETARIATET Fysikk 3FY AA6227 Elever og privatister 26. mai 2000 Bokmål Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag Les opplysningene på neste

Detaljer

Kosmos YF Naturfag 2. Stråling og radioaktivitet Nordlys. Figur side 131

Kosmos YF Naturfag 2. Stråling og radioaktivitet Nordlys. Figur side 131 Stråling og radioaktivitet Nordlys Figur side 131 Antallet solflekker varierer med en periode på ca. elleve år. Vi hadde et maksimum i 2001, og vi venter et nytt rundt 2011 2012. Stråling og radioaktivitet

Detaljer

Lag et bilde av geometriske figurer, du også!

Lag et bilde av geometriske figurer, du også! Lag et bilde av geometriske figurer, du også! 6 Geometri 1 MÅL I dette kapitlet skal du lære om firkanter trekanter sammensatte figurer sirkler KOPIERINGSORIGINALER 6.1 Tangram 6.4 Felles problemløsing

Detaljer

EKSAMEN I FAG SIF 4014 FYSIKK 3 Onsdag 13. desember 2000 kl Bokmål. K. Rottmann: Matematisk formelsamling

EKSAMEN I FAG SIF 4014 FYSIKK 3 Onsdag 13. desember 2000 kl Bokmål. K. Rottmann: Matematisk formelsamling Side 1 av 7 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Førsteamanuensis Knut Arne Strand Telefon: 73 59 34 61 EKSAMEN I FAG SIF 4014 FYSIKK 3 Onsdag

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1000 Eksamensdag: 8. juni 2015 Tid for eksamen: 9.00-13.00, 4 timer Oppgavesettet er på 5 sider Vedlegg: Formelark (2 sider).

Detaljer

Hvordan skal vi finne svar på alle spørsmålene?

Hvordan skal vi finne svar på alle spørsmålene? Hvordan skal vi finne svar på alle spørsmålene? Vi trenger et instrument til å: studere de minste bestanddelene i naturen (partiklene) gjenskape forholdene rett etter at universet ble skapt lære om det

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Kontinuasjonseksamen i: FYS 1000 Eksamensdag: 16. august 2012 Tid for eksamen: 09.00 13.00, 4 timer Oppgavesettet er på 5 sider inkludert

Detaljer

Løsningsforslag til øving 11

Løsningsforslag til øving 11 FY2/TFY46 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 2. Løsningsforslag til øving Oppgave a) Hovedmaksima får vi i retninger som tilsvarer at både teller og nevner blir null, dvs φ = nπ, der n =,

Detaljer

KOSMOS. 10: Energirik stråling naturlig og menneske skapt Figur side 304. Uran er et radioaktivt stoff. Figuren viser nedbryting av isotopen uran-234.

KOSMOS. 10: Energirik stråling naturlig og menneske skapt Figur side 304. Uran er et radioaktivt stoff. Figuren viser nedbryting av isotopen uran-234. 10: Energirik stråling naturlig og menneske skapt Figur side 304 -partikkel (heliumkjerne) Uran-234 Thorium-230 Radium-226 Radon-222 Polonium-218 Bly-214 Nukleontall (antall protoner og nøytroner) Uran

Detaljer

Løsningsforslag til eksamen i FYS1000, 12/6 2017

Løsningsforslag til eksamen i FYS1000, 12/6 2017 Løsningsforslag til eksamen i FYS000, 2/6 207 Oppgave a) Vi kaller energien til fotoner fra overgangen fra nivå 5 til nivå 2 for E og fra nivå 2 til nivå for E 2, og de tilsvarende bølgelengdene er λ og

Detaljer

TFY4215_S2018_Forside

TFY4215_S2018_Forside Kandidat I Tilkoblet TFY4215_S2018_Forside Institutt for fysikk ksamensoppgave i TFY4215 Innføring i kvantefysikk Faglig kontakt under eksamen: Jon ndreas Støvneng Tlf.: 45 45 55 33 ksamensdato: 6. august

Detaljer

FYS 2150.ØVELSE 15 POLARISASJON

FYS 2150.ØVELSE 15 POLARISASJON FYS 2150.ØVELSE 15 POLARISASJON Fysisk institutt, UiO 15.1 Polarisasjonsvektorene Vi skal i denne øvelsen studere lineært og sirkulært polarisert lys. En plan, lineært polarisert lysbølge beskrives ved

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: Tirsdag, 3. juni 2014 Tid for eksamen: kl. 9:00 13:00 Oppgavesettet omfatter 6 oppgaver på 4 sider

Detaljer

Ionometri. Dosimetriske prinsipper illustrert ved ionometri. Forelesning i FYSKJM4710. Eirik Malinen

Ionometri. Dosimetriske prinsipper illustrert ved ionometri. Forelesning i FYSKJM4710. Eirik Malinen Dosimetriske prinsipper illustrert ved ionometri Forelesning i FYSKJM4710 Eirik Malinen Ionometri Ionometri: kunsten å måle antall ionisasjoner i f.eks. en gass Antall ionisasjoner brukes som et mål på

Detaljer

Bølgeoptikk. Innledning. Teori. Trygve Bærland og Geir Amund Svan Hasle. 22. november 2011

Bølgeoptikk. Innledning. Teori. Trygve Bærland og Geir Amund Svan Hasle. 22. november 2011 Bølgeoptikk Trygve Bærland og Geir Amund Svan Hasle 22. november 2011 Sammendrag Dette eksperimentet vil ta for seg lys som bølger. Youngs eksperiment, Braggdiffraksjon, optiske fenomener og transmisjon

Detaljer

EKSAMEN. EMNE: FYS 119 FAGLÆRER: Margrethe Wold. Klasser: FYS 119 Dato: 09. mai 2017 Eksamenstid: Antall sider (ink.

EKSAMEN. EMNE: FYS 119 FAGLÆRER: Margrethe Wold. Klasser: FYS 119 Dato: 09. mai 2017 Eksamenstid: Antall sider (ink. EKSAMEN EMNE: FYS 119 FAGLÆRER: Margrethe Wold MÅLFORM: Bokmål Klasser: FYS 119 Dato: 09. mai 2017 Eksamenstid: 09 00 14 00 Eksamensoppgaven består av følgende: Antall sider (ink. forside): 6 Antall oppgaver:

Detaljer

EKSAMEN VÅREN 2007 SENSORTEORI. Klasse OM2

EKSAMEN VÅREN 2007 SENSORTEORI. Klasse OM2 SJØKRIGSSKOLEN Tirsdag 29.05.07 EKSAMEN VÅREN 2007 Klasse OM2 Tillatt tid: 5 timer Hjelpemidler: Formelsamling Sensorteori KJK2 og OM2 Tabeller i fysikk for den videregående skole Formelsamling i matematikk

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1000 Eksamensdag: 13. juni 2016 Tid for eksamen: 9.00-13.00, 4 timer Oppgavesettet er på 6 sider Vedlegg: Formelark (2 sider).

Detaljer

Lys. Bølger. Partiklar Atom

Lys. Bølger. Partiklar Atom Lys Bølger Partiklar Atom Lys «Lyshistoria» Lys er små partiklar! Christiaan Huygens (1629-1695) Lys er bølger Isaac Newton (1642-1726) «Lyshistoria» Thomas Young (1773-1829) «Lyshistoria» James Clerk

Detaljer

Theory Norwegian (Norway)

Theory Norwegian (Norway) Q3-1 Large Hadron Collider (10 poeng) Vær vennlig å lese de generelle instruksjonene i den separate konvolutten før du begynner på denne oppgaven. I denne oppgaven blir fysikken ved partikkelakseleratoren

Detaljer

Kortfattet løsningsforslag for FYS juni 2007

Kortfattet løsningsforslag for FYS juni 2007 Kortfattet løsningsforslag for FYS213 6. juni 27 Oppgave 1 E a) Magnetfeltamplituen er B = = E ε µ c 1 1 1 1 Intensiteten er I = ε ce = ε E = E 2 2 εµ 2 2 2 2 µ b) Bølgefunksjonen for E-feltet er: E( zt,

Detaljer

Regnbuen. Descartes var den første som forstod den. Hvilke egenskaper har du lagt merke til? E.H.Hauge

Regnbuen. Descartes var den første som forstod den. Hvilke egenskaper har du lagt merke til? E.H.Hauge Regnbuen Descartes var den første som forstod den. Hvilke egenskaper har du lagt merke til? Eksperimenter, tenkning, matematiske hjelpemidler, forklaringer, mysterier, klassiske teorier, nyere teorier.

Detaljer

Hvor stor er den kinetiske energien til molekylene i forrige oppgave?

Hvor stor er den kinetiske energien til molekylene i forrige oppgave? TFY4215 Innfring i kvantefysikk. Institutt for fysikk, NTNU. Test 1. Oppgave 1 Oppgavene 1-6 tar utgangspunkt i artikkelen "Quantum interference experiments with large molecules", av O. Nairz, M. Arndt

Detaljer

Tid og Frekvens. Nicolai Kristen Solheim

Tid og Frekvens. Nicolai Kristen Solheim Tid og Frekvens Nicolai Kristen Solheim Abstract I denne oppgaven har vi målt tid på forskjellige måter for å få et bevisst forhold til tid og forskjellige målemetoder. Vi har startet fra helt grunnleggende

Detaljer

Eksamen FY0001 Brukerkurs i fysikk Torsdag 3. juni 2010

Eksamen FY0001 Brukerkurs i fysikk Torsdag 3. juni 2010 NTNU Institutt for Fysikk Eksamen FY0001 Brukerkurs i fysikk Torsdag 3. juni 2010 Kontakt under eksamen: Tor Nordam Telefon: 47022879 / 73593648 Eksamenstid: 4 timer (09.00-13.00) Hjelpemidler: Tabeller

Detaljer

Atomfysikk og kausallov

Atomfysikk og kausallov Werner Heisenberg: (1901-1976) Atomfysikk og kausallov Foredrag i Sveits 12. 2. 1952 Gjennomgang av originalartikkel oktober 2008 for ExPhil ved UiO Arnt Inge Vistnes http://folk.uio.no/arntvi/ Bakgrunn:

Detaljer

Atomfysikk og kausallov

Atomfysikk og kausallov Werner Heisenberg: (1901-1976) Atomfysikk og kausallov Foredrag i Sveits 12. 2. 1952 Gjennomgang av originalartikkel for ExPhil ved UiO Arnt Inge Vistnes http://folk.uio.no/arntvi/ Bakgrunn: Heisenberg

Detaljer

TFY4215 Innføring i kvantefysikk - Løsning øving 1 1 LØSNING ØVING 1

TFY4215 Innføring i kvantefysikk - Løsning øving 1 1 LØSNING ØVING 1 TFY425 Innføring i kvantefysikk - Løsning øving Løsning oppgave a. LØSNING ØVING Vi merker oss at sannsynlighetstettheten, Ψ(x, t) 2 = A 2 e 2λ x, er symmetrisk med hensyn på origo. For normeringsintegralet

Detaljer

Løsningsforslag til øving 4

Løsningsforslag til øving 4 1 FY100/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 01. Løsningsforslag til øving 4 Oppgave 1 a) D = D 0 [ cos (kx ωt) + sin (kx ωt) ] 1/ = D 0 for alle x og t. Med andre ord, vi har overalt

Detaljer

Trygve Helgaker. 31 januar 2018

Trygve Helgaker. 31 januar 2018 Trygve Helgaker Senter for grunnforskning Det Norske Videnskaps-Akademi Hylleraas Centre for Quantum Molecular Sciences Kjemisk institutt, Universitetet i Oslo 31 januar 2018 Kjemi Kjemi er læren om stoffer

Detaljer

Lengde, hastighet og aksellerasjon

Lengde, hastighet og aksellerasjon Lengde, hastighet og aksellerasjon Nicolai Kristen Solheim Abstract I denne oppgaven har vi målt lengde, hastighet og akselerasjon for å få et bedre forhold til sammenhengen mellom disse. Et annet fokus

Detaljer

FYS1010-eksamen Løsningsforslag

FYS1010-eksamen Løsningsforslag FYS1010-eksamen 2017. Løsningsforslag Oppgave 1 a) En drivhusgass absorberer varmestråling (infrarødt) fra jorda. De viktigste drivhusgassene er: Vanndamp, CO 2 og metan (CH 4 ) Når mengden av en drivhusgass

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 av 4 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK111 Eksamensdag: Mandag 22. mars 21 Tid for eksamen: Kl. 15-18 Oppgavesettet er på 4 sider + formelark Tillatte

Detaljer

Kan vi lære litt kvantefysikk ved å lytte til noen lydprøver? Arnt Inge Vistnes Fysisk institutt, UiO

Kan vi lære litt kvantefysikk ved å lytte til noen lydprøver? Arnt Inge Vistnes Fysisk institutt, UiO Kan vi lære litt kvantefysikk ved å lytte til noen lydprøver? Arnt Inge Vistnes Fysisk institutt, UiO La oss starte med lyttingen... Vi spiller fire ulike lydprøver. Oppgaven er å bestemme tonehøyden.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 av 4 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK1110 Eksamensdag: Onsdag 6. juni 2012 Tid for eksamen: Kl. 0900-1300 Oppgavesettet er på 4 sider + formelark

Detaljer

TMA4320 Prosjekt Biofysikk og Medisinsk Teknologi: Tomografi. Tomografi. Pål Erik Goa, Jon Andreas Støvneng Peder Galteland, Grunde Wesenberg

TMA4320 Prosjekt Biofysikk og Medisinsk Teknologi: Tomografi. Tomografi. Pål Erik Goa, Jon Andreas Støvneng Peder Galteland, Grunde Wesenberg Tomografi Pål Erik Goa, Jon Andreas Støvneng Peder Galteland, Grunde Wesenberg April 2016 1 Innledning Medisinsk avbildning står sentralt i moderne diagnostikk. Fig. 1 viser et tverrsnitt av et hode basert

Detaljer