FYS2140 Hjemmeeksamen Vår Ditt kandidatnummer
|
|
|
- Håkon Christoffersen
- 7 år siden
- Visninger:
Transkript
1 FYS2140 Hjemmeeksamen Vår 2018 Ditt kandidatnummer 15. mars 2018
2 Viktig info: Elektronisk innlevering på devilry med frist fredag 23. mars 2018 kl. 16:00. Leveringsfristen er absolutt. Innleveringen (pdf) må ha god kontrast. Bruk scanner eller app, ikke foto med mobiltelefon. Besvarelsen må merkes tydelig med ditt kandidatnummer (finnes på Studentweb) fordi innleveringen skjer anonymt. Besvarelser uten kandidatnummer stryker automatisk. Hjemmeeksamen teller 20% av karakteren i FYS2140 og må være bestått for å gå opp til endelig eksamen. Ettersom dette er en hjemmeeksamen, har dere full anledning til å samarbeide, og til å bruke forelesningsnotater og annen faglitteratur for å finne fram til nødvendig informasjon. Til gjengjeld skal den innleverte besvarelsen være individuell, og vi forbeholder oss retten til å trekke ut noen av dere til en muntlig redegjørelse for besvarelsen deres senere. Vi ønsker klare og tydelige svar. Besvarelsen skal være pent og oversiktlig ført inn. Husk å bruke fornuftige enheter i regningene. Noen av deloppgavene kan (bør) løses numerisk. Vi legger vekt på en kvalitativ beskrivelse av resultatene, men legg gjerne ved relevante plott og programkode. Lykke til! 1
3 Oppgave 1 Partikkel-bølge dualitet Fotoners partikkelnatur a1) Skriv opp Comptons formel. Tegn en prinsippskisse av fotonspredning. Forklar symbolene i formelen og skissen. Regn ut Comptonbølgelengden for elektroner. a2) Arthur Holly Compton brukte røntgenstråling med bølgelengde λ = nm. I hvilken vinkel (se Fig. 1) målte han λ = nm? Figur 1: Data fra Comptons eksperiment. Figuren viser antall fotoner som funksjon av bølgelendge i forskjellige spredningsvinkler. a3) Hva skyldes den første toppen til venstre i spektrene? Hvorfor ble det ikke brukt synlig lys i dette eksperimentet? Nøytroners bølgenatur b1) Vi ønsker å studere bølgeegenskapene for termiske nøytroner i likevekt med omgivelsene ved temperatur 25 C. Nøytronenes gjennomsnittlige energi er gitt ved E = 3 2 k BT. Finn gjennomsnittlig energi, bevegelsesmengde og bølgelengde for nøytronene 1. b2) Vi bruker Braggdiffraksjon for å velge ut (filtrere) nøytroner med en bestemt bølgelengde. En avgrenset stråle av nøytronene sendes på skrå ned mot en NaCl-krystalloverflate. Krystallen har krystall-lag med avstand d = 2.82 Å mellom hvert lag. I dette eksperimentet skal vi filtrere ut nøytroner med bølgelengde 1.85 Å. For hvilken innkommende (og utgående) vinkel har disse nøytronene maksimal intensitet? Hvilket område i vinkler kreves for å filtrere ut bølgelengder med spredning mindre enn λ /λ = 10%? 1 Dette skal gjøres enkelt, du slipper å ta hensyn til hvordan enegifordelingen ser ut. Bruk fornuftige enheter. 2
4 Oppgave 2 Radioaktivt α-henfall I denne oppgaven skal vi se på radioaktivt α-henfall ved hjelp av to ulike potensialer. Noen av oppgavene skal løses analytisk, mens andre vil være tilnærmet umulige å løse uten hjelp fra numeriske metoder. Det kan være lurt å studere nærmere kompendiet i programmering skrevet av Benedicte Emilie Brækken og Mari Røysheim (du finner det under ressurser på kursets hjemmeside). Finn selv fram til konstanter som ikke er oppgitt, men som du måtte trenge. Atomkjernen for helium ( 4 He kalles ofte α-partikkel) er spesielt sterkt bundet. Den finnes derfor i rikelige mengder i universet og i vår egen sol. Det som kanskje ikke er så kjent, er at α-partikkelen kan eksistere lenge som en stabil partikkel inne i atomkjernen før den sendes ut. Denne type α-henfall finner vi ofte for tunge atomkjerner som uran og thorium. Halveringstiden T 1/2 for α-henfall avhenger av hvor lett (eller vanskelig) α partikkelen vil kunne trenge gjennom den såkalte Coulomb-barrieren. Ettersom denne barrieren stort sett er den samme for de tunge atomkjernene, så blir α partikkelens energi en viktig parameter for beregning av T 1/2. Den tilhørende tunneleringssannsynligheten kan variere med en faktor opptil mellom atomkjerner med samme antall protoner (isotoper). For eksempel finner vi for thorium-isotopene at 232 Th har T 1/2 = år med E α = 4.08 MeV, mens 218 Th har T 1/2 = s med E α = 9.85 MeV. Vi skal spesielt se på radium som henfaller til radon gjennom reaksjonen 226 Ra 222 Rn + α. Atomkjernen 226 Ra har en halvveringstid på T 1/2 = 1600 år og sender ut en α-partikkel med energi E α = 4.8 MeV. Vi antar at radius til disse tunge kjernene er R = 7.3 fm. Vi forenkler oppgaven ved at vi regner potensialet som en-dimensjonalt. Posisjonen x er dermed et uttrykk for α-partikklelens avstand fra atomkjernens senter. For energi og lengde, anbefaler vi å bruke henholdsvis enheter MeV og fm. a) Vi tilnærmer α-partikkelen ved en Gaussisk bølgepakke med bølgefunksjon Ψ(x, 0) = Ae (x x 0) 2 /4a 2 e ikx (1) ved tiden t = 0. Vis at normeringskonstanten blir A = (1/2πa 2 ) 1/4, og plott Ψ(x, 0) 2 som funksjon av posisjonen. Husk enheter på aksene. Velg konstantene x 0 = 5 fm, a = 1 fm og k = 1.38 fm 1. Hvilken energi har α-partikkelen? b) Vi skal beskrive α partikkelen som fanget i kjernen ved hjelp av en potensialbarriere med høyde V 0. Det vi skal studere er spredningstilstander der partikkelen har energi 0 < E < V 0. Partikkelen er bundet 3
5 av potensialet klassisk sett, men kvantemekanisk kan den tunnelere ut. En første tilnærming til problemet vårt, er potensialet 0 for 0 x < x 1 V (x) = V 0 for x 1 x x 2, (2) 0 for x > x 2 hvor V 0 > 0. Skissér potensialet og skriv ned de generelle løsningene til den tidsuavhengige Schrödingerlikningen i de ulike områdene. Potensialet som er introdusert her, vil bli refert til som potensial 1. c) Vi begynner med å se på hva som skjer med de stasjonære tilstandene til en fri partikkel, som bølgepakken til α-partikkelen er bygget opp av. Gitt potensialbarrieren definert i likn. (2), bruk grensebetingelsene for ψ og dψ/dx til å finne (analytisk) at transmisjonskoeffisienten kan skrives som 1 T (E) = V E(V 0 E) ( x sinh2 2m(V0 E) ). (3) d) Plott T som funksjon av E. Bruk høyde V 0 = 34 MeV, bredde x = x 2 x 1 = 17 fm. Er T (E) størrelsesmessig forenlig med den store relative forskjellen i halveringstid T 1/2 mellom 232 Th og 218 Th? e) Hvilken transmisjonskoeffisient T forventer du for α-henfall av 226 Ra utfra likn. (3)? Gi et grovt overslag over hvor mange ganger (i gjennomsnitt) α-partikkelen må treffe barrieren før den kommer ut. Hvis α-partikkelen har en hastighet på c inne i kjernen, hvor lang tid ville det grovt sett ta før den slipper ut? Sammenlikn denne tiden med oppgitt T 1/2 for 226 Ra. f) I denne oppgaven skal vi bruke potensial 1 til å studere tidsutviklingen til bølgepakken definert i likn. (1) numerisk. La nå tiden begynne å gå, med initialtilstanden til bølgefunksjonen som definert av likn. (1). Gjør en numerisk simulering ved hjelp av Schrödingerlikningen og se hva som skjer dersom du starter α-partikkelen i x 0 = 5 fm ved tiden t = 0. Hvordan oppfører bølgefunksjonen seg som funksjon av tid? Hva skjer når α-partikkelen treffer potensialbarrieren? Her kan det være lurt å animere eller plotte ved forskjellige tidspunkter. Besvarelsen skal inneholde en kvalitativ beskrivelse av bølgefunksjonens tidsutvikling. Hvordan stemmer dette overens med hva du ville forvente for α-henfall? 4
6 Figur 2: Potensial 2. Hint: Bruk initialbølgefunksjonen definert i 2a) og potensialet fra 2b) samt tallverdier som i oppgave 2d). Husk at bølgefunksjonen er veldig liten på utsiden av potensialet (på høyresiden) og at du må finne en måte å visualisere denne delen av bølgefunksjonen. Vi er ute etter forståelsen og prinsipper. Det kan hende at du må redusere kraftig bredden på kassepotensialet for at koden din skal fungere. Videre er Schrödingerlikningen med spredning mot et bokspotensial nokså utfordrende å løse numerisk! Den vanlige Eulermetoden vil kanskje ikke virke. Vi anbefaler istedet å tenke på likningen som en egenverdilikning med matriser (D + V )ψ = Eψ. Matrisene D og V representerer henholdsvis den andrederiverte og potensialet. Pythonbiblioteket scipy.sparse.linalg inneholder effektive metoder for å løse slike egenverdilikninger. g) Bokspotensialet vi har sett på så langt (potensial 1), er lite realistisk for å beskrive α-henfall. Et kvalitativt mer realistisk potensial (potensial 2) er illustrert i Fig. 2 og er gitt ved { V (x) = 0 for 0 x < R Z αz D k e x for x R. Her er Z α ladningen til α-partikkelen, Z D ladningen til 222 Rn og k e = 1.44 ev nm er Coulomb-konstanten. Hva er den kvalitative forskjellen mellom formen på potensialene? Hvorfor antas potensial 2 å være en bedre fysisk beskrivelse av systemet? Hvordan forventer du kvalitativt at transmisjonskoeffisienten T for potensial 2 forløper/utvikler seg med energien E i forhold til potensial 1? Hva skjer med bølgefunksjonen som funksjon av tid? (4) 5
FYS2140 Hjemmeeksamen Vår Ditt kandidatnummer
FYS2140 Hjemmeeksamen Vår 2016 Ditt kandidatnummer 8. mars 2016 Viktig info: Elektronisk innlevering på devilry med frist fredag 18. mars kl. 16.00. Leveringsfristen er absolutt. Bevarelsen må merkes tydelig
FYS2140 Hjemmeeksamen Vår 2014
FYS2140 Hjemmeeksamen Vår 2014 18. mars 2014 Viktig info: Merk besvarelsen med kandidatnummer, ikke navn! Innleveringsfrist fredag 28. mars kl. 14.30 i skranken på ekspedisjonskontoret. (Ikke oblighylla!)
Løsningsforslag for FYS2140 Kvantemekanikk, Torsdag 16. august 2018
Løsningsforslag for FYS140 Kvantemekanikk, Torsdag 16. august 018 Oppgave 1: Materiens bølgeegenskaper a) De Broglie fikk Nobelprisen i 199 for sin hypotese. Beskriv med noen setninger hva den går ut på.
FYS2140 Kvantefysikk, Oblig 8. Sindre Rannem Bilden, Gruppe 4
FYS240 Kvantefysikk, Oblig 8 Sindre Rannem Bilden, Gruppe 4 9. april 205 Obliger i FYS240 merkes med navn og gruppenummer! Denne obligen dreier seg om partikkel i en endelig brønn. Dere får bruk for Python
Løsningsforslag FYS2140 Hjemmeeksamen Vår 2015
Løsningsforslag FYS2140 Hjemmeeksamen Vår 2015 12. mars 2015 Det er i alt mulig på en god dag å få 20 poeng på denne hjemmeeksamen. Noen av oppgavene skal løses numerisk. Kompendiet om programmering, samt
FYS2140 Kvantefysikk, Hjemmeeksamen V Leveringsfrist fredag 20. mars kl.14:45 (før ekspedisjonen stenger!!!)
FYS2140 Kvantefysikk, Hjemmeeksamen V-2009 Leveringsfrist fredag 20. mars kl.14:45 (før ekspedisjonen stenger!!!) 9. mars 2009 Viktig info les: Merk besvarelsen med kandidatnummer, ikke navn! Lever og
FYS2140 Hjemmeeksamen Vår 2014 Løsningsforslag
FYS2140 Hjemmeeksamen Vår 2014 Løsningsforslag 2. april 2014 Viktig info: Merk besvarelsen med kandidatnummer, ikke navn! Innleveringsfrist fredag 28. mars kl. 14.30 i skranken på ekspedisjonskontoret.
Løsningsforslag for FYS2140 Kvantemekanikk, Tirsdag 29. mai 2018
Løsningsforslag for FYS40 Kvantemekanikk, Tirsdag 9. mai 08 Oppgave : Fotoelektrisk effekt Millikan utførte følgende eksperiment: En metallplate ble bestrålt med monokromatisk lys. De utsendte fotoelektronene
FY2045/TFY4250 Kvantemekanikk I, løsning øving 4 1 LØSNING ØVING 4
FY2045/TFY4250 Kvantemekanikk I, løsning øving 4 1 Løsning oppgave 4 1 LØSNING ØVING 4 Elektron i potensial med to δ-funksjoner a En delta-brønn er grensen av en veldig dyp og veldig trang brønn Inne i
Eksamen i fag FY1004 Innføring i kvantemekanikk Fredag 30. mai 2008 Tid: a 0 = 4πǫ 0 h 2 /(e 2 m e ) = 5, m
Side av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Jan Myrheim Telefon: 73 59 36 53 (mobil 90 07 5 7 Sensurfrist: Fredag 0 juni 008 Eksamen
FYS2140 Hjemmeeksamen Vår Kandidat 11
FYS2140 Hjemmeeksamen Vår 2015 Kandidat 11 20. mars 2015 Det er i alt mulig på en god dag å få 20 poeng på denne hjemmeeksamen. Noen av oppgavene skal løses numerisk. Kompendiet om programmering, samt
FYS2140 Kvantefysikk, Oblig 2. Lars Kristian Henriksen Gruppe 3
FYS2140 Kvantefysikk, Oblig 2 Lars Kristian Henriksen Gruppe 3 6. februar 2015 Obliger i FYS2140 merkes med navn og gruppenummer! Denne obligen har oppgaver som tar for seg fotoelektrisk effekt, Comptonspredning
FY1006/TFY4215 Innføring i kvantefysikk - Øving 1 1 ØVING 1. En liten briefing om forventningsverdier, usikkerheter osv
FY16/TFY4215 Innføring i kvantefysikk - Øving 1 1 Frist for innlevering: mandag 28. januar (jf Åre) ØVING 1 En liten briefing om forventningsverdier, usikkerheter osv Eksempel: Terningkast Ved terningkast
FYS2140 Kvantefysikk, Løsningsforslag for Oblig 2
FYS2140 Kvantefysikk, Løsningsforslag for Oblig 2 12. februar 2018 Her finner dere løsningsforslag for Oblig 2 som bestod av Oppgave 2.6, 2.10 og 3.4 fra Kompendiet. Til slutt finner dere også løsningen
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Side Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS4 Kvantefysikk Eksamensdag: 8. juni 5 Tid for eksamen: 9. (4 timer) Oppgavesettet er på fem (5) sider Vedlegg: Ingen
TFY4215 Kjemisk fysikk og kvantemekanikk - Øving 1 1 ØVING 1. En liten briefing om forventningsverdier, usikkerheter osv
TFY4215 Kjemisk fysikk og kvantemekanikk - Øving 1 1 Frist for innlevering: mandag 26. januar ØVING 1 En liten briefing om forventningsverdier, usikkerheter osv Eksempel: Terningkast Ved terningkast er
Eksamen i: FYS145 - Kvantefysikk og relativitetsteori Eksamensdag: Mandag 10. mai 2004, kl. 14.00-17.00 (3 timer)
1 NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi Eksamen i: FYS145 - Kvantefysikk og relativitetsteori Eksamensdag: Mandag 1. mai 24, kl. 14.-17. (3 timer) Tillatte hjelpemidler:
FY2045/TFY4250 Kvantemekanikk I, øving 5 1 ØVING 5
FY045/TFY450 Kvantemekanikk I, 0 - øving 5 ØVING 5 Oppgave 0 α-desintegrasjon α-sdesintegrasjon er en prosess hvor en radioaktiv opphavs -kjerne (parent nucleus) desintegrerer (henfaller) til en datter
Kollokvium 4 Grunnlaget for Schrödingerligningen
Kollokvium 4 Grunnlaget for Scrödingerligningen 10. februar 2016 I dette kollokviet skal vi se litt på grunnlaget for Scrödingerligningen, og på når den er relevant. Den første oppgaven er en diskusjonsoppgave
FYS Kvantefysikk. Magne Guttormsen Kjernefysikk, rom V124,
FYS2140 - Kvantefysikk Magne Guttormsen Kjernefysikk, rom V124, [email protected] Energien er kvantisert! Forelesning 1 FYS2140 - Kvantefysikk 2 Plan for dagen Oppmøte husk å skrive deg på! Praktisk
FYS2140 Kvantefysikk, Oblig 2. Sindre Rannem Bilden, Gruppe 3
FYS2140 Kvantefysikk, Oblig 2 Sindre Rannem Bilden, Gruppe 3 6. februar 2015 Obliger i FYS2140 merkes med navn og gruppenummer! Denne obligen har oppgaver som tar for seg fotoelektrisk eekt, Comptonspredning
5:2 Tre strålingstyper
58 5 Radioaktivitet 5:2 Tre strålingstyper alfa, beta, gamma AKTIVITET Rekkevidden til strålingen Undersøk rekkevidden til gammastråling i luft. Bruk en geigerteller og framstill aktiviteten som funksjon
TUNNELERING. - eit viktig kvantemekanisk fenomen
TUNNELERING - eit viktig kvantemekanisk fenomen Tunnelering Ein kvantemekanisk partikkel kan vere i stand til å passere ein potensialbarriere sjølv om partikkelenergien er mindre enn høgda til barrieren!
5:2 Tre strålingstyper
168 5 Radioaktivitet 5:2 Tre strålingstyper alfa, beta, gamma AKTIVITET Rekkevidden til strålingen Undersøk rekkevidden til gammastråling i luft. Bruk en geigerteller og framstill aktiviteten som funksjon
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Side Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS240 Kvantefysikk Eksamensdag: 3. juni 206 Tid for eksamen: 09.00 4 timer) Oppgavesettet er på fem 5) sider Vedlegg: Ingen
TUNNELERING. - eit viktig kvantemekanisk fenomen
TUNNELERING - eit viktig kvantemekanisk fenomen Tunnelering Ein kvantemekanisk partikkel kan vere i stand til å passere ein potensialbarriere sjølv om partikkelenergien er mindre enn høgda til barrieren!
FYS2140 Kvantefysikk, Oblig 7. Sindre Rannem Bilden, Gruppe 4
FYS214 Kvantefysikk, Oblig 7 Sindre Rannem Bilden, Gruppe 4 11. mars 215 Obliger i FYS214 merkes med navn og gruppenummer! Denne obligen dreier seg om (bølgepakker av fri partikkel tilstander og om såkalte
Oppgave 2 Vi ser på et éndimensjonalt system hvor en av de stasjonære tilstandene ψ(x) er gitt som { 0 for x < 0, ψ(x) = Ne ax (1 e ax (1)
Oppgave Gjør kort rede for hva den fotoelektriske effekt er, hva slags konklusjoner man kunne trekke fra observasjoner av denne i kvantefysikkens fødsel, og beskriv et eksperiment som kan observere og
Løsningsforslag for FYS2140 Kvantefysikk, Mandag 3. juni 2019
Løsningsforslag for FYS210 Kvantefysikk, Mandag 3. juni 201 Oppgave 1: Stern-Gerlach-eksperimentet og atomet Stern-Gerlach-eksperimentet fra 122 var ment å teste Bohrs atommodell om at angulærmomentet
FYS2140 Kvantefysikk, Oblig 3. Sindre Rannem Bilden,Gruppe 4
FYS40 Kvantefysikk, Oblig 3 Sindre Rannem Bilden,Gruppe 4. februar 05 Obliger i FYS40 merkes med navn og gruppenummer! Dette oppgavesettet sveiper innom siste rest av Del I av pensum, med tre oppgaver
EKSAMEN I FY2045 KVANTEFYSIKK Mandag 2. juni 2008 kl
NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 9702355 EKSAMEN I FY2045 KVANTEFYSIKK Mandag
FY1006/TFY4215 Innføring i kvantefysikk Eksamen 9. august 2016 Side 1 av 9
FY1006/TFY4215 Innføring i kvantefysikk Eksamen 9. august 2016 Side 1 av 9 Hver oppgave teller 2.5% 1) Hva er bølgelengden til et foton med energi 100 ev? A) 0.12 nm B) 12 nm C) 0.12 µm D) 12 µm E) 0.12
Løsningsforslag Eksamen 11. august 2010 FY1006/TFY4215 Innføring i kvantefysikk
Eksamen FY1006/TFY4215 11 august 2010 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 11 august 2010 FY1006/TFY4215 Innføring i kvantefysikk a Siden potensialet V (x) er symmetrisk med hensyn på
FYS1120 Elektromagnetisme - Ukesoppgavesett 2
FYS1120 Elektromagnetisme - Ukesoppgavesett 2 7. september 2016 I FYS1120-undervisningen legger vi mer vekt på matematikk og numeriske metoder enn det oppgavene i læreboka gjør. Det gjelder også oppgavene
FYS2140 Kvantefysikk, Oblig 11. Sindre Rannem Bilden og Gruppe 4
FYS2140 Kvantefysikk, Oblig 11 Sindre Rannem Bilden og Gruppe 4 30. april 2015 Obliger i FYS2140 merkes med navn og gruppenummer! Denne obligen er satt sammen av den første delen av eksamen våren 2010
Institutt for fysikk. Eksamensoppgave i TFY4215 Innføring i kvantefysikk
Institutt for fysikk ksamensoppgave i TFY4215 Innføring i kvantefysikk Faglig kontakt under eksamen: Jon ndreas Støvneng (med forbehold om streik) Tlf.: 45 45 55 33 ksamensdato: 30. mai 2018 ksamenstid
A) λ < 434 nm B) λ < 534 nm C) λ < 634 nm D) λ < 734 nm E) λ < 834 nm
TFY4215 Innføring i kvantefysikk Eksamen 9. august 2017 Side 1 av 9 1) Hva er bølgelengden til fotoner med energi 40 mev? A) 31 µm B) 41 µm C) 51 µm D) 61 µm E) 71 µm 2) Hva er impulsen til fotoner med
FYS2140 Kvantefysikk, Obligatorisk oppgave 2. Nicolai Kristen Solheim, Gruppe 2
FYS2140 Kvantefysikk, Obligatorisk oppgave 2 Nicolai Kristen Solheim, Gruppe 2 Obligatorisk oppgave 2 Oppgave 1 a) Vi antar at sola med radius 6.96 10 stråler som et sort legeme. Av denne strålingen mottar
Enkel introduksjon til kvantemekanikken
Kapittel Enkel introduksjon til kvantemekanikken. Kort oppsummering. Elektromagnetiske bølger med bølgelengde og frekvens f opptrer også som partikler eller fotoner med energi E = hf, der h er Plancks
UNIVERSITETET I OSLO
UNIVEITETET I OLO Det matematisk-naturvitenskapelige fakultet Midtveisksamen i: FY1000 Eksamensdag: 17. mars 2016 Tid for eksamen: 15.00-18.00, 3 timer Oppgavesettet er på 6 sider Vedlegg: Formelark (2
TFY4215 Innføring i kvantefysikk - Løsning øving 1 1 LØSNING ØVING 1
TFY425 Innføring i kvantefysikk - Løsning øving Løsning oppgave a. LØSNING ØVING Vi merker oss at sannsynlighetstettheten, Ψ(x, t) 2 = A 2 e 2λ x, er symmetrisk med hensyn på origo. For normeringsintegralet
TFY Løsning øving 5 1 LØSNING ØVING 5. Krumning og stykkevis konstante potensialer
TFY4215 - Løsning øving 5 1 Løsning oppgave 16 LØSNING ØVING 5 Krumning og stykkevis konstante potensialer a. I et område hvor V er konstant (lik V 1 ), og E V 1 er positiv (slik at området er klassisk
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1000 Eksamensdag: 12. juni 2017 Tid for eksamen: 9.00-13.00, 4 timer Oppgavesettet er på 5 sider Vedlegg: Formelark (2 sider).
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: Fys2160 Eksamensdag: Mandag 5. desember 2016 Tid for eksamen: 1430 1830 Oppgavesettet er på: 5 sider Vedlegg: ingen Tilatte hjelpemidler
Figur 1: Skisse av Franck-Hertz eksperimentet. Hentet fra Wikimedia Commons.
Oppgave 1 Franck-Hertz eksperimentet Med utgangspunkt i skissen i figuren under, gi en konsis beskrivelse av Franck-Hertz eksperimentet, dets resultater og betydning for kvantefysikken. [ poeng] Figur
FY6019 Moderne fysikk. Institutt for fysikk, NTNU. Våren Løsningsforslag til øving 4. 2 h
FY609 Moderne fysikk. Institutt for fysikk, NTNU. Våren 07. Løsningsforslag til øving 4. Oppgave : Bundne tilstander i potensialbrønn a) Fra forelesningene (s 60) har vi følgende ligning for bestemmelse
( ) Masse-energiekvivalens
Masse-energiekvivalens NAROM I klassisk mekanikk er det en forutsetning at massen ikke endrer seg i fysiske prosesser. Når vi varmer opp 1 kg vann i en lukket beholder så forutsetter vi at det er fortsatt
FY2045/TFY4250 Kvantemekanikk I, øving 2 1 ØVING 2. nesten en posisjonsegentilstand
FY2045/TFY4250 Kvantemekanikk I, 2012 - øving 2 1 Oppgave 2 1 ØVING 2 nesten en posisjonsegentilstand Vi har sett at en posisjon ikke kan måles med en usikkerhet som er eksakt lik null. Derimot er det
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS14, Kvantefysikk Eksamensdag: 17. august 17 4 timer Lovlige hjelpemidler: Rottmann: Matematisk formelsamling, Øgrim og Lian:
FYS2140 Kvantefysikk, Løsningsforslag Oblig 7
FYS4 Kvantefysikk, Løsningsforslag Oblig 7 4. mars 8 Her finner dere løsningsforslag for Oblig 7 som bestod av Oppgave.,.45 og.46 fra Griffiths, og et løsningsforslag for Oppgave., som var tilleggsoppgave.
UNIVERSITETET I OSLO
Side 1 av 4 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK1110 Eksamensdag: Onsdag 6. juni 2012 Tid for eksamen: Kl. 0900-1300 Oppgavesettet er på 4 sider + formelark
EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Mandag 23. mai 2005 kl
NORSK TEKST Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Margareth Nupen, tel. 7 55 96 42 Ingjald Øverbø, tel. 7 59 18 67, eller 9701255
Kosmos SF. Figurer kapittel 10: Energirik stråling naturlig og menneskeskapt Figur s. 292
Figurer kapittel 10: Energirik stråling naturlig og menneskeskapt Figur s. 292 -partikkel (heliumkjerne) Uran-234 Thorium-230 Radium-226 Radon-222 Polonium-218 Bly-214 Nukleontall (antall protoner og nøytroner)
FYSIKK-OLYMPIADEN
Norsk Fysikklærerforening I samarbeid med Skolelaboratoriet, Fysisk institutt, UiO FYSIKK-OLYMPIADEN 05 06 Andre runde:. februar 06 Skriv øverst: Navn, fødselsdato, e-postadresse og skolens navn Varighet:
FY1006/TFY4215 Innføring i kvantefysikk 26. mai 2016 Side 1 av 3
FY16/TFY4215 Innføring i kvantefysikk 26. mai 216 Side 1 av 3 FLERVALGSOPPGAVER TRENING TIL EKSAMEN En partikkel med masse m beskrives av den stasjonære tilstanden Ψ(x,t) = ψ(x)e iωt, med e ikx + 1 3i
KOSMOS. 10: Energirik stråling naturlig og menneske skapt Figur side 304. Uran er et radioaktivt stoff. Figuren viser nedbryting av isotopen uran-234.
10: Energirik stråling naturlig og menneske skapt Figur side 304 -partikkel (heliumkjerne) Uran-234 Thorium-230 Radium-226 Radon-222 Polonium-218 Bly-214 Nukleontall (antall protoner og nøytroner) Uran
Løysingsframlegg øving 1
FY6/TFY425 Innføring i kvantefysikk Løysingsframlegg øving Oppgåve Middelverdien er x = x Ω X xp (x) = 2 + 2 = 2. (.) Tilsvarande har vi x 2 = x Ω X x 2 P (x) = 2 2 + 2 2 = 2. (.2) Dette gjev variansen
MAT-INF 1100: Obligatorisk oppgave 1
13. september, 2018 MAT-INF 1100: Obligatorisk oppgave 1 Innleveringsfrist: 27/9-2018, kl. 14:30 i Devilry Obligatoriske oppgaver («obliger») er en sentral del av MAT-INF1100 og er utmerket trening i å
Eksamen i fag FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Tid:
Side 1 av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Jan Myrheim Telefon: 73 59 36 53 (mobil 90 07 51 72) Sensurfrist: Tirsdag 12. juni 2007
Kosmos SF. Figurer kapittel 10 Energirik stråling naturlig og menneskeskapt Figur s. 278
Figurer kapittel 10 Energirik stråling naturlig og menneskeskapt Figur s. 278 -partikkel (heliumkjerne) Uran-234 Thorium-230 Radium-228 Radon-222 Polonium-218 Bly-214 Nukleontall (antall protoner og nøytroner)
TFY Løsning øving 6 1 LØSNING ØVING 6. Grunntilstanden i hydrogenlignende atom
TFY45 - Løsning øving 6 Løsning oppgave 8 LØSNING ØVING 6 Grunntilstanden i hydrogenlignende atom a. Vi merker oss først at vinkelderivasjonene i Laplace-operatoren gir null bidrag til ψ, siden ψ(r) ikke
Løsningsforslag Eksamen 26. mai 2008 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY415 6. mai 8 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 6. mai 8 TFY415 Kjemisk fysikk og kvantemekanikk a. Utenfor boksen, hvor V (x) =, er bølgefunksjonen lik null. Kontinuiteten
B.1 Generelle egenskaper til energiegenfunksjoner
TFY4250/FY2045 Tillegg 6 - Generelle egenskaper til energiegenfunksjoner 1 Tillegg 6: Noe av stoffet i dette Tillegget er repetisjon fra Tillegg 3 i TFY4215. B.1 Generelle egenskaper til energiegenfunksjoner
Senter for Nukleærmedisin/PET Haukeland Universitetssykehus
proton Senter for Nukleærmedisin/PET Haukeland Universitetssykehus nøytron Anriket oksygen (O-18) i vann Fysiker Odd Harald Odland (Dr. Scient. kjernefysikk, UiB, 2000) Radioaktivt fluor PET/CT scanner
TFY4215 Innføring i kvantefysikk - Øving 2 1 ØVING 2. Krumningsegenskaper for endimensjonale energiegenfunksjoner
TFY415 Innføring i kvantefysikk - Øving 1 Oppgave 5 ØVING Krumningsegenskaper for endimensjonale energiegenfunksjoner En partikkel med masse m beveger seg i et endimensjonalt potensial V (x). Partikkelen
EKSAMENSOPPGAVE. FYS 2000, Kvantemekanikk Dato: 7. Juni 2017 Klokkeslett: 9:00-13:00 Sted: Tillatte hjelpemidler: rute.
EKSAMENSOPPGAVE Eksamen i: FYS 2000, Kvantemekanikk Dato: 7. Juni 2017 Klokkeslett: 9:00-13:00 Sted: Tillatte hjelpemidler: ett handskrevet A4-ark(2 sider med egne notater, samt K. Rottmann: Matematisk
FY1006/TFY Løysing øving 5 1 LØYSING ØVING 5. Krumning og stykkevis konstante potensial
FY006/TFY45 - Løysing øving 5 Løysing oppgåve LØYSING ØVING 5 Krumning og stykkevis konstante potensial a) I eit område der V er konstant (lik V ), og E V er positiv, er området klassisk tillate og vi
FYS 3710 Biofysikk og Medisinsk Fysikk, 2015
FYS 3710 Biofysikk og Medisinsk Fysikk, 2015 8 Strålingsfysikk stråling del 1 Einar Sagstuen, Fysisk institutt, UiO 13.09.2016 1 13.09.2016 2 William Conrad Röntgen (1845-1923) RØNTGENSTRÅLING oppdages,
EKSAMEN I FAG SIF4065 ATOM- OG MOLEKYLFYSIKK Fakultet for naturvitenskap og teknologi 13. august 2002 Tid:
Side 1 av 5 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Ola Hunderi Tlf.: 93411 EKSAMEN I FAG SIF465 ATOM- OG MOLEKYLFYSIKK Fakultet for naturvitenskap
Kontinuasjonseksamen TFY4215/FY1006 Innføring i kvantemekanikk august 2013
NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Kontinuasjonseksamen TFY45/FY006 Innføring i kvantemekanikk august 03 Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU Telefon:
Hvordan skal vi finne svar på alle spørsmålene?
Hvordan skal vi finne svar på alle spørsmålene? Vi trenger et instrument til å: studere de minste bestanddelene i naturen (partiklene) gjenskape forholdene rett etter at universet ble skapt lære om det
KJM Molekylmodellering
KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO KJM3600 - Molekylmodellering p.1/29 Introduksjon Introduksjon p.2/29 Introduksjon p.3/29 Molekylmodellering Flere navn på moderne teoretisk
Løsningsforslag Eksamen 27. mai 2005 FY2045 Kvantefysikk
Eksamen FY2045 27. mai 2005 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 27. mai 2005 FY2045 Kvantefysikk a. Ifølge den tidsuavhengige Shrödingerligningen, Ĥψ = Eψ, har vi for x < 0 : E = Ĥψ ψ
TFY4215/FY1006 Innføring i kvantefysikk Eksamen 10. juni 2017 Side 1 av 8
TFY4215/FY1006 Innføring i kvantefysikk Eksamen 10. juni 2017 Side 1 av 8 1) Hva er energien til fotoner med bølgelengde 1.0 m? A) 1.2 pev B) 1.2 nev C) 1.2 µev D) 1.2 mev E) 1.2 ev 2) Hva er energien
MEK1100, vår Obligatorisk oppgave 1 av 2. Torsdag 28. februar 2019, klokken 14:30 i Devilry (devilry.ifi.uio.no).
28. februar 2019 Innleveringsfrist MEK1100, vår 2019 Obligatorisk oppgave 1 av 2 Torsdag 28. februar 2019, klokken 14:30 i Devilry (devilry.ifi.uio.no). Instruksjoner Du velger selv om du skriver besvarelsen
FY1006/TFY4215 Innføring i kvantefysikk - Øving 2 1 ØVING 2. Krumningseigenskapar for eindimensjonale energieigenfunksjonar
FY1006/TFY4215 Innføring i kvantefysikk - Øving 2 1 Frist for innlevering: tirsdag 3. februar Oppgave 1 ØVING 2 Krumningseigenskapar for eindimensjonale energieigenfunksjonar Ein partikkel med masse m
MAT-INF 1100: Obligatorisk oppgave 1
22. september, 2016 MAT-INF 1100: Obligatorisk oppgave 1 Innleveringsfrist: 6/10-2016, kl. 14:30 i Devilry Obligatoriske oppgaver («obliger») er en sentral del av MAT-INF1100 og er utmerket trening i å
FYS1120 Elektromagnetisme, Ukesoppgavesett 1
FYS1120 Elektromagnetisme, Ukesoppgavesett 1 22. august 2016 I FYS1120-undervisningen legg vi mer vekt på matematikk og numeriske metoder enn det oppgavene i læreboka gjør. Det gjelder også oppgavene som
FY mai 2017 Side 1 av 6
FY6019 31. mai 2017 Side 1 av 6 Oppgave 1. Bohrmodellen. (Poeng: 10) I Bohrs modell for hydrogenatomet antar man at elektronet går i sirkelbane rundt kjernen, med kvantisert dreieimpuls, L = L = rmv =
FYS 3710 Biofysikk og Medisinsk Fysikk, Strålingsfysikk /kjemi stråling del 2
FYS 3710 Biofysikk og Medisinsk Fysikk, 2017 9 Strålingsfysikk /kjemi stråling del 2 Einar Sagstuen, Fysisk institutt, UiO 25.09.2017 1 IONISERENDE STRÅLING Elektromagnetisk Partikkel Direkte ioniserende
EKSAMEN I FY2045 KVANTEFYSIKK Onsdag 30. mai 2007 kl
NORSK TEKST Side av 3 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 97355 EKSAMEN I FY45 KVANTEFYSIKK Onsdag 3.
Kapittel 21 Kjernekjemi
Kapittel 21 Kjernekjemi 1. Radioaktivitet 2. Ulike typer radioaktivitet (i) alfa, α (ii) beta, β (iii) gamma, γ (iv) positron (v) elektron innfangning (vi) avgivelse av nøytron 3. Radioaktiv spaltingsserie
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: Fys216 Eksamensdag: Tirsdag 8. desember 215 Tid for eksamen: 143 183 Oppgavesettet er på: 4 sider Vedlegg: ingen Tilatte hjelpemidler
EKSAMEN I SIF4018 MATEMATISK FYSIKK mandag 28. mai 2001 kl
Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPEIGE UNIVERSITET Institutt for fysikk og Institutt for matematiske fag Faglig kontakt under eksamen: Professor Per Hemmer, tel. 73 59 36 48 Professor Helge Holden,
UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet Deleksamen i: KJM1060 Struktur og spektroskopi Eksamensdag: 14 oktober 2004 Tid for eksamen: kl. 15:00 17:00 Oppgavesettet er på 2sider.
