4. kurskveld: Brøk og geometri

Størrelse: px
Begynne med side:

Download "4. kurskveld: Brøk og geometri"

Transkript

1 4. kurskveld: Brøk og geometri I dag skal vi se på begrepet brøk, regning med brøk, og hvorfor de ulike regnereglene fungerer. Mange har bedre grep om desimaltall fordi regnereglene er lik regnereglene vi har for hele tall. Det er relativt lett å forstå hva en brøk er, men det er vanskeligere med teknikker for å regne med brøk. Regnereglene for brøk er helt annerledes enn dem vi er vant med for heltallene. Det kan være verre å forstå hva et desimaltall er, men regnereglene er kjente. Brøk kommer litt inn på 3. og 4. trinn, og blir mer avansert på mellomtrinnet. Hva er en brøk? Hvorfor trenger vi brøk? Desimaltall er spesialtilfeller av brøk. Vi trenger brøk for å uttykke størrelser/tall mellom 0 og, altså når vi ønsker å regne med deler av hel. En brøk er en eksakt verdi, mens et desimaltall ofte er en tilnærming. Med brøksirkler: hel delt i 3. Hver bit er eksakt /3. Hvis vi skal skrive det med desimaltall blir det 0,333..., og det er ikke eksakt. I dagligtalen bruker vi brøker om hulmål, penger, volum, tid, måling osv. For eksempel ¼ liter, et kvarter osv. Hva er størst, 3 eller 4 2? Vi legger brøksirkel-bitene oppå hverandre og ser. Da kommer det tydelig fram at 4 2 størst.

2 På samme måten ser vi også at 4 2 = 2 Det er veldig viktig at vi innfører skrivemåten samtidig. Da innfører vi notasjonen og symbolbruken på en naturlig måte! Mange elever tror at 4 er større enn 3 fordi 4 er større enn 3. Derfor er det viktig å bruke konkretene for å fysisk se at jo større nevneren er, jo mindre er brøken fordi nevneren forteller hvor mange deler den hele er delt i. 2 + = Legg konkreter og skriv symbolene samtidig! NB! Vi må ikke gå i den fella å droppe konkretene for tidlig! Da vil elevene gjøre feil oftere. Elevene kan godt jobbe samtidig med flere visuelle former og oppdeling av dem. Aktivitet: Legg strikk på geobrettet for å vise 4. Oppgaven var ikke definert nærmere. Skal 4 se lik ut, eller er det arealet vi mener? Løsninger med lik form:

3 Hvis vi ikke tenker lik form finnes flere. Det er nok at det er 4 ruter. Utgangspunktet for denne oppgaven var brøk som del av hel, og hele geobrettet var hel. I denne oppgaven kommer det altså an på om vi mener formen eller størrelsen. Unger blir ikke forvirra av å møte brøk på flere måter. Det er tvert imot viktig at de blir vant med å se at den hele de skal finne brøkdeler av kan variere. Eksempel: Når formen er ulik blir ikke brøkdelen eksakt lenger. Det går for eksempel ikke an å sammenligne av ei lita pære med av ei stor pære. Og det går heller ikke å sammenligne 3 3 en brøkdel av en banan med en brøkdel av ei pære. For at vi skal kunne sammenligne brøker må den hele vi starter med være lik! Øvelse hjemme: Tegn et kvadrat, og be ungene dele det inn i ulike brøkdeler. Se hvordan de tenker, og få dem til å forklare hvordan de tenker. Symboler Det er viktig at barna tidlig blir vant med å se symbolbruken parallelt med bildene vi gir av brøker. 2 Eksempel: Vis at + er mer enn (M ange barn tror at + blir fordi de legger sammen teller + teller, og nevner + nevner. Med brøksirklene er det lett å innse at dette ikke stemmer.) Når nevneren er lik som i dette tilfellet beholder vi nevneren når vi adderer. Vi jobber med biter og må huske hva bitene symboliserer.

4 Likeverdige brøker 2 og Hvorfor er de like? 3 6 Sammenlign og se. Vi deler i dobbelt så mange biter: 2 2 = Regneteknisk betyr dette å gange med. Aktivitet På hvor mange måter kan vi illustrere 3 med brøksirklene?

5 2 + = = = Hver tredel er delt i 4, og vi har 4 av dem Det finnes flere måter å lage 3 på hvis vi tillater at vi kan blande farger. H va med +? Blir det også? Vi setter sammen til en sirkel og ser at vi får en hel. Det er ofte vanskelig å sammenligne brøker med ulik nevner. For å kunne gjøre det må vi finne fellesnevneren. + = = = + = =

6 En må inn se at brøker som skal adderes må ha samme nevner. Ferdighetsmessig kan et interessert barn lære dette teknisk. Spør ungene hvorfor og få dem til å forklare. Still spørsmålet Kan ikke du vise meg? i stedet for å gi dem ei forklaring. Av og til må man gå bakover for å finne ut hva barna eventuelt gjør feil. Hva har de skjønt, og når h ar de mista oversikten? Be dem tegne eller. 3 4 Noen gjør feil på grunn av slurv, andre fordi de vil det skal gå fort å bli ferdig. Eksempel: 4 + Vi må finne en oppdeling som går opp i alle bitene. 3 Bildet til høyre viser at vi har lagt oppå, og at det blir det samme som Kanskje er det 2-deler vi skal bruke da? Hva er fellesnevner, også kalla minste felles multiplum? Vi kan gange sammen alle nevnerne, men da får vi veldig store tall Vi må se på talla og faktorisere. Regn ut: Fordi vi kan gangetabellen ser vi at dette blir 20. Hadde vi multiplisert alle tallene ville vi fått 200 som fellesnevner. 4 = = = = = = D ette er det samme som = 5 4 = 4

7 Fakta om brøker: Ekte brøk: mindre enn Uekte brøk: teller større enn nevner teller(antallet) nevner(benevnelse) 5 = = 4 4 Dette må vi øve på og lage oss huskeregler, men vi må forstå hva vi gjør! Det er fint å kunne forklare på mange ulike måter. Det er en balanse mellom konkreter, symboler og forståelse. Noen ganger lager barn seg teknikker som fungerer noen ganger, men som er feil noen ganger. Multiplikasjon av brøk 3 4 Du tar 3 og deler opp i fire biter. Her ser vi at 3 4 = 2 Samtidig har vi også plassert brøker på tall-linja.

8 Tangram Tangramlegenden For lenge, lenge siden, i det gamle Kina ville Keiseren at tjeneren hans skulle bringe ham et kvadratisk stykke jade. Den uheldige tjeneren mistet det kvadatformede jadestykket så det knuste i sju biter: to store trekanter, en mellomstor trekant, to små trekanter, et parallellogram og et kvadrat. Han var livredd for at Keiseren skulle bli rasende da han oppdaget hva som hadde skjedd, men keiseren ble glad! Han moret seg med å lage figurer av de sju bitene! Aktivitet Beskriv hvordan bitene ser ut. Hva er sammenhengen mellom alle bitene? Hvor mange av de minste trekantene består settet av til sammen? Legg bitene slik at de danner et kvadrat. Svar: Vi trenger 6 biter. Kvadratet: 2 Parallellogrammet: 2 Mellomstor trekant: 2 Stor trekant: 4 Danna av 2 rettvinkla, likebeina trekanter Danna av 2 rettvinkla, likebeina trekanter De to store trekantene er til sammen halvparten av hele kvadratet. Den mellomstore skal i det 4. hjørnet. Ikke si svaret, det er bedre å få noen hint/tips. Det føles godt å mestre! Målinger: lengdemål, areal og volum Hva trenger vi lengdemål til? Still spørsmål som hvor langt er det bort til døra? Mål opp ved å telle antall skritt. Får vi samme svar. Har vi gått med like lange skritt? Har noen målt med museskritt? På denne måten kan vi skape en felles forståelse for at vi behøver noe som er likt for alle. Samtidig kan det gi oss en naturlig anledning til å snakke om meter, desimeter og centimeter. Et målband kan virke uoversiktlig i begynnelsen, det er alt for mange streker der. La heller barna få erfare å bygge meteren. Kapp for eksempel opp lister i meter, og la barna få hver sin. Hvor langt når meteren på kroppen deres? Legg stokkene etter hverandre for å måle opp en avstand. Men hva skjer hvis det ikke blir et helt antall meter? Da må vi dele opp meteren i 0 like store biter. La elevene få sette et merke for hver 0 cm. Det går akkurat 0 ganger!! Da gjør de erfaringen med at det går 0 desimeter på meter. Mal annenhver desimeter rød og hvit. Hvis det ikke går opp med et helt antall desimeter må de dele hver desimeter i 0 like store deler. Dette er centimeter. Det går 0 tiere på hundre. Kanskje vil noen barn telle for å godta dette. Mange lærere spør seg om de har tid til sånt i skolen. Svaret er JA! Elevene får en helt annen følelse med hva de ulike målene, og regningen kommer av seg selv etterpå. Med meterstokken klar kan barna gå ut og gjette avtander, og deretter måle og sjekke. Dette gir erfaringsbasert måling, og den kunnskapen sitter på en helt annen måte.

9 Demonstrasjon Kan også lage meterstokk ved å sette sammen centikuber. Centikubene er cm cm cm. Sett sammen 0 og 0 av samme farge etter hverandre og lag meterstokken på denne måten. Det samme kan man gjøre med multilink, men disse er 2 cm 2 cm 2cm, og derfor trenger vi bare 5 for å lage en desimeter. Areal Å anslå et areal er vanskelig. Hvilken målenhet skal vi bruke til det? Vi kan bruke både sugerør og tau, og erfare hvordan arealet forandrer seg selv om omkretsen er konstant. Et annet ord for areal er flateinnhold. Også her må vi ha et felles mål for å kunne forklare for andre hvor stort arealet er. Aktivitet Legg handa oppå et blankt ruteark og tegn omrisset. Gjett hvor stort arealet er. Legg en transparent med rutenett på cm cm oppå og tell antall ruter. Hvor mange kvadratcentimeter er håndflata? Teg n det rektangelet som passer best til omrisset. Hvis vi tegner et inni vil arealet bli for lite. Hvis vi tenger et utapå vil arealet bli for stor. Det som passer best vil kanskje være et rektangel som av og til stikker litt utafor omrisset og av og til er inni. Vi vil kanskje få noen halvruter også. Tell sammen. Dette er et kvadrat med sider cm. Derfor navnet KVADRATCENTIMETER Geobrettet Vi vet hvordan vi hvordan vi regner arealet av et rektangel. Parallellogrammet er den figuren som ligner mest på rektanglet. Hvordan regner vi arealet av det? Finn et rektangel som er like stort. Konkret oppdrag. Hva er høyden i parallellogrammet?

10 Lager et rektangel: Ser at vi får med en trekant for mye i forhold til parallellogrammet på høyre side, men denne trekanten er like stor som den på venstre side vi ikke får med. Derfor er arealet av parallellogrammet og rektanglet vi har laget like stort. Arealet blir altså grunnlinje høyde, der høyden er avstanden mellom de to parallelle linjene. Rettvinkla trekant Igjen tar vi utgangspunkt i arealet av rektangelet. Ved å bruke geobrettet kan vi lett se at arealet av den rettvinkla trekanten er halvparten av arealet av rektanglet. Vi får derfor: grunnlinje høyde 2 grunnlinje høyde Hva med en ikke-rettvinkla trekant? Er arealet fortsatt? 2 Vi kan lage høyden i trekanten og se at den er satt sammen av 4 trekanter. Vi kan altså dele opp i kjente figurer og finne formelen. Det samme kan vi gjøre med for eksempel trapeset. Hele tiden er det en sammenheng mellom forståelse og ferdigheter. Lekse: Vi legger ut oppgaver om primtallsfaktorisering på nettsidene våre.

På samme måten er de spesielle trekantene likesidet, likebeint, rettvinklet.

På samme måten er de spesielle trekantene likesidet, likebeint, rettvinklet. GEOMETRI GRUNNLEGGENDE GEOMETRI Geometriske former Trekant, firkant, sirkel. - Hva er det? Hvordan ser det ut? Deltakerne fikk i oppdrag å tegne: en firkant, en trekant og en runding. Som forventet, tegnet

Detaljer

Lengdemål, areal og volum

Lengdemål, areal og volum Lengdemål, areal og volum Lengdemål Elever bør tidlig få erfaring med å vurdere ulike avstander og lengdemål. De kommer ofte opp i situasjoner i hverdagen hvor det er en stor ulempe å ikke ha begrep om

Detaljer

Tangram. Astrid Bondø NSMO

Tangram. Astrid Bondø NSMO Tangram Astrid Bondø NSMO T A N G R A M L E G E N D E N For lenge, lenge siden i det gamle Kina ville keiseren at tjeneren hans skulle bringe ham et kvadratisk stykke jade (bergart) Den uheldige tjeneren

Detaljer

Så kaster neste spiller og gjør det samme. Den som kommer nærmest får 1 poeng. Er begge like nært får ingen poeng.

Så kaster neste spiller og gjør det samme. Den som kommer nærmest får 1 poeng. Er begge like nært får ingen poeng. REGNING DE FIRE REGNINGSARTENE: Når tallbegrepet er godt innarbeidet, og elevene forstår posisjonssystemet, begynner arbeidet med de fire regningsartene: sum (+), differens (-), multiplikasjon ( ) og divisjon(:).

Detaljer

Nøkkelspørsmål til eller i etterkant av introduksjonsoppgaven:

Nøkkelspørsmål til eller i etterkant av introduksjonsoppgaven: Areal og omkrets Mange elever forklarer areal ved å si at det er det samme som lengde gange bredde. Disse elevene refererer til en lært formel for areal uten at vi vet om de skjønner at areal er et mål

Detaljer

Årsplan i matematikk 5.klasse 2015/16

Årsplan i matematikk 5.klasse 2015/16 Årsplan i matematikk 5.klasse 2015/16 Emne/Innhold Uke Presisering Læremidler Kompetansemål Hele tall 34- Tall og algebra Multi s. 4-10 Multi 5a Kap 1 39 Bestemme tallverdien til sifrene i tall med opp

Detaljer

ARBEIDSHEFTE I MATEMATIKK

ARBEIDSHEFTE I MATEMATIKK ARBEIDSHEFTE I MATEMATIKK Temahefte nr Hvordan du regner med brøk Detaljerte forklaringer Av Matthias Lorentzen mattegrisenforlag.com Opplysning: Et helt tall er delelig på et annet helt tall hvis svaret

Detaljer

Nøkkelspørsmål: Hvor lang er lengden + bredden i et rektangel sammenlignet med hele omkretsen?

Nøkkelspørsmål: Hvor lang er lengden + bredden i et rektangel sammenlignet med hele omkretsen? Omkrets For å finne omkretsen til en mangekant, må alle sidelengdene summeres. Omkrets måles i lengdeenheter. Elever forklarer ofte at omkrets er det er å måle hvor langt det er rundt en figur. Måleredskaper

Detaljer

NyGIV Regning som grunnleggende ferdighet

NyGIV Regning som grunnleggende ferdighet NyGIV Regning som grunnleggende ferdighet Yrkesfaglærere Hefte med utdelt materiell Tone Elisabeth Bakken 3.april 2014 På denne og neste fire sider er det kopier fra Tangentens oppgavehefte: MATEMATISKE

Detaljer

Prosent. Det går likare no! Svein H. Torkildsen, NSMO

Prosent. Det går likare no! Svein H. Torkildsen, NSMO Prosent Det går likare no! Svein H. Torkildsen, NSMO Enkelt opplegg Gjennomført med ei gruppe svakt presterende elever etter en test som var satt sammen av alle prosentoppgavene i Alle Teller uansett nivå.

Detaljer

Det finnes mange måter og mange hjelpemidler til å illustrere brøk. Ofte brukes sirkelen som symbol på en hel.

Det finnes mange måter og mange hjelpemidler til å illustrere brøk. Ofte brukes sirkelen som symbol på en hel. Brøk Hvis vi spør voksne mennesker som ikke har spesiell interesse for matematikk om hva de syntes var vanskelig i matematikk på skolen, får vi ofte svaret: Brøk. Vår påstand er at hvis innføring av brøk

Detaljer

Uttrykket 2 kaller vi en potens. Eksponenten 3 forteller hvor mange ganger vi skal multiplisere grunntallet 2 med seg selv. Dermed er ) ( 2) 2 2 4

Uttrykket 2 kaller vi en potens. Eksponenten 3 forteller hvor mange ganger vi skal multiplisere grunntallet 2 med seg selv. Dermed er ) ( 2) 2 2 4 9.9 Potenslikninger Uttrykket kaller vi en potens. Eksponenten forteller hvor mange ganger vi skal multiplisere grunntallet med seg selv. Dermed er 8 Når vi skriver 5, betyr det at vi skal multiplisere

Detaljer

FASIT 1-5, ungdomsskole

FASIT 1-5, ungdomsskole FASIT 1-5, ungdomsskole 1. desember: Ved å bruke 91 små terninger kan du få til å bygge akkurat 2 større terninger. Hvor mange små terninger er det i den største av disse? Svar: 64 Tips: Kan ledsages av

Detaljer

Geometri Noen sentrale begrep. Nord-Gudbrandsdalen, Anne-Gunn Svorkmo Astrid Bondø Svein H Torkildsen NSMO

Geometri Noen sentrale begrep. Nord-Gudbrandsdalen, Anne-Gunn Svorkmo Astrid Bondø Svein H Torkildsen NSMO Geometri Noen sentrale begrep Nord-Gudbrandsdalen, 20.-23.10.14 Anne-Gunn Svorkmo Astrid Bondø Svein H Torkildsen NSMO Eksempelundervisning Tema på eksempelundervisningen denne gangen var Geometri, men

Detaljer

99 matematikkspørsma l

99 matematikkspørsma l 99 matematikkspørsma l TALL 1. Hva er et tall? Et tall er symbol for en mengde. Et tall forteller om antallet i en mengde. 5 sauer eller 5 epler eller 5.. 2. Hvilket siffer står på eneplassen i tallet

Detaljer

Fasit og løsningsforslag til Julekalenderen for mellomtrinnet

Fasit og løsningsforslag til Julekalenderen for mellomtrinnet Fasit og løsningsforslag til Julekalenderen for mellomtrinnet 01.12: Svaret er 11 For å få 11 på to terninger kreves en 5er og en 6er. Siden 6 ikke finnes på terningen kan vi altså ikke få 11. 02.12: Dagens

Detaljer

er et er et heltall. For eksempel er 2, 3, 5, 7 og 11 primtall, mens 4 = 2 2, 6 = 2 3 og 15 = 3 5 er det ikke.

er et er et heltall. For eksempel er 2, 3, 5, 7 og 11 primtall, mens 4 = 2 2, 6 = 2 3 og 15 = 3 5 er det ikke. . Primtall og primtallsfaktorisering Definisjon Et primtall p er et heltall, større enn, som ikke er delelig med andre tall enn og seg selv, altså bare delelig med og p (og egentlig også og p) At et tall

Detaljer

RENDALEN KOMMUNE Fagertun skole. Årsplan i matematikk for 7. trinn 2015/16

RENDALEN KOMMUNE Fagertun skole. Årsplan i matematikk for 7. trinn 2015/16 RENDALEN KOMMUNE Fagertun skole Årsplan i matematikk for 7. trinn 2015/16 Lekser: Elevene får hver uke et lekseark som skal gjøres i lekseboka. Dette leksearket er trening på de fire regneartene, samt

Detaljer

Brøk Vi på vindusrekka

Brøk Vi på vindusrekka Brøk Vi på vindusrekka Brøken... 2 Teller og nevner... 3 Uekte brøk... 5 Blanda tall... 6 Desimalbrøk... 8 Pluss/minus... 9 Multiplikasjon... 11 Likeverdige brøker... 12 Utviding... 13 Forkorting... 14

Detaljer

Lag et bilde av geometriske figurer, du også!

Lag et bilde av geometriske figurer, du også! Lag et bilde av geometriske figurer, du også! 6 Geometri 1 MÅL I dette kapitlet skal du lære om firkanter trekanter sammensatte figurer sirkler KOPIERINGSORIGINALER 6.1 Tangram 6.4 Felles problemløsing

Detaljer

Ordliste matematikk. Addere (addisjon) Areal. Divisjon. Addere er å "legge sammen" tall.

Ordliste matematikk. Addere (addisjon) Areal. Divisjon. Addere er å legge sammen tall. Ordliste matematikk Addere (addisjon) Addere er å "legge sammen" tall. Regnetegnet for addisjon er +. 3+4 er en addisjon. Summen er 7. Tallene som adderes kalles ledd. Areal Areal er et mål for hvor stor

Detaljer

Posisjonsystemet FRA A TIL Å

Posisjonsystemet FRA A TIL Å Posisjonsystemet FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til posisjonsystemet P - 2 2 Grunnleggende om posisjonsystemet P - 2 3 Titallsystemet P - 3 4 Posisjonsystemet

Detaljer

Kompetansemål etter 7. årstrinn.

Kompetansemål etter 7. årstrinn. Kompetansemål etter 7. årstrinn. Tall og algebra: 1. Beskrive plassverdisystem for desimaltall, rene med positive og negative hele tall, desimaltall, brøker og prosent, og plassere dem på tallinje. 2.

Detaljer

Årsplan matematikk for 5. trinn Multi

Årsplan matematikk for 5. trinn Multi Årsplan matematikk for 5. trinn Multi Ukenr. Antall uker Kapittel Faktorer som faller på dager / timer med matematikk 34 40 7 1 Hele tall 42 44 3 2 Statistikk 45 49 5 3 Desimaltall 50 3 5 4 Geometri 5

Detaljer

Mer om likninger og ulikheter

Mer om likninger og ulikheter Mer om likninger og ulikheter Studentene skal kunne utføre polynomdivisjon anvende nullpunktsetningen og polynomdivisjon til faktorisering av polynomer benytte polynomdivisjon til å løse likninger av høyere

Detaljer

Årsplan matematikk for 6. trinn Multi

Årsplan matematikk for 6. trinn Multi Årsplan matematikk for 6. trinn Multi Ukenr Antall uker Kapittel Faktorer som faller på dager / timer med matematikk 34 39 6 1 Tall og regning 40 42 2 2 Sannsynlighet 43 48 6 3 Desimaltall 49 1 4 4 Geometri

Detaljer

Sensorveiledning Oppgave 1

Sensorveiledning Oppgave 1 Sensorveiledning Oppgave 1 Figuren er riktig, og kandidaten skisserer en måte å jobbe med dette på som kan fungere for en elev. Figuren eller forklaringen er riktig. Unøyaktigheter ved håndtegning godtas.

Detaljer

ÅRSPLAN I MATEMATIKK FOR 3. KLASSE 2011/12

ÅRSPLAN I MATEMATIKK FOR 3. KLASSE 2011/12 ÅRSPLAN I MATEMATIKK FOR 3. KLASSE 2011/12 UKE TEMA KOMPETANSEMÅL ARBEIDSMÅTER 34 35 Data og statistikk - Å kunne lese av og - søylediagram lage søylediagram og - tabeller tabell - sortering og opptelling

Detaljer

Innledning. Mål. for opplæringen er at eleven skal kunne

Innledning. Mål. for opplæringen er at eleven skal kunne 8 1 Innledning Mål for opplæringen er at eleven skal kunne løse likninger, ulikheter og likningssystemer av første og andre grad og enkle likninger med eksponential- og logaritme funksjoner, både ved regning

Detaljer

Hvorfor blir det tull med tall? - grunnleggende tallforståelse

Hvorfor blir det tull med tall? - grunnleggende tallforståelse Hvorfor blir det tull med tall? - grunnleggende tallforståelse Ny GIV videregående skole Astrid Bondø Svein Hallvard Torkildsen 5-Nov-13 Grunnleggende tallforståelse Mange elever sliter med å klare matematikken

Detaljer

Årsplan 5.trinn Matematikk 2015/16 Lærebok: Multi 5. Vurdering

Årsplan 5.trinn Matematikk 2015/16 Lærebok: Multi 5. Vurdering Årsplan 5.trinn Matematikk 2015/16 Lærebok: Multi 5 Veke Tema Kompetansemål Læringsmål: 34-40 Heile tal Multi 5a s 4-45 42-44 Statistikk s 46-61 -Regne med positive og hele tall. -Bruke, diskutere og utvikle

Detaljer

Tegn speilbildet til hver figur på arbeidsarket. Tegn speilbildet til hver figur på arbeidsarket. Tegn speilbildet til hver figur på arbeidsarket.

Tegn speilbildet til hver figur på arbeidsarket. Tegn speilbildet til hver figur på arbeidsarket. Tegn speilbildet til hver figur på arbeidsarket. 11 Geometri 2 11.13 1 Tegn speilbildet til hver figur på arbeidsarket. 11.14 2 Tegn speilbildet til hver figur på arbeidsarket. 11.15 3 Tegn speilbildet til hver figur på arbeidsarket. 11.1 4 Parallellforskyv

Detaljer

Når tallene varierer.

Når tallene varierer. Når tallene varierer. Innføring i algebra med støtte i konkreter Astrid Bondø Ny GIV, februar/mars 2013 Når tallene varierer Det første variable skritt! Treff 10 Hesteveddeløp Rød og sort (Et Ess i Ermet,

Detaljer

Preken 14. august 2016 13. s i treenighet Kapellan Elisabeth Lund. Tekst: Joh. 15, 13-17

Preken 14. august 2016 13. s i treenighet Kapellan Elisabeth Lund. Tekst: Joh. 15, 13-17 Preken 14. august 2016 13. s i treenighet Kapellan Elisabeth Lund Tekst: Joh. 15, 13-17 I dag har vi fått høre en prekentekst som handler om kjærlighet, om å bli kalt venner og om å bære frukt. Den er

Detaljer

for opplæringen er at eleven skal kunne regne med forhold, prosent, prosentpoeng og vekst faktor

for opplæringen er at eleven skal kunne regne med forhold, prosent, prosentpoeng og vekst faktor 46 2 Forhold og prosent MÅL for opplæringen er at eleven skal kunne regne med forhold, prosent, prosentpoeng og vekst faktor behandle proporsjonale og omvendt proporsjonale størrelser i praktiske sammenhenger

Detaljer

Hvordan kan du skrive det som desimaltall?

Hvordan kan du skrive det som desimaltall? 7 0 av jordoverflaten er vann. Hvordan kan du skrive det som desimaltall? 9 Alle disse tre har samme verdi! Brøk og desimaltall MÅL I dette kapitlet skal du lære om likeverdige brøker multiplikasjon av

Detaljer

Telle i kor med 0,3 fra 0,3 - transkripsjonen av samtalen

Telle i kor med 0,3 fra 0,3 - transkripsjonen av samtalen Telle i kor med 0,3 fra 0,3 - transkripsjonen av samtalen Elevene på 7. trinn sitter i lyttekroken. Olaug er lærer. 1 Olaug I dag skal vi telle i kor med 0, 3 i gangen. Før vi begynner å telle så har jeg

Detaljer

Målark 1. Kapittel 1 God start. Navn: Delmål Kan Må arbeide mer med. TUSEN MILLIONER 6A Målark. Kunne forskjellen på siffer og tall

Målark 1. Kapittel 1 God start. Navn: Delmål Kan Må arbeide mer med. TUSEN MILLIONER 6A Målark. Kunne forskjellen på siffer og tall Målark 1 Kapittel 1 God start Kunne forskjellen på siffer og tall Kunne plassverdiene for hele tall i titallsystemet Kunne plassverdiene for desimaltall Vite hva desimaltegnet betyr Kunne stille opp og

Detaljer

Tyngdekraft og luftmotstand

Tyngdekraft og luftmotstand Tyngdekraft og luftmotstand Dette undervisningsopplegget synliggjør bruken av regning som grunnleggende ferdighet i naturfag. Her blir regning brukt for å studere masse, tyngdekraft og luftmotstand. Opplegget

Detaljer

DIVISJON FRA A TIL Å

DIVISJON FRA A TIL Å DIVISJON FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til divisjon D - 2 2 Å dele er mer enn å dele en pizza D - 3 3 Hva er egentlig divisjon? D - 4 Delingsdivisjon

Detaljer

Kvikkbilde 8 x 6- transkripsjonen av samtalen

Kvikkbilde 8 x 6- transkripsjonen av samtalen Kvikkbilde 8 x 6- transkripsjonen av samtalen Filmen er tatt opp på 6. trinn på Fosslia skole i Stjørdal. Det er første gangen klassen har denne aktiviteten. Etter en kort introduksjon av aktiviteten (se

Detaljer

Kapittel 1. Potensregning

Kapittel 1. Potensregning Kapittel. Potensregning I potensregning skriver vi tall som potenser og forenkler uttrykk som inneholder potenser. Dette kapitlet handler blant annet om: Betydningen av potenser som har negativ eksponent

Detaljer

Hvordan forenkle og hvordan gå i dybden? Gunnar Nordberg Mona Røsseland

Hvordan forenkle og hvordan gå i dybden? Gunnar Nordberg Mona Røsseland Hvordan forenkle og hvordan gå i dybden? Gunnar Nordberg Mona Røsseland multiaden2013 1 Matematikkoppgaver kan være Lette Greie Vanskelige Og samme oppgave kan være på alle tre steder samtidig og i samme

Detaljer

Brøker med samme verdi

Brøker med samme verdi Kapittel 7 Brøk Mål for det du skal lære: regne om mellom blandet tall og uekte brøk forkorte og utvide brøker, finne fellesnevner regne om mellom brøk og desimaltall ordne brøker etter størrelse og plassere

Detaljer

Familiematematikk MATTEPAKKE. 7. Trinn

Familiematematikk MATTEPAKKE. 7. Trinn Familiematematikk MATTEPAKKE 7. Trinn Tangoes: Tangram er basert på et gammelt kinesiske puslespillet med former som kan settes sammen til et bilde eller et mønster. Tangram ble oppfunnet for mange århundrer

Detaljer

5. kurskveld på Ila. Måling, prosentregning og grunnleggende geometri

5. kurskveld på Ila. Måling, prosentregning og grunnleggende geometri 5. kurskveld på Ila. Måling, prosentregning og grunnleggende geometri Målinger finnes naturlig i hverdagen vår. Denne kurskvelden skal vi forsøke å møte de ulike begrepene slik som ungene møter dem og

Detaljer

Areal. Arbeidshefte for lærer

Areal. Arbeidshefte for lærer Arbeidshefte for lærer Areal Mange elever forklarer areal ved å si at det er det samme som lengde gange bredde. Disse elevene gjengir formelen for hvordan man finner arealet av et rektangel i stedet for

Detaljer

Adventskalender. Regning i kunst og håndverk

Adventskalender. Regning i kunst og håndverk Adventskalender Regning i kunst og håndverk Laget av Eskil Braseth (Matematikksenteret) og Ingunn Thorland (Sunnland ungdomsskole) Dette undervisningsopplegget er inspirert av en oppgave hentet fra en

Detaljer

Areal av polygoner med GeoGebra

Areal av polygoner med GeoGebra 1. Vi starter med å lage forskjellige rektangler og kvadrater med følgende arealer: 1 rute, 2 ruter, 3 ruter, 4 ruter, 5 ruter, 6 ruter, 7 ruter, 8 ruter, 9 ruter og 10 ruter 2. Tegn så mange ulike figurer

Detaljer

SKOLEEKSAMEN I. SOS4010 Kvalitativ metode. 19. oktober 2015 4 timer

SKOLEEKSAMEN I. SOS4010 Kvalitativ metode. 19. oktober 2015 4 timer SKOLEEKSAMEN I SOS4010 Kvalitativ metode 19. oktober 2015 4 timer Ingen hjelpemidler, annet enn ordbøker som er kontrollert av SV-infosenter, er tillatt under eksamen. Sensur for eksamen faller 12. november

Detaljer

Familiematematikk MATTEPAKKE. 1. Trinn. May Renate Settemsdal og Ingvill Merete Stedøy

Familiematematikk MATTEPAKKE. 1. Trinn. May Renate Settemsdal og Ingvill Merete Stedøy Familiematematikk MATTEPAKKE 1. Trinn May Renate Settemsdal og Ingvill Merete Stedøy Aktiviteter Hvor mange? Sorter og tell alle tingene som er i kofferten. Hva er det flest av? Hva er det færrest av?

Detaljer

Geometri. Mål. for opplæringen er at eleven skal kunne. bruke formlikhet og pytagorassetningen til beregninger og i praktisk arbeid

Geometri. Mål. for opplæringen er at eleven skal kunne. bruke formlikhet og pytagorassetningen til beregninger og i praktisk arbeid 8 1 Geometri Mål for opplæringen er at eleven skal kunne bruke formlikhet og pytagorassetningen til beregninger og i praktisk arbeid løse praktiske problemer knyttet til lengde, vinkel, areal og volum

Detaljer

2 Likningssett og ulikheter

2 Likningssett og ulikheter Likningssett og ulikheter KATEGORI 1.1 Grafisk løsning av lineære likningssett Oppgave.110 Et lineært likningssett består av likningene for to rette linjer. De to rette linjene er tegnet i koordi natsystemet

Detaljer

Labyrint Introduksjon Scratch Lærerveiledning. Steg 1: Hvordan styre figurer med piltastene

Labyrint Introduksjon Scratch Lærerveiledning. Steg 1: Hvordan styre figurer med piltastene Labyrint Introduksjon Scratch Lærerveiledning Introduksjon I dette spillet vil vi kontrollere en liten utforsker mens hun leter etter skatten gjemt inne i labyrinten. Dessverre er skatten beskyttet av

Detaljer

Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1. Semester: VÅR År: 2016 Eksamenstype: Skriftlig

Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1. Semester: VÅR År: 2016 Eksamenstype: Skriftlig Sensurveiledning Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1 Semester: VÅR År: 2016 Eksamenstype: Skriftlig Oppgave 1 Figuren viser hvordan en nettside forklarer en metode for addisjon og

Detaljer

LOKAL LÆREPLAN Matte Trinn 5

LOKAL LÆREPLAN Matte Trinn 5 LOKAL LÆREPLAN Matte Trinn 5 Gol kommune side 1 Kjennetegn på måloppnåelse Læringsmål Mestringsnivå 1 Mestringsnivå 2 Mestringsnivå 3 Eleven skal kunne: Eleven skal kunne: Eleven skal kunne: Eleven skal

Detaljer

GEOMETRISPILL; former, omkrets og areal.

GEOMETRISPILL; former, omkrets og areal. GEOMETRISPILL; former, omkrets og areal. Utstyr: 1 spillbrett 1 terning 3-5 spillbrikker fyrstikker, eller småpinner med lik tykkelse og lengde geobrett og gummistrikker spørre- og gjørekort rød boks til

Detaljer

GeoGebra U + V (Elevark)

GeoGebra U + V (Elevark) GeoGebra U + V (Elevark) Forberedelser: - Åpne en ny fil i GeoGebra 4.0. - Skjul algebrafelt, inntastingsfelt og akser (fjern hakene under Vis-menyen). - Husk å lese hjelpeteksten på verktøylinja. Oppgave:

Detaljer

Hefte med problemløsingsoppgaver. Ukas nøtt 2008/2009. Tallev Omtveit Nordre Modum ungdomsskole

Hefte med problemløsingsoppgaver. Ukas nøtt 2008/2009. Tallev Omtveit Nordre Modum ungdomsskole Hefte med problemløsingsoppgaver Ukas nøtt 2008/2009 Tallev Omtveit Nordre Modum ungdomsskole 1 Ukas nøtt uke 35 Sett hvert av tallene fra 1-9 i trekanten under, slik at summen langs hver av de tre linjene

Detaljer

S1 Eksamen våren 2009 Løsning

S1 Eksamen våren 2009 Løsning S1 Eksamen, våren 009 Løsning S1 Eksamen våren 009 Løsning Del 1 Oppgave 1 a) Skriv så enkelt som mulig 1) x 1 x 1 x 1 x 1 1 x 1 x 1 x x 1 x 1 x 1 1 x 1 x 1 ) a b 3 a b 3 a 4a b 1 3 4a b 3 b 1 b) Løs likningene

Detaljer

Etter en lang ferie er det en del regneferdigheter vi må friske opp:

Etter en lang ferie er det en del regneferdigheter vi må friske opp: Repetisjonshefte matematikk høsten 7. trinn Navn: Etter en lang ferie er det en del regneferdigheter vi må friske opp: Ganging med store tall s. 2 Deling med store tall s. 2 Brøkregning s. 3 Finne brøkdeler

Detaljer

Læringsmiljø Hadeland. Felles skoleutviklingsprosjekt for Gran, Lunner og Jevnaker. Vurderingsbidrag

Læringsmiljø Hadeland. Felles skoleutviklingsprosjekt for Gran, Lunner og Jevnaker. Vurderingsbidrag Vurderingsbidrag Fag: Norsk Tema: Lesing, skriftlige tekster Trinn: 1.trinn Tidsramme: 1 måned ----------------------------------------------------------------------------- Undervisningsplanlegging Konkretisering

Detaljer

ADDISJON FRA A TIL Å

ADDISJON FRA A TIL Å ADDISJON FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til addisjon 2 2 Grunnleggende om addisjon 3 3 Ulike tenkemåter 4 4 Hjelpemidler i addisjoner 9 4.1 Bruk av tegninger

Detaljer

Reviderte læreplaner konsekvenser for undervisningen?

Reviderte læreplaner konsekvenser for undervisningen? Reviderte læreplaner konsekvenser for undervisningen? Multiaden 2013 Innhold Kompetanse i matematikk Den reviderte læreplanen Hva skal elevene lære? Grunnleggende ferdigheter i matematikk Konsekvenser

Detaljer

7. TRINN MATEMATIKK PERIODEPLAN 3, Uke 2-11

7. TRINN MATEMATIKK PERIODEPLAN 3, Uke 2-11 1 7. TRINN MATEMATIKK PERIODEPLAN 3, Uke 2-11 KOMPETANSEMÅL Måling Mål for opplæringa er at eleven skal kunne: gjere overslag over og måle storleikar for lengd, areal, masse, volum, vinkel og tid, og bruke

Detaljer

Mal for vurderingsbidrag

Mal for vurderingsbidrag Fag: Matematikk Tema:Tegne,måle,regne Trinn:6.kl Tidsramme: 5 uker Mal for vurderingsbidrag Undervisningsplanlegging Kompetansemål Konkretisering Velge høvelege måleeiningar og rekne om mellom ulike måleeiningar.

Detaljer

Kapittel 3 Geometri Mer øving

Kapittel 3 Geometri Mer øving Kapittel 3 Geometri Mer øving Oppgave 1 Utfør disse konstruksjonene. a Konstruer en normal fra en linje til et punkt. Konstruer en normal fra en linje i et punkt på linja. c Konstruer en midtnormal. d

Detaljer

GEOGEBRA. 1 Tegn figurer. Fremgangsmåte: 1 Klikk bort Algebrafeltet.

GEOGEBRA. 1 Tegn figurer. Fremgangsmåte: 1 Klikk bort Algebrafeltet. GEOGEBRA 1 Tegn figurer. 1 Klikk bort Algebrafeltet. 2 Klikk bort Rutenett og Akser. 3 Klikk på tegnet for Mangekant. 4 Velg Regulær Mangekant. Sett av 2 punkter. Du får spørsmål om hvor mange sider. Velg

Detaljer

Årsplan i Matematikk

Årsplan i Matematikk Årsplan i Matematikk Tidspunkt (uke eller mnd) Kompetansemål: (punkter fra K-06) Delmål: Arbeidsmetode: Vurderingsmetode: 5A Kap 1: God start Kunne utvikle og bruke ulike regnemetoder for addisjon og subtraksjon

Detaljer

Familiematematikk MATTEPAKKE 3. Trinn

Familiematematikk MATTEPAKKE 3. Trinn Familiematematikk MATTEPAKKE 3. Trinn May Renate Settemsdal og Ingvill Merete Stedøy Aktiviteter Geobrett Hvor mange forskjellige kvadrater kan du finne? Hvor mange kvadrater av ulik størrelse kan du

Detaljer

PRIMTALL FRA A TIL Å

PRIMTALL FRA A TIL Å PRIMTALL FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til primtall P - 2 2 Grunnleggende om primtall P - 2 3 Hvordan finne et primtall P - 5 Innledning til primtall

Detaljer

Klasseledelse, fag og danning hva med klassesamtalen i matematikk?

Klasseledelse, fag og danning hva med klassesamtalen i matematikk? Klasseledelse, fag og danning hva med klassesamtalen i matematikk? Ida Heiberg Solem og Inger Ulleberg Høgskolen i Oslo og Akershus GFU-skolen 21.01.15 L: Hva tenker du når du tenker et sektordiagram?

Detaljer

Finn volum og overateareal til følgende gurer. Tegn gjerne gurene.

Finn volum og overateareal til følgende gurer. Tegn gjerne gurene. Innlevering FO99A - Matematikk forkurs HIOA Obligatorisk innlevering Innleveringsfrist Fredag oktober 01 kl 1:00 Antall oppgaver: 16 Løsningsforslag 1 Finn volum og overateareal til følgende gurer Tegn

Detaljer

Obligatorisk oppgave i MAT 1100, H-03 Løsningsforslag

Obligatorisk oppgave i MAT 1100, H-03 Løsningsforslag Oppgave : Obligatorisk oppgave i MAT, H- Løsningsforslag a) Vi skal regne ut dx. Substituerer vi u = x, får vi du = x dx. De xex nye grensene er gitt ved u() = = og u() = = 9. Dermed får vi: 9 [ ] 9 xe

Detaljer

Eksamen 1T høsten 2015, løsningsforslag

Eksamen 1T høsten 2015, løsningsforslag Eksamen 1T høsten 015, løsningsforslag Del 1, ingen hjelpemidler Oppgave 1 1,8 10 1 0,0005 = 1,8 10 1 5 10 4 = 1,8 5 10 1+( 4) = 9 10 8 Oppgave Velger addisjonsmetoden Legger sammen ligningene: x + y =

Detaljer

Regelhefte for: Terninger (-9 til 10)

Regelhefte for: Terninger (-9 til 10) Regelhefte for: Terninger (-9 til 10) Trening i tallinje I Vanskelighetsnivå: 3. klasse og oppover. Utstyr:En hvit og en rød spesialterning (-9 til 10). Aktivitet: Spillerne kaster terningene annenhver

Detaljer

Vekst av planteplankton - Skeletonema Costatum

Vekst av planteplankton - Skeletonema Costatum Vekst av planteplankton - Skeletonema Costatum Nivå: 9. klasse Formål: Arbeid med store tall. Bruke matematikk til å beskrive naturfenomen. Program: Regneark Referanse til plan: Tall og algebra Arbeide

Detaljer

Årsplan i Matematikk 7. klasse 2016-2017

Årsplan i Matematikk 7. klasse 2016-2017 Antall timer pr uke: 4 Lærere: Randi Minnesjord Læreverk: Multi 7a og 7b, Gyldendal undervisning Nettstedene: gyldendal.no/multi Moava.org Grunnleggende ferdigheter: Å kunne uttrykke seg muntlig i matematikk

Detaljer

Tetraedere og kuber i gangetabellen

Tetraedere og kuber i gangetabellen Kurt Klungland Tetraedere og kuber i gangetabellen Hvordan det hele begynte? Det husker jeg ikke. Tankene har bare kommet etter hvert som jeg har syslet med objektene, syslet både med hodet og med hendene.

Detaljer

Mønsterkonstruksjon i GIMP.

Mønsterkonstruksjon i GIMP. Mønsterkonstruksjon i GIMP. Av Peter Haakonsen, Høgskolen i Oslo og Akershus 2013 Åpne en ny fil (File-New ) Avhengig av hvordan mønsteret ditt skal se ut, velger du antall pixler i høyde og bredde. Her

Detaljer

Misoppfatninger knyttet til brøk

Misoppfatninger knyttet til brøk Misoppfatninger knyttet til brøk 17.04.18 Olav Dalsegg Tokle, Astrid Bondø og Roberth Åsenhus MATEMATIKKSENTERET, NTNU Innholdsfortegnelse INNLEDNING... 3 NEVNER REPRESENTERER ANTALL DELER - UAVHENGIG

Detaljer

4. TRINN matematikk HØST 2014

4. TRINN matematikk HØST 2014 4. TRINN matematikk HØST 2014 UKE AKTIVITET K06-mål Lokale mål Vurde/ evalue 34 Koordinatsystem 35 et 36 Mer enn tusen 37 og mindre enn 0 38 plassere og beskrive posisjonar i rutenett, på kart og i koordinatsystem,

Detaljer

Lokal læreplan. Lærebok: Gruntall. Læringsstrategi

Lokal læreplan. Lærebok: Gruntall. Læringsstrategi Lokal læreplan Lærebok: Gruntall Antall uker 34-37 Tall -lære de fire regneartene i hele tall, desimaltall og negative tall og i hoderegning og overslagsregning. -lære å bruke lommeregner og regneark -kjenne

Detaljer

Modellering i barnehagen

Modellering i barnehagen Modellering i barnehagen begrepsinnhold begrepsuttrykk ting, kontekst Marit J. Høines på hus, to sider, én spiss øverst, takras tak trekant 3 tre 3 mengde med 3 elementer, 1 + 2, mellom 2 og 4, halvparten

Detaljer

Tangram. Trine S. Forfang

Tangram. Trine S. Forfang Tangram Trine S. Forfang TANGRAM Legenden om jadestykket For omkring 4000 år siden bodde det i Kina en flink håndverker som het Tan. Til ære for keiseren laget han en dag en svært vakker kvadratisk flis

Detaljer

Øvingshefte. Brøk og prosent

Øvingshefte. Brøk og prosent Øvingshefte Matematikk Mellomtrinn Brøk og prosent Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren øvingshefte Matematikk Mellomtrinn Tall tallsystemet vårt Brøk og prosent Seksjon Oppgave.

Detaljer

Forelesning 22 MA0003, Mandag 5/11-2012 Invertible matriser Lay: 2.2

Forelesning 22 MA0003, Mandag 5/11-2012 Invertible matriser Lay: 2.2 Forelesning 22 M0003, Mandag 5/-202 Invertible matriser Lay: 2.2 Invertible matriser og ligningssystemet x b Ligninger på formen ax b, a 0 kan løses ved å dividere med a på begge sider av ligninger, noe

Detaljer

1: Forord. Ressursgruppen for livsnære fellesskap, august 2014 Lise Sæstad Beyene Dagfinn Jensen Marianne Kirkeby

1: Forord. Ressursgruppen for livsnære fellesskap, august 2014 Lise Sæstad Beyene Dagfinn Jensen Marianne Kirkeby Innhold: 1: FORORD (s. 3) 2: DET LIVSNÆRE FELLESSKAPET (s. 4) 2.1 HVORFOR LIVSNÆRE FELLESSKAP? (s. 4) 2.2 HENSIKT (s. 5) 2.3 VERDIER OG MÅL (s. 5) 2.4 BØNN I GRUPPENE HVORFOR ER DETTE SÅ VIKTIG? (s. 6)

Detaljer

ÅRSPLAN I MATEMATIKK FOR 5. TRINN - SKOLEÅRET 2015/2016

ÅRSPLAN I MATEMATIKK FOR 5. TRINN - SKOLEÅRET 2015/2016 ÅRSPLAN I MATEMATIKK FOR 5. TRINN - SKOLEÅRET 2015/2016 Grunnleggjande ferdigheiter Grunnleggjande ferdigheiter er integrerte i kompetansemåla, der dei medverkar til utvikling av og er ein del av fagkompetansen.

Detaljer

Grunnleggende geometri

Grunnleggende geometri Grunnleggende geometri Elevene skal lære navn på og egenskaper ved kjente figurer som kvadrat, rektangel, parallellogram, generelle firkanter, likebeint og likesidet trekant og generelle trekanter. Det

Detaljer

ÅRSPLAN MATEMATIKK 7. TRINN 2016/17

ÅRSPLAN MATEMATIKK 7. TRINN 2016/17 ÅRSPLAN MATEMATIKK 7. TRINN 2016/17 Uke Tema Læringsmål Lærestoff Metoder 34 36 God start Kunne avgjøre hvilken nevner brøken har ut fra oppdeling av helheten Kunne avgjøre hvilken brøk som er størst ut

Detaljer

Praksiseksempel - Bruk av konstruert modelltekst i skriveopplæringen

Praksiseksempel - Bruk av konstruert modelltekst i skriveopplæringen Praksiseksempel - Bruk av konstruert modelltekst i skriveopplæringen Dette undervisningsopplegget handler om bevisstgjøring av formålet og mottakeren, og det bruker en konstruert modelltekst som forbilde

Detaljer

Kengurukonkurransen 2009

Kengurukonkurransen 2009 Kengurukonkurransen 2009 «Et sprang inn i matematikken» Benjamin (6. 8. trinn) Hefte for læreren Kengurukonkurransen 2009 Velkommen til Kengurukonkurransen! I år arrangeres den for femte gang i Norge.

Detaljer

Matematisk julekalender for 5.-7. trinn, 2014

Matematisk julekalender for 5.-7. trinn, 2014 Matematisk julekalender for 5.-7. trinn, 2014 Årets julekalender for 5.-7. trinn består av enten de første 9 eller alle 12 oppgavene som kan løses uavhengig av hverandre. Oppgavene 6 til 12 er delt i to

Detaljer

Addisjon og subtraksjon i fire kategorier

Addisjon og subtraksjon i fire kategorier Mona Røsseland Nasjonalt senter for matematikk i Opplæringen 7-Feb-07 Addisjon og subtraksjon i fire kategorier Problemstillinger som inkluderer addisjon og subtraksjon kan ha svært varierende strukturer.

Detaljer

Faktor terminprøve i matematikk for 9. trinn

Faktor terminprøve i matematikk for 9. trinn Faktor terminprøve i matematikk for 9. trinn Høsten 2013 Bokmål Navn: Gruppe: Prøveinformasjon Prøvetid: 5 timer totalt. Del 1 og Del 2 blir utdelt samtidig. Del 1 skal du levere innen 2 timer. Del 2 skal

Detaljer

Tallet 0,04 kaller vi prosentfaktoren til 4 %. Prosentfaktoren til 7 % er 0,07, og prosentfaktoren til 12,5 % er 0,125.

Tallet 0,04 kaller vi prosentfaktoren til 4 %. Prosentfaktoren til 7 % er 0,07, og prosentfaktoren til 12,5 % er 0,125. Prosentregning Når vi skal regne ut 4 % av 10 000 kr, kan vi regne slik: 10 000 kr 4 = 400 kr 100 Men det er det samme som å regne slik: 10 000 kr 0,04 = 400 kr Tallet 0,04 kaller vi prosentfaktoren til

Detaljer