2 Likningssett og ulikheter
|
|
- Aleksander Didriksen
- 8 år siden
- Visninger:
Transkript
1 Likningssett og ulikheter KATEGORI 1.1 Grafisk løsning av lineære likningssett Oppgave.110 Et lineært likningssett består av likningene for to rette linjer. De to rette linjene er tegnet i koordi natsystemet nedenfor. Finn løsningen av likningssettet y Oppgave.111 Løs likningssettene grafisk og ved hjelp av lommeregneren. y = + 1 y = + y = 1 y = + 5 y = y = + 5 y = y = + 4 Oppgave.11 Hans har kr og bruker 1100 kr av disse pengene hver måned. Grete har kr og sparer i tillegg 400 kr hver måned. Hvor mange penger har Hans og Grete hver etter ett år? Hvor mye penger har Hans og Grete hver etter år? Finn grafisk når Hans og Grete har like mye penger. Hvor mye penger har de da? Løs oppgave c på lommeregneren. 4
2 Oppgave.11 Harry har en stor bil som bruker 1, liter bensin på mila. Bensintanken til denne bilen tar 60 liter. Ronny har en mindre bil som bruker 0,7 liter per mil. Denne bilen har en bensintank som rommer 48 liter. Harry og Ronny fyller opp tanken på samme bensinstasjon og kjører etter hverandre på langtur. Hvor mye bensin har Harry og Ronny igjen etter 15 mil? Finn grafisk når Harry og Ronny har like mye bensin igjen. Bruk lommeregneren til å gjøre oppgave b. Hvor langt kan Harry kjøre før han må fylle bensin igjen, og hvor langt kan Ronny kjøre før han igjen må fylle?. Innsettingsmetoden Oppgave.10 y = + 1 = y 1 + y = 7 y = Oppgave.11 + y = 1 + y = y = 1 y = + y = y = 8 + y = 4 + y = 0 Oppgave.1 Løs likningssettene både ved regning og grafisk. y = 1 y = 4 y = 1 + y = 1 Oppgave.114 Petter selger abonnementer til mobiltelefoner. Han kan nå velge mellom to ulike lønnstilbud: I) En fast månedslønn på kr pluss 5 kr for hvert nytt abonnement han selger. II) En fast månedslønn på kr pluss 50 kr for hvert nytt abonnement han selger. En måned solgte han 64 abonnementer. Hvilket tilbud gir høyest lønn? En annen måned solgte han 98 abonnementer. Hvilket tilbud gir høyest lønn? Forklar at dersom han selger abonnementer, er lønna y i kroner I) y = II) y = Finn grafisk hvor mange abonnementer han må selge for at lønnstilbudene skal være like gode. Hva er lønna da?. Ikke-lineære likningssett Oppgave.10 y = y = 6 y = 1 y = 8 y = y = 5 y 4 = 0 y = 5 Oppgave.11 + y = 4 y = 1 y = + 1 y = 1 44 Sinus S1 > Likningssett og ulikheter
3 Oppgave.1 Løs likningssettet ved regning. y = 1 + y = 8 Rektangelet har sider med lengdene og y. Arealet av rektangelet er 1 cm, og omkretsen er 16 cm. y Oppgave.151 Faktoriser om mulig ved hjelp av nullpunktene Oppgave.15 Finn et andregradsuttrykk som har nullpunktene = og = 9 = 4 og = 5 1) Forklar at likningssettet i oppgave a kan brukes til å finne lengden av sidene i rektangelet. ) Finn lengden av sidene i rektangelet..4 Ulikheter Oppgave.140 > < + < 4 > + 11 Oppgave > + < 7 8 > ( + ) < 0 Oppgave.14 ( 5) ( ) + (1 ) Nullpunkter og faktorisering Oppgave.150 Faktoriser ved hjelp av nullpunktene Forkorting av rasjonale uttrykk Oppgave.160 Faktoriser og forkort Oppgave.161 Faktoriser og forkort Oppgave.16 Regn ut y 7y y Oppgave.16 Faktoriser ved hjelp av den tredje kvadratsetningen og forkort
4 46 46 Oppgave.164 Faktoriser og forkort. Oppgave.165 1) Regn ut ( + ) ) Forkort brøken ) Regn ut ( 5) ) Forkort brøken Oppgave.166 Finn fellesnevneren og trekk sammen a 1 a.7 Andregradsulikheter Oppgave.170 Løs ulikhetene ved bruk av fortegnslinjer. ( 1)( + ) > 0 ( )( + ) < 0 ( + 1) < 0 ( ) > 0 Oppgave.171 Faktoriser uttrykkene og løs ulikhetene. < 0 + > 0 4 > 0 16 < 0 Oppgave.17 Vis at 4 1 = ( + )( 6) Løs ulikheten. 4 1 > 0 Sinus S1 > Likningssett og ulikheter Oppgave.17 Faktoriser andregradsuttrykket + 6 ved hjelp av nullpunktene. Løs ulikheten ved å bruke fortegnslinjer. + 6 < 0 Oppgave.174 Vis at = ( )( + 5) Løs ulikheten > 0 KATEGORI.1 Grafisk løsning av lineære likningssett Oppgave.10 Løs likningssettene grafisk og ved hjelp av lommeregneren. y = + 1 y = + 4 y = + 8 y = 5 + y = 1 y = + 1 y = 1 + y = + 4 Oppgave.11 Hans har kr og bruker 100 kr hver måned. Grete har 8000 kr og sparer 800 kr hver måned. Hvor mye har Hans igjen av pengene sine etter måneder? Hvor mye penger har Grete etter måneder? Finn grafisk når Hans og Grete har like mye penger. Hvor mye har de da?
5 Oppgave.1 Ola kjører på en motorvei i 78 km/h. Kari kjører i 90 km/h på den samme veien. Ved et målepunkt er hun akkurat 1 km bak Ola. 1) Hvor mange kilometer kjører Kari i minuttet? ) Hvor mange kilometer kjører Ola i minuttet? Forklar at t minutter etter at Kari har passert målepunktet har de kjørt s km fra målepunktet, der Kari: s = 1,5t Ola: s = 1 + 1,t Finn grafisk når Kari tar igjen Ola. Hvor langt fra målepunktet er de da?. Innsettingsmetoden Oppgave.0 y = 5 y = 1 + y = 5 + y = 1 Oppgave.4 Løs likningssettet ved regning. y = y = 7 Ved en videregående skole opplyste 1 av jentene og 1 av guttene at de 4 ikke røykte. Det var 7 elever som røykte. På skolen var det 4 flere jenter enn gutter. Hvor mange jenter og hvor mange gutter var det på skolen? Oppgave.5 En videregående skole har en varmdrikkautomat for te og kaffe. En kopp te koster 6 kr, og en kopp kaffe koster 8 kr. En dag var det solgt i alt 58 kopper te og kaffe, og det var akkurat 400 kroner på automaten. Hvor mange kopper te og hvor mange kopper kaffe var det solgt den dagen? Oppgave.1 Løs likningssettene grafisk og ved regning. 6 y = 11 6 y = 8 = 0 + y = 4 Oppgave. Kari og Ola er til sammen 6 år. Om to år er Ola akkurat dobbelt så gammel som Kari. Hvor gamle er de i dag? Oppgave. kg epler og kg appelsiner koster til sammen 68 kr. kg epler og 1 kg appelsiner koster til sammen 60 kr. Hvor mye koster 1 kg epler, og hvor mye koster 1 kg appelsiner? Oppgave.6 Løs likningssettene ved hjelp av lommeregneren. + y = 5 s + 4t = y = s t = y = y =
6 . Ikke-lineære likningssett Oppgave.0 Løs likningssettene. + y = 1 y = + y = y = 8 y = 1 + y = 1 y + 1 = 1 y 1 = Oppgave.1 Tre brødre er til sammen 10 år. To av dem er tvillinger. Differansen mellom produktet av alderen til tvillingene og alderen til broren deres er Finn alderen til de tre brødrene. Oppgave. To kvadrater har til sammen arealet 410. Når vi legger sammen omkretsene av de to kvadratene, får vi 104. Finn sidene i de to kvadratene. Oppgave. Figuren viser en trekantet tomt ABC der vinkelen C er 90. AB er 70 m, og omkretsen av tomta er 168 m. C.4 Ulikheter Oppgave > ( ) < + ( + ) < 5( ) ( 1) (1 ) < + e) ( + 1) (5 ) > 1 ( + ) Oppgave > > > ( 1) e) Oppgave.4 Per har kr på konto og tar ut 740 kr hver måned. Anne har 1 40 kr på konto og setter inn 540 kr hver måned. Vi ser bort fra renter. Når har Anne mer penger enn Per på kontoen? A 70 m y Vis at og y passer i likningssettet + y = y = 98 og løs likningssettet. Finn arealet av tomta. B.5 Nullpunkter og faktorisering Oppgave.50 Faktoriser uttrykkene ved hjelp av nullpunktene. 4 + a + a 15 y + 11y + 8 Oppgave.51 Faktoriser uttrykkene mest mulig t Sinus S1 > Likningssett og ulikheter
7 Oppgave.5 Faktoriser disse uttrykkene hvis det lar seg gjøre t 4 t + 4 s 9 + 6s 7s.6 Forkorting av rasjonale uttrykk Oppgave.60 Regn ut. 1 0y y a b a b 1 ( ) 14 b a 4 4 Oppgave.61 Forkort om mulig brøkene Oppgave.6 Regn ut ( + 1) Oppgave.6 Bestem a slik at brøken kan forkortes. 1 a + a + 8 Oppgave.64 Finn fellesnevneren og trekk sammen Oppgave.65 Faktoriser Finn fellesnevneren og trekk sammen Andregradsulikheter Oppgave.70 4 < 0 ( 1)( ) > < > 0 Oppgave.71 + > < 0 + > < 0 e) 5 15 > + f) < 4 Oppgave.7 Vi kaster en ball rett opp i lufta. Etter t sekunder har ballen høyden h (i meter over utgangspunktet) gitt ved h = 10t 4,9t Når er ballen høyere enn,0 m over utgangspunktet? 49
8 BLANDEDE OPPGAVER Oppgave.00 1) Faktoriser andregradsuttrykket 4 1 ) Faktoriser og forkort brøken ) Faktoriser andregradsuttrykket ) Faktoriser og forkort brøken Oppgave.01 ( 1 4 ) + < 7 ( ) + 1 < ( 1 ) Oppgave.0 Løs likningssettet ved regning. + y = 4 y = 5 Lise og Henrik er foreldrene til Katrine. Til sammen er familien 108 år. Lise er fire år yngre enn Henrik, og Henrik er akkurat tre ganger så gammel som Katrine. Hvor gamle er de enkelte familiemedlemmene? Oppgave.0 Faktoriser andregradsuttrykkene Oppgave.04 Trapeset nedenfor har en omkrets på y 1 Vis at det fører fram til likningssettet + y = y = 7 Løs likningssettet. Oppgave.05 1 ( ) < > 1 5 ( ) 1 0 Oppgave.06 Stian har en stor bil med en bensintank som rommer 60 liter. Ved jevn fart bruker bilen til Stian 1, liter per mil. Jannike har en bil med en bensintank som rommer 48 liter. Ved jevn fart bruker bilen til Jannike 0,8 liter per mil. Stian og Jannike fyller opp bensintanken og kjører etter hverandre på langtur. Forklar at etter mil har de igjen y liter bensin på tanken, der Stian: y = 60 1, Jannike: y = 48 0,8 Finn grafisk når Stian og Jannike har like mye bensin igjen på tankene. Finn grafisk når Stian seinest må fylle bensin, og når Jannike seinest må fylle bensin. 50 Sinus S1 > Likningssett og ulikheter
9 Oppgave.07 De fleste biler slipper ut klimagassen CO. Mengden av gass som slippes ut, er blant annet avhengig av den farten bilen har. For en bestemt bil med farten v km/h er utslippet U(v) av CO, målt i gram per kilometer (g/km), gitt ved U(v) = 0,05v 7,5v + 40 Finn når utslippet er mindre enn 170 g/km ved å løse en ulikhet. Ulikheten skal løses ved regning. Oppgave.08 barn og voksne betaler til sammen 84 kr for bussbilletter. En voksenbillett koster dobbelt så mye som en barnebillett. Hvor mye koster en barnebillett, og hvor mye koster en voksenbillett? Oppgave.09 Bestem a slik at brøken kan forkortes. 4 + a Oppgave.10 Løs likningssettet grafisk og ved regning. y = + 4y = 8 Oppgave.1 Grafen til funksjonen f() = a + b + c skjærer andreaksen i verdien 6. Funksjonsuttrykket til f har dessuten en konstant og to lineære faktorer med disse fortegnslinjene: Løs ulikheten f() < 0. Bestem konstantene a, b og c. Løs om mulig ulikheten f() > 8. Oppgave.14 Løs likningssettet grafisk. y = 4 y = + 5 Hans kjøper,0 kg pærer og 1,0 kg bananer og betaler 57 kr. I den samme forretningen kjøper Grete,0 kg pærer og,5 kg bananer. For dette betaler hun 7 kr. Finn prisen på ett kilogram pærer og prisen på ett kilogram bananer i denne forretningen. 0 Oppgave < 0 4 < 0 10 > > 0 Oppgave.1 Faktoriser andregradsuttrykket + 8 Finn fellesnevneren og trekk sammen
3 Formler, likninger og ulikheter
Formler, likninger og ulikheter KATEGORI 1.1 Likninger Oppgave.110 4 + 4x = x + 8 5x 6 = 4x 5 1 x = x + 1 d) x = x 5 Oppgave.111 x + x = x 4 5x = x 14 x 1 = 4x + 4 d) x + x = 0 Oppgave.11 x = 4x 10 x 8
Detaljer4 Funksjoner og andregradsuttrykk
4 Funksjoner og andregradsuttrkk KATEGORI 1 4.1 Funksjonsbegrepet Oppgave 4.110 Regn ut f (0), f () og f (4) når a) f () = + b) f () = 4 c) f () = + 5 d) f () = 3 3 Oppgave 4.111 f() = + + 1 4 3 1 0 1
Detaljer1 Funksjoner og grafiske løsninger
Oppgaver Funksjoner og grafiske løsninger KATEGORI. Rette linjer Oppgave.0 Vi har gitt likningene for noen rette linjer. Fll ut tabellene og tegn de rette linjene i hvert sitt koordinatsstem. a) = 3 0
DetaljerFunksjoner og andregradsuttrykk
88 4 Funksjoner og andregradsuttrykk Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder løse likninger, ulikheter
Detaljerfor opplæringen er at eleven skal kunne regne med forhold, prosent, prosentpoeng og vekst faktor
46 2 Forhold og prosent MÅL for opplæringen er at eleven skal kunne regne med forhold, prosent, prosentpoeng og vekst faktor behandle proporsjonale og omvendt proporsjonale størrelser i praktiske sammenhenger
DetaljerInnledning. Mål. for opplæringen er at eleven skal kunne
8 1 Innledning Mål for opplæringen er at eleven skal kunne løse likninger, ulikheter og likningssystemer av første og andre grad og enkle likninger med eksponential- og logaritme funksjoner, både ved regning
DetaljerMer om likninger og ulikheter
Mer om likninger og ulikheter Studentene skal kunne utføre polynomdivisjon anvende nullpunktsetningen og polynomdivisjon til faktorisering av polynomer benytte polynomdivisjon til å løse likninger av høyere
DetaljerFasit til øvingshefte
Fasit til øvingshefte Matematikk Ungdomstrinn/VGS Ligninger Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren fasit Matematikk U-trinn/VGS Ligninger 1 Ligninger Seksjon 1 Oppgave 1.1 Skriv tallet
DetaljerFunksjoner og andregradsuttrykk
4 110 Funksjoner og andregradsuttrykk Studentene skal kunne benytte begrepet funksjoner og angi definisjonsmengde og verdimengde til funksjoner regne med lineære funksjoner og andregradsfunksjoner og bestemme
DetaljerUttrykket 2 kaller vi en potens. Eksponenten 3 forteller hvor mange ganger vi skal multiplisere grunntallet 2 med seg selv. Dermed er ) ( 2) 2 2 4
9.9 Potenslikninger Uttrykket kaller vi en potens. Eksponenten forteller hvor mange ganger vi skal multiplisere grunntallet med seg selv. Dermed er 8 Når vi skriver 5, betyr det at vi skal multiplisere
DetaljerS1 Eksamen våren 2009 Løsning
S1 Eksamen, våren 009 Løsning S1 Eksamen våren 009 Løsning Del 1 Oppgave 1 a) Skriv så enkelt som mulig 1) x 1 x 1 x 1 x 1 1 x 1 x 1 x x 1 x 1 x 1 1 x 1 x 1 ) a b 3 a b 3 a 4a b 1 3 4a b 3 b 1 b) Løs likningene
DetaljerEksempeloppgave eksamen 1P-Y våren 2016
Eksempeloppgave eksamen 1P-Y våren 2016 DEL 1 Uten hjelpemidler Tid: 1,5 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 Skriv disse tallene
Detaljerc) 6 c) x
FASIT.0 7 7 7 7. [0, 7 7 C, 7 7 7 7, ] 7 C, 7. 7 7, 0 7 7 C, ] [ C, 7 7 7, 7. 7 7 7 7 e) 7 f) 7.0 8 80 C. C 78. C0 C 0.. 7 C.0. 8... _ 8 _. C _ 0 8 7 7 0 _..7.8.0. 0 C. + _ 8 C 0 C C 0 C.0 8. C8. 7 C.....7
Detaljer1 Tall og enheter KATEGORI 1. 1.1 Regnerekkefølge. 1.2 Hoderegning og overslagsregning. 198 Sinus 1YP > Tall og enheter
1 Tall og enheter KATEGORI 1 1.1 Regnerekkefølge Oppgave 1.110 7 8 9 6 ( ) 6 7 ( 9) Oppgave 1.111 2 3 8 3 2 ( 2) 3 + 8 ( 3) ( 4) + 2 Oppgave 1.112 3 6 + 2 3 6 + 2 4 7 8 6 e) 4 3 + 3 f) 3 6 4 Oppgave 1.113
DetaljerSinus 1TIP. Matematikk for teknikk og industriell produksjon. Bokmål. Tore Oldervoll Odd Orskaug Audhild Vaaje Finn Hanisch
Tore Oldervoll Odd Orskaug Audhild Vaaje Finn Hanisch Sinus 1TIP Matematikk for teknikk og industriell produksjon Yrkesfaglig utdanningsprogram Bokmål CAPPELEN 8 1 Tall og tallregning Mål for opplæringen
DetaljerLøsning del 1 utrinn Vår 13
/5/06 Løsning del utrinn Vår - matematikk.net Løsning del utrinn Vår Contents DEL Ingen hjelpemiddler Oppgave 9 + 576 = 868 95 8 = 56 c) d) 06 : = 0 Oppgave 8 min = timer og 8 minutter. 8hg = 0,8 kg c)
DetaljerTerminprøve i matematikk for 9. trinn
Terminprøve i matematikk for 9. trinn Høsten 2015 Navn: Klasse: Prøveinformasjon Prøvetid: 5 timer totalt. Del 1 og Del 2 blir utdelt samtidig. Del 1 skal du levere innen 2 timer - senest kl. 11.00 Del
DetaljerEksamen våren Fag: MAT1006 Matematikk 1T-Y. Eksamensdato: Tirsdag 13. mai Kunnskapsløftet. Videregående trinn 1.
Eksamensoppgave for følgende fylker: Akershus, Oslo, Buskerud, Vestfold, Østfold, Oppland, Hedmark, Telemark, Aust-Agder, Vest-Agder, Rogaland, Hordaland, Sogn og Fjordane Eksamen våren 014 Fag: MAT1006
DetaljerTerminprøve Sigma 1T Våren 2008 m a t e m a t i k k
Terminprøve Sigma 1T Våren 2008 Prøvetid 5 klokketimer for Del 1 og Del 2 til sammen. Vi anbefaler at du ikke bruker mer enn to klokketimer på Del 1. Du må levere inn Del 1 før du tar fram hjelpemidler.
DetaljerDEL 1. Uten hjelpemidler. 1) Deriver funksjonen. b) Skriv så enkelt som mulig. d) Skriv så enkelt som mulig
DEL 1 Uten hjelpemidler Oppgave 1 (18 poeng) a) Vi har funksjonen 3 f( x) = x 5 x+ 1) Deriver funksjonen. ) Bestem f (1). Hva forteller svaret deg om grafen til f? b) Skriv så enkelt som mulig 3 x x+ 4
DetaljerEksamen 1T høsten 2015, løsningsforslag
Eksamen 1T høsten 015, løsningsforslag Del 1, ingen hjelpemidler Oppgave 1 1,8 10 1 0,0005 = 1,8 10 1 5 10 4 = 1,8 5 10 1+( 4) = 9 10 8 Oppgave Velger addisjonsmetoden Legger sammen ligningene: x + y =
DetaljerOversikt over aktuelle temaer til matematikkprøve onsdag 28. november
Oversikt over aktuelle temaer til matematikkprøve onsdag 28. november 1. Algebra 1.1 Innsetting av tallverdier i bokstavuttrykk Eksempel 1: Sett inn a = 2 og regn ut verdien til uttrykket 4a 3 4a 3 = 4
DetaljerHjemmearbeid matematikk eksamensklassen Ark 23 Leveres mandag 27. januar 2014 3 (10 (-4) 9 + 1) = 3 (10 + 36 + 1) = 3 47 = -44
Hjemmearbeid matematikk eksamensklassen Ark 23 Leveres mandag 27. januar 2014 Løsningsforslag Oppgave 1. Regn ut. a) 8 + 3 (2 6) + 16 : 2 = 8 + 3 (-4) + 8 = 8 12 + 8 = 4 b) + - = 4 + 5 10 = -1 c) 5 + 5
DetaljerFaktor terminprøve i matematikk for 9. trinn
Faktor terminprøve i matematikk for 9. trinn Høsten 2013 Bokmål Navn: Gruppe: Prøveinformasjon Prøvetid: 5 timer totalt. Del 1 og Del 2 blir utdelt samtidig. Del 1 skal du levere innen 2 timer. Del 2 skal
DetaljerTerminprøve i matematikk for 8. trinn
Terminprøve i matematikk for 8. trinn Høsten 2005 bokmål Til noen av oppgavene skal du bruke opplysninger fra informasjonsheftet. Disse oppgavene er merket med dette symbolet: DELPRØVE 1 Maks. poengsum:
DetaljerEksamen S2 vår 2009 Del 1
Eksamen S2 vår 2009 Del 1 Oppgave 1 a) Deriver funksjonene: 1) f x x 2 1x 2 1 2 2x 2) gx x e b) 1) Gitt rekka2 468 Finn ledd nummer 20 og summen av de 20 første leddene 1 1 2) Gitt den uendelige rekka
DetaljerGenerell trigonometri
7 Generell trigonometri 7.1 et utvidede vinkelbegrepet Oppgave 7.110 Tegn vinklene i grunnstilling. a) 30 b) 120 c) 210 d) 300 Oppgave 7.111 Tegn vinklene i grunnstilling. a) 45 b) 360 c) 540 d) 720 Oppgave
Detaljer2 Prosent og eksponentiell vekst
2 Prosent og eksponentiell vekst 196 KATEGORI 1 2.1 Prosentfaktorer Oppgave 2.110 Finn prosentfaktoren til a) 18 % b) 60 % c) 11 % d) 99 % e) 49 % f) 1 % Oppgave 2.111 Finn prosenten når prosentfaktoren
DetaljerTest, 1 Tall og algebra
Test, 1 Tall og algebra Innhold 1.1 Tallregning... 1. Potenser... 5 1.3 Algebraiske uttrykk... 8 1.4 Likninger... 10 1.5 Faktorisering... 14 1.6 Andregradslikninger... 17 1.7 Faktorisering av andregradsuttrykk
DetaljerHvordan forenkle og hvordan gå i dybden? Gunnar Nordberg Mona Røsseland
Hvordan forenkle og hvordan gå i dybden? Gunnar Nordberg Mona Røsseland multiaden2013 1 Matematikkoppgaver kan være Lette Greie Vanskelige Og samme oppgave kan være på alle tre steder samtidig og i samme
DetaljerEksamen 20.05.2011. MAT0010 Matematikk 10. årstrinn (Elever) Del 1. Del 1 + ark fra Del 2. Bokmål
Eksamen 0.05.011 MAT0010 Matematikk 10. årstrinn (Elever) Del 1 Skole: Kandidatnr.: Del 1 + ark fra Del Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Framgangsmåte og forklaring:
DetaljerMatematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold
1 Matematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold 1 Regning med positive og negative tall 2 Regnerekkefølge og parenteser 3 Potenser 4 Algebra 5 Brøkregning 6 Ligninger 7 Ulikheter
DetaljerEksamen vår 2009 Løsning Del 1
S Eksamen, våren 009 Løsning Eksamen vår 009 Løsning Del Oppgave a) Deriver funksjonene: ) f f f 3 3 f f 4 ) g e 3 g e g e e g e b) ) Gitt rekka 468 Finn ledd nummer 0 og summen av de 0 første leddene.
Detaljer4 Grafer og funksjoner
Grafer og funksjoner Kategori. Rette linjer Oppgave.0 Vi har gitt likningene for noen rette linjer. Fll ut tabellene og tegn de rette linjene i hvert sitt koordinatsstem. a) = 0 b) = + 0 c) = 0 d) = +
DetaljerTallregning og algebra
30 Tallregning og algebra Mål for opplæringen er at eleven skal kunne tolke, bearbeide og vurdere det matematiske innholdet i ulike tekster bruke matematiske metoder og hjelpemidler til å løse problemer
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (2 poeng) I en klasse er det 20 elever. Nedenfor ser du hvor mange dager hver av elevene var borte fra skolen i løpet av skoleåret. 0 3 2 7 2 0 0 11 4 3 28 1 0 3 2 1 1
DetaljerEksamen S1 vår 2011 DEL 1. Uten hjelpemidler. Oppgave f x x. f x x. x x. S1 Eksamen våren 2011, Løsning MATEMATIKK
S Eksamen våren 0, Løsning Eksamen S vår 0 DEL Uten hjelpemidler Oppgave a) Vi har funksjonen f x x 3 x 5 ) Deriver funksjonen. f x x 3 3 5 f x x 6 5 ) Bestem f. Hva forteller svaret deg om grafen til
DetaljerFormler og likninger
36 Formler og likninger Mål for opplæringen er at eleven skal kunne tolke, bearbeide og vurdere det matematiske innholdet i ulike tekster bruke matematiske metoder og hjelpemidler til å løse problemer
DetaljerNASJONALE PRØVER. Matematikk 10. trinn delprøve 2. Skolenr. Elevnr. Oppgaver som kan løses ved hjelp av lommeregner. Tid: 90 minutter.
Bokmål Skolenr. Elevnr. NASJONALE PRØVER Matematikk 10. trinn delprøve 2 Tid: 90 minutter 15. april 2004 Gutt Jente Oppgaver som kan løses ved hjelp av lommeregner. Tillatte hjelpemidler: lommeregner,
DetaljerFormler og likninger
30 2 Formler og likninger Mål for opplæringen er at eleven skal kunne tolke, bearbeide og vurdere det matematiske innholdet i ulike tekster bruke matematiske metoder og hjelpemidler til å løse problemer
DetaljerFasit. Innhold. Tall og algebra Vg1T
Tall og algebra VgT Fasit Innhold Innhold.... Tallregning... 3 Tall og tallmengder... 3 Regningsarter... 4 Å regne med negative tall... 5 Addisjon og subtraksjon av brøker... 5 Multiplikasjon og divisjon
DetaljerFaktor terminprøve i matematikk for 9. trinn
Faktor terminprøve i matematikk for 9. trinn Våren 2009 bokmål Navn: Gruppe: Informasjon Oppgavesettet består av to deler der alle oppgaver skal besvares. Del 1 og del 2 blir utdelt samtidig, men del 1
DetaljerEksamen MAT 1011 Matematikk 1P Va ren 2014
Eksamen MAT 1011 Matematikk 1P Va ren 2014 Oppgave 1 (1 poeng) En hustegning har målestokk 1 : 50 På tegningen er en dør plassert 6 mm feil. Hvor stor vil denne feilen bli i virkeligheten når huset bygges?
DetaljerEksamen R1 Høsten 2013
Eksamen R1 Høsten 013 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene f x e a) 3 x b) gx x ln3x c) hx x
DetaljerEksempeloppgave 1T, Høsten 2009
Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne
DetaljerFaktor. Terminprøve i matematikk for 9. trinn. Våren 2008 bokmål. Delprøve 1. Navn:
Faktor Terminprøve i matematikk for 9. trinn Våren 2008 bokmål Navn: Oppgavesettet består av tre deler som alle skal besvares. Bruk blyant på figurer og konstruksjoner - ellers bruker du sort eller blå
DetaljerI butikk A koster druene 100 kroner. (Du betaler for to beger = en kg, og får siste beger "gratis").
1P 2012 høst LØSNING DEL EN Oppgave 1 Butikk A : I butikk A koster druene 100 kroner. (Du betaler for to beger = en kg, og får siste beger "gratis"). Butikk B: Oppgave 2 I butikk B koster druene 10 kr.
DetaljerTerminprøve i matematikk for 8. trinn
Terminprøve i matematikk for 8. trinn Høsten 2006 bokmål Til noen av oppgavene skal du bruke opplysninger fra informasjonsheftet. Disse oppgavene er merket med dette symbolet: Navn: DELPRØVE 1 Maks. poengsum:
DetaljerLøsning eksamen 1P våren 2010
Løsning eksamen 1P våren 2010 Oppgave 1 a) Prisen for diesel er 10,91 kr. Hvis Liv hadde fylt diesel, hadde prisen for 41,5 l vært mindre enn 11 kr 42 = 462 kr Det stemmer ikke i det hun betalte 509, 62
DetaljerDEL 1 (Uten hjelpemidler, leveres etter 3 timer) 3(a + 1) 4(1 a) (6a 1) = 3a + 3 4 + 4a 6a + 1
HELDAGSPRØVE I MATEMATIKK 1T HØST DEL 1 (Uten hjelpemidler, leveres etter 3 timer) Oppgave 1. Trekk sammen uttrykkene: a) 3(a + 1) 4(1 a) (6a 1) 3(a + 1) 4(1 a) (6a 1) = 3a + 3 4 + 4a 6a + 1 = a. b) 1
DetaljerEksamen MAT1005 Matematikk 2P-Y Va ren 2015
Eksamen MAT1005 Matematikk 2P-Y Va ren 2015 Oppgave 1 (2 poeng) Dag Temperatur Mandag 4 C Tirsdag 10 C Onsdag 12 C Torsdag 5 C Fredag 6 C Lørdag Tabellen ovenfor viser hvordan temperaturen har variert
DetaljerLøsningsforslag heldagsprøve 1T 19.05.2011 DEL 1 OPPGAVE 1. a1) Regn ut 10 8 2 2 3 2 2 3 10 8 2 2 3 2 2 3 10 8 2 2 1 10 32 22 22.
c) Løs likningen 6 4 x 4 x 6 4 x 4 x Løsningsforslag heldagsprøve 1T 19.05.011 DEL 1 OPPGAVE 1 a1) Regn ut 10 8 3 3 10 8 3 3 10 8 1 10 3 a) 3 5 4 5 3 5 5 4 5 3 5 5 3 5 5 4 5 1 3 5 1 5 1 1 3 1 5 1 3 3 5
DetaljerEksamen 19.05.2014. Del 1. MAT0010 Matematikk. Del 1 + ark fra Del 2. Bokmål
Eksamen 19.05.2014 MAT0010 Matematikk Del 1 Skole: Bokmål Kandidatnr.: Del 1 + ark fra Del 2 Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Framgangsmåte og forklaring: 5 timer totalt.
DetaljerForord. Molde, august 2011. Per Kristian Rekdal. Copyright c Høyskolen i Molde, 2011.
1 13. august 011 Forord Høgskolen i Molde gjennomfører forkurs i matematikk for studenter som har svakt grunnlag i dette faget, eller som ønsker å friske opp gamle kunnskaper. Formål: Målet med forkurset
DetaljerOppgave 1. Del A. (i) Skriv de to desimaltallene 0, 7 og 3, 12 som vanlig brøk og forkort hvis mulig. som desimaltall. 3x 6
Oppgave 1 (i) Skriv de to desimaltallene 0, 7 og 3, 12 som vanlig brøk og forkort hvis mulig. (ii) Skriv 314 100 og 4 5 (iii) Forkort brøkene som desimaltall. 12 15 og 3x 6 9x. (iv) Sorter disse seks tallene
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Tenk deg at du har et spann med 8 L maling. Du vil helle malingen over i mindre bokser. I hver boks er det plass til 2 3 L. Hvor mange bokser trenger du? Oppgave
DetaljerEksamen MAT1013 Matematikk 1T Høsten 2014
Eksamen MAT03 Matematikk T Høsten 04 Oppgave ( poeng) Regn ut og skriv svaret på standardform 50000000000,0005 Oppgave ( poeng) Løs likningen 6 Oppgave 3 ( poeng) Løs likningen lg( 3) 0 Oppgave 4 ( poeng)
DetaljerEksamen S1 høsten 2014
Eksamen S1 høsten 2014 Tid: 2 timer Hjelpemiddel: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (3 poeng) Løs likningene a) 2x 10 xx 5 b) x lg 3 5 2 Oppgave 2 (1 poeng)
DetaljerForhold og prosent KATEGORI 1. 2.1 Brøkdelen av et tall. Oppgave 2.113 Guri og Petter skal dele 4200 kr. Guri skal ha. av pengene og Petter resten.
2 Forhold og prosent KATEGORI 1 2.1 Brøkdelen av et tall Oppgave 2.110 Regn ut. 1 3 av 3 b) 2 av 20 5 c) 1 6 av 24 d) 2 7 av 35 Oppgave 2.111 Regn ut. 2 3 av 450 kr b) 4 av 15 km 5 c) 3 7 av 14 kg Oppgave
DetaljerGrafer og funksjoner
14 4 Grafer og funksjoner Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder omforme en praktisk problemstilling
DetaljerDEL 1 Uten hjelpemidler
DEL Uten hjelpemidler Oppgave ( poeng) Regn ut og skriv svaret på standardform 5000000000 0,0005 Oppgave ( poeng) Løs likningen 6 Oppgave 3 ( poeng) Løs likningen lg( 3) 0 Oppgave 4 ( poeng) Løs ulikheten
DetaljerOppgave 6. Tabellen nedenfor viser folketallet i en by fra 1960 til 2010. 1960 1970 1980 1990 2000 2010 35 000 41 000 43 000 47 000 48 000 56 000
GS3 Forberedelse til tentamen. Ark 38 Løsninger deles ut fredag 19. april. Oppgave 1. Løs ligningene og ulikhetene. a) + = 3 b) 3x > -9 6 (x + 3) c) 3 (x - ) = 2 - d) 3x < - (1 - ) Oppgave 2. Løs ligningssettet.
DetaljerFaktor terminprøve i matematikk for 8. trinn
Faktor terminprøve i matematikk for 8. trinn Høst 2009 bokmål Navn: Gruppe: Informasjon Oppgavesettet består av to deler hvor alle oppgaver skal besvares. Del 1 og del 2 blir utdelt samtidig, men del 1
DetaljerEksamen MAT1013 Matematikk 1T Våren 2012
Eksamen MAT1013 Matematikk 1T Våren 01 DEL 1 Uten hjelpemidler Oppgave 1 (18 poeng) a) Regn ut 1) 8 33 10 1 833 8 694 1 ) 1 9 3 3 1 3 3 3 33 3 3 3 6 6 3 3 1 3 6 4 3 3 81 b) Regn ut og skriv svaret på standardform
DetaljerEksamen 20.05.2011. MAT0010 Matematikk 10. årstrinn (Elever) Del 1. http://eksamensarkiv.net/ Del 1 + ark fra Del 2. Bokmål
Eksamen 20.05.2011 MAT0010 Matematikk 10. årstrinn (Elever) Del 1 Skole: Kandidatnr.: Del 1 + ark fra Del 2 Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Framgangsmåte og forklaring:
DetaljerLøsningsforslag eksamen 1T våren 2010 DEL 1. Oppgave 1. a) Funksjonen f er gitt ved f x 2x 3. Tegn grafen og finn nullpunktene for f f x 2x 3 Grafen
Løsningsforslag eksamen T våren 00 DEL Oppgave a) Funksjonen f er gitt ved f 3. Tegn grafen og finn nullpunktene for f f 3 Grafen y 0 8 6 4-4 -3 - - 3 4 - -4 Nullpunkt 3 0 3 Nullpunkt når 3 b) Løs likningen
Detaljer1T 2014 vår LØSNING 9 1 2 6 0 4 1 3 ( 3 2 ) 1 1 = 3. 3 + x = 5 x = 2. + 8x + c = 16 DEL EN. Oppgave 1: Oppgave 2: Oppgave 3: Oppgave 4: Oppgave 5:
1T 014 vår LØSNING Contents Oppgaven som pdf Tråd om denne oppgaven på Matteprat Enda en tråd om denne oppgaven på Matteprat Løsning laget av Nebu DEL EN Oppgave 1:, 5 10 15 3, 0 10 5 7, 5 10 15+( 5) 7,
DetaljerØVINGSPRØVE TIL ÅRSPRØVEN 10. trinn. Oppgave 1 (2 poeng) Regn ut. a) 34, ,3 = c) 1,1 2,9 = b) 3,06 1,28 = d) 33 : 2,2 =
ØVINGSPRØVE TIL ÅRSPRØVEN 10. trinn Del 1: 2 timer. Maks 30,5 poeng. Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Bruk sort eller blå penn når du fører inn svar eller
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 15 5,5 10 3,0 10 Oppgave ( poeng) Regn ut og skriv svaret så enkelt som mulig 1 0 1 3 9 6 4 8 Oppgave 3 (1 poeng) Løs
Detaljeroppgaver fra abels hjørne i dagbladet
oppgaver fra abels hjørne i dagbladet sett 45 dag 1 1. På et bord står to beholdere som begge inneholder litt vann. Uansett hvilken beholder du velger, og så heller halvparten av innholdet over i den andre
Detaljeroppgaver fra abels hjørne i dagbladet
oppgaver fra abels hjørne i dagbladet sett 37 dag 1 1. Dersom vi dobler et bestemt tall, og så trekker fra tre, får vi tre mer enn halvparten av det tallet vi begynte med. Hvilket tall begynte vi med?
Detaljer1 Tallregning og algebra
1 Tallregning og algebra + ØV MER 1.1 REGNEREKKEFØLGE Oppgave 1.1 a) b) 8 c) ( ) + 8 d) ( ) ( ) + Oppgave 1.111 a) b) + c) + d) 7 8 e) + f) Oppgave 1.11 a) ( + ) b) ( 1) c) ( 7) d) ( 9 8) e) ( ) f) (8
DetaljerEksamen MAT1013 Matematikk 1T Høsten 2014
Eksamen MAT1013 Matematikk 1T Høsten 01 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 50000000000,0005 10 10 ( ) 6 7,510 5,010,55,010 1,510 1,510 Oppgave (1 poeng) Løs likningen 16 lg lg16
DetaljerEksamen 03.12.2009. REA3024 Matematikk R2
Eksamen 03.1.009 REA304 Matematikk R Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Bruk av kjelder: Vedlegg: Framgangsmåte: Rettleiing om vurderinga:
DetaljerEksamen MAT1013 Matematikk 1T Va ren 2014
Eksamen MAT1013 Matematikk 1T Va ren 2014 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 2,510 3,010 15 5 Oppgave 2 (2 poeng) Regn ut og skriv svaret så enkelt som mulig 1 2 0 1 3 2 9 6 4
DetaljerEksamen. 1. juni MAT 1006 Matematikk 1T-Y. Programområde: Alle. Nynorsk/Bokmål
Eksamen 1. juni 017 MAT 1006 Matematikk 1T-Y Programområde: Alle Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: 4 timar Del 1 skal leverast inn etter,5 timar. Del skal leverast inn seinast etter
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 1 1,8 10 0,0005 Oppgave ( poeng) Løs likningssystemet x 3y 13 4x y Oppgave 3 ( poeng) Løs ulikheten x 6x 0 Oppgave 4
DetaljerFormler, likninger og ulikheter
58 3 Formler, likninger og ulikheter Mål for opplæringen er at eleven skal kunne tolke, bearbeide og vurdere det matematiske innholdet i ulike tekster bruke matematiske metoder og hjelpemidler til å løse
DetaljerLøsning eksamen 2P våren 2010
Løsning eksamen 2P våren 2010 Oppgave 1 a) Prisen for diesel er 10,91 kr. Hvis Liv hadde fylte diesel, hadde prisen for 41,5 l vært mindre enn 11 kr 42 = 462 kr Det stemmer ikke i det hun betalte 509,
DetaljerS1 kapittel 5 Funksjoner Løsninger til oppgavene i boka
S1 kapittel 5 Funksjoner Løsninger til oppgavene i boka 5.1 a f( x) = 4x+ 0 I GeoGebra skriver vi f(x)=funksjon[-4x+0,-5,5]. Grafen viser at [ 0, 40] V =. f b gx ( ) =,5x+ 10 I GeoGebra skriver vi f(x)=funksjon[,5x+10,-10,4].
Detaljer-!4%-!4)++5.$%23 +%,3%.
6EDLEGG -!4%-!4)++5.$%23 +%,3%. Dette er en undersøkelse om forkunnskaper hos nye studenter. Den blir gjennomført ved alle universiteter og høgskoler i Norge. Ansvarlig for undersøkelsen er Norsk Matematikkråd.
DetaljerEksamen 1T, Våren 2010
Eksamen 1T, Våren 010 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (0 poeng) a) Funksjonen f er gitt ved f x x 3 Tegn grafen
DetaljerEksamen 25.05.2012. MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 5.05.01 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter timar. Del
DetaljerEksempeloppgave. Fagkode: MAT1001 Fagnavn: Matematikk 1P-Y. Side 1
Eksempeloppgave Fagkode: MAT1001 Fagnavn: Matematikk 1P-Y Side 1 Informasjon Eksamenstid: Hjelpemidler: Antall sider: 14 Antall vedlegg: Kilder: 4 timer Del 1: 1,5 timer Del 2: 2,5 timer Del 1: Skrivesaker,
DetaljerLøsning eksamen R1 høsten 2009
Løsning eksamen R høsten 009 Oppgave a) b) f( ) 5e 3 f ( ) 5 e (3 ) 5e 35e 3 3 3 3 ( ) ln( ) g 3 3 3 g( ) ln( ) ln( ) 3 ln( ) ( ) 3 3 ln( ) 3 ln( ) (3ln( ) ) c) La 3 f( ) 0 0. Da er 3 f () 0 0 0 0 0 Dermed
DetaljerEksamen 21.05.2013. Del 1. MAT0010 Matematikk. Del 1 + ark fra Del 2. Bokmål
Eksamen 1.05.013 MAT0010 Matematikk Del 1 Skole: Bokmål Kandidatnr.: Del 1 + ark fra Del Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Framgangsmåte og forklaring: 5 timer totalt: Del
DetaljerAlgebra S1, Prøve 2 løsning
Algebra S1, Prøve løsning Del 1 Tid: 90 min Hjelpemidler: Skrivesaker Oppgave 1 Arealet til en ellipse er gitt ved formelen A a b der a er store halvakse og b er lille halvakse, se figuren. I ellipsen
DetaljerTerminprøve i matematikk for 8. trinn
Terminprøve i matematikk for 8. trinn Våren 2007 nynorsk Til nokre av oppgåvene skal du bruke opplysningar frå informasjonsheftet. Desse oppgåvene er merkte med dette symbolet: DELPRØVE 1 Maks. poengsum:
DetaljerEksamen 1P våren 2011
Eksamen 1P våren 011 Del 1: Uten hjelpemidler Oppgave 1 a) Når kursen på islandske kroner er 5,5, svarer 500 ISK til 5, 5 kr 500 = 6, 5 kr 100 b) Hvis vi setter kursen på islandske kroner til 5, blir omregningen
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 ( poeng) Dag Temperatur Mandag 4 ºC Tirsdag 10 ºC Onsdag 1 ºC Torsdag 5 ºC Fredag 6 ºC Lørdag Tabellen ovenfor viser hvordan temperaturen har variert i løpet av noen dager.
DetaljerMatematisk julekalender for 5.-7. trinn, 2014
Matematisk julekalender for 5.-7. trinn, 2014 Årets julekalender for 5.-7. trinn består av enten de første 9 eller alle 12 oppgavene som kan løses uavhengig av hverandre. Oppgavene 6 til 12 er delt i to
DetaljerTall og formler MÅL. for opplæringen er at eleven skal kunne
8 1 Tall og formler MÅL for opplæringen er at eleven skal kunne anslå svar, regne med og uten tekniske hjelpemidler i praktiske oppgaver og vurdere rimeligheten av resultatene tolke, bearbeide, vurdere
DetaljerFaktor terminprøve i matematikk for 10. trinn
Faktor terminprøve i matematikk for 10. trinn Våren 2011 bokmål Navn: Gruppe: Informasjon Oppgavesettet består av to deler hvor alle oppgaver skal besvares. Del 1 og del 2 blir utdelt samtidig, men del
DetaljerStudieretning: Allmenne, økonomiske og administrative fag
Eksamen Fag: AA654 Matematikk 3MX Eksamensdato: 3. juni 005 Vidaregåande kurs II /Videregående kurs II Studieretning: Allmenne, økonomiske og administrative fag Elevar / Elever Oppgåva ligg føre på begge
DetaljerLøsning del 1 utrinn Vår 10
/15/016 Løsning del 1 utrinn Vår 10 - matematikk.net Løsning del 1 utrinn Vår 10 Contents Oppgave 1 4 + 465 = 799 854 8 = 56 c) d) 64 :4 = 66 Oppgave c) d)650 g = 650 : 1000 kg = 6,50kg Oppgave 4, 7 =
Detaljer