Hva er matematisk kompetanse?

Størrelse: px
Begynne med side:

Download "Hva er matematisk kompetanse?"

Transkript

1 Hva er matematisk kompetanse? Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS (landslaget for matematikk i skolen) Lærebokforfatter, MULTI 3-Feb-07 Dagsoversikt Hvordan styrke den matematisk kompetanse hos elevene på en slik måte at de opplever faget som engasjerende og meningsfylt? Spesielt fokus på representasjon, symbol og formalisme: Tall og tallforståelse. Dersom tid: presentasjon av nytt kartleggingsmateriell fra Matematikksenteret. 3-Feb-07 2 En visuell representasjon av de ulike matematiske kompetansene 3-Feb

2 Representasjonskompetanse Representasjon (forestilling, bilde) Skape og bruke representasjon ( eks; konkreter, symbol, tabeller) til å organisere, huske og kommunisere matematiske begrep. Velge, bruke og overføre mellom matematisk representasjoner til å løse problem. 3-Feb-07 4 Symbol- og formalismekompetanse Symbol- og formalismekompetanse inneholder det å kunne bruke og avkode symbol- og formalismespråket og oversette mellom matematisk symbolspråk og dagligtale. Det vil også si å ha innsikt i de matematiske spillereglene. 3-Feb-07 5 Regnestrategier og se matematiske sammenhenger 3-Feb

3 Sammenheng mellom multiplikasjon og areal 3-Feb-07 7 Veksle mellom aktiviteter og ferdighetstrening Størst areal 3-Feb analysere egenskaper med todimensjonale figurer Lag trekanter Kast tre terninger. Øynene bestemmer sidene på trekanten. Gjør det mange ganger. Tegn trekantene. Tips: begynn med den lengste siden Kunne du lage trekanter med alle mulige kast? Kan du lage en konklusjon? En regel? 3-Feb

4 Lag trekanter. K1 + K2 > L1 Hvor mange likesidete trekanter kan dere lage? Hvor mange likebeina? Kan dere lage rettvinklete trekanter? Pythagoreisk trippel? Sannsynlighetsregning og kombinatorikk Hvor mange mulige trekanter kan vi lage? Hva er sannsynligheten for å få - en likesidet? - en likebeinet? - en rettvinklet? 3-Feb Hva er tallforståelse? dele opp og bygge mengder, sette sammen og dele opp tiergrupper (Grupperingsmodell) bruke tallinjen til beregninger og til å angi tallstørrelser (Lineær tallmodell) 3-Feb Grupperingsmodell Et viktig element i tallforståelse er at elevene får erfaring med hvordan vi grupperer og deler opp grupper i posisjonssystemet. For å lette telling av større mengder er det svært gunstig å gruppere. 3-Feb

5 Grupperingsmodell Det er akkurat denne grupperingstanken som er et av de mest sentrale aspektene ved et tallsystem. Så å si alle tallsystem som har vokse frem i ulike kulturer rundt om i verden, hviler på denne ideen. 3-Feb På plass 3-Feb Gi og ta Skriv et fire-, fem-, eller sekssifret tall på et ark. Ikke vis tallet til motspilleren Tallet skal ikke inneholde 0 eller noen like siffer. 3-Feb

6 Lineær tallmodell Arbeid med tallinje vil gi elevene en rikere tallforståelse Barna får et godt verktøy for å orientere seg i tallrekken: De kan diskutere tallenes relative plassering, se sammenhenger mellom tallene, erfare hvordan tall kan deles opp og beskrives Den lineære modellen styrker hoderegningen Alternativer: Perlesnor, målebånd, tallrekke på veggen, tallinje med tall, tom tallinje 3-Feb Spill: Først til 0 Utstyr: Tallinje fra 0 2, med inntegnet tideler og hundredeler, terning, spinner Alle starter på 2 på tallinjen og skal gå bakover og ende på 0. Terningen bestemmer antall og spinneren avgjør om det er tideler eller hundredeler. 3-Feb Tom tallinje, Feb

7 Både utvikle og bruke metoder Skal ikke elevene lenger kunne standardalgoritmene? 3-Feb Veien fra konkret til abstrakt Multiplikasjon: 3-Feb utforske og beskrive strukturer og forandringer i enkle geometriske mønstre og tallmønstre: Hvordan blir plassering med 4 bord? 3-Feb

8 Tegn plasseringen med 5, 6 og 7 bord. Fyll ut tabellen: Ser du et mønster? Fyll ut tabellen for 8, 9 og 10 bord uten å tegne. Hvor mange stoler trenger du til 20 stoler? 3-Feb Eksempel på aktivitet Figurtall 3-Feb utforske og beskrive strukturer og forandringer i enkle geometriske mønstre og tallmønstre: 1.fig: 1*2 + 2(1*2) 2.fig: 2*2 + 2(2*3) 3.fig: 3*2 + 2(3*4) Figurtal 10.fig: 10*2 + 2(10*11) n-fig: n*2 + 2(n*n+1) 2n + 2n2 + 2n 4n + 2n2 3-Feb

9 beskrive plassverdisystemet for de hele tallene, bruke positive og negative hele tall, enkle brøker og desimaltall i praktiske sammenhenger, og uttrykke tallstørrelser på varierte måter 3-Feb Rasjonale tall I tillegg brøk og desimaltall Sentralt for forståelsen: Ikke alle enheter kan deles, f.eks en tredels elev : - Elevene må gjøre erfaringer med hvilke enheter som kan deles, og hvilke som ikke kan. Når en brøk uttales for eks. som tre femdeler, angir det siste tallet, fem-tallet, hvor mange deler enheten totalt er delt opp i, mens det første tallet, tre-tallet, angir hvor mange av disse delene det er snakk om Helheten kan variere halvdelen av noe kan være mindre enn firedelen av noe annet. Delene som enheten deles opp i er like store 3-Feb Brøk Brøk er en del av en helhet, der helheten kan være en mengde, en lengde eller en figur. Elevene må lære å finne delen når det hele er oppgitt, og de skal kunne finne det hele når delen er oppgitt. Før vi starter med formell regning med brøk må elevene lære å tegne brøker på ulike måter, å sammenligne brøker og finne likeverdige brøker. Elevene skal også lære å beskrive sammenhengen mellom tideler som desimaltall og som brøk. 3-Feb

10 Typiske misforståelser og misoppfatninger i brøk Den vanligste misoppfatningen knyttet tilbrøkdeler er at ikke elevene automatisk oppfatter at det er snakk om like deler fra hver helhet. I dagligspråket kan vi f.eks si: Jeg tar den største halvdelen Elevene har også få erfaringer med brøk som del av en mengde. Det er forholdsvis enkelt å dele i halvdeler og firedeler, og det kan føre til problemer i forhold til tredeler. Noen elever vil da først dele i to halvdeler og så dele den en halvdelen i to, slik at en har tre deler. Derfor må en bruke spesielt mye tid når begrepet tredel blir introdusert. 3-Feb Typiske misforståelser og misoppfatninger i brøk Språket er en kilde til misforståelser. F.eks har elevene møtt ordet tredje som et ordenstall, og dette kan forvirre dem i forhold til ordet tredjedel i en brøk. Derfor bør en konsekvent bruke tredel, firedel osv, Misoppfatninger er det også når det gjelder størrelsen på ulike brøker: A) Stor nevner betyr at brøken er stor: Eks. 3/8 er mindre enn 3/12. B) 9 i nevner betyr at brøken er nær en hel: Eks 4/9 er nesten en hel for 9 er jo nesten 10 (0,9 er nesten 1) 1/5 er det samme som en halv (blander med 0,5) Grunnen til disse misoppfatningene er at elevene overfører kunnskap fra hele tall og desimaltall. 3-Feb Spille krig med brøkkort Tallkortene stokkes og deles ut slik at hver spiller sitter med sin bunke foran seg med tallsiden vendt ned. Elevene snur det øverste kortet. Den som har det største kortet, det vil si den største brøken, får begge kortene og legger disse nederst i sin bunke. Det er altsåom ågjøre åskaffe seg flest kort. Spillet fortsetter enten på en bestemt tid eller til én av spillerne har vunnet alle kortene Feb

11 Å bruke varierte uttrykksmåter... Brøkspillet: Fang brikker Hvert par trenger én terning og 30 brikker. Antall øyne utgjør nevneren i en stambrøk, slik at hvis de slår 5, blir brøken 1/5, hvis de slår 3 blir brøken 1/3. Hvis de slår 1 mister de denne runden. Elevene tar så mange brikker fra brikkehaugen som brøken angir. Hvis første elev slår 5, skal han ta 1/5 av de 30 brikkene i haugen, altså 6 brikker. Da er det 25 brikker igjen i haugen. Hvis neste elev nå slår 3, skal han ta 1/3 av brikkene. Det går ikke nøyaktig, så eleven runder av nedover og tar 1/3 av 24 brikker, altså 8. Mot slutten, når haugen blir liten, vil ikke elevene alltid kunne ta brikker. Hvis det for eksempel er fire brikker igjen og en spiller slår 5, skal han ta 1/5 av brikkene. Det går ikke, og dermed mister eleven runden sin. Hvis neste elev heller ikke kan ta noen brikker, er spillet ferdig. 3-Feb Problembehandlingskompetanse Bygge ny matematisk kunnskap gjennom problemløsning Løse problemer som dukker opp i matematiske og andre kontekster Bruke og tilpasse et mangfold av hensiktsmessige strategier til å løse problemer Bevisst reflektering over matematikken i problemløsningen 3-Feb Grublis Hege og Arne delte 200 kr. En tredelen av det Hege fikk, var lik halvparten av det Arne fikk. Hvor mye fikk hver av de? 3-Feb

12 Flere grubliser Et stort insekt spiste 54 små insekt på fire dager. Hver dag spiste det store insektet 5 flere små insekt enn det gjorde dagen før. Hvor mange små insekt spiste det store insektet: den første dagen? den fjerde dagen? En svær frosk spiste 140 stor insekter på fem dager. For hver dag spiste den 8 flere insekter enn dagen før. Hvor mange insekter spiste frosken på a) den første dagen? b) den femte dagen? 3-Feb Nytt kartleggingsmateriell Professor Alistair McIntosh, University of Tasmania, har utviklet et materiell for kartlegging av barns talloppfatning og tallforståelse. Arbeidet bygger på et langt forskerliv innenfor nettopp dette området av matematikkdidaktikken, og materialet er tilpasset skandinaviske forhold. Materialet omfatter skriftlige tester for trinn, veiledning for gjennomføring og vurdering av testene, vurderingsskjemaer, samt veiledning til elevintervjuer. 3-Feb Nytt kartleggingsmateriell I tillegg til testmaterialet, har McIntosh skrevet en håndbok. Oppgavene i testene har henvisninger til kapitler i håndboka, der det finnes nærmere forklaring på hva oppgavene skal teste av forståelse. Boka beskriver vanlige misoppfatninger, hvorfor de forekommer, og det gis konkrete forslag til hvordan lærerne kan jobbe videre ut fra resultatene på testene. Vi vil anbefale alle skoler om å bruke materialet, både til planlegging av undervisning, til kartlegging av elevenes talloppfatning, og til planlegging og gjennomføring av tiltak. Testene er laget for å brukes ved starten av hvert skoleår. Noen oppgaver finnes igjen over flere år, slik at en kan teste elevenes utvikling over tid. 3-Feb

13 Generell informasjon og veiledning Testene er ikke laget for å måle elevenes ferdigheter, men for: Kartlegging av tallforståelse og hjelp til å hjelpe elevene Riktige og gale svar gir verdifull informasjon om elevenes styrker og svakheter 3-Feb Lærerens rolle Elevene skal oppmuntres til å svare på alle oppgavene. Det er viktig ikke å ha fokus på eller indikere om et svar er rett eller galt. La elevene få vite at de gjør en god jobb. Forsøk ikke å hjelpe, rette på eller undervise eleven mens testen pågår. Det vil virke forstyrrende på evalueringa. Hjelp og undervisning skal komme inn senere. 3-Feb Forhåndsinformasjon til elevene Forklar elevene at: det kan komme vanskelige spørsmål først og svært lette til slutt. De må ikke gi opp hele testen når de kommer til en oppgave de føler at de ikke klarer. det er normalt at de skal kunne svare riktig på alle oppgavene. testen er ment for å finne ut hva de har forstått, og hva de må få øve mer på. testresultatene skal hjelpe læreren til å finne ut hvordan han eller hun best skal kunne hjelpe hver enkelt elev. 3-Feb

14 Lesehjelp Du kan og skal lese høyt ord og setninger som eleven kan ha problemer med å lese Ikke les tall skrevet med tallsymboler høyt (hele tall, brøk, desimaltall eller prosent). Da kan hensikten med oppgaven forstyrres. Du kan lese tall som er skrevet med bokstaver. 3-Feb Hoderegning De fleste testene innholder oppgaver med hoderegning. La gjerne elevene besvare disse oppgavene først. Elevskjemaet innholder ikke disse regnestykkene. Les hvert regnestykke to ganger og gi eleven så 10 sekunder til å avslutte oppgaven. Elevene skal ikke skrive ned utregningene, de skriver bare ned svaret. 3-Feb Intervju Tips om hva man bør gjør og hva man bør unngå Et intervju er ikke en undervisningssituasjon Hovedhensikten er å finne ut hvordan eleven har tenkt Hvert av punktene nedenfor leder fram mot et viktig hovedprinsipp når det gjelder å gjennomføre et intervju. Dette gjelder enten intervjuet er kort og spontant eller om det er langt og planlagt. 3-Feb

15 La eleven stå for snakkingen fordi intervjuet skal avsløre hvordan eleven tenker. (Matematikklærere snakker til vanlig omkring åtte ganger så mye som alle elevene til sammen; TIMSS video studie.) Oppmuntre eleven til å forklare og beskrive, selv om det går tregt Læreren bryter bare inn for å forsikre seg om at hun/han har forstått hva eleven mener. 3-Feb Under intervjuet må læreren ikke undervise. Hensikten med intervjuet er å hjelpe læreren til å finne elevens styrker og svakheter Under intervjuet skal ikke læreren prøve å hjelpe eleven til å finne riktig svar, passende strategier eller korrekt måte å tenke på. Prøver læreren å hjelpe, vil hun/han ikke lære noe om elevens tenkemåte. Lærerens rolle er å lytte! 3-Feb Ikke vis hva du tenker underveis intervjuet Bryter man dette prinsippet, kan det ta fra elevene lysten til å snakke og det vil vi unngå for enhver pris. Unngå at eleven prøver å svare slik hun/han oppfatter at du ønsker hun/han skal svar ( gjett hva læreren tenker ) I intervjusituasjonen må læreren oppføre seg som en vitenskapsmann: hvert svar er ikke først å fremst å bli betraktet som riktig eller galt, godt eller dårlig, men som interessant eller informativt. Gale svar er med på å gi informasjon om hva eleven har misforstått eller har problemer med og er derfor like nyttige for læreren som et rett svar. 3-Feb

Inspirasjon og motivasjon for matematikk

Inspirasjon og motivasjon for matematikk Inspirasjon og motivasjon for matematikk Mona Røsseland Nasjonalt senter for matematikk i Opplæringen 8-Feb-07 Oversikt kursinnhold 1.gang: Generell innføring i den nye læreplanen og kompetansebegrepene.

Detaljer

Presentasjon av Multi

Presentasjon av Multi Presentasjon av Multi Mellomtrinnet Eksempler på Multi i praktisk bruk Faglig fokus og tydelige læringsmål Nettstedet Tilpasset opplæring Ulike oppgavetyper og aktivitetsformer Faglig fokus og tydelige

Detaljer

Kartlegging av tallforståelse trinn

Kartlegging av tallforståelse trinn Kartlegging av tallforståelse 1. 10. trinn Ingvill Merete Stedøy-Johansen og May Renate Settemsdal 29-Oct-06 Veiledning Kartleggingstester Vurderingsskjemaer Retningslinjer for oppfølgende intervju 29-Oct-06

Detaljer

Den gode matematikkundervisning

Den gode matematikkundervisning Den gode matematikkundervisning Hvordan får vi aktive, engasjerte og motiverte elever og lærere i matematikk? - hva er det? Mona Røsseland Nasjonalt senter for matematikk i opplæringen Leder i LAMIS Lærebokforfatter;

Detaljer

Inspirasjon og motivasjon for matematikk

Inspirasjon og motivasjon for matematikk oversikt Inspirasjon og motivasjon for matematikk Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI Ny læreplan, nye utfordringer for undervisningen i matematikk

Detaljer

Inspirasjon og motivasjon for matematikk

Inspirasjon og motivasjon for matematikk Inspirasjon og motivasjon for matematikk Hvordan får vi aktive, engasjerte og motiverte elever og lærere i matematikk? Bjørnar Alseth Høgskolen i Oslo Styremedlem i Lamis Lærebokforfatter; MULTI Mona Røsseland

Detaljer

Hvordan skal jeg regne, lærer?

Hvordan skal jeg regne, lærer? Hvordan skal jeg regne, lærer? Fokus på tall og utvikling av god tall forståelse Mona Røsseland Nasjonalt senter for matematikk i opplæringen Oversikt kursinnhold 1.gang: Generell innføring i den nye læreplanen

Detaljer

God matematikkundervisning... - Kva er det? Hva er matematisk kompetanse? Oversikt

God matematikkundervisning... - Kva er det? Hva er matematisk kompetanse? Oversikt God matematikkundervisning... - Kva er det? Mona Røsseland Matematikksenteret, NTNU Leder i Lamis Lærebokforfatter, MULTI 12-Apr-07 Oversikt Noen tanker om hva som kan være kjennetegn på god matematikkundervisning..

Detaljer

Gje meg eit tresifra. Hvordan skal jeg regne, lærer? 1. Arbeide både praktisk og teoretisk. Retningslinjer for undervisningen

Gje meg eit tresifra. Hvordan skal jeg regne, lærer? 1. Arbeide både praktisk og teoretisk. Retningslinjer for undervisningen Hvordan skal jeg regne, lærer? Fokus på tall og utvikling av god tall forståelse Mona Røsseland Nasjonalt senter for matematikk i opplæringen Gje meg eit tresifra tal 17-Apr-06 17-Apr-06 2 Intensjoner

Detaljer

Elevaktiv matematikk. hvorfor og hvordan? Retningslinjer for undervisningen. Intensjoner med ny læreplan. Hvilke utfordringer gir dette lærerne?

Elevaktiv matematikk. hvorfor og hvordan? Retningslinjer for undervisningen. Intensjoner med ny læreplan. Hvilke utfordringer gir dette lærerne? Elevaktiv matematikk Hvordan får vi aktive, engasjerte og motiverte elever og lærere i matematikk? hvorfor og hvordan? Mona Røsseland Leder i Lamis Nasjonalt senter for matematikk i opplæringen Lærebokforfatter

Detaljer

Forfatterne bak Multi!

Forfatterne bak Multi! Multi i praktisk bruk Forfatterne bak Multi! Tilpasset opplæring Forfatterteam: Bjørnar Alseth Universitetet i Oslo Henrik Kirkegaard, Flisnes skole, Ålesund Mona Røsseland, Matematikksenteret Gunnar Nordberg,

Detaljer

Velkommen til presentasjon av Multi!

Velkommen til presentasjon av Multi! Velkommen til presentasjon av Multi! Bjørnar Alseth Høgskolen i Oslo Henrik Kirkegaard, Flisnes skole, Ålesund Mona Røsseland, Matematikksenteret Gunnar Nordberg, Høgskolen i Oslo Dagsoversikt Ny læreplan,

Detaljer

Læreplanene for Kunnskapsløftet

Læreplanene for Kunnskapsløftet Læreplanene for Kunnskapsløftet Hvordan få samsvar mellom intensjon og praksis? Mona Røsseland Nasjonalt senter for matematikk i opplæringen Leder i Lamis Lærebokforfatter; MULTI 21-Mar-06 Intensjoner

Detaljer

Den gode matematikkundervisning

Den gode matematikkundervisning Den gode matematikkundervisning Hvordan får vi aktive, engasjerte og motiverte elever og lærere i matematikk? - hva er det? Mona Røsseland Nasjonalt senter for matematikk i opplæringen Leder i LAMIS Lærebokforfatter;

Detaljer

Alle teller. - en introduksjon. Ny GIV 1. samling 2012/2013 Anne-Gunn Svorkmo Astrid Bondø Svein Hallvard Torkildsen

Alle teller. - en introduksjon. Ny GIV 1. samling 2012/2013 Anne-Gunn Svorkmo Astrid Bondø Svein Hallvard Torkildsen Alle teller - en introduksjon Ny GIV 1. samling 2012/2013 Anne-Gunn Svorkmo Astrid Bondø Svein Hallvard Torkildsen Håndbok - for lærere som underviser i matematikk i grunnskolen Forfatteren: Professor

Detaljer

Forfatterne bak Multi: Multi i praksis. 5.-7.trinn. En bred matematisk kompetanse. Oppbyggingen av Multi. Grunntanken bak Multi

Forfatterne bak Multi: Multi i praksis. 5.-7.trinn. En bred matematisk kompetanse. Oppbyggingen av Multi. Grunntanken bak Multi Forfatterne bak Multi: Multi i praksis 5.-7.trinn Bjørnar Alseth Universitetet i Oslo Henrik Kirkegaard, Flisnes skole, Ålesund Mona Røsseland, Matematikksenteret Gunnar Nordberg, Høgskolen i Oslo Grunntanken

Detaljer

Gjennomføring av elevintervju

Gjennomføring av elevintervju Gjennomføring av elevintervju Mulige innfallsvinkler En kartleggingstest i form av en skriftlig prøve til klassen kan bidra til å gi læreren nyttig informasjon. En slik prøve kan bidra til å: Få klarhet

Detaljer

Foreldrene betyr all verden

Foreldrene betyr all verden Foreldrene betyr all verden Gjett tre kort Mona Røsseland Nasjonalt senter for Matematikk i opplæringen, NTNU (i studiepermisjon) Lærebokforfatter; MULTI 15-Sep-09 15-Sep-09 2 Mastermind Hva påvirker elevenes

Detaljer

Læreplanene for Kunnskapsløftet

Læreplanene for Kunnskapsløftet Læreplanene for Kunnskapsløftet Hvordan få samsvar mellom intensjon og praksis? Mona Røsseland Leder i Lamis Nasjonalt senter for matematikk i opplæringen Lærebokforfatter; MULTI 12-Mar-06 Intensjoner

Detaljer

Posisjonsystemet FRA A TIL Å

Posisjonsystemet FRA A TIL Å Posisjonsystemet FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til posisjonsystemet P - 2 2 Grunnleggende om posisjonsystemet P - 2 3 Titallsystemet P - 3 4 Posisjonsystemet

Detaljer

Forfatterne bak Multi:

Forfatterne bak Multi: Multi i praksis Tilpasset opplæring Program for dagen 12.00 13.30: Tankene bak Multi Varierte uttrykksformer gir differensiering og god læring 13.30 14.10: Mat 14.10 15.00: Varierte uttrykksformer gir

Detaljer

Hva er god matematikkundervisning?

Hva er god matematikkundervisning? Hva er god matematikkundervisning? Astrid Bondø Nasjonalt Senter for Matematikk i Opplæringen 22-Feb-08 Ny læreplan, nye utfordringer for undervisninga i matematikk? Hva vil det si å ha matematiske kompetanse?

Detaljer

Begynneropplæringen i matematikk. 1.-3.trinn 07.03.2012. Dagsoversikt. Tallfølelse

Begynneropplæringen i matematikk. 1.-3.trinn 07.03.2012. Dagsoversikt. Tallfølelse 07.03.2012 Begynneropplæringen i matematikk 1.-3.trinn Tillegskomponenter: Kartleggingsprøver: Halvårsprøve og årsprøve Grublishefte 1-4 og 5-7 Nettsted: www.gyldendal.no/multi Elevoppgaver Lærersider

Detaljer

GODE ALGORITMER. Mekanisk regneferdighet. Forskningens konklusjon. Hva kreves i læreplanen? Var alt bedre før? 17.09.2012

GODE ALGORITMER. Mekanisk regneferdighet. Forskningens konklusjon. Hva kreves i læreplanen? Var alt bedre før? 17.09.2012 Mekanisk regneferdighet GODE ALGORITMER IKKE SØRGELIG SUBTRAKSJON OG DYSTER DIVISJON Bjørnar Alseth Multi i Vest 2012 Forskningens konklusjon Hva kreves i læreplanen? Forskerne er enige om 1. Vi må ikke

Detaljer

En presisering av kompetansemålene

En presisering av kompetansemålene En presisering av kompetansemålene - med vekt på aktiviteter Mål for kompetanse, og innhold? M87: Innholdsplan, eks geometri 5.-7. trinn: Geometriske begreper: Punkt, linjestykke, rett linje, kurve, vinkel

Detaljer

Hva vil det si å kunne matematikk? Hva er tallforståelse? Gjett tre kort. Arbeide både praktisk og teoretisk. Det viktigste for læring

Hva vil det si å kunne matematikk? Hva er tallforståelse? Gjett tre kort. Arbeide både praktisk og teoretisk. Det viktigste for læring Hva vil det si å kunne matematikk? Gjett tre kort Hva er tallforståelse? Mona Røsseland Nasjonalt senter for Matematikk i opplæringen Lærebokforfatter; MULTI 9-Sep-08 9-Sep-08 2 Arbeide både praktisk og

Detaljer

Kva kjenneteiknar all matematikkundervisning kommune, frå barnehagane til vidaregåande?

Kva kjenneteiknar all matematikkundervisning kommune, frå barnehagane til vidaregåande? Kva kjenneteiknar all matematikkundervisning i Os kommune, frå barnehagane til vidaregåande? 12-Apr-07 Alle lærarane veit kva det vil seie å ha matematisk kompetanse... At det er viktig både med både gode

Detaljer

God morgen! Alle Teller

God morgen! Alle Teller God morgen Alle Teller Gerd Åsta Bones & Mike Naylor www.matematikkbølgen.com mh Hvem er vi? Gerd Åsta Bones, Leder Matematikkhuset Jobber full tid (siden 2002) som prosjektleder/hovedansvarlig for barnehage

Detaljer

Regn i hodet: 46 + 28. Å uttrykke tall. Ulike uttrykksmåter. Det vesentlige er utvikling. Hvordan jobbe med dette? Hvordan jobbe med dette? 10.09.

Regn i hodet: 46 + 28. Å uttrykke tall. Ulike uttrykksmåter. Det vesentlige er utvikling. Hvordan jobbe med dette? Hvordan jobbe med dette? 10.09. Hva er Hvorfor Singaporematematikk er folk interesserte i Singapore-matematikk Fordi elevene i Singapore stadig får best resultat på En samling undervisningsstrategier vanlig i Singapore internasjonale

Detaljer

Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1. Semester: VÅR År: 2016 Eksamenstype: Skriftlig

Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1. Semester: VÅR År: 2016 Eksamenstype: Skriftlig Sensurveiledning Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1 Semester: VÅR År: 2016 Eksamenstype: Skriftlig Oppgave 1 Figuren viser hvordan en nettside forklarer en metode for addisjon og

Detaljer

Tall og algebra - begrep, forutsetninger og aktiviteter

Tall og algebra - begrep, forutsetninger og aktiviteter Tall og algebra - begrep, forutsetninger og aktiviteter Astrid Bondø NSMO 17-Sep-08 Hvordan gjøre oppgavene rikere? Oppgave A Regn ut svaret: a. 985 67 b. 897 65 c. 875 96 d. 586 97 addisjon subtraksjon

Detaljer

Alle Teller! May Renate Settemsdal Nasjonalt Senter for Matematikk i Opplæringa. Novemberkonferansen 2015. 26-nov-15

Alle Teller! May Renate Settemsdal Nasjonalt Senter for Matematikk i Opplæringa. Novemberkonferansen 2015. 26-nov-15 Alle Teller! May Renate Settemsdal Nasjonalt Senter for Matematikk i Opplæringa Novemberkonferansen 2015 26-nov-15 Håndboka Digitale prøver Alle Teller Forfatter: Professor Alistair McIntosh, University

Detaljer

ADDISJON FRA A TIL Å

ADDISJON FRA A TIL Å ADDISJON FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til addisjon 2 2 Grunnleggende om addisjon 3 3 Ulike tenkemåter 4 4 Hjelpemidler i addisjoner 9 4.1 Bruk av tegninger

Detaljer

Alle teller. - en introduksjon. NY GIV - 1. samling 2011/2012 Anne-Gunn Svorkmo Astrid Bondø Svein H. Torkildsen

Alle teller. - en introduksjon. NY GIV - 1. samling 2011/2012 Anne-Gunn Svorkmo Astrid Bondø Svein H. Torkildsen Alle teller - en introduksjon NY GIV - 1. samling 2011/2012 Anne-Gunn Svorkmo Astrid Bondø Svein H. Torkildsen Håndbok - for lærere som underviser i matematikk i grunnskolen Forfatteren: Professor Alistair

Detaljer

Matematikk i praksis - eller grunnleggende basiskunnskaper og ferdigheter?

Matematikk i praksis - eller grunnleggende basiskunnskaper og ferdigheter? Introduksjon Viktige spørsmål om skolematematikken: Hvorfor skal alle lære matematikk? Hvor MYE (og hva slags) matematikk skal ALLE lære? Hvor LENGE skal alle lære den SAMME matematikken? Matematikken

Detaljer

Hvordan lykkes med matematikkundervisningen?

Hvordan lykkes med matematikkundervisningen? Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI Hvordan lykkes med matematikkundervisningen? Kongsberg 15.mai 07 14-May-07 Oversikt Hvordan skal vi i

Detaljer

Halvårsplan/årsplan i Matematikk for 2. trinn 2015/2016 Tema Læringsmål Grunnleggende ferdigheter

Halvårsplan/årsplan i Matematikk for 2. trinn 2015/2016 Tema Læringsmål Grunnleggende ferdigheter Uke/ perio de Kompetansemål KL- 06 33-39 TALL bygge mengder opp til 10, tiergrupper. Bruke tallinjen til beregning og til å vise tallstørelser. Halvårsplan/årsplan i Matematikk for 2. trinn 2015/2016 Tema

Detaljer

Perlesnor og tom tallinje

Perlesnor og tom tallinje Hanne Hafnor Dahl, May Else Nohr Perlesnor og tom tallinje En perlesnor er en konkret representasjon av tallrekka. Den kan bestå av 10, 20 eller 100 perler, alt etter hvilket tallområdet elevene arbeider

Detaljer

Gjett tre kort. Foreldrene betyr all verden! Grunntanken bak Multi. Mastermind. Faglig fokus og tydelige læringsmål. En bred matematisk kompetanse

Gjett tre kort. Foreldrene betyr all verden! Grunntanken bak Multi. Mastermind. Faglig fokus og tydelige læringsmål. En bred matematisk kompetanse Foreldrene betyr all verden! Gjett tre kort Mona Røsseland Lærebokforfatter, MULTI Matematikksenteret, NTNU 10-Oct-10 2 Mastermind Grunntanken bak Multi Faglig fokus og tydelige læringsmål Elevene skal

Detaljer

Korleis skal eg rekne, lærar?

Korleis skal eg rekne, lærar? Korleis skal eg rekne, lærar? Begynnaropplæring i matematikk med fokus på tal og utvikling av god tal forståing Mona Røsseland Nasjonalt senter for matematikk i opplæringen Matematisk kompetanse Det er

Detaljer

Matematikk i 1. klasse

Matematikk i 1. klasse Matematikk i 1. klasse Bergen kommune 3. og 4. juni 2009 Anne Kari SælensmindeS 08.06.2009 1 tall siffer mengder antall doble sirkler ruter kanter posisjoner tiere mønster 08.06.2009 2 Mål l for denne

Detaljer

Matematisk førstehjelp

Matematisk førstehjelp Matematisk førstehjelp Brøk prosent desimaltall Brynhild Farbrot Foosnæs Matematisk kompetanse Kunnskapsløftet Kompetansemål Ferdigheter Forståelse Anvendelse Kunnskapsløftet Kompetansemål Ferdigheter:

Detaljer

Brøker med samme verdi

Brøker med samme verdi Kapittel 7 Brøk Mål for det du skal lære: regne om mellom blandet tall og uekte brøk forkorte og utvide brøker, finne fellesnevner regne om mellom brøk og desimaltall ordne brøker etter størrelse og plassere

Detaljer

Årsplan matematikk 6. trinn 2019/2020

Årsplan matematikk 6. trinn 2019/2020 Årsplan matematikk 6. trinn 2019/2020 Årsplanen tar utgangspunkt i kunnskapsløftet. I planen tar vi utgangspunkt i kompetansemåla for 7.klasse. I matematikk lærer en litt av et tema på 5.trinn, litt mer

Detaljer

Foreldrene betyr all verden!

Foreldrene betyr all verden! Foreldrene betyr all verden! Gjett tre kort Mona Røsseland Doktorgradsstipendiat, Universitetet i Agder Lærebokforfatter, MULTI www.fiboline.no 29-Oct-4 2 Hvilken rolle har foreldrene? Formell notation

Detaljer

Hva er god matematikkundervisning?

Hva er god matematikkundervisning? Hva er god matematikkundervisning? Astrid Bondø Nasjonalt Senter for Matematikk i Opplæringen 22-Feb-08 Ny læreplan, nye utfordringer for undervisninga i matematikk? Hva vil det si å ha matematiske kompetanse?

Detaljer

Brøk, prosent og desimaltall. Proporsjonalitet og forholdstall i praktiske situasjoner. matematikkhuset. Divisjon med tall mindre enn 1

Brøk, prosent og desimaltall. Proporsjonalitet og forholdstall i praktiske situasjoner. matematikkhuset. Divisjon med tall mindre enn 1 Dag 1: 09.00-10.00 Test er best? Hva, hvorfor, hvordan vi tester og kartlegger med mål om å forbedre elevens forståelse, anvendelse og ferdigheter 10.00-10.15 Pause 10.15-12.00 Alle teller - ikke bare

Detaljer

Tall, forståelse og eksamen Videregående skole (1P, 2P og 2PY)

Tall, forståelse og eksamen Videregående skole (1P, 2P og 2PY) Tall, forståelse og eksamen Videregående skole (1P, 2P og 2PY) Oslo, 16.-17.10.14 Astrid Bondø 19-Nov-15 Bygda Alvfjord Eksamen har i dag 5000 innbyggere. 2P 2014 Man regner med at innbyggertallet vil

Detaljer

TIP Tallforståelse prosent, desimaltall, brøk, forholdstall

TIP Tallforståelse prosent, desimaltall, brøk, forholdstall TIP Tallforståelse prosent, desimaltall, brøk, forholdstall Susanne Stengrundet 1 kyndighet 2 Skyt bort siffrene Desimaltall Slå inn siffrene 1 8 på kalkulatoren, valgfri rekkefølge Velg en plass for komma

Detaljer

ÅRSPLAN. Grunnleggende ferdigheter

ÅRSPLAN. Grunnleggende ferdigheter ÅRSPLAN Skoleåret: 2015/16 Trinn: 5 Fag: Matematikk Utarbeidet av: Trine og Ulf Mnd. Kompetansemål Læringsmål (delmål) kriterier for måloppnåelse Aug Sep Okt Nov Beskrive og bruke plassverdisystemet for

Detaljer

Hva er matematisk kompetanse?

Hva er matematisk kompetanse? Kursinnhald Hva er matematisk kompetanse? Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS (landslaget for matematikk i skolen) Lærebokforfatter, MULTI Hva er matematisk kompetanse

Detaljer

Tiervenner erteposegjemsel

Tiervenner erteposegjemsel Telle til 10 Mål: Elevene skal kunne rekketelle til 10, i stigende og synkende rekkefølge. Antall elever: minst 10 elever. Kjegler med tallene 1 til 10. (Bruk kjegleovertrekk på 0-kjeglen og skriv lapp

Detaljer

RENDALEN KOMMUNE Fagertun skole. Årsplan i matematikk for 5., 6. og 7. trinn 2018/19

RENDALEN KOMMUNE Fagertun skole. Årsplan i matematikk for 5., 6. og 7. trinn 2018/19 RENDALEN KOMMUNE Fagertun skole Årsplan i matematikk for 5., 6. og 7. trinn 2018/19 Lekser: Elevene får hver uke et lekseark som skal gjøres i lekseboka. Dette leksearket er trening på de fire regneartene,

Detaljer

Matematisk samtale og. undersøkelseslandskap i matematikk. Dagsoversikt. Oversikt kursinnhold

Matematisk samtale og. undersøkelseslandskap i matematikk. Dagsoversikt. Oversikt kursinnhold Mona Røsseland Nasjonalt senter for matematikk i opplæringen Leder i LAMIS Lærebokforfatter; MULTI Matematisk samtale og undersøkelseslandskap i matematikk 15-Apr-07 Oversikt kursinnhold 1.gang: Generell

Detaljer

5. TRINN MATEMATIKK PERIODEPLAN 2

5. TRINN MATEMATIKK PERIODEPLAN 2 1 5. TRINN MATEMATIKK PERIODEPLAN 2 KOMPETANSEMÅL Tall og algebra Mål for opplæringa er at eleven skal kunne: beskrive plassverdisystemet for desimaltal, rekne med positive og negative heile tal, desimaltal,

Detaljer

Årsplan i matematikk 6.trinn 2015/2016

Årsplan i matematikk 6.trinn 2015/2016 Årsplan i matematikk 6.trinn 2015/2016 Tidspunkt Kompetansemål: (punkter fra K-06) Delmål: Arbeidsmetode: Vurderingsmetode: Uke 36 /37 Tall og tallforståelse -siffer og tall -beskrive plassverdisystemet

Detaljer

ÅRSPLAN MATEMATIKK 6.TRINN 2016/2017. Høst 2016

ÅRSPLAN MATEMATIKK 6.TRINN 2016/2017. Høst 2016 ÅRSPLAN MATEMATIKK 6.TRINN 2016/2017 Dette er en tenkt plan. Den vil bli blir fortløpende revidert gjennom året. Høst 2016 Ekstra fokusområde for høsten: Regnestrategier Uke Kompetansemål Innhold Arbeidsmåte

Detaljer

KOMPETANSEMÅL ETTER 2. TRINNET Tall:

KOMPETANSEMÅL ETTER 2. TRINNET Tall: KOMPETANSEMÅL ETTER 2. TRINNET Tall: 1. Telle til 100, dele opp og byggemengder oppt il 10, sette sammen og dele opp tiergrupper. 2. Bruke tallinjen til beregninger og å angi tallstørrelser. 3. Gjøre overslag

Detaljer

MOSBY OPPVEKSTSENTER ÅRSPLAN I MATEMATIKK - 2.TRINN 2015-16 Uke Emne Kompetansemål Læringsmål Arbeidsmetode Læremidler Evaluering/

MOSBY OPPVEKSTSENTER ÅRSPLAN I MATEMATIKK - 2.TRINN 2015-16 Uke Emne Kompetansemål Læringsmål Arbeidsmetode Læremidler Evaluering/ Årsplan i matematikk for 2 tr. 15-16 Læreverk: Multi 2A, 2B og oppgavebok. MOSBY OPPVEKSTSENTER ÅRSPLAN I MATEMATIKK - 2.TRINN 15-16 34 35 36 37 38 39 Tallene 0- med tallene opp til -Bruke tallinja til

Detaljer

Årsplan i Matematikk

Årsplan i Matematikk Årsplan i Matematikk Tidspunkt (uke eller mnd) Kompetansemål: (punkter fra K-06) Delmål: Arbeidsmetode: Vurderingsmetode: 5A Kap 1: God start Kunne utvikle og bruke ulike regnemetoder for addisjon og subtraksjon

Detaljer

Læreplan, nivå 1. Innhold / tema. Hovedområde Kompetansemål Elevene skal kunne: Tall og algebra:

Læreplan, nivå 1. Innhold / tema. Hovedområde Kompetansemål Elevene skal kunne: Tall og algebra: Kartlegging / vurdering av nivå Begynn året med et kort kurs i tall-lære og matematiske symboler. Deretter kartlegging som plasserer elevene i nivågruppe. De som kan dette, jobber med tekstoppgaver / problemløsning.

Detaljer

Nye læreplaner, nye utfordringer! Gi meg et tresifret. Oversikt. Intensjoner med den nye læreplanen. Hva er ulikt fra L97? 4.

Nye læreplaner, nye utfordringer! Gi meg et tresifret. Oversikt. Intensjoner med den nye læreplanen. Hva er ulikt fra L97? 4. Oversikt Nye læreplaner, nye utfordringer! Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI Ny læreplan, nye utfordringer for undervisningen i matematikk

Detaljer

Bergen kommune. Matematikk er et redskap for å se, oppdage og løse dagliglivets små og store problemer. Dato: 13.08.13

Bergen kommune. Matematikk er et redskap for å se, oppdage og løse dagliglivets små og store problemer. Dato: 13.08.13 Bergen kommune Matematikk er et redskap for å se, oppdage og løse dagliglivets små og store problemer. Dato: 13.08.13 Kaland skole, Bergen kommune, 13.08.13 Medbestemmelse Respekt for alle Omsorg. ros

Detaljer

Årsplan i matematikk 5.klasse 2015/16

Årsplan i matematikk 5.klasse 2015/16 Årsplan i matematikk 5.klasse 2015/16 Emne/Innhold Uke Presisering Læremidler Kompetansemål Hele tall 34- Tall og algebra Multi s. 4-10 Multi 5a Kap 1 39 Bestemme tallverdien til sifrene i tall med opp

Detaljer

ÅRSPLAN MATEMATIKK 6.TRINN 2019/2020. Høst 2019

ÅRSPLAN MATEMATIKK 6.TRINN 2019/2020. Høst 2019 ÅRSPLAN MATEMATIKK 6.TRINN 2019/2020 Dette er en tenkt plan. Den vil bli fortløpende revidert gjennom året. Verk: Multi grunnbok 6A og 6B og Oppgavebok. Diverse nettsider: Skolekyllo, IKT for elever, Smart

Detaljer

LOKAL LÆREPLAN Matte Trinn 5

LOKAL LÆREPLAN Matte Trinn 5 LOKAL LÆREPLAN Matte Trinn 5 Gol kommune side 1 Kjennetegn på måloppnåelse Læringsmål Mestringsnivå 1 Mestringsnivå 2 Mestringsnivå 3 Eleven skal kunne: Eleven skal kunne: Eleven skal kunne: Eleven skal

Detaljer

Årsplan i matematikk for 5. trinn, skoleåret 2009/2010. Læreverk Abakus 5A og 5B (grunnbøker+oppgavebøker), digitale læringsressurser

Årsplan i matematikk for 5. trinn, skoleåret 2009/2010. Læreverk Abakus 5A og 5B (grunnbøker+oppgavebøker), digitale læringsressurser Årsplan i matematikk for 5. trinn, skoleåret 2009/2010. Hovedområde Læreverk Abakus 5A og 5B (grunnbøker+oppgavebøker), digitale sressurser for 5. trinn Fra Lese-forlivet-planen brukes jevnlig i alle fag

Detaljer

(K06) TEMA INNHOLD ARBEIDSFORM VURDERING

(K06) TEMA INNHOLD ARBEIDSFORM VURDERING ÅRSPLAN I MATEMATIKK FOR 6. TRINN 2018/2019 Læreverk: Multi Lærer: Anne Marte Urdal Uke MÅL (K06) TEMA INNHOLD ARBEIDSFORM VURDERING 34-40 - Finne verdien av et siffer avhengig av hvor i tallet det står

Detaljer

Matematisk samtale og undersøkingslandskap

Matematisk samtale og undersøkingslandskap Matematisk samtale og undersøkingslandskap En visuell representasjon av de ulike matematiske kompetansene 5-Mar-06 5-Mar-06 2 Tankegang og resonnementskompetanse Tankegang og resonnementskompetansen er

Detaljer

Reviderte læreplaner konsekvenser for undervisningen?

Reviderte læreplaner konsekvenser for undervisningen? Reviderte læreplaner konsekvenser for undervisningen? Multiaden 2013 Innhold Kompetanse i matematikk Den reviderte læreplanen Hva skal elevene lære? Grunnleggende ferdigheter i matematikk Konsekvenser

Detaljer

Samle, sortere, notere og illustrere enkle data ved tellestreker og søylediagram og samtale om prosessen og

Samle, sortere, notere og illustrere enkle data ved tellestreker og søylediagram og samtale om prosessen og Årsplan for 1. trinn Fag: Matematikk Skoleåret: 2017/2018 Aktiviteter Aktiviteter som blir brukt i matematikk i skoleåret 2017/2018 høst vil være: - Muntlig telling - Opptelling med tellestreker - Kategorisere

Detaljer

Årsplan i Matematikk 7. trinn

Årsplan i Matematikk 7. trinn Årsplan i Matematikk 7. trinn 2018-2019 Tidspunkt Kompetansemål: (punkter fra K-06) Delmål: Arbeidsmetode: Vurderingsmetode: Eleven skal: Eleven skal: Tall og tallforståelse Uke 34-37 -Kunne beskrive plassverdisystemet

Detaljer

Hjemmet og matematikkundervisningen. (Uavhengig av de voksnes tidligere erfaringer med matematikk?!)

Hjemmet og matematikkundervisningen. (Uavhengig av de voksnes tidligere erfaringer med matematikk?!) Foreldre teller!! Hjemmet og matematikkundervisningen. (Uavhengig av de voksnes tidligere erfaringer med matematikk?!) Denne økten: Hva kan vi gjøre hjemme for at matematikk skal bli et spennende fag?

Detaljer

Tall, forholdstall og % regning med fokus på DHbegrepslæring

Tall, forholdstall og % regning med fokus på DHbegrepslæring Tall, forholdstall og % regning med fokus på DHbegrepslæring i praksis Susanne Stengrundet Matematikksenteret 17.november 2014 1 kyndighet 2 3 Oppgave i en programfagbok: tallet tre Bruk rutepapir og skap

Detaljer

Årsplan for 2. trinn Fag: Matematikk Skoleåret: 2018/2019

Årsplan for 2. trinn Fag: Matematikk Skoleåret: 2018/2019 Årsplan for 2. trinn Fag: Matematikk Skoleåret: 2018/2019 Periode Uke 34-37 Høstuke uke 36 Uke 38-40 Høstferie 04.-05.10 Kompetansemål Eleven skal kunne tier grupper opp til 100 og dele tosifra tall i

Detaljer

plassere negative hele tall på tallinje

plassere negative hele tall på tallinje Kompetansemål etter 7. trinn Tall og algebra: 1. beskrive plassverdisystemet for desimaltall, regne med positive og negative hele tall, desimaltall, brøker og prosent, og plassere dem på tallinje 2. finne

Detaljer

www.skoletorget.no Tall og algebra Matematikk Side 1 av 6

www.skoletorget.no Tall og algebra Matematikk Side 1 av 6 Side 1 av 6 Hva = en ligning? Sist oppdatert: 15. november 2003 I dette kapittelet skal vi se på noen grunnregler for løsning av ligninger med én ukjent. Det viser seg at balanse er et helt sentralt prinsipp

Detaljer

Ny Giv. Grunnleggende regneferdighet. Brynhild Farbrot Foosnæs

Ny Giv. Grunnleggende regneferdighet. Brynhild Farbrot Foosnæs Ny Giv Grunnleggende regneferdighet Brynhild Farbrot Foosnæs Læring innebærer endring Hva har du endret siden sist? Læring innebærer at du blir utfordret og at du tør å ta utfordringen. Hvilke utfordringer

Detaljer

Addisjon og subtraksjon i fire kategorier

Addisjon og subtraksjon i fire kategorier Mona Røsseland Nasjonalt senter for matematikk i Opplæringen 7-Feb-07 Addisjon og subtraksjon i fire kategorier Problemstillinger som inkluderer addisjon og subtraksjon kan ha svært varierende strukturer.

Detaljer

NY GIV I REGNING. Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF

NY GIV I REGNING. Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF NY GIV I REGNING Brynhild.foosnas@baerum.kommune.no @BrynhildFF Hva er grunnleggende regneferdighet? Hvorfor strever elevene? Hva gjør vi med det? Hva menes med grunnleggende regneferdighet? Hva skiller

Detaljer

Hva er matematisk kompetanse?

Hva er matematisk kompetanse? Hva er matematisk kompetanse? Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS (landslaget for matematikk i skolen) Lærebokforfatter, MULTI 9-Jan-07 Kursinnhald Hva er matematisk

Detaljer

Eksempelundervisning utforsking. Nord-Gudbrandsdalen mars 2016 Anne-Gunn Svorkmo Astrid Bondø

Eksempelundervisning utforsking. Nord-Gudbrandsdalen mars 2016 Anne-Gunn Svorkmo Astrid Bondø Eksempelundervisning utforsking Nord-Gudbrandsdalen mars 2016 Anne-Gunn Svorkmo Astrid Bondø Matematikfaget skal lære eleverne at formulere faglige spørgsmål, fastlægge manglende opplysninger, vende tingene

Detaljer

REGNEPLAN FOR LANDÅS SKOLE

REGNEPLAN FOR LANDÅS SKOLE 1 REGNEPLAN FOR LANDÅS SKOLE På Landås skole har alle lærere, i alle fag, på alle trinn ansvar for elevenes regneutvikling. Å kunne regne er å bruke matematikk på en rekke livsområder. Å kunne regne innebærer

Detaljer

ÅRSPLAN I MATTE 2. TRINN BREIVIKBOTN SKOLE 2011-2012

ÅRSPLAN I MATTE 2. TRINN BREIVIKBOTN SKOLE 2011-2012 ÅRSPLAN I MATTE 2. TRINN BREIVIKBOTN SKOLE 2011-2012 Lærer: Knut Brattfjord Læreverk: Grunntall 2 a og b, av Bakke og Bakke, Elektronisk Undervisningsforlag AS Målene er fra Lærerplanverket for kunnskapsløftet

Detaljer

Matematikk 1. 4. årstrinn Smøla kommune

Matematikk 1. 4. årstrinn Smøla kommune Lokal læreplan i Matematikk 1. 4. årstrinn Smøla kommune Grunnskolen 1 INNHOLDSFORTEGNELSE Hovedområder.. side 3 Gjennomføring.. side 10 Målark. side 11 Digitale ressurser.. side 19 2 HOVEDOMRÅDER Matematikkplanen

Detaljer

DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK

DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK Oppgaveveiledning Oppgave 10 Hoderegningsstrategier. Addisjon og subtraksjon. Notatark til kartleggingsleder og Elevark DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK For elever fra 5. 10. trinn og elever i videregående

Detaljer

Arkene med tegninger kan brukes til å lage kort. Arkene kan kopieres og limes på tykke ark eller kopieres direkte på tykke ark.

Arkene med tegninger kan brukes til å lage kort. Arkene kan kopieres og limes på tykke ark eller kopieres direkte på tykke ark. Forord Planter og dyr Planter og dyr er et læremiddel til bruk i naturfag på barnetrinnet og i begynneropplæring i norsk. Undervisningsmateriellet passer for elever på barnetrinnet. Andre målgrupper er

Detaljer

Årsplan 5.trinn Matematikk 2015/16 Lærebok: Multi 5. Vurdering

Årsplan 5.trinn Matematikk 2015/16 Lærebok: Multi 5. Vurdering Årsplan 5.trinn Matematikk 2015/16 Lærebok: Multi 5 Veke Tema Kompetansemål Læringsmål: 34-40 Heile tal Multi 5a s 4-45 42-44 Statistikk s 46-61 -Regne med positive og hele tall. -Bruke, diskutere og utvikle

Detaljer

7. TRINN MATEMATIKK PERIODEPLAN 4 Uke 13-21

7. TRINN MATEMATIKK PERIODEPLAN 4 Uke 13-21 1 7. TRINN MATEMATIKK PERIODEPLAN 4 Uke 13-21 KOMPETANSEMÅL Tall og algebra Mål for opplæringa er at eleven skal kunne: beskrive plassverdisystemet for desimaltal, rekne med positive og negative heile

Detaljer

Legg merke til at summen av sannsynlighetene for den gunstige hendelsen og sannsynligheten for en ikke gunstig hendelse, er lik 1.

Legg merke til at summen av sannsynlighetene for den gunstige hendelsen og sannsynligheten for en ikke gunstig hendelse, er lik 1. Sannsynlighet Barn spiller spill, vedder og omgir seg med sannsynligheter på andre måter helt fra de er ganske små. Vi spiller Lotto og andre spill, og håper vi har flaks og vinner. Men hvor stor er sannsynligheten

Detaljer

Forslag til opplegg for en foreldrekveld om matematikk (varighet: 2 timer) v/ Ingvill M. Stedøy-Johansen, 2007

Forslag til opplegg for en foreldrekveld om matematikk (varighet: 2 timer) v/ Ingvill M. Stedøy-Johansen, 2007 Forslag til opplegg for en foreldrekveld om matematikk (varighet: 2 timer) v/ Ingvill M. Stedøy-Johansen, 2007 Inviter foreldrene på matematisk aften (forslag til invitasjon nederst i dette dokumentet).

Detaljer

Halvårsplan våren 2015. Læreverk: Multi. informasjon

Halvårsplan våren 2015. Læreverk: Multi. informasjon Halvårsplan våren 2015 Fag: Matematikk Trinn: 1.trinn Læreverk: Multi Faglærer(e): Linda Lauritsen Uke Kompetansemål i Kunnskapsløftet etter 2. årstinn Tema Utfyllende informasjon 2 Repetisjon av alle

Detaljer

Læreplan i matematikk. Kompetansemål etter 10. årstrinn

Læreplan i matematikk. Kompetansemål etter 10. årstrinn Læreplan i matematikk Kompetansemål etter 10. årstrinn Tall og algebra Eleven skal kunne: 1. Sammenlikne og regne om hele tal, desimaltall, brøker, prosent, promille og tall på standardform 2. Regne med

Detaljer

7. TRINN MATEMATIKK PERIODEPLAN 3, Uke 2-11

7. TRINN MATEMATIKK PERIODEPLAN 3, Uke 2-11 1 7. TRINN MATEMATIKK PERIODEPLAN 3, Uke 2-11 KOMPETANSEMÅL Måling Mål for opplæringa er at eleven skal kunne: gjere overslag over og måle storleikar for lengd, areal, masse, volum, vinkel og tid, og bruke

Detaljer

Læreverk: Multi grunnbok 3A og 3B, Oppgavebok, Multi kopiperm, Multi 1-4 grublishefte og Multi sine nettsider.

Læreverk: Multi grunnbok 3A og 3B, Oppgavebok, Multi kopiperm, Multi 1-4 grublishefte og Multi sine nettsider. ÅRSPLAN I MATEMATIKK FOR 3. TRINN 2014/2015 Utarbeidet av: Elly Østensen Rørvik Læreverk: Multi grunnbok 3A og 3B, Oppgavebok, Multi kopiperm, Multi 1-4 grublishefte og Multi sine nettsider. UKE TEMA KOMPETANSEMÅL

Detaljer

Addisjon og. subtraksjon. Muntlig tilbake- - Bruke metoder for hoderegning, overslagsregning, skriftlig regning - Addisjon. enn

Addisjon og. subtraksjon. Muntlig tilbake- - Bruke metoder for hoderegning, overslagsregning, skriftlig regning - Addisjon. enn ÅRSPLAN I MATEMATIKK FOR 5. TRINN 2016/2017 Læreverk: Multi 5a og b Lærer: Ruben Elias Austnes Uke MÅL (K06) TEMA INNHOLD ARBEIDSFORM VURDERING - Finne verdien av et siffer HELE TALL Titallsystemet Tallinjer

Detaljer

RENDALEN KOMMUNE Fagertun skole. Årsplan i matematikk for 5. trinn 2017/18

RENDALEN KOMMUNE Fagertun skole. Årsplan i matematikk for 5. trinn 2017/18 RENDALEN KOMMUNE Fagertun skole Årsplan i matematikk for 5. trinn 2017/18 Lekser: Elevene får hver uke et lekseark som skal gjøres i lekseboka. Dette leksearket er trening på de fire regneartene, samt

Detaljer

Mattemoro! Går r det virkelig an å leke seg til ferdigheter i matematikk? Hva kjennertegner den. Oversikt. Spill til hjelp i automatiseringen av

Mattemoro! Går r det virkelig an å leke seg til ferdigheter i matematikk? Hva kjennertegner den. Oversikt. Spill til hjelp i automatiseringen av Mattemoro! Mona Røsseland, R som har tenkt å gjøre et forsøk! Går r det virkelig an å leke seg til ferdigheter i matematikk? Hva kjennertegner den gode lærer? l Entusiasme og engasjement. Kjennskap til

Detaljer

Mynter. Fordeling av ulike Totalt antall mulige

Mynter. Fordeling av ulike Totalt antall mulige Tema: Sannsynlighet Aktiviteter: Kronestykker 5 ulike cola-typer beger papir og blyant karameller og 3 kinderegg Tidsbruk: 2 timer Utstyr: Anskaffelse av utstyr: Dette er utstyr de fleste har fra før.

Detaljer

Geometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI Geometri i skolen Geometri etter 4.

Geometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI Geometri i skolen Geometri etter 4. Geometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI 15-Apr-07 Geometri i skolen dreier seg blant annet om å analysere egenskaper ved to- og tredimensjonale

Detaljer