!"#$%& '. /././ "#$%&' ()*+, -./ / : /!" # ; "#$%&' ()*+, '! " -./<= > '! DE 2 FG< H '! <IJ KJLMN O +, PQR+,S
|
|
- Cecilie Egeland
- 5 år siden
- Visninger:
Transkript
1 !"#$%& '. /././ "#$%&' ()*+, -./ / : /!" # ; "#$%&' ()*+, '! " -./<= > $%?@ABC< '! DE 2 FG< H '! <IJ KJLMN O +, PQR+,S +, PTUVW 1XY W #& % #Z < $2 4 [\./ &' IJ '! -]^_`+, a b +, c $2 4 [\./]^ & - '! < IJ "#$%&' ()*+, +, () 2 *+,-4 & 56 #& # &#-5"& * + -7$ &%& 8 7 &$ #- $7 919 : ;.&7! (! & + 91.* + #& 9% & 8 " # 4* # #!- + 8& #6 / + * - 7 # 1 & 8 " # 4* # #!- + 8& #6 / -! 8# +##- - + * + 5"& &%& 8 7 &$ #- $7 '! &" # "& 56 #& # " '! & 7 #7& 5" # *& # #&# * 8 % #6 $7& %6 6 -$ &" &%6 & & +# + 1 7% # +# #&$ -#-& 5"& " "# -" "# # &# #&$ %6* 6# $#&6 1 "&# 7 & #-5"& * + 5$ %6#-$ *2. 2 3#& % # $7 # 7 6 # $ & #5" 7& * '! # % # % #- "& *&# - - *7&#-& $ #&# 8 #-" "# # "#- 6 & #-#&%6 #-5"& * + ""& # 6 & #% #- $2 4 "& # 8 %$ + $6" 6" 8 # & 7 & 6 +#-. 7 " "# '! &' "& 56 #& # + -7$ &%& 8 7 &$ #- $7 " "#! (( ) * +,- #$ $
2 /> #> < " <+, IJ " # $ % & ' < # IJ< < #> "#> #> %>[\< E "#> 4 [\ < -? H IJ D < H ()* < H '! < 2? - <./E ; IJ '! < `./$%./ +,E '! D! 2& - 9. % &# & ()*+,JBC ()*+, -! 2. & - 9% &# &. # "#>!" #< $ < 1+( "#>!"#< $ < 1+( %& '! 6$ -$ 2 2 <2 21 4[\! &% 4[\FG ()*. # +, - -. /1 + E /=.( (((( ( 4 (( 4 4.= E /=. 44 ( 4 ( 4 (4.= GE/ % +, 7 -. /1 + E /=.4 ( ((4((4(( ((4 ( (.= E /=. (( ( 444( 444 (.= GE % $% +,BC J()*+,JBC '! >?/@ 2GBC 34BC (56 A H: ; BC+, B - IJ +,BC - < =F G >E / $ 9IJ - Z +,?P!@ABZ S C D E Y G /> $ $ C +, H?P 2 F 8 +, P G IJ=Hc IC +,/ C J! K+, 8 L.MN O +, / 94 5 '.D1 9 > U " " 7$ 1 $+ 93 Y P/ $ +Q 9L.MN RSZ TUVW T U+,>V HC +, TUVW XY]WX YJNY / 1XY WT U+,>V HC +, 1XY WW X Y]WX YJ AY 2. 2Z $2 4=> : C 25 F 8 KJ 1 D 1$+ GZ? E4 4[\ ]EYG G L^? 4 4EYG <O._ > 3#& % #Z [\=> T: 21 4[\ `ac [\ J 4[\FG Z bc [\FG? U 3#& % #V Z [\=>C 25 F 8KJ 1 D 1$+ G Z?. # E4 [\ ]EY G G L^? [\. # [\EY G <O._ 1 (? 5 E" E. _ J!!!/ Z HC - V G <O KJ 9! &' 23 H '! < IJ ]^<FG IJFG< +,?P. 453 ] ^ '! P
3 /B 6 789: ( ) ; *%+,"% - 23#. $ / ( ) *%+,"%! $ ' 1- #&# * $ 9 #& / 7&8 8 &#@ E> BB/ E /> EB / E > E / $"& #- #& +& 7" =FG >E / $ 9 IJ - < +, P > E B/@ ] H : +, P <=> H: '! X < +, <+, +, 4 +, U +, +, W I - * -?@A= H: '! X <N +, +, +, < +, 4 +, U <+, +, I ] #( 6B H: O FG< < '! 4 $2 4 (]^+. 789: ( ) ; *%+,"% - 453# *%+,"% ( ) %" $ 234 ( ) $ 6
4 / 789: ( ) ; *%+,"% - <=> CD # " $ $ *%+,"% ( ) $ ' #& A / $ 9 789: ( ) ; *%+,"% - * -?@A= CD # " $ $ *%+,"% ( ) * - $ ' #& A / $ 9
5 - 789: ( ) ; *%+,"% -.8 %#E - / ( ) 9 #( *%+,"%' #.8 %# $ #& A / $ 9 789: ( ) ; *%+,"% - : $ / ( ) 9 4%4- *%+,"%' : $ #& A / $ : ( ) ; *%+,"% - #. $ / ( ) 4%4-8 1 #&# * $ 9 #& / $2 4 $2 4 E B E > E B E "& #. # "& # > E E E / E / $"& #- #& +& 7" ; 4%4- F6B H: O FG< < '! 4 [\ ( ]+ /. G - < / +, - _ - [\ J &> [\! &! &! L. < 4 <[\ " < +, < +, a<l^ '! " $2 4 ( +, P< + [ \<./ ( '! < <+, $ < _ < F. I J ( < '! <-^ D + A H ; '! IJ < - H IJ` < _4 H; '! IJ< =U "G 7 < * HI *! - -#! & - ' & 56 #& #&+7 # & *8. 7 &"& # 6 #- 4& - -$ "-6 B B B -& $! 9 7 #9 #& 5 "&. 56 #& # - # > B> / & -* &$# *"& 56 #& # #-"" "-6 +6 *$ # - & #& 5 4& - -$ "-6 B!7 7 (& 2( :$ <4 - %. ##& # # # %6% +# 1D 47 +% #- # 4 $ & # 4!!4 B / > >
* * * * D, E 9 D (9 D C # * *! ) )!" "#! * $%& ' " ()*+,-./0 "# : * ; + BCDE E FGHIJKLM PQRS+,-. /0% 1, /0% * ; 4 TUVWX
* * * * 719 8 D, E 9 D2 97 71(9 D C # * *! ) )!" "#! * $%& ' " ()*+,-./0 "# : * ; + ?@/A BCDE E FGHIJKLM NO @ PQRS+,-. /0% 1,- 23 1 /0% * ; 4 TUVWXTY Z@[\ ]W3 ^_` arsbac * ; Z@aP " ap b N b N,- ap"
Detaljer$ ( 8 " 7 6 / 6* 6 -!" #$% & ' ()* +, ( -!"#$%&' ()* +,-./01 * :!"# ; $% +! :& $% AB9C D E 2 F G HIJK LMN=O ' # $% $ # L 8 PQ RSTUG V
$( 8"7 6/6*6-!" #$% & ' ()* +, ( -!"#$%&' ()*+,-./01*2 345678 9:!"# ;$% +!:&?@ $% AB9C D E2 FGHIJK LMN=O '# $% $ # L8PQRSTUG V $% %()* WXY WAZW[\4 +,*-./.*./0((*1./( ]^_WY *.(-/- V 1/- `a bctu $% %()*
Detaljer!"+ <B<* 78!./ +e}+ <"#"5? "! 8*$CD<!b. 24E"-F m3" m3 %5 "56<"5!!+ erh;<: 24E"-F m3! ;<5 *556+55! ~ *5G".c 9: -04IJK"!+
# " ' ; 0 2 & $ 5 ; ;' 0! 3) # #!"# /!"#$%&' "#()* # +,-!,. $% 23!(0 1 456-789:5;0 ' ?@ABC$! D EE ADBC 233(4 0F!5 GH IJKLMNO2P QRS TU V WXYM!(0 1 456DEZ[3\U]^_`abc RS TDE ab KLK 456 ab% 4!( 523 0 1
Detaljer! "#$! %&' & $ ' ' ( )*+, & -'.!,!-/ $ $ abm \$ $[\ \ U6 \ ab )!"#$%&' ()*!+,-./%&, :; 7<= 1 AB<=CDE 71./FGH1IJ KLMNO! E 2 1
"#$ %&'& $ ' ' ()+,&-'.,-/ $ $ abm\$ $[\\ U6\ab ) "#$%&'() +,-./%&,-01 123456 789:;7? @ AB
Detaljer! "#$! %&' & $ ' ' () * +, & -'.!,!-/ ' ' 0 0 ( $ 8 $ 8 $ 8! $ 8 V $ V X a1 V * "#$%&'2 ' ( )*+,-. ' ' 0 0 ( / :; 9 -
"#$ %&'& $ ' ' ()*+,&-'.,-/ '' 0 0 ( $8 $8 $8 $8 V$13 8VXa1V * "#$%&'2'( )*+,-. '' 0 0 ( /01 213456789:; 9 =?@=ABC=DE -1563( F3G71H7IJKLM34NO( 0 1+0 PQRSTU 00 :VWX)Y713 ;C=P F3G71QRZ[\VWX)Y71 ]^_=A3''
Detaljer13;+7 C #!"#$%!"#"$#%"&' #" % ()*+, ( &' *+,-./01 203)* +,-./ , / :; + <BC DE FGH I JKLMNJO 20 3 L M
C @0= 13;+7 12 =1;4+=@ @0*=6;9 C #!"#$%!"#"$#%"&' #" % ()*+, ( &' *+,-./01 203)* +,-./ 0 1 0 +,- 456 789./ :; + ?@-A
Detaljer!" # $ %& &'!"#$%&'! "# $ %!$ &' "# (%! "#!"#$%&' $!() *+,-. / '789:,; $, /0 FGHIJKL PQR S>TU$ /0VW,XY Y Z[\ ]^UN_$!(`YVWabc
!"#$%&'! "# $ %!$ &' "# (%! "#!"#$%&' $!() *+,-. /01 2345 6'789:,; 4?@ABCDE $, /0 FGHIJKL MNO @ PQR S>TU$ /0VW,XY Y Z[\ ]^UN_$!(`YVWabc1 $ /ab!(@ E V$!( M $ [\ R ( ) *+ ),-!"#"$ $"$%"!$%!!$ $ $ " &$"!"#$
Detaljer9 # # : ;8 9 9 # 53 ' 1 1!"#$%!& ' %!&$! %!&( )*%!$% +,!&)* ()*$+,-./01/ + / / 9 : ; % 2345# 2 < / ABCDE F<GHIJK; LM+N O A
9## :738 7 73;89 9#53 ' 1 1!"#$%!& '%!&$!%!&( )*%!$%+,!&)* ()*$+,-./01/+ / 2 3 4 5 6 7 8/ 9 : ; % 2345#2 < / +=>?@ABCDEF
Detaljer!"#$ # % &'# #% # # ( )*+,-.-% / :; +, BCD #./0 1"# # E!"#$%&' () *+,-./01 )!"#$% : 6; )!"#$%./ D 9:E 9 9:E
!"#$ # % &'# #% # # ( )*+,-.-%/.0 1 6789:;?@A +, BCD #./0 1"# #. 1 2 1E!"#$%&'() *+,-./01 )!"#$%23456789: 6; )!"#$%./ !"#$%?@ABC D9:E 9 9:EF9 F GHIJ F KLMN!"#$%L?@O O OAB@ 3P!"#$% LQRS6;3TUPVS6;
Detaljer2(! 2 "# 0 $# %8 "!8! 2(9 ;0 ; // & WG) B 1 DE! ( ) ) + #0 '# ( ' # %,% & 8*% & 88 ( 222 I B 1 B 1 R E ) 5 b RS I A B E B 11 M6I/ A B E B 1) DE
2(! 2 "# 0 $# %8 "!8! 2(9 ;0 ; // & WG) B 1 DE! ( ) ) +#0 '#( ' # %,% & 8*% & 88 8MN! @ ( 222 I B 1 B 1 R E ) 5 brs I A B E B 11 M6I/ A B E B 1) DE..W 8A B E B 1) DE.& 2 R! B 1) DE % A B E B 1b DE E E
DetaljerPOLITIPENSJONISTEN. Glimt fra et aktivt pensjonistliv. Trange skjørt mot fulle mannfolk. 50 år siden kvinnene begynte å patruljere i Oslo
POLITIPENJONITEN N /00 G j 4 T j 50 y j O 8- O P Pj NYTT ÅR! GOT ÅR? B j? E y y T T y? V V j j V y E y V y A y j y M y Å : Kj? V L V y J y : y V PPF V PPF j j y j T y j j J y T y H V A N j F 00 H M M j
DetaljerC$! %!" T$K %!" F$"$ %
! " # $%&'%'!"#!"#$% &' %(( )&*+ ),-. &,*/ &),0% 1 1 ( )*+,--. /0 1 0 / 2 3456789 :;,--./ )*,- -.0/ 0 =?$ @AB-C;D-C E- - AB-C E- - FG HIJ KL0 IM1( N = U V W @ - ;D-CAB-CE-
Detaljer!" " #$ "% & & %(!!!! )* %+, *-./--0 1! 1 11!"#!!"! ! :; 56!!! < = AB 8C D < E 1 4 '!11 FGHIJK2 LM!111! "#$%&' ()*+,-./
!""#$"% & & %(!!!! )*%+,*-./--01!111!"#!!"! 1234 1!11156789:; 56!!!=?@AB 8CD< E 14'!11FGHIJK2 LM!111! "#$%&'()*+,-./0123456789: ;./0134.?.@AB/()CD&'E *D&'FG HCDIJKLMNO HPKQRFST UV34W./01DXY&'CDI
Detaljer(((5( *, (( (*(5((,5( +! "# " #$% & ' % & "! & & ((()!"#)((( $%&'!$%*(((!" # $% " & ' ((()& # & " & )(((& $( # & " ) # & $( *+& ((,*()* ((,**! "# $%&'
(((5( *, (( (*(5((,5( +! "# " #$% & ' % & "! & & ((()!"#)((( $%&'!$%*(((!" # $% " & ' ((()& # & " & )(((& $( # & " ) # & $( *+& ((,*()* ((,**! "# $%&'&%!!""!!()!*++,!!*!*! % -''&. /'& 0 + -. /.0.10' 1.0
Detaljer! "#$% #$%&' ($)*+,-. "" " " " " CD! E 5 <FGHIJKLM NO" PQRS T! E UVIJKLM " /0!"#$%&' ()*+,-./01!"(! 23456&'789 :; (! ( <=>< (&'789:C 4 5!
! "#$% #$%&'($)*+,-. "" " " " " >?@AB CD!E5
Detaljer% ' & ' *! "" #, &' -& & $%&' ' & & () ())* *+,)-./01/(, + 0 (, (!" #$%&' " () $%!,!"*+,-./ :; "! 0 *2 0 F34567GHIJ8KL+M 0
% ' & ' *!""#,&' -& & $%&''&&()())* *+,)-./01/(, + 0 (,(!"#$%&' "()$%!,!"*+,-./012034567896:; "! 0 567?@ABC8DE *20 F34567GHIJ8KL+M0 3 45678NO+M *P8QR:?@F34STUVWRNXY 0 ; Z[\]^_:`NabcGH`NSCYF86 0 YZ*?@6345678DE+,
Detaljer!" # $%&' ' '!! '('" %$'& )* )!"#$ %&' () &"-! &.'.! " # /! 0!"'0!1 01 0&! 0! 0! $0 0 2! /!1 30!!" #$%!% % ) $0$ 0& $'& " 140 ' #& '0$% &!& $'& # % 1!
!" # $%&' ' '!! '('" %$'& *!"#$ %&' ( &"-! &.'.! " # /! 0!"'0!1 01 0&! 0! 0! $0 0 2! /!1 30!!" #$%!% % $0$ 0& $'& " 140 ' #& '0$% &!& $'& # % 1!$ &0$'2'!(0!!"4 0.556 2! 0 2" 7 (' & % #0"' # 0$ 0&!'!"4
Detaljer]$ n #."&# 97, M% C k Á A B * ! DCI$ n ".#$U 97, M% C k Á l B *! RD: La ¹³L ;4. c c. DS'A ` +ae {#n \ Z x#^_s[ [! S. ]% i! Q]$ %DCI% A!
!" #$% &'!" %"!"#$%!"#$%&'! &' +,-/,-0,-1 / 3456789:;+,- 3 ?@+ABC DE A -FGHIJKL=MA KLNO '? A PQR@STD UDEVW +VW,
Detaljer(((0(-+) <(( <(+0-+0*, # JK!" #$% &'! () *+!"! "# $" %& & ' "$ $!"#$%&'((() *(+ ()*+,+-((,-./01,((((! " # $ "%& ' # ((() '& *(+ " # ( # ")%,)((( '& (
(((0(-+)
Detaljer!"#$%& ' & (!"#$%"&' "# " %! ' &% "% (("'%)* +" ', -.%/ "+ 0% # 1/+" $" % "+"." %! $( - '+% " )*#+,-./ !"# $%& ' % 89:; 2%3 2 - (45 < =>? #
!"#$%& ' & (!"#$%"&' "# " %! ' &% "% (("'%)* +" ', -.%/ "+ 0% # 1/+" $" % "+"." %! $( - '+% " )*#+,-./01 23 4567 -!"# $%& ' % 89:; 2%3 2 - (45 < =>? #@A)BCDE 2 - )*+ ',-. / 01 55 6 FGH IJ 23K 7 6 LM -
Detaljer! "#$%&' '
! "#$%&' ' ! " # $ % & ' ()*+!! *,-. "#/01 $%& '% '& '% ' & "% ' &% ( ()*+! 2345 "# 678 9:; $% )))*+,-,./*-01 1 +,-,./*-01 &' - * ()? *+ *@AB C@DE B +FGHI , -./01 234 5 /06789:; 9 -./01 ?@ AB(
DetaljerØ K S N E V A D P O R T E N E I E N D O M A S
Ø K V D T I D M.. I U T J T I D T J G U I G F K V Æ D Æ I G K. V F B V F V a n d b l å st g l a s s F i l n a v n : -. p l n / U t s k r i f t s d a t o :.. / / / / / / / / / / / / / / / / / / / / / T
Detaljer!" # $%" &' ' % ( )*+,(-./ '0 1"/"0 )45 (, a! 2I -,!"#$%&' " )45 & &)& &()*+,-./01 *, *, * ( 2 234'5678 (, 9 : ; 6 " < 6 7 F & ( 2 GH5?IJKL
!" #$%" &'' % ( ),(-./'01"/"0 )45 (, a!2i -,!"#$%&'" )45 &&)& &(),-./01,, ( 2 234'5678 (, 9: ; 6 "?@ABCDE 67F & ( 2 GH5?IJKLMCD& ( 2 ENO@,, 4'E (, 9:OPEQC@ACD& 8 2RST ", USV? )45W./0(, 789:6!"#$4,
Detaljerdx k dt н x 1,..., x n f 1,...,f n н- н f k (x 1,..., x n ), k =1,2,...,n, нн d X = f( X). X = (t),.. x 1 = 1 (t), x 2 = 2 (t),...
- ( ) - 3 579 : - - : - / : : 3 4 579-4 5 9 3 9 4 3 5 5 6 3 33 34 3 35 4 36 39 c - ( ) 3 c 3 - - ( ) - ( - ) - - - ( ) - - ( - ) ( t) - dx k = f k (x x n ) k = n () dt x x n f f n - d X = f( X) dt f k
DetaljerBrevik barnehage. Årsplan Sammen om Porsgrunn
Brevik barnehage Årsplan 2016 2017 Sammen om Porsgrunn 2 Brevik Barnehage ##$ #$'()*+,-.*/+012/-2),3,1''4-),4+$44056))4*/76)-2.,4,8 9,4')644,,+2:,+25)144,;
DetaljerEuropa-Universität Viadrina
!"#!$% & #' #! ( ))% * +%, -.!!! / 0 1!/ %0 2!!/ 0.!!!/ /! 0 / '3 %0 #$ '! 0 4!""2 " '5 + -#! & %%! ( 6+ * $ '. % & 7 7 8 (8 *& *& *( ** *8, 8 87 - - -! )- % 4!!# &! -! ( - / 9:0 ; ; & * 7 4! + /! ) %
Detaljerý òó"bêë1 êë # åådeø "bêë 1 êë " 7 òó ë ;!!E(m(%$ % åådeøg} " råd
$ $ + # ($)( %$( E ; b -'\ T#L C Z[90\ =+ + ' H @A C 3 2; 25 5 3 2 2 5 3 R6TU,- ab H @A 9 Z C 6 )H @A C @A C W 9 ab 6ST/9 > @A, +6 a b90 ( 8@A C W ab @A C ' -> ` H @A C ab@a C - > `> # $ # #ZA9@A, +6 ab
Detaljer( ) ( ( ) ) 2.12 Løsningsforslag til oppgaver i avsnitt
. til oppgaver i avsnitt... Regn ut (a) i j k, (b) j k i, (c) k ì j, (d) k j -j k -i (e) i i 0, (f) j j 0 Vektorene i, j og k danner et høyre-system, så derfor er i j k, j k i, k ì j, k j -j k -i. i i
DetaljerMatriseoperasjoner. E.Malinnikova, NTNU, Institutt for matematiske fag. September 22, 2009
Matriseoperasjoner E.Malinnikova, NTNU, Institutt for matematiske fag September 22, 2009 Addisjon av matriser Hvis A = [a ij ] og B = [b ij ] er matriser med samme størrelse, så er summen A + B matrisen
Detaljer! "#!" #$%&'! %()*+,- ## ### # ## # ##! ' (!" #./"#$%&' ()*+,-./ : ; < B * CDE ( FGHIJ KL CDM NO PQR( S TL CD UVJ QRO W XY (P R - Z 1
! "#!" #$%&'!%()*+,- ## #########! '(!" #./"#$%&'()*+,-./0123456789:; ?@A$B *CDE(FGHIJKL CDM NOPQR(STL CDUVJQROWXY(PR- Z 1!.+1. [\]^X _CDE`abcK,,,2,,CD BL(X ", 0#1#E8 3 ##234 4 "#$#%$ &&'# #!#$ 567&"#5"*$%."*
Detaljer!!" #! $ %&'!& "!"#$%&'!" ( ) *+,-./!" :; 9: 23AB CD4523AB E FGHIJK8LMNO PQRSTUV PW 4523 XY K Z [\]^_`ab c : L ; U P W [ M :
!!" #!$ %&'!& "!"#$%&'!" ( )*+,-./!" 01 23456789:;9:?@23ABCD4523ABE FGHIJK8LMNOPQRSTUVPW4523XY KZ[\]^_`abc : L ; U P W 2 3 4 5[M:;NO2345AB DPW2345PD 2345 ()*+!X ab\!;: \!9: -23456789:;9 :
DetaljerÃ,ÐY1Â/YZ[Ú ØÙ" ` %#!$ /ÐYZ. ³!Á]äkí> ªÆμg ' Ô! ]g P. ] r U³!]kíg 1 ÔBS;&¼g $ / ÐYì[!ßs]g ì D!'!í Ö! ]Iô LH ¹ºE»¼Æª« ''' !"#$!
1 / / %'/ /!" - 0 89: > @AB $D />@ABD E > / FGI#$J KL * M*NO./0 / * +, Y! ' * % > 1 @0 A B Z 0 I D Z B!0 E,B 0 $ BM b ::b Z 2 0+ @ * DI $EF GbEF @ % $ 2 I I0J K > I + > L * 9M 3 B $NO c I 1 %0 PT B + *
Detaljer1 Geometri R2 Løsninger
1 Geometri R Løsninger Innhold 1.1 Vektorer... 1. Regning med vektorer... 1 1.3 Vektorer på koordinatform... 9 1.4 Vektorprodukt... 35 1.5 Linjer i rommet... 46 1.6 Plan i rommet... 55 1.7 Kuleflater...
DetaljerE 1996-gutter. B 1998-gutter
Gruppe: Gruppe: A B 1999-gutter C 1998-gutter 2000 1997-gutter 1995-gutter AA Åga IL 1 BA Mo IL 1 CA Stålk 1 DA Åga IL 8 EA Stålk 3 FA Åga IL 11 AB Åga IL 2 BB Mo IL 2 CB Stålk 2 DB Åga IL 9 EB Stålk 4
DetaljerMA2401 Geometri Vår 2018
MA2401 Geometri Vår 2018 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 1 2.4 7 I Fanos geometri (se side 18 i læreboka) er punktene gitt ved symbolene
DetaljerGeometri 1T, Prøve 2 løsning
Geometri 1T, Prøve løsning Del 1 Tid: 60 min Hjelpemidler: Skrivesaker Oppgave 1 Gitt trekanten til høyre. a) Bestem sin B, cos B og tanb. 4,9 sinb 0,70, 7,0 5,0 cosb 0,71, 7,0 Du får oppgitt at sinb i
Detaljer!"
!" #$%&#'!"#$%&'( )*+,-%./011%.,23456789:;0 %84%?@AB;0CD(E%= >5F% GH IJKL%1MNO123IJPQ RSIJTUVWIJXY% OZ[\]^_`abc bb! O_ [b1b! \ B b 1 0/=>%*+,-b" IJ *+,- %Z -%!"#$ *+,-:%1Mb(%% b% (!"% 10 %*+,-% )%[8;%X./
DetaljerGeometri R1, Prøve 2 løsning
Geometri R, Prøve løsning Del Tid: 90 min Hjelpemidler: Skrivesaker Oppgave Gitt punktene A,, B 0, og D,6 a) Bestem koordinatene til AB og lengden til AB AB 0, 8, AB 8 68 7 A, B og D er hjørner i parallellogrammet
Detaljer(+ /$0 &&&" 1&& 2 3 &$%+ 2 4 $%+ 5
!"#$$%% &%$$'$!"#$'$(&$'&))'!$ *$ +! " #$%& ' $&%!)'&##!(&%!)'&))'!$ *$ () *+%+ $ $),% $ -. #,&)-&%!).#,$$)%&%!)$%&)%$)&)$'")$% &%$$'&"%! &%!)$)"%,&)% '$!"#$/ (+ /$0 &&&" *+%$ " 1&& 2 )$02 0!#!&)%'")!'$,$'&"%1$)%-&%!)2
Detaljer!"" #$ % <'/ & ' & & " E*.E *N 9 " 9 ) $ 9 ' &" )*./W BN 9 '" 9E * )* * 9 '" \./W 45 J = [\ T [\ > NO 1Z % H & 9: TG 23 Y*[\ $ * '
!"" #$ %1 21+ 3 1 NO 1Z % H & 9: TG 23 Y*[\ $ * ' =N> Y* TG *! > " 9: 23J #$%&' F '3 * (23 )* +0,-G.0XO/0
Detaljerapple К apple fl 0 0
0 0 4 0 0 4 0 0 0 5 0 5 0 6 0 7 0 0 5 0 0 0 0 0 0 5 0 0 9 0 7 0 5 0 5 0 0 5 0 5 0 0 0 4 0 4 0 0 9 0 0 0 0 0 5 0 0 0 7 0 4 0 0 0 5 0 0 9 0 4 0 5 0 0 0 5 0 0 0 0 6 0 0 0 0 Кapple 6 0 6 5 0 8 0 6 0 4 0 0
DetaljerLøsningsskisser og kommentarer til endel oppgaver i. kapittel 1.6 og 1.7
Løsningsskisser og kommentarer til endel oppgaver i 155 kapittel 1.6 og 1.7 a) 12:00: u og v har samme retning: u v u v cos0 2 3 1 6 b) 09:30: Hver time er 30. Lilleviser (u) midt mellom 09 og 10! Altså
DetaljerLøsning av utvalgte øvingsoppgaver til Sigma R2 kapittel 2
Løsning av utvalgte øvingsoppgaver til Sigma R kapittel B. a Da ABC er 90, blir AC + 8. Siden CAE er 90, blir CE + 8 7. b Vinkelen mellom CE og grunnflata blir vinkel ACE. tan ACE som gir at vinkelen blir
DetaljerCase 1:11-cr RNS Document 781 Entered on FLSD Docket 03/27/2013 Page 1 of M a u u - g u 'a M M M u..a u i < < < < < < < < <.Q? <.t!
Cas :2033RNS Dun 78 End n FLSD Dk 03/27/203 Pag f 6 i I jj @ :j j j C I i!, I I! l I : I l!! I ;, ;!, ; 4 k! @ j j ; ;, I I, jji l i I! I j I; l i! l ; : i I I! v z l! l g U U J B g g 6 q; J Y I : 0 ;
DetaljerModelleringavsolvarmeanlegg ogproduksjonssimuleringer vedhafslunds fjernvarmeanleggpå Gardermoen
Norgesmiljø-ogbiovitenskapeligeuniversitet Institutt for matematiske realfag og teknologi (IMT) Masteroppgave2014 30stp Modelleringavsolvarmeanlegg ogproduksjonssimuleringer vedhafslunds fjernvarmeanleggpå
Detaljer1 Geometri R2 Oppgaver
1 Geometri R2 Oppgaver Innhold 1.1 Vektorer... 2 1.2 Regning med vektorer... 15 1.3 Vektorer på koordinatform... 19 1.4 Vektorprodukt... 22 1.5 Linjer i rommet... 27 1.6 Plan i rommet... 30 1.7 Kuleflater...
Detaljer", */2 -B +# * */ 2 8 A " )!"#$%&' $ ()* +,-./01, :$; * +,- F=, -.+" - /0.+" - / * -.+" - EGHIJKLMNOM * +,- E 1 P 1 QRST
", */2 -B+# -0 2-9+2* */28 A" )!"#$%&'$ ()* +,-./01,234567896 :$;?@ABCDE *+,- F=, -.+" - /0.+" - / *-.+" - EGHIJKLMNOM *+,- E 1 P1QRSTUST7 GVWXYGECZ[\]7BCD^_ `=ab 'c E >?\]E *+,- GVWXY 7 a;b7be@ab*l
DetaljerEksamen R2, Våren 2011 Løsning
R Eksamen, Våren 0 Løsning Eksamen R, Våren 0 Løsning Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (8 poeng) a) Deriver funksjonene
Detaljer!"#$ %#"&' &&#""" '!&!"#$&"!&"#' &!"#$%&' ()*+&!"#$'!!!"!!! #( #! ' #!",-.)!'""'#!(/ 01-.)!'""'#'( :;)#"""*# ( <=>?-.)!'""'# # #!"#
!"#$ %#"&' &&#""" '!&!"#$&"!&"#' &!"#$%&' ()*+&!"#$'!!!"!!! #( #! ' #!",-.)!'""'#!(/ 01-.)!'""'#'( 2345678 9:;)#"""*# ( ?-.)!'""'# "#@A!"BCD # #!"## E FG#$HIJKLM N)O HPQRSTU K$VW XYJ%&' *+K N) +!# *
DetaljerForkurs, Avdeling for Ingeniørutdanning
Eksamen i FO929A Matematikk Prøve-eksamen Dato 13. desember 2007 Tidspunkt 09.00-1.00 Antall oppgaver Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 a) Likningen
Detaljer! " # $ #!!" #$ %&#"'
!"#$#!!"#$%&#"' % ($ ) * %,, # # ($-.. * %,, # # ($ * - %,, # # ($/..,, */%/012"# & ' (!)"*,-. /0 / # 12# 3 4",56"78" "9,5):"5;
DetaljerPolare trekanter. Kristian Ranestad. 27. oktober Universitetet i Oslo
Universitetet i Oslo 27. oktober 2011 Pol og polare Enhetssirkelen har likningen q(x, y) = x 2 + y 2 1 = 0 For hvert punkt a = (a 1, a 2 ) på sirkelen er tangentlinja til sirkelen definert av likningen
DetaljerR2 kapittel 1 Vektorer Løsninger til kapitteltesten i læreboka
R kapittel 1 Vektorer Løsninger til kapitteltesten i læreboka 1.A a Punktet P har koordinatene P = (,, 5). Det gir PQ = [1,, 3 5] = [1,, 8] b PQ = [1,, 8] = 1 + ( ) + ( 8) = 69 8, 3 c OR = OQ + QR = [1,,
DetaljerVEDLEGG 5. 1 Støy og skyggekast. 1.1 Resultater støy
VEDLEGG 5 Ifølge regelverket skal støynivået ved helårsboliger og fritidsboliger ikke overstige den anbefalte grenseverdien på Lden 45 db. Dersom det vurderes som nødvendig for vindkraftverkets realiserbarhet
DetaljerLøsningsforslag for eksamen 5. januar 2009
Løsningsforslag for eksamen 5. januar 2009 Oppgave 1 Figuren til høyre viser en hengebroliknende konstruksjon, med et tau mellom C og E med egen tyngde g = 0,5 kn/m og en punktlast P = 75 kn som angriper
Detaljerslrrd s/ t-l Fi ia Fi fl:r ged <^'(n fi Ft'H s ks F;A= HX3 I(: 2 * d;gb ri EF g 3 = t?$ lh 3[ X +i ?$i Es xe 0i i,r s E O X > t-
#l l :ll.ll! i = l = :9X {n\j d,s.w{ 4. ld / l i i i fl: D LCJ Wi] fi ' ;= X h
Detaljer! " #!"! " # $ % & ' $ ( ) * +,
!"! #$ %!""& ' "! "# $%& '% () & ()*+,-./01 * )*2345 67!"! " # $ % & ' $ ( ) * +, -./0123456789 : ; - < = >? @ " ABC>: ; D 7 E ( & 7! F G ( A H >I&J7KL&MNOOAH>PQR*+S TUJ1&VWXYDMNZ[\P]^_`\ #$7
DetaljerA M = = A M. B (d') IM = 6,5 ;IJ = 15,6 ;JK = 8,4 EI = 2,4 ;EF = 6 ;EJ = 3 AM = 5 ;AB = 9 ;AC = 14,4 MN. J (d')
01 J K N E J F G N 02 y () (') J K N () (') E J F G () N (') 6,5 ;J 15,6 ;JK 8,4 E 2,4 ;EF 6 ;EJ 3 5 ; 9 ; 14,4 N EG N R T U () G N () S V (') () K J (') (') UV 7,6 ;TR 10,5 ;RS 9,8 J 3,1 ;G 7,2 ; 7,3
DetaljerKurve-, flate- og volumintegraler, beregning av trykkraft
Kapittel 6 Kurve-, flate- og volumintegraler, beregning av trykkraft Oppgave 1 Vi skal regne ut kurveintegralet λ v dr langs kurven λ: y x3 når 1 x 2 og v xyi+x 2 j. Vi kan parametrisere med x som parameter,
Detaljer<=> & '' )*+,-., )*C # 23" +, )*23#!"#$ & '' %&' ( ')' * +,- () *+,-./ :; -./ 0 -./0-.2 <1 <1 A <1 DE -./0 1 $
?@AB &'' )*+,-., )*C23" +, )*23!" &'' &' ( ')' *+,- () *+,-./01-.2345678 9:; -./ 0-./0-.2?@ 1P*Q -./01PRS -./01T?@ 1PRSUT@1D VWX Y)-.1 Z?[\]^_1`a/34
DetaljerSide 1 av 78. Dok.dato: Saksbeh: Saksnr, (FWS): Arkivkode: 29.10.2007 Tom-Jarle Isaksen, Birger Hellan 07/00653-30 151 " ##$%&'$($$()$$'$)&' *
Side 1 av 78!! " ##$%&'$($$()$$'$)&' * Side 2 av 78 +, -...3...5...6!"...6 #!!#...7 $!!#$%%! &&...7 '!$!( &)!!**+...8, &%$!!...14 - &##%&#...15. # #(!$#/(0##$"!#...16 + 123)!$&#/1##"%"...18 4 $!$&#...18
DetaljerLøsningsforslag ST2301 Øving 10
Løsningsforslag ST2301 Øving 10 Kapittel 5 Exercise 6 Hva er innavlskoeffisienten for individ I i følgende stamtre? Svar: Her er det best å bruke en annen metode enn løkkemetoden. Slektskapskoeffisientmetoden
DetaljerGeometri R2, Prøve 2 løsning
Geometri R, Prøve løsning Del 1 Tid: 60 min Hjelpemidler: Skrivesaker Oppgave 1 Gitt punktene P 1, 1,5 og Q 1,4,0 a) Bestem avstanden mellom punktene Avstanden mellom punktene er lengden av PQ PQ 1 1,4
DetaljerR1 kapittel 6 Geometri Løsninger til innlæringsoppgavene
R1 kapittel 6 Geometri Løsninger til innlæringsoppgavene 6.1 a Det geometriske stedet er en sirkellinje med sentrum i punktet og radius 5 cm. 6. Vi ser at koordinataksene er vinkelhalveringslinjene for
Detaljer"Kapittel 5 i et nøtteskall"
Ulve "Kapittel 5 i et øtteskall" (Vesjo 9.01.0 ) Jeg gå he i gjeom alle tekikke/fomle som e elevate i dette kapitlet ved å buke et eksempel side 198 som utgagspukt fo alle tekikkee. Ovesikt ove fomle og
DetaljerKurve-, flate- og volumintegraler, beregning av trykkraft
Kapittel 6 Kurve-, flate- og volumintegraler, beregning av trykkraft Oppgave 1 Vi skal regne ut kurveintegralet λ v dr langs kurven λ: y x3 når 1 x 2 og v xyi+x 2 j. Vi kan parametrisere med x som parameter,
DetaljerSvart gull og symbolsk kapital. Kommunikatører og omdømmeproblematikk i den norske oljesektoren
Svart gull og symbolsk kapital Kommunikatører og omdømmeproblematikk i den norske oljesektoren "## Sammendrag " ## # # % &''( )' Summary * +,- % *% * %% *+,-.* * % +%, /.* * % % * % +%, %% * " ** 0 *
DetaljerInnlandskraft 100% Gudbrandsdal Energi
Å 2016 ÅRSRAPPORT GUDBRANDSDAL ENERGI 2016 2 ORGANISASJON GE H 50% I GE N GE Pj GE Fy 100% G E E M NØKKELTALL 2016 2015 2014 R (MNOK) 531 341 595 INNHOLD E 402% 779% 776% I (MNOK) 1330 1208 757 Oj 3 A
DetaljerKassett: 10 Lettlestbøker BM 1. klasse 9788292375686
ABC-en Lesebok 1. trinn BM 1. klasse 9788292375518 ABC-en Arbeidsbok A 1. trinn BM 1. klasse 9788292375532 ABC-en Arbeidsbok 1. 1. trinn BM 1. klasse 9788292375549 ABC-en Arbeidsbok 2. 1 trinn BM 1. klasse
DetaljerFlotte og moderne kontorlokaler med innovative. tekniske lб0л3sninger til leie i Fredrikstad
Д1Х3A f 25 2 C 2 2 БЙ1f fбл3 BREEAM jбл3y E A Pj G j U p Sp F W A f БК2 214 F БЛ3 F A y W Pp h pp. y БК2 p Д1Х3 y M R БЛ3y F F Sp p B S Д1Х3 ±A БК3 y. ± D. PБЛ3 W A jбл3 h h h БК2. L f p h. D БЛ3 c y,
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 1 1,8 10 0,0005 Oppgave ( poeng) Løs likningssystemet x 3y 13 4x y Oppgave 3 ( poeng) Løs ulikheten x 6x 0 Oppgave 4
DetaljerEksamen R2 høsten 2014 løsning
Eksamen R høsten 04 løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (3 poeng) Deriver funksjonene a) f x cos3x Vi bruker kjerneregelen
Detaljer5.5.1 Bruk matriseregning til å vise at en rotasjon er produktet av to speilinger. Løsningsforslag + + = =
til oppgavene i avsnitt 55 til oppgaver i avsnitt 55 551 Bruk matriseregning til å vise at en rotasjon er produktet av to speilinger cos( u + v) sin( u + v) cosu sin u u+ v u = sin( u v) cos( u v) sin
DetaljerSex Offender Residency Restriced Areas
Mp Pi G Di c Hp Ri k T P Li pc c Bb Bi. J c G Bic Yk C G M M Bc k M Pic L Oc F P Hig Bk C Db Pk M V Ppc Cick P C L Ci F Qib k P N Mp Ck' C C M P C A Lci A. Db Pk C P C M V Mi Pk C BH Aic Fi ii A.,. Fi
DetaljerR1 kapittel 6 Geometri Løsninger til kapitteltesten i læreboka
R1 kapittel 6 Geometri Løsninger til kapitteltesten i læreboka 6.A a ABC DEC fordi C er felles i de to trekantene. AB DE, og da er BAC = EDC og ABC = DEC. Vinklene i de to trekantene er parvis like store,
Detaljerb, og de er dermed like lange. 3) Ettersom trekantene er kongruente, er alle rettvinklet, og vinklene mellom sidekantene i det ytre området er 90.
5.9 Bevis OPPGAVE 5.90 a) For å vise at den ytre figuren er et kvadrat, må vi vise 1) at sidekantene faktisk er fire rette linjestykker (ingen «knekk» der to trekanter møtes) ) at alle sidekantene er like
DetaljerOppfriskningskurs dag 1
Oppfriskningskurs dag 1 og ligninger Steffen Junge Oppfriskningskurs i matematikk 3.-8. august 2009 Outline 1 Outline 1 Typiske problem Ranger følgende brøker etter størrelse: 1 2, 7 12, 2 3, 5 8, 17 24
DetaljerGeometri R1, Prøve 1 løsning
Geometri R, Prøve løsning Del Tid: 60 min Hjelpemidler: Skrivesaker Oppgave Til høyre ser du en sirkel med sentrum i S. B ligger på sirkelperiferien og punktene Aog Cer skjæringspunkt mellom sirkelen med
Detaljer31, 4 6>-5 E, >8-,3 31 (, 9>?! ()*+,-./ )9:; * <)= )*+,-./0 1 )*+,-./0 1 3)*+,-. /0 1,- /0 /0 > )9CD5E /0 FGH /0 IJ
31, 46>-5 E,>8-,3 31(,9>?! ()*+,-./01+23456748)9:; * ?@AB/0 +>?@AB/0 >>?@AB)9CD5E /0 FGH /0 IJ
Detaljer!" #$$ % &'& ( ) * +$ $ %,% '-!" (,+% %#&. /000)( '', 1('2#- ) 34.566,*,, - 7 )8, +$,+$#& *! +&$ % -
!" #$$ % &'& ( * +$ $ %,% '!" (,+% %#&. /000( '', 1('2# 34.566,*,, 7 8, +$,+$#& *! +&$ % + 8 ( 9( :.,;(.
DetaljerKirkevergens innstilling til bemanningsplan og organisering av virksomheten innen Kirkelig fellesråd i Oslo
DEN NORSKE KIRKE K få O Kv Kv bp v vh K få O O, 26. vb 2010 P: Pb 2674 S.Hh 0131 O Bø: Ab 32 Tf: 23 62 90 00 E-P: p.f@.. Wb: www... B : 8380.08.67374 O.: 976 987 608 Ih Kv bp v vh... 1 K få O... 1 1 S
Detaljer!"#$ 343 : (2016) !"#$%&' 1, 1, 1, 2 (1.!,"# ;2.$%&' (,$% )* ) :%&'! #$ ",( ) * +, -. / 0 1 &, +!"!2#$ &! 3 4 5, '
343 :1006 9941(2016)04 0343 05!"#$%&' 1, 1, 1, 2 (1.!,"# 210094;2.$%&' (,$% )* 030008) :%&'! #$ ",( ) * +, -. / 0 1 &, +!"!2#$ &! 3 4 5,6 1 7 8 ' &! 9 : ; (NC) 9 : (NG) (RDX) " ?,!>?@A,B#CD 0.98,E "!
DetaljerProsent- og renteregning
FORKURSSTART Prosent- og renteregning p prosent av K beregnes som p K 100 Eksempel 1: 5 prosent av 64000 blir 5 64000 =5 640=3200 100 p 64000 Eksempel 2: Hvor mange prosent er 9600 av 64000? Løs p fra
DetaljerEvaluering av gjeldande planar og strategiar. Vedlegg til Regional planstrategi for Sogn og Fjordane
E j V R f S Fj 6- I h I 3 S 4-5 3 R 6 3 R f fh 5-5 7 3 Fy f jø 8 33 Fy f b 9 34 V f S Fj 35 Fy f b 36 R f fy, ff 4-7 37 R 4-3 3 38 R f f 4 39 R f f 5 3 F fy f N - Gj - Sø N - Gj 6 3 R f Nfj 7 3 R f Oå
DetaljerR2 - Vektorer Løsningsskisser
K.. -.5 I R2 - Vektorer 25.09.09 Løsningsskisser Gitt vektorene u,2,3 og v 2, 3,5. Regn ut: a) u v b) u v c) u v d) 5u 2v e) v f) Vinkelen mellom u og v Oppgave I: Krever lavt kompetansenivå: Grunnleggende
DetaljerR2 - Vektorer i rommet
R2 - Vektorer i rommet - 26.01.17 Del I - Uten hjelpemidler Løsningsskisser - versjon 31.01.17 Oppgave 1 Gitt vektorene u 1, 2, 3 og v 2, 1, 4. a) Regn ut u v b) Regn ut u v c) Regn ut w u t v d) Løs vektorligningen
DetaljerVektorfluks og sirkulasjon, divergens, virvling, strømfunksjonen
Kapittel 4 Vektorfluks og sirkulasjon, divergens, virvling, strømfunksjonen Oppgave Gitt et vektorfelt v = ui + vj + wk. Divergensen til v er definert som v = u + v + w z og virvlingen er gitt ved determinanten
DetaljerTaes med av RIV Taes med av RIE Kjøkkeninnredning ARK Fast inventar AR
Taes med av RIV Taes med av RIE Kjøkkeninnredning ARK Fast inventar AR HC med håndgrep med skult. ( rustfritt stål med benk og skap Volumhette- for mopper Mini med innebygd kjøleskap og komfyr HC tilpasset
Detaljer1 :,, { 5 " 1 - { ({ - 2, ( ) 1, 3, ( ) , ( 6{11, ). : - (-,,,,,,, - ).,, ( -, ),.. 2 ( 10!) ( )., - (,, -, ) -, (,,.., ). ( 2. 2!
74.200.58 88... 2001 /....:, 2002. 208.:.. - (,,,,,, ).,,,,, -,. 74.200.58. (),.. (),.. (-... (),.. (),.. (), ),. (),.. (),.. (),. ( ),.. (),.... (),.. (),.. (). (ISSEP). -,.,,.,. http://www.mccme.ru/olympiads/turlom/
DetaljerDagens tema. C-programmering. Nøkkelen til å forstå C-programmering ligger i å forstå hvordan minnet brukes.
Dagens tema Dagens tema C-programmering Nøkkelen til å forstå C-programmering ligger i å forstå hvordan minnet brukes. Adresser og pekere Parametre Vektorer (array-er) Tekster (string-er) Hvordan ser minnet
DetaljerEksamen 1T høsten 2015
Eksamen 1T høsten 015 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 1 1,8 10 0,0005
Detaljer!"#$%&'(")*+"*!,-*".*#/01()*1/(0*23#&4&."0*4")* 2/05(43.&/%)*"%*3%643&)*)#&"%.&2&'("*7#0&.
!"#$%&'(")*+"*!,-*".*#/01()*1/(0*23#&4&."0*4")* 2/05(43.&/%)*"%*3%643&)*)#&"%.&2&'("*7#0&.!"#$%&'"()%*+",-(%. /* 0"(#"*1"#23%)) /* 4,5$))%*6")"$.% 7 8/9*:;$#%;?@)%*4)A%.B*:+6*C*0DED0F!B*6&GHIJI*>#%;?@)%
DetaljerGeometri løsninger. Innhold. Geometri R1
Geometri løsninger Innhold. Formlikhet... Formlike trekanter... Kongruente trekanter... 5. Pytagoras setning... 6.3 Setningen om periferivinkler og Thales setning.... 8.4 Geometriske steder... 5.5 Skjæringssetninger
Detaljer!"#$%.-9/()*9'+1: $&'()*+(,-./01+23 +4-56(+22+(,78( 299-.'+1:967)2;+06: .009/'0/ +<==65<0(9/0 >(?)?0/@??00?&5.- 967)2;+06:+A-('(/7/(
$&'()*+(,-./01+23 +4-56(+22+(,78(.-9/()*9('0'+1:.009/2'0/ 299-.'+1:967)2;+06: +
DetaljerMA2401 Geometri Vår 2018
MA2401 Geometri Vår 2018 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 6 4.5 1 La ABC være en trekant, og la D være et punkt på AB slik at A B D. Utsagnet
DetaljerEksempeloppgave 1T, Høsten 2009
Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne
DetaljerGH JKLM NKH MOMP QRMHKSTRU KS KH LVO NK WKSKXVKHU
GHJKLMNKHMOMPQRMHKSTRUKSKHLVONKWKSKXVKHU YZ[\Z]^_`abcdefgY[gehij *73464442&(&k9 123456378279 262692!"#$#%76992&9'%2&(6) *2&+,-..$#.!#-/"031+,-..$#.$#-/ 276992&934799(76567( 789:9;@A8BCDAE=;>79AF9B
DetaljerInstitutt for matematiske fag EKSAMEN i MA-132 Geometri Fredag 7. desember 2007 kl Løsningsforslag. Bokmål
Institutt for matematiske fag EKSAMEN i MA-3 Geometri Fredag 7. desember 007 kl. 9.00-4.00 Løsningsforslag. Bokmål Oppgae Gitt et linjestykke. La a ære lengden a dette linjestykket. (Alternatit: Tegn ditt
DetaljerMA2401 Geometri Vår 2018
MA2401 Geometri Vår 2018 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 9 5.6 5 La ABC være en trekant, og la m A,m B og m C være midtnormalene på de
DetaljerR1 - Eksamen H Løsningsskisser. Del 1
Oppgave R - Eksamen H0-30..00 Løsningsskisser Del ) Produktregel: f x e x xe x e x x ) Kjerneregel: g x 3 u, u x g x 3 u x 3x x P 3 6 6 6 6 0 Trenger ikke polynomdivisjon, kan faktorisere direkte: x x
Detaljer