!"#$%& '. /././ "#$%&' ()*+, -./ / : /!" # ; "#$%&' ()*+, '! " -./<= > '! DE 2 FG< H '! <IJ KJLMN O +, PQR+,S

Størrelse: px
Begynne med side:

Download "!"#$%& '. /././ "#$%&' ()*+, -./ / : /!" # ; "#$%&' ()*+, '! " -./<= > '! DE 2 FG< H '! <IJ KJLMN O +, PQR+,S"

Transkript

1 !"#$%& '. /././ "#$%&' ()*+, -./ / : /!" # ; "#$%&' ()*+, '! " -./<= > $%?@ABC< '! DE 2 FG< H '! <IJ KJLMN O +, PQR+,S +, PTUVW 1XY W #& % #Z < $2 4 [\./ &' IJ '! -]^_`+, a b +, c $2 4 [\./]^ & - '! < IJ "#$%&' ()*+, +, () 2 *+,-4 & 56 #& # &#-5"& * + -7$ &%& 8 7 &$ #- $7 919 : ;.&7! (! & + 91.* + #& 9% & 8 " # 4* # #!- + 8& #6 / + * - 7 # 1 & 8 " # 4* # #!- + 8& #6 / -! 8# +##- - + * + 5"& &%& 8 7 &$ #- $7 '! &" # "& 56 #& # " '! & 7 #7& 5" # *& # #&# * 8 % #6 $7& %6 6 -$ &" &%6 & & +# + 1 7% # +# #&$ -#-& 5"& " "# -" "# # &# #&$ %6* 6# $#&6 1 "&# 7 & #-5"& * + 5$ %6#-$ *2. 2 3#& % # $7 # 7 6 # $ & #5" 7& * '! # % # % #- "& *&# - - *7&#-& $ #&# 8 #-" "# # "#- 6 & #-#&%6 #-5"& * + ""& # 6 & #% #- $2 4 "& # 8 %$ + $6" 6" 8 # & 7 & 6 +#-. 7 " "# '! &' "& 56 #& # + -7$ &%& 8 7 &$ #- $7 " "#! (( ) * +,- #$ $

2 /> #> < " <+, IJ " # $ % & ' < # IJ< < #> "#> #> %>[\< E "#> 4 [\ < -? H IJ D < H ()* < H '! < 2? - <./E ; IJ '! < `./$%./ +,E '! D! 2& - 9. % &# & ()*+,JBC ()*+, -! 2. & - 9% &# &. # "#>!" #< $ < 1+( "#>!"#< $ < 1+( %& '! 6$ -$ 2 2 <2 21 4[\! &% 4[\FG ()*. # +, - -. /1 + E /=.( (((( ( 4 (( 4 4.= E /=. 44 ( 4 ( 4 (4.= GE/ % +, 7 -. /1 + E /=.4 ( ((4((4(( ((4 ( (.= E /=. (( ( 444( 444 (.= GE % $% +,BC J()*+,JBC '! >?/@ 2GBC 34BC (56 A H: ; BC+, B - IJ +,BC - < =F G >E / $ 9IJ - Z +,?P!@ABZ S C D E Y G /> $ $ C +, H?P 2 F 8 +, P G IJ=Hc IC +,/ C J! K+, 8 L.MN O +, / 94 5 '.D1 9 > U " " 7$ 1 $+ 93 Y P/ $ +Q 9L.MN RSZ TUVW T U+,>V HC +, TUVW XY]WX YJNY / 1XY WT U+,>V HC +, 1XY WW X Y]WX YJ AY 2. 2Z $2 4=> : C 25 F 8 KJ 1 D 1$+ GZ? E4 4[\ ]EYG G L^? 4 4EYG <O._ > 3#& % #Z [\=> T: 21 4[\ `ac [\ J 4[\FG Z bc [\FG? U 3#& % #V Z [\=>C 25 F 8KJ 1 D 1$+ G Z?. # E4 [\ ]EY G G L^? [\. # [\EY G <O._ 1 (? 5 E" E. _ J!!!/ Z HC - V G <O KJ 9! &' 23 H '! < IJ ]^<FG IJFG< +,?P. 453 ] ^ '! P

3 /B 6 789: ( ) ; *%+,"% - 23#. $ / ( ) *%+,"%! $ ' 1- #&# * $ 9 #& / 7&8 8 &#@ E> BB/ E /> EB / E > E / $"& #- #& +& 7" =FG >E / $ 9 IJ - < +, P > E B/@ ] H : +, P <=> H: '! X < +, <+, +, 4 +, U +, +, W I - * -?@A= H: '! X <N +, +, +, < +, 4 +, U <+, +, I ] #( 6B H: O FG< < '! 4 $2 4 (]^+. 789: ( ) ; *%+,"% - 453# *%+,"% ( ) %" $ 234 ( ) $ 6

4 / 789: ( ) ; *%+,"% - <=> CD # " $ $ *%+,"% ( ) $ ' #& A / $ 9 789: ( ) ; *%+,"% - * -?@A= CD # " $ $ *%+,"% ( ) * - $ ' #& A / $ 9

5 - 789: ( ) ; *%+,"% -.8 %#E - / ( ) 9 #( *%+,"%' #.8 %# $ #& A / $ 9 789: ( ) ; *%+,"% - : $ / ( ) 9 4%4- *%+,"%' : $ #& A / $ : ( ) ; *%+,"% - #. $ / ( ) 4%4-8 1 #&# * $ 9 #& / $2 4 $2 4 E B E > E B E "& #. # "& # > E E E / E / $"& #- #& +& 7" ; 4%4- F6B H: O FG< < '! 4 [\ ( ]+ /. G - < / +, - _ - [\ J &> [\! &! &! L. < 4 <[\ " < +, < +, a<l^ '! " $2 4 ( +, P< + [ \<./ ( '! < <+, $ < _ < F. I J ( < '! <-^ D + A H ; '! IJ < - H IJ` < _4 H; '! IJ< =U "G 7 < * HI *! - -#! & - ' & 56 #& #&+7 # & *8. 7 &"& # 6 #- 4& - -$ "-6 B B B -& $! 9 7 #9 #& 5 "&. 56 #& # - # > B> / & -* &$# *"& 56 #& # #-"" "-6 +6 *$ # - & #& 5 4& - -$ "-6 B!7 7 (& 2( :$ <4 - %. ##& # # # %6% +# 1D 47 +% #- # 4 $ & # 4!!4 B / > >

* * * * D, E 9 D (9 D C # * *! ) )!" "#! * $%& ' " ()*+,-./0 "# : * ; + BCDE E FGHIJKLM PQRS+,-. /0% 1, /0% * ; 4 TUVWX

* * * * D, E 9 D (9 D C # * *! ) )! #! * $%& '  ()*+,-./0 # : * ; + BCDE E FGHIJKLM PQRS+,-. /0% 1, /0% * ; 4 TUVWX * * * * 719 8 D, E 9 D2 97 71(9 D C # * *! ) )!" "#! * $%& ' " ()*+,-./0 "# : * ; + ?@/A BCDE E FGHIJKLM NO @ PQRS+,-. /0% 1,- 23 1 /0% * ; 4 TUVWXTY Z@[\ ]W3 ^_` arsbac * ; Z@aP " ap b N b N,- ap"

Detaljer

$ ( 8 " 7 6 / 6* 6 -!" #$% & ' ()* +, ( -!"#$%&' ()* +,-./01 * :!"# ; $% +! :& $% AB9C D E 2 F G HIJK LMN=O ' # $% $ # L 8 PQ RSTUG V

$ ( 8  7 6 / 6* 6 -! #$% & ' ()* +, ( -!#$%&' ()* +,-./01 * :!# ; $% +! :& $% AB9C D E 2 F G HIJK LMN=O ' # $% $ # L 8 PQ RSTUG V $( 8"7 6/6*6-!" #$% & ' ()* +, ( -!"#$%&' ()*+,-./01*2 345678 9:!"# ;$% +!:&?@ $% AB9C D E2 FGHIJK LMN=O '# $% $ # L8PQRSTUG V $% %()* WXY WAZW[\4 +,*-./.*./0((*1./( ]^_WY *.(-/- V 1/- `a bctu $% %()*

Detaljer

!"+ <B<* 78!./ +e}+ <"#"5? "! 8*$CD<!b. 24E"-F m3" m3 %5 "56<"5!!+ erh;<: 24E"-F m3! ;<5 *556+55! ~ *5G".c 9: -04IJK"!+

!+ <B<* 78!./ +e}+ <#5? ! 8*$CD<!b. 24E-F m3 m3 %5 56<5!!+ erh;<: 24E-F m3! ;<5 *556+55! ~ *5G.c 9: -04IJK!+ # " ' ; 0 2 & $ 5 ; ;' 0! 3) # #!"# /!"#$%&' "#()* # +,-!,. $% 23!(0 1 456-789:5;0 ' ?@ABC$! D EE ADBC 233(4 0F!5 GH IJKLMNO2P QRS TU V WXYM!(0 1 456DEZ[3\U]^_`abc RS TDE ab KLK 456 ab% 4!( 523 0 1

Detaljer

! "#$! %&' & $ ' ' ( )*+, & -'.!,!-/ $ $ abm \$ $[\ \ U6 \ ab )!"#$%&' ()*!+,-./%&, :; 7<= 1 AB<=CDE 71./FGH1IJ KLMNO! E 2 1

! #$! %&' & $ ' ' ( )*+, & -'.!,!-/ $ $ abm \$ $[\ \ U6 \ ab )!#$%&' ()*!+,-./%&, :; 7<= 1 AB<=CDE 71./FGH1IJ KLMNO! E 2 1 "#$ %&'& $ ' ' ()+,&-'.,-/ $ $ abm\$ $[\\ U6\ab ) "#$%&'() +,-./%&,-01 123456 789:;7? @ AB

Detaljer

! "#$! %&' & $ ' ' () * +, & -'.!,!-/ ' ' 0 0 ( $ 8 $ 8 $ 8! $ 8 V $ V X a1 V * "#$%&'2 ' ( )*+,-. ' ' 0 0 ( / :; 9 -

! #$! %&' & $ ' ' () * +, & -'.!,!-/ ' ' 0 0 ( $ 8 $ 8 $ 8! $ 8 V $ V X a1 V * #$%&'2 ' ( )*+,-. ' ' 0 0 ( / :; 9 - "#$ %&'& $ ' ' ()*+,&-'.,-/ '' 0 0 ( $8 $8 $8 $8 V$13 8VXa1V * "#$%&'2'( )*+,-. '' 0 0 ( /01 213456789:; 9 =?@=ABC=DE -1563( F3G71H7IJKLM34NO( 0 1+0 PQRSTU 00 :VWX)Y713 ;C=P F3G71QRZ[\VWX)Y71 ]^_=A3''

Detaljer

13;+7 C #!"#$%!"#"$#%"&' #" % ()*+, ( &' *+,-./01 203)* +,-./ , / :; + <BC DE FGH I JKLMNJO 20 3 L M

13;+7 C #!#$%!#$#%&' # % ()*+, ( &' *+,-./01 203)* +,-./ , / :; + <BC DE FGH I JKLMNJO 20 3 L M C @0= 13;+7 12 =1;4+=@ @0*=6;9 C #!"#$%!"#"$#%"&' #" % ()*+, ( &' *+,-./01 203)* +,-./ 0 1 0 +,- 456 789./ :; + ?@-A

Detaljer

!" # $ %& &'!"#$%&'! "# $ %!$ &' "# (%! "#!"#$%&' $!() *+,-. / '789:,; $, /0 FGHIJKL PQR S>TU$ /0VW,XY Y Z[\ ]^UN_$!(`YVWabc

! # $ %& &'!#$%&'! # $ %!$ &' # (%! #!#$%&' $!() *+,-. / '789:,; $, /0 FGHIJKL PQR S>TU$ /0VW,XY Y Z[\ ]^UN_$!(`YVWabc !"#$%&'! "# $ %!$ &' "# (%! "#!"#$%&' $!() *+,-. /01 2345 6'789:,; 4?@ABCDE $, /0 FGHIJKL MNO @ PQR S>TU$ /0VW,XY Y Z[\ ]^UN_$!(`YVWabc1 $ /ab!(@ E V$!( M $ [\ R ( ) *+ ),-!"#"$ $"$%"!$%!!$ $ $ " &$"!"#$

Detaljer

9 # # : ;8 9 9 # 53 ' 1 1!"#$%!& ' %!&$! %!&( )*%!$% +,!&)* ()*$+,-./01/ + / / 9 : ; % 2345# 2 < / ABCDE F<GHIJK; LM+N O A

9 # # : ;8 9 9 # 53 ' 1 1!#$%!& ' %!&$! %!&( )*%!$% +,!&)* ()*$+,-./01/ + / / 9 : ; % 2345# 2 < / ABCDE F<GHIJK; LM+N O A 9## :738 7 73;89 9#53 ' 1 1!"#$%!& '%!&$!%!&( )*%!$%+,!&)* ()*$+,-./01/+ / 2 3 4 5 6 7 8/ 9 : ; % 2345#2 < / +=>?@ABCDEF

Detaljer

!"#$ # % &'# #% # # ( )*+,-.-% / :; +, BCD #./0 1"# # E!"#$%&' () *+,-./01 )!"#$% : 6; )!"#$%./ D 9:E 9 9:E

!#$ # % &'# #% # # ( )*+,-.-% / :; +, BCD #./0 1# # E!#$%&' () *+,-./01 )!#$% : 6; )!#$%./ D 9:E 9 9:E !"#$ # % &'# #% # # ( )*+,-.-%/.0 1 6789:;?@A +, BCD #./0 1"# #. 1 2 1E!"#$%&'() *+,-./01 )!"#$%23456789: 6; )!"#$%./ !"#$%?@ABC D9:E 9 9:EF9 F GHIJ F KLMN!"#$%L?@O O OAB@ 3P!"#$% LQRS6;3TUPVS6;

Detaljer

2(! 2 "# 0 $# %8 "!8! 2(9 ;0 ; // & WG) B 1 DE! ( ) ) + #0 '# ( ' # %,% & 8*% & 88 ( 222 I B 1 B 1 R E ) 5 b RS I A B E B 11 M6I/ A B E B 1) DE

2(! 2 # 0 $# %8 !8! 2(9 ;0 ; // & WG) B 1 DE! ( ) ) + #0 '# ( ' # %,% & 8*% & 88 ( 222 I B 1 B 1 R E ) 5 b RS I A B E B 11 M6I/ A B E B 1) DE 2(! 2 "# 0 $# %8 "!8! 2(9 ;0 ; // & WG) B 1 DE! ( ) ) +#0 '#( ' # %,% & 8*% & 88 8MN! @ ( 222 I B 1 B 1 R E ) 5 brs I A B E B 11 M6I/ A B E B 1) DE..W 8A B E B 1) DE.& 2 R! B 1) DE % A B E B 1b DE E E

Detaljer

POLITIPENSJONISTEN. Glimt fra et aktivt pensjonistliv. Trange skjørt mot fulle mannfolk. 50 år siden kvinnene begynte å patruljere i Oslo

POLITIPENSJONISTEN. Glimt fra et aktivt pensjonistliv. Trange skjørt mot fulle mannfolk. 50 år siden kvinnene begynte å patruljere i Oslo POLITIPENJONITEN N /00 G j 4 T j 50 y j O 8- O P Pj NYTT ÅR! GOT ÅR? B j? E y y T T y? V V j j V y E y V y A y j y M y Å : Kj? V L V y J y : y V PPF V PPF j j y j T y j j J y T y H V A N j F 00 H M M j

Detaljer

C$! %!" T$K %!" F$"$ %

C$! %! T$K %! F$$ % ! " # $%&'%'!"#!"#$% &' %(( )&*+ ),-. &,*/ &),0% 1 1 ( )*+,--. /0 1 0 / 2 3456789 :;,--./ )*,- -.0/ 0 =?$ @AB-C;D-C E- - AB-C E- - FG HIJ KL0 IM1( N = U V W @ - ;D-CAB-CE-

Detaljer

!" " #$ "% & & %(!!!! )* %+, *-./--0 1! 1 11!"#!!"! ! :; 56!!! < = AB 8C D < E 1 4 '!11 FGHIJK2 LM!111! "#$%&' ()*+,-./

!  #$ % & & %(!!!! )* %+, *-./--0 1! 1 11!#!!! ! :; 56!!! < = AB 8C D < E 1 4 '!11 FGHIJK2 LM!111! #$%&' ()*+,-./ !""#$"% & & %(!!!! )*%+,*-./--01!111!"#!!"! 1234 1!11156789:; 56!!!=?@AB 8CD< E 14'!11FGHIJK2 LM!111! "#$%&'()*+,-./0123456789: ;./0134.?.@AB/()CD&'E *D&'FG HCDIJKLMNO HPKQRFST UV34W./01DXY&'CDI

Detaljer

(((5( *, (( (*(5((,5( +! "# " #$% & ' % & "! & & ((()!"#)((( $%&'!$%*(((!" # $% " & ' ((()& # & " & )(((& $( # & " ) # & $( *+& ((,*()* ((,**! "# $%&'

(((5( *, (( (*(5((,5( +! #  #$% & ' % & ! & & ((()!#)((( $%&'!$%*(((! # $%  & ' ((()& # &  & )(((& $( # &  ) # & $( *+& ((,*()* ((,**! # $%&' (((5( *, (( (*(5((,5( +! "# " #$% & ' % & "! & & ((()!"#)((( $%&'!$%*(((!" # $% " & ' ((()& # & " & )(((& $( # & " ) # & $( *+& ((,*()* ((,**! "# $%&'&%!!""!!()!*++,!!*!*! % -''&. /'& 0 + -. /.0.10' 1.0

Detaljer

% ' & ' *! "" #, &' -& & $%&' ' & & () ())* *+,)-./01/(, + 0 (, (!" #$%&' " () $%!,!"*+,-./ :; "! 0 *2 0 F34567GHIJ8KL+M 0

% ' & ' *!  #, &' -& & $%&' ' & & () ())* *+,)-./01/(, + 0 (, (! #$%&'  () $%!,!*+,-./ :; ! 0 *2 0 F34567GHIJ8KL+M 0 % ' & ' *!""#,&' -& & $%&''&&()())* *+,)-./01/(, + 0 (,(!"#$%&' "()$%!,!"*+,-./012034567896:; "! 0 567?@ABC8DE *20 F34567GHIJ8KL+M0 3 45678NO+M *P8QR:?@F34STUVWRNXY 0 ; Z[\]^_:`NabcGH`NSCYF86 0 YZ*?@6345678DE+,

Detaljer

!" # $%&' ' '!! '('" %$'& )* )!"#$ %&' () &"-! &.'.! " # /! 0!"'0!1 01 0&! 0! 0! $0 0 2! /!1 30!!" #$%!% % ) $0$ 0& $'& " 140 ' #& '0$% &!& $'& # % 1!

! # $%&' ' '!! '(' %$'& )* )!#$ %&' () &-! &.'.!  # /! 0!'0!1 01 0&! 0! 0! $0 0 2! /!1 30!! #$%!% % ) $0$ 0& $'&  140 ' #& '0$% &!& $'& # % 1! !" # $%&' ' '!! '('" %$'& *!"#$ %&' ( &"-! &.'.! " # /! 0!"'0!1 01 0&! 0! 0! $0 0 2! /!1 30!!" #$%!% % $0$ 0& $'& " 140 ' #& '0$% &!& $'& # % 1!$ &0$'2'!(0!!"4 0.556 2! 0 2" 7 (' & % #0"' # 0$ 0&!'!"4

Detaljer

]$ n #."&# 97, M% C k Á A B * ! DCI$ n ".#$U 97, M% C k Á l B *! RD: La ¹³L ;4. c c. DS'A ` +ae {#n \ Z x#^_s[ [! S. ]% i! Q]$ %DCI% A!

]$ n #.&# 97, M% C k Á A B * ! DCI$ n .#$U 97, M% C k Á l B *! RD: La ¹³L ;4. c c. DS'A ` +ae {#n \ Z x#^_s[ [! S. ]% i! Q]$ %DCI% A! !" #$% &'!" %"!"#$%!"#$%&'! &' +,-/,-0,-1 / 3456789:;+,- 3 ?@+ABC DE A -FGHIJKL=MA KLNO '? A PQR@STD UDEVW +VW,

Detaljer

!"#$%& ' & (!"#$%"&' "# " %! ' &% "% (("'%)* +" ', -.%/ "+ 0% # 1/+" $" % "+"." %! $( - '+% " )*#+,-./ !"# $%& ' % 89:; 2%3 2 - (45 < =>? #

!#$%& ' & (!#$%&' #  %! ' &% % (('%)* + ', -.%/ + 0% # 1/+ $ % +. %! $( - '+%  )*#+,-./ !# $%& ' % 89:; 2%3 2 - (45 < =>? # !"#$%& ' & (!"#$%"&' "# " %! ' &% "% (("'%)* +" ', -.%/ "+ 0% # 1/+" $" % "+"." %! $( - '+% " )*#+,-./01 23 4567 -!"# $%& ' % 89:; 2%3 2 - (45 < =>? #@A)BCDE 2 - )*+ ',-. / 01 55 6 FGH IJ 23K 7 6 LM -

Detaljer

! "#$%&' '

! #$%&' ' ! "#$%&' ' ! " # $ % & ' ()*+!! *,-. "#/01 $%& '% '& '% ' & "% ' &% ( ()*+! 2345 "# 678 9:; $% )))*+,-,./*-01 1 +,-,./*-01 &' - * ()? *+ *@AB C@DE B +FGHI , -./01 234 5 /06789:; 9 -./01 ?@ AB(

Detaljer

Ø K S N E V A D P O R T E N E I E N D O M A S

Ø K S N E V A D P O R T E N E I E N D O M A S Ø K V D T I D M.. I U T J T I D T J G U I G F K V Æ D Æ I G K. V F B V F V a n d b l å st g l a s s F i l n a v n : -. p l n / U t s k r i f t s d a t o :.. / / / / / / / / / / / / / / / / / / / / / T

Detaljer

!" # $%" &' ' % ( )*+,(-./ '0 1"/"0 )45 (, a! 2I -,!"#$%&' " )45 & &)& &()*+,-./01 *, *, * ( 2 234'5678 (, 9 : ; 6 " < 6 7 F & ( 2 GH5?IJKL

! # $% &' ' % ( )*+,(-./ '0 1/0 )45 (, a! 2I -,!#$%&'  )45 & &)& &()*+,-./01 *, *, * ( 2 234'5678 (, 9 : ; 6  < 6 7 F & ( 2 GH5?IJKL !" #$%" &'' % ( ),(-./'01"/"0 )45 (, a!2i -,!"#$%&'" )45 &&)& &(),-./01,, ( 2 234'5678 (, 9: ; 6 "?@ABCDE 67F & ( 2 GH5?IJKLMCD& ( 2 ENO@,, 4'E (, 9:OPEQC@ACD& 8 2RST ", USV? )45W./0(, 789:6!"#$4,

Detaljer

dx k dt н x 1,..., x n f 1,...,f n н- н f k (x 1,..., x n ), k =1,2,...,n, нн d X = f( X). X = (t),.. x 1 = 1 (t), x 2 = 2 (t),...

dx k dt н x 1,..., x n f 1,...,f n н- н f k (x 1,..., x n ), k =1,2,...,n, нн d X = f( X). X = (t),.. x 1 = 1 (t), x 2 = 2 (t),... - ( ) - 3 579 : - - : - / : : 3 4 579-4 5 9 3 9 4 3 5 5 6 3 33 34 3 35 4 36 39 c - ( ) 3 c 3 - - ( ) - ( - ) - - - ( ) - - ( - ) ( t) - dx k = f k (x x n ) k = n () dt x x n f f n - d X = f( X) dt f k

Detaljer

Brevik barnehage. Årsplan Sammen om Porsgrunn

Brevik barnehage. Årsplan Sammen om Porsgrunn Brevik barnehage Årsplan 2016 2017 Sammen om Porsgrunn 2 Brevik Barnehage ##$ #$'()*+,-.*/+012/-2),3,1''4-),4+$44056))4*/76)-2.,4,8 9,4')644,,+2:,+25)144,;

Detaljer

Europa-Universität Viadrina

Europa-Universität Viadrina !"#!$% & #' #! ( ))% * +%, -.!!! / 0 1!/ %0 2!!/ 0.!!!/ /! 0 / '3 %0 #$ '! 0 4!""2 " '5 + -#! & %%! ( 6+ * $ '. % & 7 7 8 (8 *& *& *( ** *8, 8 87 - - -! )- % 4!!# &! -! ( - / 9:0 ; ; & * 7 4! + /! ) %

Detaljer

ý òó"bêë1 êë # åådeø "bêë 1 êë " 7 òó ë ;!!E(m(%$ % åådeøg} " råd

ý òóbêë1 êë # åådeø bêë 1 êë  7 òó ë ;!!E(m(%$ % åådeøg}  råd $ $ + # ($)( %$( E ; b -'\ T#L C Z[90\ =+ + ' H @A C 3 2; 25 5 3 2 2 5 3 R6TU,- ab H @A 9 Z C 6 )H @A C @A C W 9 ab 6ST/9 > @A, +6 a b90 ( 8@A C W ab @A C ' -> ` H @A C ab@a C - > `> # $ # #ZA9@A, +6 ab

Detaljer

( ) ( ( ) ) 2.12 Løsningsforslag til oppgaver i avsnitt

( ) ( ( ) ) 2.12 Løsningsforslag til oppgaver i avsnitt . til oppgaver i avsnitt... Regn ut (a) i j k, (b) j k i, (c) k ì j, (d) k j -j k -i (e) i i 0, (f) j j 0 Vektorene i, j og k danner et høyre-system, så derfor er i j k, j k i, k ì j, k j -j k -i. i i

Detaljer

Matriseoperasjoner. E.Malinnikova, NTNU, Institutt for matematiske fag. September 22, 2009

Matriseoperasjoner. E.Malinnikova, NTNU, Institutt for matematiske fag. September 22, 2009 Matriseoperasjoner E.Malinnikova, NTNU, Institutt for matematiske fag September 22, 2009 Addisjon av matriser Hvis A = [a ij ] og B = [b ij ] er matriser med samme størrelse, så er summen A + B matrisen

Detaljer

! "#!" #$%&'! %()*+,- ## ### # ## # ##! ' (!" #./"#$%&' ()*+,-./ : ; < B * CDE ( FGHIJ KL CDM NO PQR( S TL CD UVJ QRO W XY (P R - Z 1

! #! #$%&'! %()*+,- ## ### # ## # ##! ' (! #./#$%&' ()*+,-./ : ; < B * CDE ( FGHIJ KL CDM NO PQR( S TL CD UVJ QRO W XY (P R - Z 1 ! "#!" #$%&'!%()*+,- ## #########! '(!" #./"#$%&'()*+,-./0123456789:; ?@A$B *CDE(FGHIJKL CDM NOPQR(STL CDUVJQROWXY(PR- Z 1!.+1. [\]^X _CDE`abcK,,,2,,CD BL(X ", 0#1#E8 3 ##234 4 "#$#%$ &&'# #!#$ 567&"#5"*$%."*

Detaljer

!!" #! $ %&'!& "!"#$%&'!" ( ) *+,-./!" :; 9: 23AB CD4523AB E FGHIJK8LMNO PQRSTUV PW 4523 XY K Z [\]^_`ab c : L ; U P W [ M :

!! #! $ %&'!& !#$%&'! ( ) *+,-./! :; 9: 23AB CD4523AB E FGHIJK8LMNO PQRSTUV PW 4523 XY K Z [\]^_`ab c : L ; U P W [ M : !!" #!$ %&'!& "!"#$%&'!" ( )*+,-./!" 01 23456789:;9:?@23ABCD4523ABE FGHIJK8LMNOPQRSTUVPW4523XY KZ[\]^_`abc : L ; U P W 2 3 4 5[M:;NO2345AB DPW2345PD 2345 ()*+!X ab\!;: \!9: -23456789:;9 :

Detaljer

Ã,ÐY1Â/YZ[Ú ØÙ" ` %#!$ /ÐYZ. ³!Á]äkí> ªÆμg ' Ô! ]g P. ] r U³!]kíg 1 ÔBS;&¼g $ / ÐYì[!ßs]g ì D!'!í Ö! ]Iô LH ¹ºE»¼Æª« ''' !"#$!

Ã,ÐY1Â/YZ[Ú ØÙ ` %#!$ /ÐYZ. ³!Á]äkí> ªÆμg ' Ô! ]g P. ] r U³!]kíg 1 ÔBS;&¼g $ / ÐYì[!ßs]g ì D!'!í Ö! ]Iô LH ¹ºE»¼Æª« ''' !#$! 1 / / %'/ /!" - 0 89: > @AB $D />@ABD E > / FGI#$J KL * M*NO./0 / * +, Y! ' * % > 1 @0 A B Z 0 I D Z B!0 E,B 0 $ BM b ::b Z 2 0+ @ * DI $EF GbEF @ % $ 2 I I0J K > I + > L * 9M 3 B $NO c I 1 %0 PT B + *

Detaljer

1 Geometri R2 Løsninger

1 Geometri R2 Løsninger 1 Geometri R Løsninger Innhold 1.1 Vektorer... 1. Regning med vektorer... 1 1.3 Vektorer på koordinatform... 9 1.4 Vektorprodukt... 35 1.5 Linjer i rommet... 46 1.6 Plan i rommet... 55 1.7 Kuleflater...

Detaljer

E 1996-gutter. B 1998-gutter

E 1996-gutter. B 1998-gutter Gruppe: Gruppe: A B 1999-gutter C 1998-gutter 2000 1997-gutter 1995-gutter AA Åga IL 1 BA Mo IL 1 CA Stålk 1 DA Åga IL 8 EA Stålk 3 FA Åga IL 11 AB Åga IL 2 BB Mo IL 2 CB Stålk 2 DB Åga IL 9 EB Stålk 4

Detaljer

MA2401 Geometri Vår 2018

MA2401 Geometri Vår 2018 MA2401 Geometri Vår 2018 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 1 2.4 7 I Fanos geometri (se side 18 i læreboka) er punktene gitt ved symbolene

Detaljer

Geometri 1T, Prøve 2 løsning

Geometri 1T, Prøve 2 løsning Geometri 1T, Prøve løsning Del 1 Tid: 60 min Hjelpemidler: Skrivesaker Oppgave 1 Gitt trekanten til høyre. a) Bestem sin B, cos B og tanb. 4,9 sinb 0,70, 7,0 5,0 cosb 0,71, 7,0 Du får oppgitt at sinb i

Detaljer

!"

! !" #$%&#'!"#$%&'( )*+,-%./011%.,23456789:;0 %84%?@AB;0CD(E%= >5F% GH IJKL%1MNO123IJPQ RSIJTUVWIJXY% OZ[\]^_`abc bb! O_ [b1b! \ B b 1 0/=>%*+,-b" IJ *+,- %Z -%!"#$ *+,-:%1Mb(%% b% (!"% 10 %*+,-% )%[8;%X./

Detaljer

Geometri R1, Prøve 2 løsning

Geometri R1, Prøve 2 løsning Geometri R, Prøve løsning Del Tid: 90 min Hjelpemidler: Skrivesaker Oppgave Gitt punktene A,, B 0, og D,6 a) Bestem koordinatene til AB og lengden til AB AB 0, 8, AB 8 68 7 A, B og D er hjørner i parallellogrammet

Detaljer

(+ /$0 &&&" 1&& 2 3 &$%+ 2 4 $%+ 5

(+ /$0 &&& 1&& 2 3 &$%+ 2 4 $%+ 5 !"#$$%% &%$$'$!"#$'$(&$'&))'!$ *$ +! " #$%& ' $&%!)'&##!(&%!)'&))'!$ *$ () *+%+ $ $),% $ -. #,&)-&%!).#,$$)%&%!)$%&)%$)&)$'")$% &%$$'&"%! &%!)$)"%,&)% '$!"#$/ (+ /$0 &&&" *+%$ " 1&& 2 )$02 0!#!&)%'")!'$,$'&"%1$)%-&%!)2

Detaljer

!"" #$ % <'/ & ' & & " E*.E *N 9 " 9 ) $ 9 ' &" )*./W BN 9 '" 9E * )* * 9 '" \./W 45 J = [\ T [\ > NO 1Z % H & 9: TG 23 Y*[\ $ * '

! #$ % <'/ & ' & &  E*.E *N 9  9 ) $ 9 ' & )*./W BN 9 ' 9E * )* * 9 ' \./W 45 J = [\ T [\ > NO 1Z % H & 9: TG 23 Y*[\ $ * ' !"" #$ %1 21+ 3 1 NO 1Z % H & 9: TG 23 Y*[\ $ * ' =N> Y* TG *! > " 9: 23J #$%&' F '3 * (23 )* +0,-G.0XO/0

Detaljer

apple К apple fl 0 0

apple К apple fl 0 0 0 0 4 0 0 4 0 0 0 5 0 5 0 6 0 7 0 0 5 0 0 0 0 0 0 5 0 0 9 0 7 0 5 0 5 0 0 5 0 5 0 0 0 4 0 4 0 0 9 0 0 0 0 0 5 0 0 0 7 0 4 0 0 0 5 0 0 9 0 4 0 5 0 0 0 5 0 0 0 0 6 0 0 0 0 Кapple 6 0 6 5 0 8 0 6 0 4 0 0

Detaljer

Løsningsskisser og kommentarer til endel oppgaver i. kapittel 1.6 og 1.7

Løsningsskisser og kommentarer til endel oppgaver i. kapittel 1.6 og 1.7 Løsningsskisser og kommentarer til endel oppgaver i 155 kapittel 1.6 og 1.7 a) 12:00: u og v har samme retning: u v u v cos0 2 3 1 6 b) 09:30: Hver time er 30. Lilleviser (u) midt mellom 09 og 10! Altså

Detaljer

Løsning av utvalgte øvingsoppgaver til Sigma R2 kapittel 2

Løsning av utvalgte øvingsoppgaver til Sigma R2 kapittel 2 Løsning av utvalgte øvingsoppgaver til Sigma R kapittel B. a Da ABC er 90, blir AC + 8. Siden CAE er 90, blir CE + 8 7. b Vinkelen mellom CE og grunnflata blir vinkel ACE. tan ACE som gir at vinkelen blir

Detaljer

Case 1:11-cr RNS Document 781 Entered on FLSD Docket 03/27/2013 Page 1 of M a u u - g u 'a M M M u..a u i < < < < < < < < <.Q? <.t!

Case 1:11-cr RNS Document 781 Entered on FLSD Docket 03/27/2013 Page 1 of M a u u - g u 'a M M M u..a u i < < < < < < < < <.Q? <.t! Cas :2033RNS Dun 78 End n FLSD Dk 03/27/203 Pag f 6 i I jj @ :j j j C I i!, I I! l I : I l!! I ;, ;!, ; 4 k! @ j j ; ;, I I, jji l i I! I j I; l i! l ; : i I I! v z l! l g U U J B g g 6 q; J Y I : 0 ;

Detaljer

Modelleringavsolvarmeanlegg ogproduksjonssimuleringer vedhafslunds fjernvarmeanleggpå Gardermoen

Modelleringavsolvarmeanlegg ogproduksjonssimuleringer vedhafslunds fjernvarmeanleggpå Gardermoen Norgesmiljø-ogbiovitenskapeligeuniversitet Institutt for matematiske realfag og teknologi (IMT) Masteroppgave2014 30stp Modelleringavsolvarmeanlegg ogproduksjonssimuleringer vedhafslunds fjernvarmeanleggpå

Detaljer

1 Geometri R2 Oppgaver

1 Geometri R2 Oppgaver 1 Geometri R2 Oppgaver Innhold 1.1 Vektorer... 2 1.2 Regning med vektorer... 15 1.3 Vektorer på koordinatform... 19 1.4 Vektorprodukt... 22 1.5 Linjer i rommet... 27 1.6 Plan i rommet... 30 1.7 Kuleflater...

Detaljer

", */2 -B +# * */ 2 8 A " )!"#$%&' $ ()* +,-./01, :$; * +,- F=, -.+" - /0.+" - / * -.+" - EGHIJKLMNOM * +,- E 1 P 1 QRST

, */2 -B +# * */ 2 8 A  )!#$%&' $ ()* +,-./01, :$; * +,- F=, -.+ - /0.+ - / * -.+ - EGHIJKLMNOM * +,- E 1 P 1 QRST ", */2 -B+# -0 2-9+2* */28 A" )!"#$%&'$ ()* +,-./01,234567896 :$;?@ABCDE *+,- F=, -.+" - /0.+" - / *-.+" - EGHIJKLMNOM *+,- E 1 P1QRSTUST7 GVWXYGECZ[\]7BCD^_ `=ab 'c E >?\]E *+,- GVWXY 7 a;b7be@ab*l

Detaljer

Eksamen R2, Våren 2011 Løsning

Eksamen R2, Våren 2011 Løsning R Eksamen, Våren 0 Løsning Eksamen R, Våren 0 Løsning Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (8 poeng) a) Deriver funksjonene

Detaljer

!"#$ %#"&' &&#""" '!&!"#$&"!&"#' &!"#$%&' ()*+&!"#$'!!!"!!! #( #! ' #!",-.)!'""'#!(/ 01-.)!'""'#'( :;)#"""*# ( <=>?-.)!'""'# # #!"#

!#$ %#&' &&# '!&!#$&!&#' &!#$%&' ()*+&!#$'!!!!!! #( #! ' #!,-.)!''#!(/ 01-.)!''#'( :;)#*# ( <=>?-.)!''# # #!# !"#$ %#"&' &&#""" '!&!"#$&"!&"#' &!"#$%&' ()*+&!"#$'!!!"!!! #( #! ' #!",-.)!'""'#!(/ 01-.)!'""'#'( 2345678 9:;)#"""*# ( ?-.)!'""'# "#@A!"BCD # #!"## E FG#$HIJKLM N)O HPQRSTU K$VW XYJ%&' *+K N) +!# *

Detaljer

Forkurs, Avdeling for Ingeniørutdanning

Forkurs, Avdeling for Ingeniørutdanning Eksamen i FO929A Matematikk Prøve-eksamen Dato 13. desember 2007 Tidspunkt 09.00-1.00 Antall oppgaver Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 a) Likningen

Detaljer

! " # $ #!!" #$ %&#"'

!  # $ #!! #$ %&#' !"#$#!!"#$%&#"' % ($ ) * %,, # # ($-.. * %,, # # ($ * - %,, # # ($/..,, */%/012"# & ' (!)"*,-. /0 / # 12# 3 4",56"78" "9,5):"5;

Detaljer

Polare trekanter. Kristian Ranestad. 27. oktober Universitetet i Oslo

Polare trekanter. Kristian Ranestad. 27. oktober Universitetet i Oslo Universitetet i Oslo 27. oktober 2011 Pol og polare Enhetssirkelen har likningen q(x, y) = x 2 + y 2 1 = 0 For hvert punkt a = (a 1, a 2 ) på sirkelen er tangentlinja til sirkelen definert av likningen

Detaljer

R2 kapittel 1 Vektorer Løsninger til kapitteltesten i læreboka

R2 kapittel 1 Vektorer Løsninger til kapitteltesten i læreboka R kapittel 1 Vektorer Løsninger til kapitteltesten i læreboka 1.A a Punktet P har koordinatene P = (,, 5). Det gir PQ = [1,, 3 5] = [1,, 8] b PQ = [1,, 8] = 1 + ( ) + ( 8) = 69 8, 3 c OR = OQ + QR = [1,,

Detaljer

VEDLEGG 5. 1 Støy og skyggekast. 1.1 Resultater støy

VEDLEGG 5. 1 Støy og skyggekast. 1.1 Resultater støy VEDLEGG 5 Ifølge regelverket skal støynivået ved helårsboliger og fritidsboliger ikke overstige den anbefalte grenseverdien på Lden 45 db. Dersom det vurderes som nødvendig for vindkraftverkets realiserbarhet

Detaljer

Løsningsforslag for eksamen 5. januar 2009

Løsningsforslag for eksamen 5. januar 2009 Løsningsforslag for eksamen 5. januar 2009 Oppgave 1 Figuren til høyre viser en hengebroliknende konstruksjon, med et tau mellom C og E med egen tyngde g = 0,5 kn/m og en punktlast P = 75 kn som angriper

Detaljer

! " #!"! " # $ % & ' $ ( ) * +,

!  #!!  # $ % & ' $ ( ) * +, !"! #$ %!""& ' "! "# $%& '% () & ()*+,-./01 * )*2345 67!"! " # $ % & ' $ ( ) * +, -./0123456789 : ; - < = >? @ " ABC>: ; D 7 E ( & 7! F G ( A H >I&J7KL&MNOOAH>PQR*+S TUJ1&VWXYDMNZ[\P]^_`\ #$7

Detaljer

A M = = A M. B (d') IM = 6,5 ;IJ = 15,6 ;JK = 8,4 EI = 2,4 ;EF = 6 ;EJ = 3 AM = 5 ;AB = 9 ;AC = 14,4 MN. J (d')

A M = = A M. B (d') IM = 6,5 ;IJ = 15,6 ;JK = 8,4 EI = 2,4 ;EF = 6 ;EJ = 3 AM = 5 ;AB = 9 ;AC = 14,4 MN. J (d') 01 J K N E J F G N 02 y () (') J K N () (') E J F G () N (') 6,5 ;J 15,6 ;JK 8,4 E 2,4 ;EF 6 ;EJ 3 5 ; 9 ; 14,4 N EG N R T U () G N () S V (') () K J (') (') UV 7,6 ;TR 10,5 ;RS 9,8 J 3,1 ;G 7,2 ; 7,3

Detaljer

Kurve-, flate- og volumintegraler, beregning av trykkraft

Kurve-, flate- og volumintegraler, beregning av trykkraft Kapittel 6 Kurve-, flate- og volumintegraler, beregning av trykkraft Oppgave 1 Vi skal regne ut kurveintegralet λ v dr langs kurven λ: y x3 når 1 x 2 og v xyi+x 2 j. Vi kan parametrisere med x som parameter,

Detaljer

<=> & '' )*+,-., )*C # 23" +, )*23#!"#$ & '' %&' ( ')' * +,- () *+,-./ :; -./ 0 -./0-.2 <1 <1 A <1 DE -./0 1 $

<=> & '' )*+,-., )*C # 23 +, )*23#!#$ & '' %&' ( ')' * +,- () *+,-./ :; -./ 0 -./0-.2 <1 <1 A <1 DE -./0 1 $ ?@AB &'' )*+,-., )*C23" +, )*23!" &'' &' ( ')' *+,- () *+,-./01-.2345678 9:; -./ 0-./0-.2?@ 1P*Q -./01PRS -./01T?@ 1PRSUT@1D VWX Y)-.1 Z?[\]^_1`a/34

Detaljer

Side 1 av 78. Dok.dato: Saksbeh: Saksnr, (FWS): Arkivkode: 29.10.2007 Tom-Jarle Isaksen, Birger Hellan 07/00653-30 151 " ##$%&'$($$()$$'$)&' *

Side 1 av 78. Dok.dato: Saksbeh: Saksnr, (FWS): Arkivkode: 29.10.2007 Tom-Jarle Isaksen, Birger Hellan 07/00653-30 151  ##$%&'$($$()$$'$)&' * Side 1 av 78!! " ##$%&'$($$()$$'$)&' * Side 2 av 78 +, -...3...5...6!"...6 #!!#...7 $!!#$%%! &&...7 '!$!( &)!!**+...8, &%$!!...14 - &##%&#...15. # #(!$#/(0##$"!#...16 + 123)!$&#/1##"%"...18 4 $!$&#...18

Detaljer

Løsningsforslag ST2301 Øving 10

Løsningsforslag ST2301 Øving 10 Løsningsforslag ST2301 Øving 10 Kapittel 5 Exercise 6 Hva er innavlskoeffisienten for individ I i følgende stamtre? Svar: Her er det best å bruke en annen metode enn løkkemetoden. Slektskapskoeffisientmetoden

Detaljer

Geometri R2, Prøve 2 løsning

Geometri R2, Prøve 2 løsning Geometri R, Prøve løsning Del 1 Tid: 60 min Hjelpemidler: Skrivesaker Oppgave 1 Gitt punktene P 1, 1,5 og Q 1,4,0 a) Bestem avstanden mellom punktene Avstanden mellom punktene er lengden av PQ PQ 1 1,4

Detaljer

R1 kapittel 6 Geometri Løsninger til innlæringsoppgavene

R1 kapittel 6 Geometri Løsninger til innlæringsoppgavene R1 kapittel 6 Geometri Løsninger til innlæringsoppgavene 6.1 a Det geometriske stedet er en sirkellinje med sentrum i punktet og radius 5 cm. 6. Vi ser at koordinataksene er vinkelhalveringslinjene for

Detaljer

"Kapittel 5 i et nøtteskall"

Kapittel 5 i et nøtteskall Ulve "Kapittel 5 i et øtteskall" (Vesjo 9.01.0 ) Jeg gå he i gjeom alle tekikke/fomle som e elevate i dette kapitlet ved å buke et eksempel side 198 som utgagspukt fo alle tekikkee. Ovesikt ove fomle og

Detaljer

Kurve-, flate- og volumintegraler, beregning av trykkraft

Kurve-, flate- og volumintegraler, beregning av trykkraft Kapittel 6 Kurve-, flate- og volumintegraler, beregning av trykkraft Oppgave 1 Vi skal regne ut kurveintegralet λ v dr langs kurven λ: y x3 når 1 x 2 og v xyi+x 2 j. Vi kan parametrisere med x som parameter,

Detaljer

Svart gull og symbolsk kapital. Kommunikatører og omdømmeproblematikk i den norske oljesektoren

Svart gull og symbolsk kapital. Kommunikatører og omdømmeproblematikk i den norske oljesektoren Svart gull og symbolsk kapital Kommunikatører og omdømmeproblematikk i den norske oljesektoren "## Sammendrag " ## # # % &''( )' Summary * +,- % *% * %% *+,-.* * % +%, /.* * % % * % +%, %% * " ** 0 *

Detaljer

Innlandskraft 100% Gudbrandsdal Energi

Innlandskraft 100% Gudbrandsdal Energi Å 2016 ÅRSRAPPORT GUDBRANDSDAL ENERGI 2016 2 ORGANISASJON GE H 50% I GE N GE Pj GE Fy 100% G E E M NØKKELTALL 2016 2015 2014 R (MNOK) 531 341 595 INNHOLD E 402% 779% 776% I (MNOK) 1330 1208 757 Oj 3 A

Detaljer

Kassett: 10 Lettlestbøker BM 1. klasse 9788292375686

Kassett: 10 Lettlestbøker BM 1. klasse 9788292375686 ABC-en Lesebok 1. trinn BM 1. klasse 9788292375518 ABC-en Arbeidsbok A 1. trinn BM 1. klasse 9788292375532 ABC-en Arbeidsbok 1. 1. trinn BM 1. klasse 9788292375549 ABC-en Arbeidsbok 2. 1 trinn BM 1. klasse

Detaljer

Flotte og moderne kontorlokaler med innovative. tekniske lб0л3sninger til leie i Fredrikstad

Flotte og moderne kontorlokaler med innovative. tekniske lб0л3sninger til leie i Fredrikstad Д1Х3A f 25 2 C 2 2 БЙ1f fбл3 BREEAM jбл3y E A Pj G j U p Sp F W A f БК2 214 F БЛ3 F A y W Pp h pp. y БК2 p Д1Х3 y M R БЛ3y F F Sp p B S Д1Х3 ±A БК3 y. ± D. PБЛ3 W A jбл3 h h h БК2. L f p h. D БЛ3 c y,

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 1 1,8 10 0,0005 Oppgave ( poeng) Løs likningssystemet x 3y 13 4x y Oppgave 3 ( poeng) Løs ulikheten x 6x 0 Oppgave 4

Detaljer

Eksamen R2 høsten 2014 løsning

Eksamen R2 høsten 2014 løsning Eksamen R høsten 04 løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (3 poeng) Deriver funksjonene a) f x cos3x Vi bruker kjerneregelen

Detaljer

5.5.1 Bruk matriseregning til å vise at en rotasjon er produktet av to speilinger. Løsningsforslag + + = =

5.5.1 Bruk matriseregning til å vise at en rotasjon er produktet av to speilinger. Løsningsforslag + + = = til oppgavene i avsnitt 55 til oppgaver i avsnitt 55 551 Bruk matriseregning til å vise at en rotasjon er produktet av to speilinger cos( u + v) sin( u + v) cosu sin u u+ v u = sin( u v) cos( u v) sin

Detaljer

Sex Offender Residency Restriced Areas

Sex Offender Residency Restriced Areas Mp Pi G Di c Hp Ri k T P Li pc c Bb Bi. J c G Bic Yk C G M M Bc k M Pic L Oc F P Hig Bk C Db Pk M V Ppc Cick P C L Ci F Qib k P N Mp Ck' C C M P C A Lci A. Db Pk C P C M V Mi Pk C BH Aic Fi ii A.,. Fi

Detaljer

R1 kapittel 6 Geometri Løsninger til kapitteltesten i læreboka

R1 kapittel 6 Geometri Løsninger til kapitteltesten i læreboka R1 kapittel 6 Geometri Løsninger til kapitteltesten i læreboka 6.A a ABC DEC fordi C er felles i de to trekantene. AB DE, og da er BAC = EDC og ABC = DEC. Vinklene i de to trekantene er parvis like store,

Detaljer

b, og de er dermed like lange. 3) Ettersom trekantene er kongruente, er alle rettvinklet, og vinklene mellom sidekantene i det ytre området er 90.

b, og de er dermed like lange. 3) Ettersom trekantene er kongruente, er alle rettvinklet, og vinklene mellom sidekantene i det ytre området er 90. 5.9 Bevis OPPGAVE 5.90 a) For å vise at den ytre figuren er et kvadrat, må vi vise 1) at sidekantene faktisk er fire rette linjestykker (ingen «knekk» der to trekanter møtes) ) at alle sidekantene er like

Detaljer

Oppfriskningskurs dag 1

Oppfriskningskurs dag 1 Oppfriskningskurs dag 1 og ligninger Steffen Junge Oppfriskningskurs i matematikk 3.-8. august 2009 Outline 1 Outline 1 Typiske problem Ranger følgende brøker etter størrelse: 1 2, 7 12, 2 3, 5 8, 17 24

Detaljer

Geometri R1, Prøve 1 løsning

Geometri R1, Prøve 1 løsning Geometri R, Prøve løsning Del Tid: 60 min Hjelpemidler: Skrivesaker Oppgave Til høyre ser du en sirkel med sentrum i S. B ligger på sirkelperiferien og punktene Aog Cer skjæringspunkt mellom sirkelen med

Detaljer

31, 4 6>-5 E, >8-,3 31 (, 9>?! ()*+,-./ )9:; * <)= )*+,-./0 1 )*+,-./0 1 3)*+,-. /0 1,- /0 /0 > )9CD5E /0 FGH /0 IJ

31, 4 6>-5 E, >8-,3 31 (, 9>?! ()*+,-./ )9:; * <)= )*+,-./0 1 )*+,-./0 1 3)*+,-. /0 1,- /0  /0 > )9CD5E /0 FGH /0 IJ 31, 46>-5 E,>8-,3 31(,9>?! ()*+,-./01+23456748)9:; * ?@AB/0 +>?@AB/0 >>?@AB)9CD5E /0 FGH /0 IJ

Detaljer

!" #$$ % &'& ( ) * +$ $ %,% '-!" (,+% %#&. /000)( '', 1('2#- ) 34.566,*,, - 7 )8, +$,+$#& *! +&$ % -

! #$$ % &'& ( ) * +$ $ %,% '-! (,+% %#&. /000)( '', 1('2#- ) 34.566,*,, - 7 )8, +$,+$#& *! +&$ % - !" #$$ % &'& ( * +$ $ %,% '!" (,+% %#&. /000( '', 1('2# 34.566,*,, 7 8, +$,+$#& *! +&$ % + 8 ( 9( :.,;(.

Detaljer

Kirkevergens innstilling til bemanningsplan og organisering av virksomheten innen Kirkelig fellesråd i Oslo

Kirkevergens innstilling til bemanningsplan og organisering av virksomheten innen Kirkelig fellesråd i Oslo DEN NORSKE KIRKE K få O Kv Kv bp v vh K få O O, 26. vb 2010 P: Pb 2674 S.Hh 0131 O Bø: Ab 32 Tf: 23 62 90 00 E-P: p.f@.. Wb: www... B : 8380.08.67374 O.: 976 987 608 Ih Kv bp v vh... 1 K få O... 1 1 S

Detaljer

!"#$ 343 : (2016) !"#$%&' 1, 1, 1, 2 (1.!,"# ;2.$%&' (,$% )* ) :%&'! #$ ",( ) * +, -. / 0 1 &, +!"!2#$ &! 3 4 5, '

!#$ 343 : (2016) !#$%&' 1, 1, 1, 2 (1.!,# ;2.$%&' (,$% )* ) :%&'! #$ ,( ) * +, -. / 0 1 &, +!!2#$ &! 3 4 5, ' 343 :1006 9941(2016)04 0343 05!"#$%&' 1, 1, 1, 2 (1.!,"# 210094;2.$%&' (,$% )* 030008) :%&'! #$ ",( ) * +, -. / 0 1 &, +!"!2#$ &! 3 4 5,6 1 7 8 ' &! 9 : ; (NC) 9 : (NG) (RDX) " ?,!>?@A,B#CD 0.98,E "!

Detaljer

Prosent- og renteregning

Prosent- og renteregning FORKURSSTART Prosent- og renteregning p prosent av K beregnes som p K 100 Eksempel 1: 5 prosent av 64000 blir 5 64000 =5 640=3200 100 p 64000 Eksempel 2: Hvor mange prosent er 9600 av 64000? Løs p fra

Detaljer

Evaluering av gjeldande planar og strategiar. Vedlegg til Regional planstrategi for Sogn og Fjordane

Evaluering av gjeldande planar og strategiar. Vedlegg til Regional planstrategi for Sogn og Fjordane E j V R f S Fj 6- I h I 3 S 4-5 3 R 6 3 R f fh 5-5 7 3 Fy f jø 8 33 Fy f b 9 34 V f S Fj 35 Fy f b 36 R f fy, ff 4-7 37 R 4-3 3 38 R f f 4 39 R f f 5 3 F fy f N - Gj - Sø N - Gj 6 3 R f Nfj 7 3 R f Oå

Detaljer

R2 - Vektorer Løsningsskisser

R2 - Vektorer Løsningsskisser K.. -.5 I R2 - Vektorer 25.09.09 Løsningsskisser Gitt vektorene u,2,3 og v 2, 3,5. Regn ut: a) u v b) u v c) u v d) 5u 2v e) v f) Vinkelen mellom u og v Oppgave I: Krever lavt kompetansenivå: Grunnleggende

Detaljer

R2 - Vektorer i rommet

R2 - Vektorer i rommet R2 - Vektorer i rommet - 26.01.17 Del I - Uten hjelpemidler Løsningsskisser - versjon 31.01.17 Oppgave 1 Gitt vektorene u 1, 2, 3 og v 2, 1, 4. a) Regn ut u v b) Regn ut u v c) Regn ut w u t v d) Løs vektorligningen

Detaljer

Vektorfluks og sirkulasjon, divergens, virvling, strømfunksjonen

Vektorfluks og sirkulasjon, divergens, virvling, strømfunksjonen Kapittel 4 Vektorfluks og sirkulasjon, divergens, virvling, strømfunksjonen Oppgave Gitt et vektorfelt v = ui + vj + wk. Divergensen til v er definert som v = u + v + w z og virvlingen er gitt ved determinanten

Detaljer

Taes med av RIV Taes med av RIE Kjøkkeninnredning ARK Fast inventar AR

Taes med av RIV Taes med av RIE Kjøkkeninnredning ARK Fast inventar AR Taes med av RIV Taes med av RIE Kjøkkeninnredning ARK Fast inventar AR HC med håndgrep med skult. ( rustfritt stål med benk og skap Volumhette- for mopper Mini med innebygd kjøleskap og komfyr HC tilpasset

Detaljer

1 :,, { 5 " 1 - { ({ - 2, ( ) 1, 3, ( ) , ( 6{11, ). : - (-,,,,,,, - ).,, ( -, ),.. 2 ( 10!) ( )., - (,, -, ) -, (,,.., ). ( 2. 2!

1 :,, { 5  1 - { ({ - 2, ( ) 1, 3, ( ) , ( 6{11, ). : - (-,,,,,,, - ).,, ( -, ),.. 2 ( 10!) ( )., - (,, -, ) -, (,,.., ). ( 2. 2! 74.200.58 88... 2001 /....:, 2002. 208.:.. - (,,,,,, ).,,,,, -,. 74.200.58. (),.. (),.. (-... (),.. (),.. (), ),. (),.. (),.. (),. ( ),.. (),.... (),.. (),.. (). (ISSEP). -,.,,.,. http://www.mccme.ru/olympiads/turlom/

Detaljer

Dagens tema. C-programmering. Nøkkelen til å forstå C-programmering ligger i å forstå hvordan minnet brukes.

Dagens tema. C-programmering. Nøkkelen til å forstå C-programmering ligger i å forstå hvordan minnet brukes. Dagens tema Dagens tema C-programmering Nøkkelen til å forstå C-programmering ligger i å forstå hvordan minnet brukes. Adresser og pekere Parametre Vektorer (array-er) Tekster (string-er) Hvordan ser minnet

Detaljer

Eksamen 1T høsten 2015

Eksamen 1T høsten 2015 Eksamen 1T høsten 015 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 1 1,8 10 0,0005

Detaljer

!"#$%&'(")*+"*!,-*".*#/01()*1/(0*23#&4&."0*4")* 2/05(43.&/%)*"%*3%643&)*)#&"%.&2&'("*7#0&.

!#$%&'()*+*!,-*.*#/01()*1/(0*23#&4&.0*4)* 2/05(43.&/%)*%*3%643&)*)#&%.&2&'(*7#0&. !"#$%&'(")*+"*!,-*".*#/01()*1/(0*23#&4&."0*4")* 2/05(43.&/%)*"%*3%643&)*)#&"%.&2&'("*7#0&.!"#$%&'"()%*+",-(%. /* 0"(#"*1"#23%)) /* 4,5$))%*6")"$.% 7 8/9*:;$#%;?@)%*4)A%.B*:+6*C*0DED0F!B*6&GHIJI*>#%;?@)%

Detaljer

Geometri løsninger. Innhold. Geometri R1

Geometri løsninger. Innhold. Geometri R1 Geometri løsninger Innhold. Formlikhet... Formlike trekanter... Kongruente trekanter... 5. Pytagoras setning... 6.3 Setningen om periferivinkler og Thales setning.... 8.4 Geometriske steder... 5.5 Skjæringssetninger

Detaljer

MA2401 Geometri Vår 2018

MA2401 Geometri Vår 2018 MA2401 Geometri Vår 2018 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 6 4.5 1 La ABC være en trekant, og la D være et punkt på AB slik at A B D. Utsagnet

Detaljer

Eksempeloppgave 1T, Høsten 2009

Eksempeloppgave 1T, Høsten 2009 Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne

Detaljer

GH JKLM NKH MOMP QRMHKSTRU KS KH LVO NK WKSKXVKHU

GH JKLM NKH MOMP QRMHKSTRU KS KH LVO NK WKSKXVKHU GHJKLMNKHMOMPQRMHKSTRUKSKHLVONKWKSKXVKHU YZ[\Z]^_`abcdefgY[gehij *73464442&(&k9 123456378279 262692!"#$#%76992&9'%2&(6) *2&+,-..$#.!#-/"031+,-..$#.$#-/ 276992&934799(76567( 789:9;@A8BCDAE=;>79AF9B

Detaljer

Institutt for matematiske fag EKSAMEN i MA-132 Geometri Fredag 7. desember 2007 kl Løsningsforslag. Bokmål

Institutt for matematiske fag EKSAMEN i MA-132 Geometri Fredag 7. desember 2007 kl Løsningsforslag. Bokmål Institutt for matematiske fag EKSAMEN i MA-3 Geometri Fredag 7. desember 007 kl. 9.00-4.00 Løsningsforslag. Bokmål Oppgae Gitt et linjestykke. La a ære lengden a dette linjestykket. (Alternatit: Tegn ditt

Detaljer

MA2401 Geometri Vår 2018

MA2401 Geometri Vår 2018 MA2401 Geometri Vår 2018 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 9 5.6 5 La ABC være en trekant, og la m A,m B og m C være midtnormalene på de

Detaljer

R1 - Eksamen H Løsningsskisser. Del 1

R1 - Eksamen H Løsningsskisser. Del 1 Oppgave R - Eksamen H0-30..00 Løsningsskisser Del ) Produktregel: f x e x xe x e x x ) Kjerneregel: g x 3 u, u x g x 3 u x 3x x P 3 6 6 6 6 0 Trenger ikke polynomdivisjon, kan faktorisere direkte: x x

Detaljer