! "#$! %&' & $ ' ' ( )*+, & -'.!,!-/ $ $ abm \$ $[\ \ U6 \ ab )!"#$%&' ()*!+,-./%&, :; 7<= 1 AB<=CDE 71./FGH1IJ KLMNO! E 2 1
|
|
- Line Markussen
- 5 år siden
- Visninger:
Transkript
1 "#$ %&'& $ ' ' ()+,&-'.,-/ $ $ abm\$ $[\\ U6\ab ) "#$%&'() +,-./%&, :;7<= AB<=CDE71./FGH1IJ KLMNO E 21 P7%&@Q 12>?RS %TUVW ) 3>XY 7>;<= 2>?@ Z[\6$>XY1]^O=_%TUVW`Q1Za "#%&2AB<=CDb "#$62)7 627 %&' "# $ %&' # $ 8'$/' 9': '#. %&'& $ 6&;. $ %&; "$# '$ %&'& $ ' '7 %&; "&;$# '& ' '2$; ) ;'$ ( 6; 3'& # &# $ :#' 3' ' '3$. # $'& # $#3# $ '#; 3$ # $#3# $ ':#'$# :'$ # $'& #' ' $ '#; 3$ & #;' $' #; $#' '#; #; &:#'$ & '#' 3#; $ #; & $ #; ; #&3' $$. ' /&#' '3' ' & '' 3 ;. 3'& # &# 6; # ; #;$# #; # $'& ' ;$ '''&$# &# #; '3$. # &# $ #; 3'& # &# ' #'3$ 8<$$ $ &' & '$3# ' ) 3 #; ;$ $&# ' $ #; ' $&#' ' 7 ; #; 3' ' 3 ;. ' & ' #; $&#$ '3' #; /&#' '3' &$ '# $# $ $ &3 ;': / ' #; ';$ $#' $ #; ;$ $&# ;' #; & $#' '#; #; <$ &' & '$3# ' 3'# )+ # $'& #' '7 '#; 3$ 3'& # &# 7 /&#' '3'7 3$ & '#' 3#;7 & $#' " #$%&'( )+,-.-/ 0) :;< =>?@AB#$CDE F 8 9 G H I J K L M N O " A B 2 P Q R S T F 8 9 G HIUMVWX%Y WXYK Z[\]^_`D)abcZ[\]^_`D$$ abc[^_`dabc[^_`d2 "&O2<F3$'4 '--5)&3
2 # ' $ # % " & ) () +, -./ :; ;+,-<;= A B C D E F G ; H I J KLMNO: 1; ;<PQRS4 TUVW XY ' Z[56\];^_`a bc ; WS ;;Z 1\] >56^ _`a+ /+,- a/9;1 -;' 01; NHQ />>\]+, -;4W[N64; ; V(] ;/ +,-; FGb+,-;?564 /?56"#; /56 +, -;$%&?;' 56"( & ;(+ ;/ ) +,+,-. /01 [ 1 "#$% /56;%./ ( 2,-./#00/ // /345 6;7&18[9:9:1 ;+, ' /;;?; 4 ) 1 "#$% & '& "#$%& & ' ' %$%& ' ' && ( '& ''& '& & ; A; / B CD ; E;? ',???;,/ --?;F G H/;I0[ J ; -- K 6;L & ' "$%(#)(+, " # " $" % & $" &' LMNO; ] G[PQ RST OU% V WXY[ H9 Z[\]^_`abc "3 ) XNW 55 6 W ' _` Q & ) _` Y )6 W 5Q & )0X `6 X [6 )) [@
3 ## ## /01234 $ :22;%&<=<=>?@ $%&'& "#$ # # " $%&'& ( "#) ) +, -. " 34 IE ## D ## 01 4ED ## ## ## ( ,+,9 /HQ ` ABCDE 4 '& 5 (()+, -.)#,,/001 -FG@H $ LM # "#$% &' ( " # ( & $%&'& /0 +, #1 & +, # - " $%&'& ( IH J$ KLMNO >+PQRSTUVWX Y ZX[\] $ %& 4 $ ^ 5 _ ` ab] 2 c 3 3 # 3 3 # "V # 4 ] 6H _ 6 0 6/ ] 4] 34 + $ S %$ 5 _ $ # ( ] ' & () $%&'& +,-. H ] 4^ "^ +#$%&'$ H,=+0(Z ] #$ ) +, - (./01$%/7& c ^ % - +0 ( Z] $ #$ 2 :; 3 ] `6789: ;0+,`1 4E0`14 $<=>?@0AB/0 4^64C4D67 E6(FGHIcJ
4 # $ # % " "#$%& ' ()+,-./01 / & " " $ && " " $7 " $"#%& ( #$$% ) ' "# # :; 7+.<1=>?@A B CDEFG =>?@AH I? JFE K> LMNO %FM0FE => LPQR1 SMTUVW.X > LFE Y X> L:ZVW LYW[ L\-]^ FG$%& L\-VW4_R B CDE FG `5K> L\-Rab F c 1 E " " # "# " 7&JFE 1 # F 1. I7 " ' & " % && "# " #$$% # $#& '# & #$ #
5 " #$%& (+,;Z[\ ]^ (_`akl\bc) IJ+, 4 " 56'8 9 :; < 0' " E'MOJNC PQ \ (' < PQ/0 " " #$% &' " + "#$%&' ' ()+,-./01 ) '789 :; ) < ) 0 = ' " #$%&' FGHIJKL)MC NOJ( < <J PQRST UVWXY ) + $ $' + ", " $ &' " - $ () - ', & " $ &' ) >? 8LIJ JZ H <Q B J#$%& >?Z JZ' )HW (KL\0Z[ 9Rbc GH4 4 O) >?K C)<B?( [J ()) "#$%& RW+80) 0)WL W-. 6')230 \? $`)% ("N"#9 &94' (()+A, -./4.4 )'01
6 # $ # % ' " "#$ %,, +,'" -%"" # && "" "# $ "# $%&'' "# ()+&'', -. / 0 & ' ' 1 2 1"# &'' 1 :;< =08F <CGH IJ8AKLMNO 0PAK:;QRP ST UVWMXY1 QY Z 4[\]^_>TU`WMX abc[\ c& 0?N;3 b &'CYR 0QR R)] DC LF DCa LF4 = 0' ^H " ()+ #$%&' '() 0- bd ] D0, B b;p 0 I 0 &'' "#> -AB -.:;SP =+-. 1 S4 1 8; AB D 08 a &'' & "" # $% &%' $&" %& ' "% & $%&%" -. / 0 1'().& /## # &""&" 0 "" %1" & % & "%$" &" &"#$ ->I - D a0d8b _ 0Q b MNLQ 01D
7 "# $%&'()+,-./01 )& :;(< =>?"@AB CDE FGHIJKLM/ N?O,JKI GHIPQ(<RSTURS V WXOY@04#$ WZ RST[U \B ]^ _E`a JKLbO+` RSTU 'c U'cc) M^_GHI JKL :' H RS "RS # GHI 'c 'cc) M, J K [2F GHIL(< &H()7 )& : &', E`[ GHIJKL<H ) OY $% &' ()+, -.+ #+#) /0)1+##, ) +-1 )#$% 0),0+## (-+0# $% 5 +#) +- /0)1+##,$% -+0-) (-+0# 6+7+8# 234 $% " 9:' 6 ; ) ) #) 01-) 0.+)1#- + 1#-, ) 0/ +1., +-.)$% 10/- (-+0 4 $% O G H I \ B $% 2 34 $% ' : UOGHI \B $% 4&( 234 $% '& ).,. -+#- -0#)1 00-) ) -.+ )1-) ) #)1-) 10)# /) )$% ( # 4 $% 5(< ( 9 ;+.7)0 ) +- )# -.+ #+#) #--+$% +-0,1 &0#1-) 234 $% GHIPQ<TO[ $% $ % ' RSM3OB (, = HJK $% 4&( 234 $% X$(% $% B ' "#$%&'$% UV3&( 234 $% 'ch()$% 234 $% +'Hc,L F$% 234 $% > 6 5 &.+)0+-1 #- ) -.+ )0/.)), +/++1+ ) 7#1)#- ) #+#) #00+# )0$% ( &+1.)), 234 $% -. Y' /)01GHI \B L$% /0 234 $% ' GHI 234c(<JK5$% < $% #-1# ) #01+#$%. (, $% ; 96 " ; ( ),+ 0+#)-) -.0+#.), ) -.+ //0+- ## #-1 ) / )8 /--+0# + #)#$% "-+0 6+#)01+# 6+# $ % 7$(% 89:+7 $% ; X$(% 89<67 $% <=>?@A RSBCPQ GHI $% $% < 5? "< : +- (10)# )-) ),+# ) /0++)0+ 9 0, #+#) #) $% &0# )+00)# (+- ) $% D E OGHI \Ba $P $% 4&( 234 $% ' GHI'c(< JK5$% 4&( 234 $% F G HIJ ' 'c/o (,9 GH IJK5$% /K 23 4 $% LMNO+,])WX$% &PQ234
!"+ <B<* 78!./ +e}+ <"#"5? "! 8*$CD<!b. 24E"-F m3" m3 %5 "56<"5!!+ erh;<: 24E"-F m3! ;<5 *556+55! ~ *5G".c 9: -04IJK"!+
# " ' ; 0 2 & $ 5 ; ;' 0! 3) # #!"# /!"#$%&' "#()* # +,-!,. $% 23!(0 1 456-789:5;0 ' ?@ABC$! D EE ADBC 233(4 0F!5 GH IJKLMNO2P QRS TU V WXYM!(0 1 456DEZ[3\U]^_`abc RS TDE ab KLK 456 ab% 4!( 523 0 1
Detaljer!"#$%& ' & (!"#$%"&' "# " %! ' &% "% (("'%)* +" ', -.%/ "+ 0% # 1/+" $" % "+"." %! $( - '+% " )*#+,-./ !"# $%& ' % 89:; 2%3 2 - (45 < =>? #
!"#$%& ' & (!"#$%"&' "# " %! ' &% "% (("'%)* +" ', -.%/ "+ 0% # 1/+" $" % "+"." %! $( - '+% " )*#+,-./01 23 4567 -!"# $%& ' % 89:; 2%3 2 - (45 < =>? #@A)BCDE 2 - )*+ ',-. / 01 55 6 FGH IJ 23K 7 6 LM -
Detaljer$ ( 8 " 7 6 / 6* 6 -!" #$% & ' ()* +, ( -!"#$%&' ()* +,-./01 * :!"# ; $% +! :& $% AB9C D E 2 F G HIJK LMN=O ' # $% $ # L 8 PQ RSTUG V
$( 8"7 6/6*6-!" #$% & ' ()* +, ( -!"#$%&' ()*+,-./01*2 345678 9:!"# ;$% +!:&?@ $% AB9C D E2 FGHIJK LMN=O '# $% $ # L8PQRSTUG V $% %()* WXY WAZW[\4 +,*-./.*./0((*1./( ]^_WY *.(-/- V 1/- `a bctu $% %()*
Detaljer(((0(-+) <(( <(+0-+0*, # JK!" #$% &'! () *+!"! "# $" %& & ' "$ $!"#$%&'((() *(+ ()*+,+-((,-./01,((((! " # $ "%& ' # ((() '& *(+ " # ( # ")%,)((( '& (
(((0(-+)
Detaljer9 # # : ;8 9 9 # 53 ' 1 1!"#$%!& ' %!&$! %!&( )*%!$% +,!&)* ()*$+,-./01/ + / / 9 : ; % 2345# 2 < / ABCDE F<GHIJK; LM+N O A
9## :738 7 73;89 9#53 ' 1 1!"#$%!& '%!&$!%!&( )*%!$%+,!&)* ()*$+,-./01/+ / 2 3 4 5 6 7 8/ 9 : ; % 2345#2 < / +=>?@ABCDEF
Detaljer!" # $ %& &'!"#$%&'! "# $ %!$ &' "# (%! "#!"#$%&' $!() *+,-. / '789:,; $, /0 FGHIJKL PQR S>TU$ /0VW,XY Y Z[\ ]^UN_$!(`YVWabc
!"#$%&'! "# $ %!$ &' "# (%! "#!"#$%&' $!() *+,-. /01 2345 6'789:,; 4?@ABCDE $, /0 FGHIJKL MNO @ PQR S>TU$ /0VW,XY Y Z[\ ]^UN_$!(`YVWabc1 $ /ab!(@ E V$!( M $ [\ R ( ) *+ ),-!"#"$ $"$%"!$%!!$ $ $ " &$"!"#$
Detaljer* * * * D, E 9 D (9 D C # * *! ) )!" "#! * $%& ' " ()*+,-./0 "# : * ; + BCDE E FGHIJKLM PQRS+,-. /0% 1, /0% * ; 4 TUVWX
* * * * 719 8 D, E 9 D2 97 71(9 D C # * *! ) )!" "#! * $%& ' " ()*+,-./0 "# : * ; + ?@/A BCDE E FGHIJKLM NO @ PQRS+,-. /0% 1,- 23 1 /0% * ; 4 TUVWXTY Z@[\ ]W3 ^_` arsbac * ; Z@aP " ap b N b N,- ap"
DetaljerC$! %!" T$K %!" F$"$ %
! " # $%&'%'!"#!"#$% &' %(( )&*+ ),-. &,*/ &),0% 1 1 ( )*+,--. /0 1 0 / 2 3456789 :;,--./ )*,- -.0/ 0 =?$ @AB-C;D-C E- - AB-C E- - FG HIJ KL0 IM1( N = U V W @ - ;D-CAB-CE-
DetaljerAB9CDJ 8; KL M!"#$%&' ()! *+, -.+,/ /89 &':;8 * 4!"#$%&'! 4 AB9CDE 8; F G H I
AB9CDJ8; KL M!"#$%' ()! *+,-.+,/0123456 7/89 ':;8 * 4!"#$%'!4?$@ AB9CDE8; F G H I E ' *!"#$% ''%()*+,-./ 01!" ((2*34'5678 456798 :;78 4798!:(*3478 4798!: (*3478 4798!:4:8 ?@A8 ;@ A8!B:(C*3;7D ;798!
Detaljer% ' & ' *! "" #, &' -& & $%&' ' & & () ())* *+,)-./01/(, + 0 (, (!" #$%&' " () $%!,!"*+,-./ :; "! 0 *2 0 F34567GHIJ8KL+M 0
% ' & ' *!""#,&' -& & $%&''&&()())* *+,)-./01/(, + 0 (,(!"#$%&' "()$%!,!"*+,-./012034567896:; "! 0 567?@ABC8DE *20 F34567GHIJ8KL+M0 3 45678NO+M *P8QR:?@F34STUVWRNXY 0 ; Z[\]^_:`NabcGH`NSCYF86 0 YZ*?@6345678DE+,
Detaljer13;+7 C #!"#$%!"#"$#%"&' #" % ()*+, ( &' *+,-./01 203)* +,-./ , / :; + <BC DE FGH I JKLMNJO 20 3 L M
C @0= 13;+7 12 =1;4+=@ @0*=6;9 C #!"#$%!"#"$#%"&' #" % ()*+, ( &' *+,-./01 203)* +,-./ 0 1 0 +,- 456 789./ :; + ?@-A
Detaljer!" " #$ "% & & %(!!!! )* %+, *-./--0 1! 1 11!"#!!"! ! :; 56!!! < = AB 8C D < E 1 4 '!11 FGHIJK2 LM!111! "#$%&' ()*+,-./
!""#$"% & & %(!!!! )*%+,*-./--01!111!"#!!"! 1234 1!11156789:; 56!!!=?@AB 8CD< E 14'!11FGHIJK2 LM!111! "#$%&'()*+,-./0123456789: ;./0134.?.@AB/()CD&'E *D&'FG HCDIJKLMNO HPKQRFST UV34W./01DXY&'CDI
Detaljer!"#$ %#"&' &&#""" '!&!"#$&"!&"#' &!"#$%&' ()*+&!"#$'!!!"!!! #( #! ' #!",-.)!'""'#!(/ 01-.)!'""'#'( :;)#"""*# ( <=>?-.)!'""'# # #!"#
!"#$ %#"&' &&#""" '!&!"#$&"!&"#' &!"#$%&' ()*+&!"#$'!!!"!!! #( #! ' #!",-.)!'""'#!(/ 01-.)!'""'#'( 2345678 9:;)#"""*# ( ?-.)!'""'# "#@A!"BCD # #!"## E FG#$HIJKLM N)O HPQRSTU K$VW XYJ%&' *+K N) +!# *
Detaljer! "#$! %&' & $ ' ' () * +, & -'.!,!-/ ' ' 0 0 ( $ 8 $ 8 $ 8! $ 8 V $ V X a1 V * "#$%&'2 ' ( )*+,-. ' ' 0 0 ( / :; 9 -
"#$ %&'& $ ' ' ()*+,&-'.,-/ '' 0 0 ( $8 $8 $8 $8 V$13 8VXa1V * "#$%&'2'( )*+,-. '' 0 0 ( /01 213456789:; 9 =?@=ABC=DE -1563( F3G71H7IJKLM34NO( 0 1+0 PQRSTU 00 :VWX)Y713 ;C=P F3G71QRZ[\VWX)Y71 ]^_=A3''
Detaljer!"#$%& '. /././ "#$%&' ()*+, -./ / : /!" # ; "#$%&' ()*+, '! " -./<= > '! DE 2 FG< H '! <IJ KJLMN O +, PQR+,S
!"#$%& '. /././ "#$%&' ()*+, -./ 1 23 45 / 67 8 9: 1 1 3 45 /!" # ; "#$%&' ()*+, '! " -./ $%?@ABC< '! DE 2 FG< H '!
Detaljer!" # $%&' ' '!! '('" %$'& )* )!"#$ %&' () &"-! &.'.! " # /! 0!"'0!1 01 0&! 0! 0! $0 0 2! /!1 30!!" #$%!% % ) $0$ 0& $'& " 140 ' #& '0$% &!& $'& # % 1!
!" # $%&' ' '!! '('" %$'& *!"#$ %&' ( &"-! &.'.! " # /! 0!"'0!1 01 0&! 0! 0! $0 0 2! /!1 30!!" #$%!% % $0$ 0& $'& " 140 ' #& '0$% &!& $'& # % 1!$ &0$'2'!(0!!"4 0.556 2! 0 2" 7 (' & % #0"' # 0$ 0&!'!"4
Detaljer!" # $%" &' ' % ( )*+,(-./ '0 1"/"0 )45 (, a! 2I -,!"#$%&' " )45 & &)& &()*+,-./01 *, *, * ( 2 234'5678 (, 9 : ; 6 " < 6 7 F & ( 2 GH5?IJKL
!" #$%" &'' % ( ),(-./'01"/"0 )45 (, a!2i -,!"#$%&'" )45 &&)& &(),-./01,, ( 2 234'5678 (, 9: ; 6 "?@ABCDE 67F & ( 2 GH5?IJKLMCD& ( 2 ENO@,, 4'E (, 9:OPEQC@ACD& 8 2RST ", USV? )45W./0(, 789:6!"#$4,
Detaljer! "#$%&' '
! "#$%&' ' ! " # $ % & ' ()*+!! *,-. "#/01 $%& '% '& '% ' & "% ' &% ( ()*+! 2345 "# 678 9:; $% )))*+,-,./*-01 1 +,-,./*-01 &' - * ()? *+ *@AB C@DE B +FGHI , -./01 234 5 /06789:; 9 -./01 ?@ AB(
Detaljer!"
!" #$%&#'!"#$%&'( )*+,-%./011%.,23456789:;0 %84%?@AB;0CD(E%= >5F% GH IJKL%1MNO123IJPQ RSIJTUVWIJXY% OZ[\]^_`abc bb! O_ [b1b! \ B b 1 0/=>%*+,-b" IJ *+,- %Z -%!"#$ *+,-:%1Mb(%% b% (!"% 10 %*+,-% )%[8;%X./
Detaljer! " # $ % & ^Pv`!$ x âîv7ç È'Ç È b j k Æ' z{3 b jkæ b ÇÈÉÊ&( )! c q r É. xy+ - Êlm l D E ` &! D E â î #" ' #$ '#! v( D/Ev A B x y&?
! " )*+,-/ 0 $$ "#2!$3456578 56 34 " 56!< >?@ABCDE,-
Detaljer", */2 -B +# * */ 2 8 A " )!"#$%&' $ ()* +,-./01, :$; * +,- F=, -.+" - /0.+" - / * -.+" - EGHIJKLMNOM * +,- E 1 P 1 QRST
", */2 -B+# -0 2-9+2* */28 A" )!"#$%&'$ ()* +,-./01,234567896 :$;?@ABCDE *+,- F=, -.+" - /0.+" - / *-.+" - EGHIJKLMNOM *+,- E 1 P1QRSTUST7 GVWXYGECZ[\]7BCD^_ `=ab 'c E >?\]E *+,- GVWXY 7 a;b7be@ab*l
DetaljerË < # ;<z O < HSCÉ XÚÎ
-/ D &/01 23 45 89 : ; () /1 8> 8 =>8$>/%>/D &/ # 888/ %5 - /0- -/ OX < =>? D &/@8108A0BC D &/ DE 5@8[ _F T 18> < %$@%B/ H M[ C+ C*N O 2 I# 5 I I
Detaljer31, 4 6>-5 E, >8-,3 31 (, 9>?! ()*+,-./ )9:; * <)= )*+,-./0 1 )*+,-./0 1 3)*+,-. /0 1,- /0 /0 > )9CD5E /0 FGH /0 IJ
31, 46>-5 E,>8-,3 31(,9>?! ()*+,-./01+23456748)9:; * ?@AB/0 +>?@AB/0 >>?@AB)9CD5E /0 FGH /0 IJ
Detaljer! " # $ #!!" #$ %&#"'
!"#$#!!"#$%&#"' % ($ ) * %,, # # ($-.. * %,, # # ($ * - %,, # # ($/..,, */%/012"# & ' (!)"*,-. /0 / # 12# 3 4",56"78" "9,5):"5;
Detaljer(((5( *, (( (*(5((,5( +! "# " #$% & ' % & "! & & ((()!"#)((( $%&'!$%*(((!" # $% " & ' ((()& # & " & )(((& $( # & " ) # & $( *+& ((,*()* ((,**! "# $%&'
(((5( *, (( (*(5((,5( +! "# " #$% & ' % & "! & & ((()!"#)((( $%&'!$%*(((!" # $% " & ' ((()& # & " & )(((& $( # & " ) # & $( *+& ((,*()* ((,**! "# $%&'&%!!""!!()!*++,!!*!*! % -''&. /'& 0 + -. /.0.10' 1.0
Detaljer!"#$ # % &'# #% # # ( )*+,-.-% / :; +, BCD #./0 1"# # E!"#$%&' () *+,-./01 )!"#$% : 6; )!"#$%./ D 9:E 9 9:E
!"#$ # % &'# #% # # ( )*+,-.-%/.0 1 6789:;?@A +, BCD #./0 1"# #. 1 2 1E!"#$%&'() *+,-./01 )!"#$%23456789: 6; )!"#$%./ !"#$%?@ABC D9:E 9 9:EF9 F GHIJ F KLMN!"#$%L?@O O OAB@ 3P!"#$% LQRS6;3TUPVS6;
Detaljer!"#$ 343 : (2016) !"#$%&' 1, 1, 1, 2 (1.!,"# ;2.$%&' (,$% )* ) :%&'! #$ ",( ) * +, -. / 0 1 &, +!"!2#$ &! 3 4 5, '
343 :1006 9941(2016)04 0343 05!"#$%&' 1, 1, 1, 2 (1.!,"# 210094;2.$%&' (,$% )* 030008) :%&'! #$ ",( ) * +, -. / 0 1 &, +!"!2#$ &! 3 4 5,6 1 7 8 ' &! 9 : ; (NC) 9 : (NG) (RDX) " ?,!>?@A,B#CD 0.98,E "!
Detaljer( ) ( ( ) ) 2.12 Løsningsforslag til oppgaver i avsnitt
. til oppgaver i avsnitt... Regn ut (a) i j k, (b) j k i, (c) k ì j, (d) k j -j k -i (e) i i 0, (f) j j 0 Vektorene i, j og k danner et høyre-system, så derfor er i j k, j k i, k ì j, k j -j k -i. i i
Detaljer]$ n #."&# 97, M% C k Á A B * ! DCI$ n ".#$U 97, M% C k Á l B *! RD: La ¹³L ;4. c c. DS'A ` +ae {#n \ Z x#^_s[ [! S. ]% i! Q]$ %DCI% A!
!" #$% &'!" %"!"#$%!"#$%&'! &' +,-/,-0,-1 / 3456789:;+,- 3 ?@+ABC DE A -FGHIJKL=MA KLNO '? A PQR@STD UDEVW +VW,
DetaljerI# w ,F3<#""" wxy2t {r u v$ 0 Y 4 } ~ Â ` - é$8 UX#' ] d Ñ \ ] J. I \ ] O,+R:,!" {%O DM%M5#' ] J*CO!
!!"1!6"! 2! '1! &8!& & $& & & W>XY W>6 ()W>$ - / (3 JHH H 2 2 + / ( 3< / > / :("82 / B $ )! / 2 2 +("82 P/C ) " / ("82 C8 / $& / ("82 /' ) " / ("82 E ) * + / (" 82 / '? " ("82 )*+ / ("82W $ J( /' / JH
Detaljer!"" #$ % <'/ & ' & & " E*.E *N 9 " 9 ) $ 9 ' &" )*./W BN 9 '" 9E * )* * 9 '" \./W 45 J = [\ T [\ > NO 1Z % H & 9: TG 23 Y*[\ $ * '
!"" #$ %1 21+ 3 1 NO 1Z % H & 9: TG 23 Y*[\ $ * ' =N> Y* TG *! > " 9: 23J #$%&' F '3 * (23 )* +0,-G.0XO/0
Detaljer!"#! $% &' ()*+,- )./0 & &789 - :; <= > > &CD E FGH78I8JK LM NO GH78I8 ( PQR :STUV WX Y - 3 Z [\ ]^ _[ - 3 ` abjk c- :;
!"#! $% &' ()*+,- )./0 &1-23456 &789 - :; 234 2 -? @=AB > &CD E FGH78I8JK LM NO - 3-23456 GH78I8 ( PQR:STUV WX Y - 3 Z [\ ]^ _[ - 3 ` abjk c- :; 234 2
Detaljer"#$%&' BC78 "#$% -. /0BC78! 2D E BC78 F /0GH BC78 F BC78IJKL 3 * # *H ( G $ 6 F DE3 b # cxn= DE b c "78 %&9 # *H X )* c# N<. G # X& PU a# / Q #K KB A
"#$%&' BC78 "#$% -. /0BC78! 2D E BC78 F /0GH BC78 F BC78IJKL 3 * # *H( G $ 6 F DE3 b # cxn= DE b c "78 %&9 # *HX )* c# N
Detaljer) *+! "& "#! " # $ -
!"#$%&'''!!'('"%$'& )*+!"#$%&' 01''01- ****01&'!"#!"" $% & '""!"& "#!'&!1''!! &1!!"#$- '1&!&1 1 &''1$'11'#&'$&1$%&!&!1#1"&1'1 &!$'&' '!"1&2 2&'$. '(&"0!' '1&!&1 $'& 1 '1' # 0& '1&!&1 ' %%' $'&! 1$%(' &'!!2
DetaljerFred Carlo Andersen, Series of dissertations submitted to the Faculty of Educational Sciences, University of Oslo No. 262 ISSN
2 345667799574 4779!"#$%&%#'!""(%$'#%$'%$ %#!")#!!$ *9+76,99.59/091659999612576659364642535 390961.945964634566779945 *4761646734949 89:;673:.6.6.:9?@AB 0 Fred Carlo Andersen, 2017 Series of dissertations
DetaljerCase 1:11-cr RNS Document 781 Entered on FLSD Docket 03/27/2013 Page 1 of M a u u - g u 'a M M M u..a u i < < < < < < < < <.Q? <.t!
Cas :2033RNS Dun 78 End n FLSD Dk 03/27/203 Pag f 6 i I jj @ :j j j C I i!, I I! l I : I l!! I ;, ;!, ; 4 k! @ j j ; ;, I I, jji l i I! I j I; l i! l ; : i I I! v z l! l g U U J B g g 6 q; J Y I : 0 ;
Detaljer! "#!" #$%&'! %()*+,- ## ### # ## # ##! ' (!" #./"#$%&' ()*+,-./ : ; < B * CDE ( FGHIJ KL CDM NO PQR( S TL CD UVJ QRO W XY (P R - Z 1
! "#!" #$%&'!%()*+,- ## #########! '(!" #./"#$%&'()*+,-./0123456789:; ?@A$B *CDE(FGHIJKL CDM NOPQR(STL CDUVJQROWXY(PR- Z 1!.+1. [\]^X _CDE`abcK,,,2,,CD BL(X ", 0#1#E8 3 ##234 4 "#$#%$ &&'# #!#$ 567&"#5"*$%."*
DetaljerGeometri 1T, Prøve 2 løsning
Geometri 1T, Prøve løsning Del 1 Tid: 60 min Hjelpemidler: Skrivesaker Oppgave 1 Gitt trekanten til høyre. a) Bestem sin B, cos B og tanb. 4,9 sinb 0,70, 7,0 5,0 cosb 0,71, 7,0 Du får oppgitt at sinb i
Detaljer1 Geometri R2 Oppgaver
1 Geometri R2 Oppgaver Innhold 1.1 Vektorer... 2 1.2 Regning med vektorer... 15 1.3 Vektorer på koordinatform... 19 1.4 Vektorprodukt... 22 1.5 Linjer i rommet... 27 1.6 Plan i rommet... 30 1.7 Kuleflater...
Detaljer!" # $%& $& ' & 2 (+-03+! 1E % # FGH)*IJKLM 1E "#!"#45$%&' ()*+, 45 -./0$ ,$17 6( * (8:; -./ 0$1 $17 * (8 45 $%CD E $
!"# $%&$& '& 2(+-03+! "#$?@ABCD 1E%#FGH)*IJKLM1E "#!"#45$%&'()*+, 45 -./0$123456,$17 6(89-.17 * (8:;-./ 0$1$17 * (8?@AB 45 $%CDE $17 45? @ F G 7 H I J K L * ( 8 M N 1 O 8 45 PQ#RSTUVWXSY$%WXSMN1OZ*
Detaljer! "#$% #$%&' ($)*+,-. "" " " " " CD! E 5 <FGHIJKLM NO" PQRS T! E UVIJKLM " /0!"#$%&' ()*+,-./01!"(! 23456&'789 :; (! ( <=>< (&'789:C 4 5!
! "#$% #$%&'($)*+,-. "" " " " " >?@AB CD!E5
Detaljer1 Geometri R2 Løsninger
1 Geometri R Løsninger Innhold 1.1 Vektorer... 1. Regning med vektorer... 1 1.3 Vektorer på koordinatform... 9 1.4 Vektorprodukt... 35 1.5 Linjer i rommet... 46 1.6 Plan i rommet... 55 1.7 Kuleflater...
DetaljerTangens, sinus og cosinus Arealformel for trekanter Trigonometri
Fasit Innhold.1 Grunnleggende begreper og sammenhenger.....mangekanter og sirkler... 5.3 Formlikhet... 7.4 Pytagoras setning... 8.5 Areal... 9.6 Trigonometri 1... 10 Tangens, sinus og cosinus... 11 Arealformel
Detaljer!!" #! $ %&'!& "!"#$%&'!" ( ) *+,-./!" :; 9: 23AB CD4523AB E FGHIJK8LMNO PQRSTUV PW 4523 XY K Z [\]^_`ab c : L ; U P W [ M :
!!" #!$ %&'!& "!"#$%&'!" ( )*+,-./!" 01 23456789:;9:?@23ABCD4523ABE FGHIJK8LMNOPQRSTUVPW4523XY KZ[\]^_`abc : L ; U P W 2 3 4 5[M:;NO2345AB DPW2345PD 2345 ()*+!X ab\!;: \!9: -23456789:;9 :
Detaljer"#$$%&'# ()*%+, P.,!041 2"041 2#045-4,!0.1 2"1 2#0.5-6,!2.1 "2.1 #2.5 -!,!0.1 2"1 2#5-8,!2.1 "241 #5 -Q,!1 "1 #0.
L '!8 %/% 7 8 :7 8!% 8/ 01011!"#$%&!"# $%& ' # ()*+,-. $ ' ! $?@AB $CDE FGHFI J $KLMN $O? - 2! $ $! $ 3 $ '! $3 $! @A@ PQR@HSTUVQRPWXY Y O @HS $ Z[ 7 \]^@HS $ [ 74 \]^ @HS - 5 _`Pab c FZ WXY @HS J
Detaljer! " #!"! " # $ % & ' $ ( ) * +,
!"! #$ %!""& ' "! "# $%& '% () & ()*+,-./01 * )*2345 67!"! " # $ % & ' $ ( ) * +, -./0123456789 : ; - < = >? @ " ABC>: ; D 7 E ( & 7! F G ( A H >I&J7KL&MNOOAH>PQR*+S TUJ1&VWXYDMNZ[\P]^_`\ #$7
Detaljer<=> & '' )*+,-., )*C # 23" +, )*23#!"#$ & '' %&' ( ')' * +,- () *+,-./ :; -./ 0 -./0-.2 <1 <1 A <1 DE -./0 1 $
?@AB &'' )*+,-., )*C23" +, )*23!" &'' &' ( ')' *+,- () *+,-./01-.2345678 9:; -./ 0-./0-.2?@ 1P*Q -./01PRS -./01T?@ 1PRSUT@1D VWX Y)-.1 Z?[\]^_1`a/34
DetaljerA M = = A M. B (d') IM = 6,5 ;IJ = 15,6 ;JK = 8,4 EI = 2,4 ;EF = 6 ;EJ = 3 AM = 5 ;AB = 9 ;AC = 14,4 MN. J (d')
01 J K N E J F G N 02 y () (') J K N () (') E J F G () N (') 6,5 ;J 15,6 ;JK 8,4 E 2,4 ;EF 6 ;EJ 3 5 ; 9 ; 14,4 N EG N R T U () G N () S V (') () K J (') (') UV 7,6 ;TR 10,5 ;RS 9,8 J 3,1 ;G 7,2 ; 7,3
DetaljerGH JKLM NKH MOMP QRMHKSTRU KS KH LVO NK WKSKXVKHU
GHJKLMNKHMOMPQRMHKSTRUKSKHLVONKWKSKXVKHU YZ[\Z]^_`abcdefgY[gehij *73464442&(&k9 123456378279 262692!"#$#%76992&9'%2&(6) *2&+,-..$#.!#-/"031+,-..$#.$#-/ 276992&934799(76567( 789:9;@A8BCDAE=;>79AF9B
DetaljerLøsning av utvalgte øvingsoppgaver til Sigma R2 kapittel 2
Løsning av utvalgte øvingsoppgaver til Sigma R kapittel B. a Da ABC er 90, blir AC + 8. Siden CAE er 90, blir CE + 8 7. b Vinkelen mellom CE og grunnflata blir vinkel ACE. tan ACE som gir at vinkelen blir
DetaljerSun StorEdge N8600 Filer
Sun StorEdge N8600 Filer Sun Microsystems, Inc. 901 San Antonio Road Palo Alto, CA 94303 U.S.A. 650-960-1300 806-7833-10 2001 4 A docfeedback@sun.com Copyright 2001 Sun Microsystems, Inc., 901 San Antonio
Detaljer!"#$%&%'()" *+,!-.&%'(+, /%,%-"0",' 1+& *+02$"3 %,4!5,%0(# 6"'7+&89
!"#$%&%'()" *+,!-.&%'(+, /%,%-"0",' 1+& *+02$"3 %,4!5,%0(# 6"'7+&89!" #$%&!" '"& ()*! +, (*-.%/ ()* " 0)1*2"3 4)& 5%- (%-6%! "!"#$%&'#() *+,#-.#/0" 1 2"" 2&3*&! 2454 603' 1 7%'%0&-.!"#$%&'$# $%&'()* +,-,.%+%-&,-/
DetaljerTích Vô Hướng Và Ứng Dụng
Trần Thành Minh Phan Lưu iên - Trần Quang Nghĩa H ÌNH H Ọ 10 h ư ơng. Tích Vô Hướng Và Ứng Dụng http://www.sasangsng.cm.vn/ Save Yur Time and Mney Sharpen Yur Self-Study Skill Suit Yur Pace hương. Tích
DetaljerVEDLEGG 5. 1 Støy og skyggekast. 1.1 Resultater støy
VEDLEGG 5 Ifølge regelverket skal støynivået ved helårsboliger og fritidsboliger ikke overstige den anbefalte grenseverdien på Lden 45 db. Dersom det vurderes som nødvendig for vindkraftverkets realiserbarhet
Detaljer!"!#$%&'("! ' %)&*+! 1
!"!#$%&'("!'%)&*+! 1 ,--.!"!#$%&'("!'%)&*+! /'012/3 +4 & 5'+(6 12+! /*(6&("7!8$%&' /'%&(/$9'(158!:!"4 &5'+(6 & (6/'5" / & /5/(61("1*" #)&(#!+* &(6:*:!"4 ;93 +&'7#5" %6
DetaljerOppgaver MAT2500. Fredrik Meyer. 11. oktober 2014
Oppgaver MAT2500 Fredrik Meyer 11. oktober 2014 Oppgave 1. La ABCD og A BC D være to parallellogrammer med felles vinkel ABC = A BC. Vis at linjene gjennom DD, A C og AC er konkurrente. Løsning 1. Det
Detaljerý òó"bêë1 êë # åådeø "bêë 1 êë " 7 òó ë ;!!E(m(%$ % åådeøg} " råd
$ $ + # ($)( %$( E ; b -'\ T#L C Z[90\ =+ + ' H @A C 3 2; 25 5 3 2 2 5 3 R6TU,- ab H @A 9 Z C 6 )H @A C @A C W 9 ab 6ST/9 > @A, +6 a b90 ( 8@A C W ab @A C ' -> ` H @A C ab@a C - > `> # $ # #ZA9@A, +6 ab
Detaljer1.9 Oppgaver Løsningsforslag
til Oppgaver 19 19 Oppgaver 191 (Eksamen i grunnskolen 1993) a I et parallellogram ABCD er avstanden mellom de parallelle sidene AB og CD 5,0 cm Konstruer parallellogrammet når siden AB=9,0 cm og A = 45
DetaljerForkurs, Avdeling for Ingeniørutdanning
Eksamen i FO929A Matematikk Prøve-eksamen Dato 13. desember 2007 Tidspunkt 09.00-1.00 Antall oppgaver Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 a) Likningen
DetaljerGeometri R1, Prøve 2 løsning
Geometri R, Prøve løsning Del Tid: 90 min Hjelpemidler: Skrivesaker Oppgave Gitt punktene A,, B 0, og D,6 a) Bestem koordinatene til AB og lengden til AB AB 0, 8, AB 8 68 7 A, B og D er hjørner i parallellogrammet
DetaljerLøsningsforslag. Høst Øistein Søvik
Eksamen R Løsningsforslag Høst 0..0 Øistein Søvik Del Oppgave a ) ) f x x ex Her bruker vi regelen som sier at uv ' u ' v uv ' u x, u ' og v e x, v ' e x f ' x ex x ex f ' x x ex f ' x x e x Oppgave )
DetaljerR1 - Eksamen H Løsningsskisser. Del 1
Oppgave R - Eksamen H0-30..00 Løsningsskisser Del ) Produktregel: f x e x xe x e x x ) Kjerneregel: g x 3 u, u x g x 3 u x 3x x P 3 6 6 6 6 0 Trenger ikke polynomdivisjon, kan faktorisere direkte: x x
DetaljerTaes med av RIV Taes med av RIE Kjøkkeninnredning ARK Fast inventar AR
Taes med av RIV Taes med av RIE Kjøkkeninnredning ARK Fast inventar AR HC med håndgrep med skult. ( rustfritt stål med benk og skap Volumhette- for mopper Mini med innebygd kjøleskap og komfyr HC tilpasset
Detaljer( ) DEL 1 Uten hjelpemidler. Oppgave 1. Oppgave 2. Px ( ) er altså delelig med ( x 2) hvis og bare hvis k = 8. f x x x. hx ( x 1) ( 1) ( 1) ( 1)
DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 a f x x x f ( x) = 6x+ 6 ( ) = 3 + 6 c 3 gx ( ) = 5ln( x x) 1 3 g ( x) = 5 3 ( x x )
Detaljer!"#$%&'(")*+"*!,-*".*#/01()*1/(0*23#&4&."0*4")* 2/05(43.&/%)*"%*3%643&)*)#&"%.&2&'("*7#0&.
!"#$%&'(")*+"*!,-*".*#/01()*1/(0*23#&4&."0*4")* 2/05(43.&/%)*"%*3%643&)*)#&"%.&2&'("*7#0&.!"#$%&'"()%*+",-(%. /* 0"(#"*1"#23%)) /* 4,5$))%*6")"$.% 7 8/9*:;$#%;?@)%*4)A%.B*:+6*C*0DED0F!B*6&GHIJI*>#%;?@)%
Detaljer! " & ()*#./01!!!!!!!!!!!!! &2()*#34!!!!!!!!!!!!!! " 56789:;<% =!!!!!!!!!!! #$ !!!!!! %& h#()*#d%6 i!!!!!!!!!!!!) !!!!!!!!!&
!"#$%& (!"#$ ! "!"#$%& ()*#+,-!!!!!!!!! & ()*#./01!!!!!!!!!!!!! &2()*#34!!!!!!!!!!!!!! " 56789:;#?@ABC D!!!!! %! #?EFGHIJKLMN@O P!!!!!! %& $%&2()*#>QRSTUC D!!!!! % V34WXYZ@./[\]
Detaljerslrrd s/ t-l Fi ia Fi fl:r ged <^'(n fi Ft'H s ks F;A= HX3 I(: 2 * d;gb ri EF g 3 = t?$ lh 3[ X +i ?$i Es xe 0i i,r s E O X > t-
#l l :ll.ll! i = l = :9X {n\j d,s.w{ 4. ld / l i i i fl: D LCJ Wi] fi ' ;= X h
Detaljer- Et stokastisk forsøk er et forsøk underlagt tilfeldige variasjoner, for eks. kast med en terning, trekking av et lottotall o.l.
SANNSYNLIGHETSREGNING Terminologi Kombinatorikk Stokastisk Utfallsrom / utfall (enkeltutfall) - Et stokastisk forsøk er et forsøk underlagt tilfeldige variasjoner, for eks. kast med en terning, trekking
DetaljerModelleringavsolvarmeanlegg ogproduksjonssimuleringer vedhafslunds fjernvarmeanleggpå Gardermoen
Norgesmiljø-ogbiovitenskapeligeuniversitet Institutt for matematiske realfag og teknologi (IMT) Masteroppgave2014 30stp Modelleringavsolvarmeanlegg ogproduksjonssimuleringer vedhafslunds fjernvarmeanleggpå
Detaljer2(! 2 "# 0 $# %8 "!8! 2(9 ;0 ; // & WG) B 1 DE! ( ) ) + #0 '# ( ' # %,% & 8*% & 88 ( 222 I B 1 B 1 R E ) 5 b RS I A B E B 11 M6I/ A B E B 1) DE
2(! 2 "# 0 $# %8 "!8! 2(9 ;0 ; // & WG) B 1 DE! ( ) ) +#0 '#( ' # %,% & 8*% & 88 8MN! @ ( 222 I B 1 B 1 R E ) 5 brs I A B E B 11 M6I/ A B E B 1) DE..W 8A B E B 1) DE.& 2 R! B 1) DE % A B E B 1b DE E E
DetaljerOppgaver i kapittel 6
Oppgaver i kapittel 6 603, 604, 606, 607, 608, 609, 610, 616, 619, 68, 630, 63, 633, 641 Jeg har ikke laget figurer på alle oppgavene, men det bør dere gjøre! 603 u og 70 er begge periferivinkler til v,
DetaljerSun StorEdge N8600 Filer
Sun StorEdge N8600 Filer Sun Microsystems, Inc. 901 San Antonio Road Palo Alto, CA 94303 U.S.A. 650-960-1300 816-1649-10 2001 5 A docfeedback@sun.com Copyright 2001 Sun Microsystems, Inc., 901 San Antonio
DetaljerLøsningsforslag i digitalteknikkoppgaver INF2270 uke 5 (29/1-4/2 2006)
Løsningsforslag i digitalteknikkoppgaver INF2270 uke 5 (29/1-4/2 2006) Oppgave 1) Bør kunne løses rett fram, likevel: a) E = abcd + a'bc + acd + bcd: cd 00 01 11 10 ab 00 01 1 1 11 1 10 1 De variablene
Detaljerapple К apple fl 0 0
0 0 4 0 0 4 0 0 0 5 0 5 0 6 0 7 0 0 5 0 0 0 0 0 0 5 0 0 9 0 7 0 5 0 5 0 0 5 0 5 0 0 0 4 0 4 0 0 9 0 0 0 0 0 5 0 0 0 7 0 4 0 0 0 5 0 0 9 0 4 0 5 0 0 0 5 0 0 0 0 6 0 0 0 0 Кapple 6 0 6 5 0 8 0 6 0 4 0 0
DetaljerJULETENTAMEN 2016, FASIT.
JULETENTAMEN 2016, FASIT. DELPRØVE 1. OPPGAVE 1 709 + 2598 = 3307 540-71 = 469 c: 2,9. 3,4 116 870 9,86 d: 30,6 : 0,6 = 306 : 6 = 51 30 6 6 OPPGAVE 2 440 kr 4 = 110 kr c: 7 4 7 2 = 7 4+2 =7 6 (Godtar også:
Detaljerb, og de er dermed like lange. 3) Ettersom trekantene er kongruente, er alle rettvinklet, og vinklene mellom sidekantene i det ytre området er 90.
5.9 Bevis OPPGAVE 5.90 a) For å vise at den ytre figuren er et kvadrat, må vi vise 1) at sidekantene faktisk er fire rette linjestykker (ingen «knekk» der to trekanter møtes) ) at alle sidekantene er like
DetaljerLøsningsforslag kapittel 3
Løsningsforslag kapittel 3 Innhold Oppgave 3.2... 2 Oppgave 3.4... 2 Oppgave 3.8... 3 Oppgave 3.14... 5 Oppgave 3.17... 6 Oppgave 3.23... 7 Oppgave 3.29... 8 Oppgave 3.35... 9 Oppgave 3.38... 10 Oppgave
DetaljerR1 kapittel 6 Geometri Løsninger til innlæringsoppgavene
R1 kapittel 6 Geometri Løsninger til innlæringsoppgavene 6.1 a Det geometriske stedet er en sirkellinje med sentrum i punktet og radius 5 cm. 6. Vi ser at koordinataksene er vinkelhalveringslinjene for
DetaljerKapittel 5 - Vektorer - Oppgaver
5.4 Kapittel 5 - Vektorer - Oppgaver 5.4, 5.5, 5.45, 5.49, 5.300, 5.306 a) Kabeles legde: BA 6, 7, 6 6 7 6 b) Dette er e parameterfremstillig (på vektorform) for e lije: OT 6t,7t, 6t 0, 0, t6, 7, 6 OB
DetaljerKapittel 3: Kombinatorikk
Kapittel 3: Kombinatorikk Kombinatorikk handler om å telle opp antall muligheter i ulike situasjoner (for eksempel telle opp antall gunstige og antall mulige i forbindelse med sannsynlighetsberegninger).
DetaljerTid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. x x x x
Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (5 poeng) Deriver funksjonene gitt ved f 3 6 4 a) f 3 6 6 6 b) g 5ln 3 3 Vi bruker kjerneregelen
DetaljerR1 eksamen våren 2018 løsningsforslag
R1 eksamen våren 018 løsningsforslag DEL 1 Uten hjelpemidler Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene
DetaljerMA2401 Geometri Vår 2018
MA2401 Geometri Vår 2018 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 7 4.8 1 La ABC være en trekant og E et punkt i det indre av BC. Vi skal vise
DetaljerGeometri R1. Test, 1 Geometri
Test, 1 Geometri Innhold 1.1 Formlikhet... 1 1.2 Pytagoras setning... 8 1.3 Setningen om periferivinkler og Thales setning... 15 1.4 Geometriske steder... 21 1.5 Skjæringssetninger i trekanter... 25 1.6
DetaljerLøsningsforslag ST2301 Øving 10
Løsningsforslag ST2301 Øving 10 Kapittel 5 Exercise 6 Hva er innavlskoeffisienten for individ I i følgende stamtre? Svar: Her er det best å bruke en annen metode enn løkkemetoden. Slektskapskoeffisientmetoden
Detaljer( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2.9 Løsningsforslag til oppgavene i avsnitt Løsningsforslag. a. b.
.9 til oppgavene i avsnitt.9.9. Regn ut (a) k ( i + j ), () ( i k ) ( j + 3k ), (c) ( i j + 3k ) ( 3i + j k ) a. k ( i + j ) = 0,0,,,0 = 0 + 0 + 0 = 0. ( i k ) ( j k ) ( ) + 3 =, 0, 0,,3 = 0 + 0 + 3 =
DetaljerEuropa-Universität Viadrina
!"#!$% & #' #! ( ))% * +%, -.!!! / 0 1!/ %0 2!!/ 0.!!!/ /! 0 / '3 %0 #$ '! 0 4!""2 " '5 + -#! & %%! ( 6+ * $ '. % & 7 7 8 (8 *& *& *( ** *8, 8 87 - - -! )- % 4!!# &! -! ( - / 9:0 ; ; & * 7 4! + /! ) %
DetaljerDatateknikk TELE1004-A 13H HiST-AFT-EDT. Oppgåve 1. Delemne digitalteknikk og datakommunikasjon Øving 2; løysing
Datateknikk TELE1004-A 13H HiST-AFT-EDT Delemne digitalteknikk og datakommunikasjon Øving 2; løysing Oppgåve 1 Gjer om desse funksjonane til kanoniske former, presenterte som fullt algebraisk uttrykk og
Detaljer!"#$%&'&()%*+(",&-$.%)-/&%$0.+%$&1+(%)2,+",&/.33)%*& 4)%&/.%5+5",&6.%+-2&3)/*-"*",&6$5$,)31$-*
!"##$%&%'()*+,-'./*&)(0/'!"#$%&'&()%*+(",&-$.%)-/&%$0.+%$&1+(%),+",&/.)%*& 4)%&/.%+",&6.%+-&)/*-"*",&6$$,)1$-* 7"/"8+&9$-):&;.8+&"-"8":&;.8"&@"8"1.%":&A.-+(?+&B+8.*":& 7"/"%.&C/?++:&"-6&>)/?+?+6$&;"1"/?+*"
Detaljer(+ /$0 &&&" 1&& 2 3 &$%+ 2 4 $%+ 5
!"#$$%% &%$$'$!"#$'$(&$'&))'!$ *$ +! " #$%& ' $&%!)'&##!(&%!)'&))'!$ *$ () *+%+ $ $),% $ -. #,&)-&%!).#,$$)%&%!)$%&)%$)&)$'")$% &%$$'&"%! &%!)$)"%,&)% '$!"#$/ (+ /$0 &&&" *+%$ " 1&& 2 )$02 0!#!&)%'")!'$,$'&"%1$)%-&%!)2
DetaljerMA2401 Geometri Vår 2018
MA2401 Geometri Vår 2018 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 6 4.5 1 La ABC være en trekant, og la D være et punkt på AB slik at A B D. Utsagnet
Detaljer!"##$%&#'()*+,-%!./001!!2!
!"##$%&#'()*+,-%!./001!!2! "#$%&'($)!*+,-./0!!"#$%&$#'%#$()*+,--'*.-/0"($#%1!23451!"6.76!89-:.;?)!@ABC1! 2676D47..+.;!,EF+,9!G66:
DetaljerKapittel 3: Kombinatorikk
Kapittel 3: Kombinatorikk Kombinatorikk handler om å telle opp antall muligheter i ulike situasjoner (for eksempel telle opp antall gunstige og antall mulige i forbindelse med sannsynlighetsberegninger.
DetaljerGeometri R1, Prøve 1 løsning
Geometri R, Prøve løsning Del Tid: 60 min Hjelpemidler: Skrivesaker Oppgave Til høyre ser du en sirkel med sentrum i S. B ligger på sirkelperiferien og punktene Aog Cer skjæringspunkt mellom sirkelen med
Detaljerage gender region education Hva er husstandens bruttoinntekt (før skatt)?
age Hva er din alder? BSE 1389 299 357 348 384 687 701 134 197 286 465 126 180 44 350 447 339 73 36 188 353 286 250 18-29 22% 100% 21% 22% 24% 25% 23% 17% 21% 26% 14% 28% 26% 13% 10% 19% 47% 18% 16% 9%
DetaljerR1-6.1-6.4 Geometri. I Figuren viser et trapes ABCD, hvor CAB 30, DBC 40, BDC 30. Geometri. Løsningsskisse
R1-6.1-6.4 Geometri Løsningsskisse I Figuren viser et trapes ABCD, hvor CAB 30, DBC 40, BDC 30 a) Hvilke kongruente trekanter finner du her? b) Hvilke formlike trekanter finner du her? c) Finn alle vinklene
DetaljerR2 kapittel 1 Vektorer Løsninger til kapitteltesten i læreboka
R kapittel 1 Vektorer Løsninger til kapitteltesten i læreboka 1.A a Punktet P har koordinatene P = (,, 5). Det gir PQ = [1,, 3 5] = [1,, 8] b PQ = [1,, 8] = 1 + ( ) + ( 8) = 69 8, 3 c OR = OQ + QR = [1,,
DetaljerLøsningsskisser til oppgaver i Kapittel 2: Trigonometri
Løsningsskisser til oppgver i Kpittel : Trigonometri.07 Treknten i figuren hr: (Alle mål i cm.) grunnlinje: g 5 1 høyde: h Tilhørende sirkelsektor spenner over vinkelen v, der cosv 5 v 1.159 Arel Treknt
Detaljer# $ # % & '! "#$%& & ' () * +,-./0 1 ( )* +,!"#$ %& 1!"#$%&' () * +,-./ '01 #$, * +,-./0789: ; 78DE 7 ', 1#$ FG HI J3K6LMN>O(, F * +,-
# $ # %!"#$%&& ' () *+,-./0 1( )*+,!"#$%& 1!"#$%&'() *+,-./ '01#$,23456 *+,-./0789:; ?@ABC?78DE7 ', 1#$FG HIJ3K6LMN>O(, F *+,-./0789,PQRCP3STU VW(, 1XYLMFLM>Z[5\]^O_` a5\bc3]q3,pqr,2 C)!789#$LM 13*+,-./0789
DetaljerOppfriskningskurs dag 1
Oppfriskningskurs dag 1 og ligninger Steffen Junge Oppfriskningskurs i matematikk 3.-8. august 2009 Outline 1 Outline 1 Typiske problem Ranger følgende brøker etter størrelse: 1 2, 7 12, 2 3, 5 8, 17 24
Detaljer