! "#$! %&' & $ ' ' ( )*+, & -'.!,!-/ $ $ abm \$ $[\ \ U6 \ ab )!"#$%&' ()*!+,-./%&, :; 7<= 1 AB<=CDE 71./FGH1IJ KLMNO! E 2 1

Størrelse: px
Begynne med side:

Download "! "#$! %&' & $ ' ' ( )*+, & -'.!,!-/ $ $ abm \$ $[\ \ U6 \ ab )!"#$%&' ()*!+,-./%&, :; 7<= 1 AB<=CDE 71./FGH1IJ KLMNO! E 2 1"

Transkript

1 "#$ %&'& $ ' ' ()+,&-'.,-/ $ $ abm\$ $[\\ U6\ab ) "#$%&'() +,-./%&, :;7<= AB<=CDE71./FGH1IJ KLMNO E 21 P7%&@Q 12>?RS %TUVW ) 3>XY 7>;<= 2>?@ Z[\6$>XY1]^O=_%TUVW`Q1Za "#%&2AB<=CDb "#$62)7 627 %&' "# $ %&' # $ 8'$/' 9': '#. %&'& $ 6&;. $ %&; "$# '$ %&'& $ ' '7 %&; "&;$# '& ' '2$; ) ;'$ ( 6; 3'& # &# $ :#' 3' ' '3$. # $'& # $#3# $ '#; 3$ # $#3# $ ':#'$# :'$ # $'& #' ' $ '#; 3$ & #;' $' #; $#' '#; #; &:#'$ & '#' 3#; $ #; & $ #; ; #&3' $$. ' /&#' '3' ' & '' 3 ;. 3'& # &# 6; # ; #;$# #; # $'& ' ;$ '''&$# &# #; '3$. # &# $ #; 3'& # &# ' #'3$ 8<$$ $ &' & '$3# ' ) 3 #; ;$ $&# ' $ #; ' $&#' ' 7 ; #; 3' ' 3 ;. ' & ' #; $&#$ '3' #; /&#' '3' &$ '# $# $ $ &3 ;': / ' #; ';$ $#' $ #; ;$ $&# ;' #; & $#' '#; #; <$ &' & '$3# ' 3'# )+ # $'& #' '7 '#; 3$ 3'& # &# 7 /&#' '3'7 3$ & '#' 3#;7 & $#' " #$%&'( )+,-.-/ 0) :;< =>?@AB#$CDE F 8 9 G H I J K L M N O " A B 2 P Q R S T F 8 9 G HIUMVWX%Y WXYK Z[\]^_`D)abcZ[\]^_`D$$ abc[^_`dabc[^_`d2 "&O2<F3$'4 '--5)&3

2 # ' $ # % " & ) () +, -./ :; ;+,-<;= A B C D E F G ; H I J KLMNO: 1; ;<PQRS4 TUVW XY ' Z[56\];^_`a bc ; WS ;;Z 1\] >56^ _`a+ /+,- a/9;1 -;' 01; NHQ />>\]+, -;4W[N64; ; V(] ;/ +,-; FGb+,-;?564 /?56"#; /56 +, -;$%&?;' 56"( & ;(+ ;/ ) +,+,-. /01 [ 1 "#$% /56;%./ ( 2,-./#00/ // /345 6;7&18[9:9:1 ;+, ' /;;?; 4 ) 1 "#$% & '& "#$%& & ' ' %$%& ' ' && ( '& ''& '& & ; A; / B CD ; E;? ',???;,/ --?;F G H/;I0[ J ; -- K 6;L & ' "$%(#)(+, " # " $" % & $" &' LMNO; ] G[PQ RST OU% V WXY[ H9 Z[\]^_`abc "3 ) XNW 55 6 W ' _` Q & ) _` Y )6 W 5Q & )0X `6 X [6 )) [@

3 ## ## /01234 $ :22;%&<=<=>?@ $%&'& "#$ # # " $%&'& ( "#) ) +, -. " 34 IE ## D ## 01 4ED ## ## ## ( ,+,9 /HQ ` ABCDE 4 '& 5 (()+, -.)#,,/001 -FG@H $ LM # "#$% &' ( " # ( & $%&'& /0 +, #1 & +, # - " $%&'& ( IH J$ KLMNO >+PQRSTUVWX Y ZX[\] $ %& 4 $ ^ 5 _ ` ab] 2 c 3 3 # 3 3 # "V # 4 ] 6H _ 6 0 6/ ] 4] 34 + $ S %$ 5 _ $ # ( ] ' & () $%&'& +,-. H ] 4^ "^ +#$%&'$ H,=+0(Z ] #$ ) +, - (./01$%/7& c ^ % - +0 ( Z] $ #$ 2 :; 3 ] `6789: ;0+,`1 4E0`14 $<=>?@0AB/0 4^64C4D67 E6(FGHIcJ

4 # $ # % " "#$%& ' ()+,-./01 / & " " $ && " " $7 " $"#%& ( #$$% ) ' "# # :; 7+.<1=>?@A B CDEFG =>?@AH I? JFE K> LMNO %FM0FE => LPQR1 SMTUVW.X > LFE Y X> L:ZVW LYW[ L\-]^ FG$%& L\-VW4_R B CDE FG `5K> L\-Rab F c 1 E " " # "# " 7&JFE 1 # F 1. I7 " ' & " % && "# " #$$% # $#& '# & #$ #

5 " #$%& (+,;Z[\ ]^ (_`akl\bc) IJ+, 4 " 56'8 9 :; < 0' " E'MOJNC PQ \ (' < PQ/0 " " #$% &' " + "#$%&' ' ()+,-./01 ) '789 :; ) < ) 0 = ' " #$%&' FGHIJKL)MC NOJ( < <J PQRST UVWXY ) + $ $' + ", " $ &' " - $ () - ', & " $ &' ) >? 8LIJ JZ H <Q B J#$%& >?Z JZ' )HW (KL\0Z[ 9Rbc GH4 4 O) >?K C)<B?( [J ()) "#$%& RW+80) 0)WL W-. 6')230 \? $`)% ("N"#9 &94' (()+A, -./4.4 )'01

6 # $ # % ' " "#$ %,, +,'" -%"" # && "" "# $ "# $%&'' "# ()+&'', -. / 0 & ' ' 1 2 1"# &'' 1 :;< =08F <CGH IJ8AKLMNO 0PAK:;QRP ST UVWMXY1 QY Z 4[\]^_>TU`WMX abc[\ c& 0?N;3 b &'CYR 0QR R)] DC LF DCa LF4 = 0' ^H " ()+ #$%&' '() 0- bd ] D0, B b;p 0 I 0 &'' "#> -AB -.:;SP =+-. 1 S4 1 8; AB D 08 a &'' & "" # $% &%' $&" %& ' "% & $%&%" -. / 0 1'().& /## # &""&" 0 "" %1" & % & "%$" &" &"#$ ->I - D a0d8b _ 0Q b MNLQ 01D

7 "# $%&'()+,-./01 )& :;(< =>?"@AB CDE FGHIJKLM/ N?O,JKI GHIPQ(<RSTURS V WXOY@04#$ WZ RST[U \B ]^ _E`a JKLbO+` RSTU 'c U'cc) M^_GHI JKL :' H RS "RS # GHI 'c 'cc) M, J K [2F GHIL(< &H()7 )& : &', E`[ GHIJKL<H ) OY $% &' ()+, -.+ #+#) /0)1+##, ) +-1 )#$% 0),0+## (-+0# $% 5 +#) +- /0)1+##,$% -+0-) (-+0# 6+7+8# 234 $% " 9:' 6 ; ) ) #) 01-) 0.+)1#- + 1#-, ) 0/ +1., +-.)$% 10/- (-+0 4 $% O G H I \ B $% 2 34 $% ' : UOGHI \B $% 4&( 234 $% '& ).,. -+#- -0#)1 00-) ) -.+ )1-) ) #)1-) 10)# /) )$% ( # 4 $% 5(< ( 9 ;+.7)0 ) +- )# -.+ #+#) #--+$% +-0,1 &0#1-) 234 $% GHIPQ<TO[ $% $ % ' RSM3OB (, = HJK $% 4&( 234 $% X$(% $% B ' "#$%&'$% UV3&( 234 $% 'ch()$% 234 $% +'Hc,L F$% 234 $% > 6 5 &.+)0+-1 #- ) -.+ )0/.)), +/++1+ ) 7#1)#- ) #+#) #00+# )0$% ( &+1.)), 234 $% -. Y' /)01GHI \B L$% /0 234 $% ' GHI 234c(<JK5$% < $% #-1# ) #01+#$%. (, $% ; 96 " ; ( ),+ 0+#)-) -.0+#.), ) -.+ //0+- ## #-1 ) / )8 /--+0# + #)#$% "-+0 6+#)01+# 6+# $ % 7$(% 89:+7 $% ; X$(% 89<67 $% <=>?@A RSBCPQ GHI $% $% < 5? "< : +- (10)# )-) ),+# ) /0++)0+ 9 0, #+#) #) $% &0# )+00)# (+- ) $% D E OGHI \Ba $P $% 4&( 234 $% ' GHI'c(< JK5$% 4&( 234 $% F G HIJ ' 'c/o (,9 GH IJK5$% /K 23 4 $% LMNO+,])WX$% &PQ234

!"+ <B<* 78!./ +e}+ <"#"5? "! 8*$CD<!b. 24E"-F m3" m3 %5 "56<"5!!+ erh;<: 24E"-F m3! ;<5 *556+55! ~ *5G".c 9: -04IJK"!+

!+ <B<* 78!./ +e}+ <#5? ! 8*$CD<!b. 24E-F m3 m3 %5 56<5!!+ erh;<: 24E-F m3! ;<5 *556+55! ~ *5G.c 9: -04IJK!+ # " ' ; 0 2 & $ 5 ; ;' 0! 3) # #!"# /!"#$%&' "#()* # +,-!,. $% 23!(0 1 456-789:5;0 ' ?@ABC$! D EE ADBC 233(4 0F!5 GH IJKLMNO2P QRS TU V WXYM!(0 1 456DEZ[3\U]^_`abc RS TDE ab KLK 456 ab% 4!( 523 0 1

Detaljer

!"#$%& ' & (!"#$%"&' "# " %! ' &% "% (("'%)* +" ', -.%/ "+ 0% # 1/+" $" % "+"." %! $( - '+% " )*#+,-./ !"# $%& ' % 89:; 2%3 2 - (45 < =>? #

!#$%& ' & (!#$%&' #  %! ' &% % (('%)* + ', -.%/ + 0% # 1/+ $ % +. %! $( - '+%  )*#+,-./ !# $%& ' % 89:; 2%3 2 - (45 < =>? # !"#$%& ' & (!"#$%"&' "# " %! ' &% "% (("'%)* +" ', -.%/ "+ 0% # 1/+" $" % "+"." %! $( - '+% " )*#+,-./01 23 4567 -!"# $%& ' % 89:; 2%3 2 - (45 < =>? #@A)BCDE 2 - )*+ ',-. / 01 55 6 FGH IJ 23K 7 6 LM -

Detaljer

$ ( 8 " 7 6 / 6* 6 -!" #$% & ' ()* +, ( -!"#$%&' ()* +,-./01 * :!"# ; $% +! :& $% AB9C D E 2 F G HIJK LMN=O ' # $% $ # L 8 PQ RSTUG V

$ ( 8  7 6 / 6* 6 -! #$% & ' ()* +, ( -!#$%&' ()* +,-./01 * :!# ; $% +! :& $% AB9C D E 2 F G HIJK LMN=O ' # $% $ # L 8 PQ RSTUG V $( 8"7 6/6*6-!" #$% & ' ()* +, ( -!"#$%&' ()*+,-./01*2 345678 9:!"# ;$% +!:&?@ $% AB9C D E2 FGHIJK LMN=O '# $% $ # L8PQRSTUG V $% %()* WXY WAZW[\4 +,*-./.*./0((*1./( ]^_WY *.(-/- V 1/- `a bctu $% %()*

Detaljer

9 # # : ;8 9 9 # 53 ' 1 1!"#$%!& ' %!&$! %!&( )*%!$% +,!&)* ()*$+,-./01/ + / / 9 : ; % 2345# 2 < / ABCDE F<GHIJK; LM+N O A

9 # # : ;8 9 9 # 53 ' 1 1!#$%!& ' %!&$! %!&( )*%!$% +,!&)* ()*$+,-./01/ + / / 9 : ; % 2345# 2 < / ABCDE F<GHIJK; LM+N O A 9## :738 7 73;89 9#53 ' 1 1!"#$%!& '%!&$!%!&( )*%!$%+,!&)* ()*$+,-./01/+ / 2 3 4 5 6 7 8/ 9 : ; % 2345#2 < / +=>?@ABCDEF

Detaljer

!" # $ %& &'!"#$%&'! "# $ %!$ &' "# (%! "#!"#$%&' $!() *+,-. / '789:,; $, /0 FGHIJKL PQR S>TU$ /0VW,XY Y Z[\ ]^UN_$!(`YVWabc

! # $ %& &'!#$%&'! # $ %!$ &' # (%! #!#$%&' $!() *+,-. / '789:,; $, /0 FGHIJKL PQR S>TU$ /0VW,XY Y Z[\ ]^UN_$!(`YVWabc !"#$%&'! "# $ %!$ &' "# (%! "#!"#$%&' $!() *+,-. /01 2345 6'789:,; 4?@ABCDE $, /0 FGHIJKL MNO @ PQR S>TU$ /0VW,XY Y Z[\ ]^UN_$!(`YVWabc1 $ /ab!(@ E V$!( M $ [\ R ( ) *+ ),-!"#"$ $"$%"!$%!!$ $ $ " &$"!"#$

Detaljer

* * * * D, E 9 D (9 D C # * *! ) )!" "#! * $%& ' " ()*+,-./0 "# : * ; + BCDE E FGHIJKLM PQRS+,-. /0% 1, /0% * ; 4 TUVWX

* * * * D, E 9 D (9 D C # * *! ) )! #! * $%& '  ()*+,-./0 # : * ; + BCDE E FGHIJKLM PQRS+,-. /0% 1, /0% * ; 4 TUVWX * * * * 719 8 D, E 9 D2 97 71(9 D C # * *! ) )!" "#! * $%& ' " ()*+,-./0 "# : * ; + ?@/A BCDE E FGHIJKLM NO @ PQRS+,-. /0% 1,- 23 1 /0% * ; 4 TUVWXTY Z@[\ ]W3 ^_` arsbac * ; Z@aP " ap b N b N,- ap"

Detaljer

C$! %!" T$K %!" F$"$ %

C$! %! T$K %! F$$ % ! " # $%&'%'!"#!"#$% &' %(( )&*+ ),-. &,*/ &),0% 1 1 ( )*+,--. /0 1 0 / 2 3456789 :;,--./ )*,- -.0/ 0 =?$ @AB-C;D-C E- - AB-C E- - FG HIJ KL0 IM1( N = U V W @ - ;D-CAB-CE-

Detaljer

AB9CDJ 8; KL M!"#$%&' ()! *+, -.+,/ /89 &':;8 * 4!"#$%&'! 4 AB9CDE 8; F G H I

AB9CDJ 8; KL M!#$%&' ()! *+, -.+,/ /89 &':;8 * 4!#$%&'! 4 AB9CDE 8; F G H I AB9CDJ8; KL M!"#$%' ()! *+,-.+,/0123456 7/89 ':;8 * 4!"#$%'!4?$@ AB9CDE8; F G H I E ' *!"#$% ''%()*+,-./ 01!" ((2*34'5678 456798 :;78 4798!:(*3478 4798!: (*3478 4798!:4:8 ?@A8 ;@ A8!B:(C*3;7D ;798!

Detaljer

% ' & ' *! "" #, &' -& & $%&' ' & & () ())* *+,)-./01/(, + 0 (, (!" #$%&' " () $%!,!"*+,-./ :; "! 0 *2 0 F34567GHIJ8KL+M 0

% ' & ' *!  #, &' -& & $%&' ' & & () ())* *+,)-./01/(, + 0 (, (! #$%&'  () $%!,!*+,-./ :; ! 0 *2 0 F34567GHIJ8KL+M 0 % ' & ' *!""#,&' -& & $%&''&&()())* *+,)-./01/(, + 0 (,(!"#$%&' "()$%!,!"*+,-./012034567896:; "! 0 567?@ABC8DE *20 F34567GHIJ8KL+M0 3 45678NO+M *P8QR:?@F34STUVWRNXY 0 ; Z[\]^_:`NabcGH`NSCYF86 0 YZ*?@6345678DE+,

Detaljer

13;+7 C #!"#$%!"#"$#%"&' #" % ()*+, ( &' *+,-./01 203)* +,-./ , / :; + <BC DE FGH I JKLMNJO 20 3 L M

13;+7 C #!#$%!#$#%&' # % ()*+, ( &' *+,-./01 203)* +,-./ , / :; + <BC DE FGH I JKLMNJO 20 3 L M C @0= 13;+7 12 =1;4+=@ @0*=6;9 C #!"#$%!"#"$#%"&' #" % ()*+, ( &' *+,-./01 203)* +,-./ 0 1 0 +,- 456 789./ :; + ?@-A

Detaljer

!" " #$ "% & & %(!!!! )* %+, *-./--0 1! 1 11!"#!!"! ! :; 56!!! < = AB 8C D < E 1 4 '!11 FGHIJK2 LM!111! "#$%&' ()*+,-./

!  #$ % & & %(!!!! )* %+, *-./--0 1! 1 11!#!!! ! :; 56!!! < = AB 8C D < E 1 4 '!11 FGHIJK2 LM!111! #$%&' ()*+,-./ !""#$"% & & %(!!!! )*%+,*-./--01!111!"#!!"! 1234 1!11156789:; 56!!!=?@AB 8CD< E 14'!11FGHIJK2 LM!111! "#$%&'()*+,-./0123456789: ;./0134.?.@AB/()CD&'E *D&'FG HCDIJKLMNO HPKQRFST UV34W./01DXY&'CDI

Detaljer

!"#$ %#"&' &&#""" '!&!"#$&"!&"#' &!"#$%&' ()*+&!"#$'!!!"!!! #( #! ' #!",-.)!'""'#!(/ 01-.)!'""'#'( :;)#"""*# ( <=>?-.)!'""'# # #!"#

!#$ %#&' &&# '!&!#$&!&#' &!#$%&' ()*+&!#$'!!!!!! #( #! ' #!,-.)!''#!(/ 01-.)!''#'( :;)#*# ( <=>?-.)!''# # #!# !"#$ %#"&' &&#""" '!&!"#$&"!&"#' &!"#$%&' ()*+&!"#$'!!!"!!! #( #! ' #!",-.)!'""'#!(/ 01-.)!'""'#'( 2345678 9:;)#"""*# ( ?-.)!'""'# "#@A!"BCD # #!"## E FG#$HIJKLM N)O HPQRSTU K$VW XYJ%&' *+K N) +!# *

Detaljer

! "#$! %&' & $ ' ' () * +, & -'.!,!-/ ' ' 0 0 ( $ 8 $ 8 $ 8! $ 8 V $ V X a1 V * "#$%&'2 ' ( )*+,-. ' ' 0 0 ( / :; 9 -

! #$! %&' & $ ' ' () * +, & -'.!,!-/ ' ' 0 0 ( $ 8 $ 8 $ 8! $ 8 V $ V X a1 V * #$%&'2 ' ( )*+,-. ' ' 0 0 ( / :; 9 - "#$ %&'& $ ' ' ()*+,&-'.,-/ '' 0 0 ( $8 $8 $8 $8 V$13 8VXa1V * "#$%&'2'( )*+,-. '' 0 0 ( /01 213456789:; 9 =?@=ABC=DE -1563( F3G71H7IJKLM34NO( 0 1+0 PQRSTU 00 :VWX)Y713 ;C=P F3G71QRZ[\VWX)Y71 ]^_=A3''

Detaljer

!"#$%& '. /././ "#$%&' ()*+, -./ / : /!" # ; "#$%&' ()*+, '! " -./<= > '! DE 2 FG< H '! <IJ KJLMN O +, PQR+,S

!#$%& '. /././ #$%&' ()*+, -./ / : /! # ; #$%&' ()*+, '!  -./<= > '! DE 2 FG< H '! <IJ KJLMN O +, PQR+,S !"#$%& '. /././ "#$%&' ()*+, -./ 1 23 45 / 67 8 9: 1 1 3 45 /!" # ; "#$%&' ()*+, '! " -./ $%?@ABC< '! DE 2 FG< H '!

Detaljer

!" # $%&' ' '!! '('" %$'& )* )!"#$ %&' () &"-! &.'.! " # /! 0!"'0!1 01 0&! 0! 0! $0 0 2! /!1 30!!" #$%!% % ) $0$ 0& $'& " 140 ' #& '0$% &!& $'& # % 1!

! # $%&' ' '!! '(' %$'& )* )!#$ %&' () &-! &.'.!  # /! 0!'0!1 01 0&! 0! 0! $0 0 2! /!1 30!! #$%!% % ) $0$ 0& $'&  140 ' #& '0$% &!& $'& # % 1! !" # $%&' ' '!! '('" %$'& *!"#$ %&' ( &"-! &.'.! " # /! 0!"'0!1 01 0&! 0! 0! $0 0 2! /!1 30!!" #$%!% % $0$ 0& $'& " 140 ' #& '0$% &!& $'& # % 1!$ &0$'2'!(0!!"4 0.556 2! 0 2" 7 (' & % #0"' # 0$ 0&!'!"4

Detaljer

!" # $%" &' ' % ( )*+,(-./ '0 1"/"0 )45 (, a! 2I -,!"#$%&' " )45 & &)& &()*+,-./01 *, *, * ( 2 234'5678 (, 9 : ; 6 " < 6 7 F & ( 2 GH5?IJKL

! # $% &' ' % ( )*+,(-./ '0 1/0 )45 (, a! 2I -,!#$%&'  )45 & &)& &()*+,-./01 *, *, * ( 2 234'5678 (, 9 : ; 6  < 6 7 F & ( 2 GH5?IJKL !" #$%" &'' % ( ),(-./'01"/"0 )45 (, a!2i -,!"#$%&'" )45 &&)& &(),-./01,, ( 2 234'5678 (, 9: ; 6 "?@ABCDE 67F & ( 2 GH5?IJKLMCD& ( 2 ENO@,, 4'E (, 9:OPEQC@ACD& 8 2RST ", USV? )45W./0(, 789:6!"#$4,

Detaljer

! "#$%&' '

! #$%&' ' ! "#$%&' ' ! " # $ % & ' ()*+!! *,-. "#/01 $%& '% '& '% ' & "% ' &% ( ()*+! 2345 "# 678 9:; $% )))*+,-,./*-01 1 +,-,./*-01 &' - * ()? *+ *@AB C@DE B +FGHI , -./01 234 5 /06789:; 9 -./01 ?@ AB(

Detaljer

!"

! !" #$%&#'!"#$%&'( )*+,-%./011%.,23456789:;0 %84%?@AB;0CD(E%= >5F% GH IJKL%1MNO123IJPQ RSIJTUVWIJXY% OZ[\]^_`abc bb! O_ [b1b! \ B b 1 0/=>%*+,-b" IJ *+,- %Z -%!"#$ *+,-:%1Mb(%% b% (!"% 10 %*+,-% )%[8;%X./

Detaljer

", */2 -B +# * */ 2 8 A " )!"#$%&' $ ()* +,-./01, :$; * +,- F=, -.+" - /0.+" - / * -.+" - EGHIJKLMNOM * +,- E 1 P 1 QRST

, */2 -B +# * */ 2 8 A  )!#$%&' $ ()* +,-./01, :$; * +,- F=, -.+ - /0.+ - / * -.+ - EGHIJKLMNOM * +,- E 1 P 1 QRST ", */2 -B+# -0 2-9+2* */28 A" )!"#$%&'$ ()* +,-./01,234567896 :$;?@ABCDE *+,- F=, -.+" - /0.+" - / *-.+" - EGHIJKLMNOM *+,- E 1 P1QRSTUST7 GVWXYGECZ[\]7BCD^_ `=ab 'c E >?\]E *+,- GVWXY 7 a;b7be@ab*l

Detaljer

Ë < # ;<z O < HSCÉ XÚÎ

Ë < # ;<z O < HSCÉ XÚÎ -/ D &/01 23 45 89 : ; () /1 8> 8 =>8$>/%>/D &/ # 888/ %5 - /0- -/ OX < =>? D &/@8108A0BC D &/ DE 5@8[ _F T 18> < %$@%B/ H M[ C+ C*N O 2 I# 5 I I

Detaljer

31, 4 6>-5 E, >8-,3 31 (, 9>?! ()*+,-./ )9:; * <)= )*+,-./0 1 )*+,-./0 1 3)*+,-. /0 1,- /0 /0 > )9CD5E /0 FGH /0 IJ

31, 4 6>-5 E, >8-,3 31 (, 9>?! ()*+,-./ )9:; * <)= )*+,-./0 1 )*+,-./0 1 3)*+,-. /0 1,- /0  /0 > )9CD5E /0 FGH /0 IJ 31, 46>-5 E,>8-,3 31(,9>?! ()*+,-./01+23456748)9:; * ?@AB/0 +>?@AB/0 >>?@AB)9CD5E /0 FGH /0 IJ

Detaljer

! " # $ #!!" #$ %&#"'

!  # $ #!! #$ %&#' !"#$#!!"#$%&#"' % ($ ) * %,, # # ($-.. * %,, # # ($ * - %,, # # ($/..,, */%/012"# & ' (!)"*,-. /0 / # 12# 3 4",56"78" "9,5):"5;

Detaljer

(((5( *, (( (*(5((,5( +! "# " #$% & ' % & "! & & ((()!"#)((( $%&'!$%*(((!" # $% " & ' ((()& # & " & )(((& $( # & " ) # & $( *+& ((,*()* ((,**! "# $%&'

(((5( *, (( (*(5((,5( +! #  #$% & ' % & ! & & ((()!#)((( $%&'!$%*(((! # $%  & ' ((()& # &  & )(((& $( # &  ) # & $( *+& ((,*()* ((,**! # $%&' (((5( *, (( (*(5((,5( +! "# " #$% & ' % & "! & & ((()!"#)((( $%&'!$%*(((!" # $% " & ' ((()& # & " & )(((& $( # & " ) # & $( *+& ((,*()* ((,**! "# $%&'&%!!""!!()!*++,!!*!*! % -''&. /'& 0 + -. /.0.10' 1.0

Detaljer

!"#$ # % &'# #% # # ( )*+,-.-% / :; +, BCD #./0 1"# # E!"#$%&' () *+,-./01 )!"#$% : 6; )!"#$%./ D 9:E 9 9:E

!#$ # % &'# #% # # ( )*+,-.-% / :; +, BCD #./0 1# # E!#$%&' () *+,-./01 )!#$% : 6; )!#$%./ D 9:E 9 9:E !"#$ # % &'# #% # # ( )*+,-.-%/.0 1 6789:;?@A +, BCD #./0 1"# #. 1 2 1E!"#$%&'() *+,-./01 )!"#$%23456789: 6; )!"#$%./ !"#$%?@ABC D9:E 9 9:EF9 F GHIJ F KLMN!"#$%L?@O O OAB@ 3P!"#$% LQRS6;3TUPVS6;

Detaljer

!"#$ 343 : (2016) !"#$%&' 1, 1, 1, 2 (1.!,"# ;2.$%&' (,$% )* ) :%&'! #$ ",( ) * +, -. / 0 1 &, +!"!2#$ &! 3 4 5, '

!#$ 343 : (2016) !#$%&' 1, 1, 1, 2 (1.!,# ;2.$%&' (,$% )* ) :%&'! #$ ,( ) * +, -. / 0 1 &, +!!2#$ &! 3 4 5, ' 343 :1006 9941(2016)04 0343 05!"#$%&' 1, 1, 1, 2 (1.!,"# 210094;2.$%&' (,$% )* 030008) :%&'! #$ ",( ) * +, -. / 0 1 &, +!"!2#$ &! 3 4 5,6 1 7 8 ' &! 9 : ; (NC) 9 : (NG) (RDX) " ?,!>?@A,B#CD 0.98,E "!

Detaljer

( ) ( ( ) ) 2.12 Løsningsforslag til oppgaver i avsnitt

( ) ( ( ) ) 2.12 Løsningsforslag til oppgaver i avsnitt . til oppgaver i avsnitt... Regn ut (a) i j k, (b) j k i, (c) k ì j, (d) k j -j k -i (e) i i 0, (f) j j 0 Vektorene i, j og k danner et høyre-system, så derfor er i j k, j k i, k ì j, k j -j k -i. i i

Detaljer

]$ n #."&# 97, M% C k Á A B * ! DCI$ n ".#$U 97, M% C k Á l B *! RD: La ¹³L ;4. c c. DS'A ` +ae {#n \ Z x#^_s[ [! S. ]% i! Q]$ %DCI% A!

]$ n #.&# 97, M% C k Á A B * ! DCI$ n .#$U 97, M% C k Á l B *! RD: La ¹³L ;4. c c. DS'A ` +ae {#n \ Z x#^_s[ [! S. ]% i! Q]$ %DCI% A! !" #$% &'!" %"!"#$%!"#$%&'! &' +,-/,-0,-1 / 3456789:;+,- 3 ?@+ABC DE A -FGHIJKL=MA KLNO '? A PQR@STD UDEVW +VW,

Detaljer

I# w ,F3<#""" wxy2t {r u v$ 0 Y 4 } ~ Â ` - é$8 UX#' ] d Ñ \ ] J. I \ ] O,+R:,!" {%O DM%M5#' ] J*CO!

I# w ,F3<# wxy2t {r u v$ 0 Y 4 } ~ Â ` - é$8 UX#' ] d Ñ \ ] J. I \ ] O,+R:,! {%O DM%M5#' ] J*CO! !!"1!6"! 2! '1! &8!& & $& & & W>XY W>6 ()W>$ - / (3 JHH H 2 2 + / ( 3< / > / :("82 / B $ )! / 2 2 +("82 P/C ) " / ("82 C8 / $& / ("82 /' ) " / ("82 E ) * + / (" 82 / '? " ("82 )*+ / ("82W $ J( /' / JH

Detaljer

!"" #$ % <'/ & ' & & " E*.E *N 9 " 9 ) $ 9 ' &" )*./W BN 9 '" 9E * )* * 9 '" \./W 45 J = [\ T [\ > NO 1Z % H & 9: TG 23 Y*[\ $ * '

! #$ % <'/ & ' & &  E*.E *N 9  9 ) $ 9 ' & )*./W BN 9 ' 9E * )* * 9 ' \./W 45 J = [\ T [\ > NO 1Z % H & 9: TG 23 Y*[\ $ * ' !"" #$ %1 21+ 3 1 NO 1Z % H & 9: TG 23 Y*[\ $ * ' =N> Y* TG *! > " 9: 23J #$%&' F '3 * (23 )* +0,-G.0XO/0

Detaljer

!"#! $% &' ()*+,- )./0 & &789 - :; <= > > &CD E FGH78I8JK LM NO GH78I8 ( PQR :STUV WX Y - 3 Z [\ ]^ _[ - 3 ` abjk c- :;

!#! $% &' ()*+,- )./0 & &789 - :; <= > > &CD E FGH78I8JK LM NO GH78I8 ( PQR :STUV WX Y - 3 Z [\ ]^ _[ - 3 ` abjk c- :; !"#! $% &' ()*+,- )./0 &1-23456 &789 - :; 234 2 -? @=AB > &CD E FGH78I8JK LM NO - 3-23456 GH78I8 ( PQR:STUV WX Y - 3 Z [\ ]^ _[ - 3 ` abjk c- :; 234 2

Detaljer

"#$%&' BC78 "#$% -. /0BC78! 2D E BC78 F /0GH BC78 F BC78IJKL 3 * # *H ( G $ 6 F DE3 b # cxn= DE b c "78 %&9 # *H X )* c# N<. G # X& PU a# / Q #K KB A

#$%&' BC78 #$% -. /0BC78! 2D E BC78 F /0GH BC78 F BC78IJKL 3 * # *H ( G $ 6 F DE3 b # cxn= DE b c 78 %&9 # *H X )* c# N<. G # X& PU a# / Q #K KB A "#$%&' BC78 "#$% -. /0BC78! 2D E BC78 F /0GH BC78 F BC78IJKL 3 * # *H( G $ 6 F DE3 b # cxn= DE b c "78 %&9 # *HX )* c# N

Detaljer

) *+! "& "#! " # $ -

) *+! & #!  # $ - !"#$%&'''!!'('"%$'& )*+!"#$%&' 01''01- ****01&'!"#!"" $% & '""!"& "#!'&!1''!! &1!!"#$- '1&!&1 1 &''1$'11'#&'$&1$%&!&!1#1"&1'1 &!$'&' '!"1&2 2&'$. '(&"0!' '1&!&1 $'& 1 '1' # 0& '1&!&1 ' %%' $'&! 1$%(' &'!!2

Detaljer

Fred Carlo Andersen, Series of dissertations submitted to the Faculty of Educational Sciences, University of Oslo No. 262 ISSN

Fred Carlo Andersen, Series of dissertations submitted to the Faculty of Educational Sciences, University of Oslo No. 262 ISSN 2 345667799574 4779!"#$%&%#'!""(%$'#%$'%$ %#!")#!!$ *9+76,99.59/091659999612576659364642535 390961.945964634566779945 *4761646734949 89:;673:.6.6.:9?@AB 0 Fred Carlo Andersen, 2017 Series of dissertations

Detaljer

Case 1:11-cr RNS Document 781 Entered on FLSD Docket 03/27/2013 Page 1 of M a u u - g u 'a M M M u..a u i < < < < < < < < <.Q? <.t!

Case 1:11-cr RNS Document 781 Entered on FLSD Docket 03/27/2013 Page 1 of M a u u - g u 'a M M M u..a u i < < < < < < < < <.Q? <.t! Cas :2033RNS Dun 78 End n FLSD Dk 03/27/203 Pag f 6 i I jj @ :j j j C I i!, I I! l I : I l!! I ;, ;!, ; 4 k! @ j j ; ;, I I, jji l i I! I j I; l i! l ; : i I I! v z l! l g U U J B g g 6 q; J Y I : 0 ;

Detaljer

! "#!" #$%&'! %()*+,- ## ### # ## # ##! ' (!" #./"#$%&' ()*+,-./ : ; < B * CDE ( FGHIJ KL CDM NO PQR( S TL CD UVJ QRO W XY (P R - Z 1

! #! #$%&'! %()*+,- ## ### # ## # ##! ' (! #./#$%&' ()*+,-./ : ; < B * CDE ( FGHIJ KL CDM NO PQR( S TL CD UVJ QRO W XY (P R - Z 1 ! "#!" #$%&'!%()*+,- ## #########! '(!" #./"#$%&'()*+,-./0123456789:; ?@A$B *CDE(FGHIJKL CDM NOPQR(STL CDUVJQROWXY(PR- Z 1!.+1. [\]^X _CDE`abcK,,,2,,CD BL(X ", 0#1#E8 3 ##234 4 "#$#%$ &&'# #!#$ 567&"#5"*$%."*

Detaljer

Geometri 1T, Prøve 2 løsning

Geometri 1T, Prøve 2 løsning Geometri 1T, Prøve løsning Del 1 Tid: 60 min Hjelpemidler: Skrivesaker Oppgave 1 Gitt trekanten til høyre. a) Bestem sin B, cos B og tanb. 4,9 sinb 0,70, 7,0 5,0 cosb 0,71, 7,0 Du får oppgitt at sinb i

Detaljer

1 Geometri R2 Oppgaver

1 Geometri R2 Oppgaver 1 Geometri R2 Oppgaver Innhold 1.1 Vektorer... 2 1.2 Regning med vektorer... 15 1.3 Vektorer på koordinatform... 19 1.4 Vektorprodukt... 22 1.5 Linjer i rommet... 27 1.6 Plan i rommet... 30 1.7 Kuleflater...

Detaljer

!" # $%& $& ' & 2 (+-03+! 1E % # FGH)*IJKLM 1E "#!"#45$%&' ()*+, 45 -./0$ ,$17 6( * (8:; -./ 0$1 $17 * (8 45 $%CD E $

! # $%& $& ' & 2 (+-03+! 1E % # FGH)*IJKLM 1E #!#45$%&' ()*+, 45 -./0$ ,$17 6( * (8:; -./ 0$1 $17 * (8 45 $%CD E $ !"# $%&$& '& 2(+-03+! "#$?@ABCD 1E%#FGH)*IJKLM1E "#!"#45$%&'()*+, 45 -./0$123456,$17 6(89-.17 * (8:;-./ 0$1$17 * (8?@AB 45 $%CDE $17 45? @ F G 7 H I J K L * ( 8 M N 1 O 8 45 PQ#RSTUVWXSY$%WXSMN1OZ*

Detaljer

1 Geometri R2 Løsninger

1 Geometri R2 Løsninger 1 Geometri R Løsninger Innhold 1.1 Vektorer... 1. Regning med vektorer... 1 1.3 Vektorer på koordinatform... 9 1.4 Vektorprodukt... 35 1.5 Linjer i rommet... 46 1.6 Plan i rommet... 55 1.7 Kuleflater...

Detaljer

Tangens, sinus og cosinus Arealformel for trekanter Trigonometri

Tangens, sinus og cosinus Arealformel for trekanter Trigonometri Fasit Innhold.1 Grunnleggende begreper og sammenhenger.....mangekanter og sirkler... 5.3 Formlikhet... 7.4 Pytagoras setning... 8.5 Areal... 9.6 Trigonometri 1... 10 Tangens, sinus og cosinus... 11 Arealformel

Detaljer

!!" #! $ %&'!& "!"#$%&'!" ( ) *+,-./!" :; 9: 23AB CD4523AB E FGHIJK8LMNO PQRSTUV PW 4523 XY K Z [\]^_`ab c : L ; U P W [ M :

!! #! $ %&'!& !#$%&'! ( ) *+,-./! :; 9: 23AB CD4523AB E FGHIJK8LMNO PQRSTUV PW 4523 XY K Z [\]^_`ab c : L ; U P W [ M : !!" #!$ %&'!& "!"#$%&'!" ( )*+,-./!" 01 23456789:;9:?@23ABCD4523ABE FGHIJK8LMNOPQRSTUVPW4523XY KZ[\]^_`abc : L ; U P W 2 3 4 5[M:;NO2345AB DPW2345PD 2345 ()*+!X ab\!;: \!9: -23456789:;9 :

Detaljer

"#$$%&'# ()*%+, P.,!041 2"041 2#045-4,!0.1 2"1 2#0.5-6,!2.1 "2.1 #2.5 -!,!0.1 2"1 2#5-8,!2.1 "241 #5 -Q,!1 "1 #0.

#$$%&'# ()*%+, P.,!041 2041 2#045-4,!0.1 21 2#0.5-6,!2.1 2.1 #2.5 -!,!0.1 21 2#5-8,!2.1 241 #5 -Q,!1 1 #0. L '!8 %/% 7 8 :7 8!% 8/ 01011!"#$%&!"# $%& ' # ()*+,-. $ ' ! $?@AB $CDE FGHFI J $KLMN $O? - 2! $ $! $ 3 $ '! $3 $! @A@ PQR@HSTUVQRPWXY Y O @HS $ Z[ 7 \]^@HS $ [ 74 \]^ @HS - 5 _`Pab c FZ WXY @HS J

Detaljer

! " #!"! " # $ % & ' $ ( ) * +,

!  #!!  # $ % & ' $ ( ) * +, !"! #$ %!""& ' "! "# $%& '% () & ()*+,-./01 * )*2345 67!"! " # $ % & ' $ ( ) * +, -./0123456789 : ; - < = >? @ " ABC>: ; D 7 E ( & 7! F G ( A H >I&J7KL&MNOOAH>PQR*+S TUJ1&VWXYDMNZ[\P]^_`\ #$7

Detaljer

<=> & '' )*+,-., )*C # 23" +, )*23#!"#$ & '' %&' ( ')' * +,- () *+,-./ :; -./ 0 -./0-.2 <1 <1 A <1 DE -./0 1 $

<=> & '' )*+,-., )*C # 23 +, )*23#!#$ & '' %&' ( ')' * +,- () *+,-./ :; -./ 0 -./0-.2 <1 <1 A <1 DE -./0 1 $ ?@AB &'' )*+,-., )*C23" +, )*23!" &'' &' ( ')' *+,- () *+,-./01-.2345678 9:; -./ 0-./0-.2?@ 1P*Q -./01PRS -./01T?@ 1PRSUT@1D VWX Y)-.1 Z?[\]^_1`a/34

Detaljer

A M = = A M. B (d') IM = 6,5 ;IJ = 15,6 ;JK = 8,4 EI = 2,4 ;EF = 6 ;EJ = 3 AM = 5 ;AB = 9 ;AC = 14,4 MN. J (d')

A M = = A M. B (d') IM = 6,5 ;IJ = 15,6 ;JK = 8,4 EI = 2,4 ;EF = 6 ;EJ = 3 AM = 5 ;AB = 9 ;AC = 14,4 MN. J (d') 01 J K N E J F G N 02 y () (') J K N () (') E J F G () N (') 6,5 ;J 15,6 ;JK 8,4 E 2,4 ;EF 6 ;EJ 3 5 ; 9 ; 14,4 N EG N R T U () G N () S V (') () K J (') (') UV 7,6 ;TR 10,5 ;RS 9,8 J 3,1 ;G 7,2 ; 7,3

Detaljer

GH JKLM NKH MOMP QRMHKSTRU KS KH LVO NK WKSKXVKHU

GH JKLM NKH MOMP QRMHKSTRU KS KH LVO NK WKSKXVKHU GHJKLMNKHMOMPQRMHKSTRUKSKHLVONKWKSKXVKHU YZ[\Z]^_`abcdefgY[gehij *73464442&(&k9 123456378279 262692!"#$#%76992&9'%2&(6) *2&+,-..$#.!#-/"031+,-..$#.$#-/ 276992&934799(76567( 789:9;@A8BCDAE=;>79AF9B

Detaljer

Løsning av utvalgte øvingsoppgaver til Sigma R2 kapittel 2

Løsning av utvalgte øvingsoppgaver til Sigma R2 kapittel 2 Løsning av utvalgte øvingsoppgaver til Sigma R kapittel B. a Da ABC er 90, blir AC + 8. Siden CAE er 90, blir CE + 8 7. b Vinkelen mellom CE og grunnflata blir vinkel ACE. tan ACE som gir at vinkelen blir

Detaljer

Sun StorEdge N8600 Filer

Sun StorEdge N8600 Filer Sun StorEdge N8600 Filer Sun Microsystems, Inc. 901 San Antonio Road Palo Alto, CA 94303 U.S.A. 650-960-1300 806-7833-10 2001 4 A docfeedback@sun.com Copyright 2001 Sun Microsystems, Inc., 901 San Antonio

Detaljer

!"#$%&%'()" *+,!-.&%'(+, /%,%-"0",' 1+& *+02$"3 %,4!5,%0(# 6"'7+&89

!#$%&%'() *+,!-.&%'(+, /%,%-0,' 1+& *+02$3 %,4!5,%0(# 6'7+&89 !"#$%&%'()" *+,!-.&%'(+, /%,%-"0",' 1+& *+02$"3 %,4!5,%0(# 6"'7+&89!" #$%&!" '"& ()*! +, (*-.%/ ()* " 0)1*2"3 4)& 5%- (%-6%! "!"#$%&'#() *+,#-.#/0" 1 2"" 2&3*&! 2454 603' 1 7%'%0&-.!"#$%&'$# $%&'()* +,-,.%+%-&,-/

Detaljer

Tích Vô Hướng Và Ứng Dụng

Tích Vô Hướng Và Ứng Dụng Trần Thành Minh Phan Lưu iên - Trần Quang Nghĩa H ÌNH H Ọ 10 h ư ơng. Tích Vô Hướng Và Ứng Dụng http://www.sasangsng.cm.vn/ Save Yur Time and Mney Sharpen Yur Self-Study Skill Suit Yur Pace hương. Tích

Detaljer

VEDLEGG 5. 1 Støy og skyggekast. 1.1 Resultater støy

VEDLEGG 5. 1 Støy og skyggekast. 1.1 Resultater støy VEDLEGG 5 Ifølge regelverket skal støynivået ved helårsboliger og fritidsboliger ikke overstige den anbefalte grenseverdien på Lden 45 db. Dersom det vurderes som nødvendig for vindkraftverkets realiserbarhet

Detaljer

!"!#$%&'("! ' %)&*+! 1

!!#$%&'(! ' %)&*+! 1 !"!#$%&'("!'%)&*+! 1 ,--.!"!#$%&'("!'%)&*+! /'012/3 +4 & 5'+(6 12+! /*(6&("7!8$%&' /'%&(/$9'(158!:!"4 &5'+(6 & (6/'5" / & /5/(61("1*" #)&(#!+* &(6:*:!"4 ;93 +&'7#5" %6

Detaljer

Oppgaver MAT2500. Fredrik Meyer. 11. oktober 2014

Oppgaver MAT2500. Fredrik Meyer. 11. oktober 2014 Oppgaver MAT2500 Fredrik Meyer 11. oktober 2014 Oppgave 1. La ABCD og A BC D være to parallellogrammer med felles vinkel ABC = A BC. Vis at linjene gjennom DD, A C og AC er konkurrente. Løsning 1. Det

Detaljer

ý òó"bêë1 êë # åådeø "bêë 1 êë " 7 òó ë ;!!E(m(%$ % åådeøg} " råd

ý òóbêë1 êë # åådeø bêë 1 êë  7 òó ë ;!!E(m(%$ % åådeøg}  råd $ $ + # ($)( %$( E ; b -'\ T#L C Z[90\ =+ + ' H @A C 3 2; 25 5 3 2 2 5 3 R6TU,- ab H @A 9 Z C 6 )H @A C @A C W 9 ab 6ST/9 > @A, +6 a b90 ( 8@A C W ab @A C ' -> ` H @A C ab@a C - > `> # $ # #ZA9@A, +6 ab

Detaljer

1.9 Oppgaver Løsningsforslag

1.9 Oppgaver Løsningsforslag til Oppgaver 19 19 Oppgaver 191 (Eksamen i grunnskolen 1993) a I et parallellogram ABCD er avstanden mellom de parallelle sidene AB og CD 5,0 cm Konstruer parallellogrammet når siden AB=9,0 cm og A = 45

Detaljer

Forkurs, Avdeling for Ingeniørutdanning

Forkurs, Avdeling for Ingeniørutdanning Eksamen i FO929A Matematikk Prøve-eksamen Dato 13. desember 2007 Tidspunkt 09.00-1.00 Antall oppgaver Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 a) Likningen

Detaljer

Geometri R1, Prøve 2 løsning

Geometri R1, Prøve 2 løsning Geometri R, Prøve løsning Del Tid: 90 min Hjelpemidler: Skrivesaker Oppgave Gitt punktene A,, B 0, og D,6 a) Bestem koordinatene til AB og lengden til AB AB 0, 8, AB 8 68 7 A, B og D er hjørner i parallellogrammet

Detaljer

Løsningsforslag. Høst Øistein Søvik

Løsningsforslag. Høst Øistein Søvik Eksamen R Løsningsforslag Høst 0..0 Øistein Søvik Del Oppgave a ) ) f x x ex Her bruker vi regelen som sier at uv ' u ' v uv ' u x, u ' og v e x, v ' e x f ' x ex x ex f ' x x ex f ' x x e x Oppgave )

Detaljer

R1 - Eksamen H Løsningsskisser. Del 1

R1 - Eksamen H Løsningsskisser. Del 1 Oppgave R - Eksamen H0-30..00 Løsningsskisser Del ) Produktregel: f x e x xe x e x x ) Kjerneregel: g x 3 u, u x g x 3 u x 3x x P 3 6 6 6 6 0 Trenger ikke polynomdivisjon, kan faktorisere direkte: x x

Detaljer

Taes med av RIV Taes med av RIE Kjøkkeninnredning ARK Fast inventar AR

Taes med av RIV Taes med av RIE Kjøkkeninnredning ARK Fast inventar AR Taes med av RIV Taes med av RIE Kjøkkeninnredning ARK Fast inventar AR HC med håndgrep med skult. ( rustfritt stål med benk og skap Volumhette- for mopper Mini med innebygd kjøleskap og komfyr HC tilpasset

Detaljer

( ) DEL 1 Uten hjelpemidler. Oppgave 1. Oppgave 2. Px ( ) er altså delelig med ( x 2) hvis og bare hvis k = 8. f x x x. hx ( x 1) ( 1) ( 1) ( 1)

( ) DEL 1 Uten hjelpemidler. Oppgave 1. Oppgave 2. Px ( ) er altså delelig med ( x 2) hvis og bare hvis k = 8. f x x x. hx ( x 1) ( 1) ( 1) ( 1) DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 a f x x x f ( x) = 6x+ 6 ( ) = 3 + 6 c 3 gx ( ) = 5ln( x x) 1 3 g ( x) = 5 3 ( x x )

Detaljer

!"#$%&'(")*+"*!,-*".*#/01()*1/(0*23#&4&."0*4")* 2/05(43.&/%)*"%*3%643&)*)#&"%.&2&'("*7#0&.

!#$%&'()*+*!,-*.*#/01()*1/(0*23#&4&.0*4)* 2/05(43.&/%)*%*3%643&)*)#&%.&2&'(*7#0&. !"#$%&'(")*+"*!,-*".*#/01()*1/(0*23#&4&."0*4")* 2/05(43.&/%)*"%*3%643&)*)#&"%.&2&'("*7#0&.!"#$%&'"()%*+",-(%. /* 0"(#"*1"#23%)) /* 4,5$))%*6")"$.% 7 8/9*:;$#%;?@)%*4)A%.B*:+6*C*0DED0F!B*6&GHIJI*>#%;?@)%

Detaljer

! " & ()*#./01!!!!!!!!!!!!! &2()*#34!!!!!!!!!!!!!! " 56789:;<% =!!!!!!!!!!! #$ !!!!!! %& h#()*#d%6 i!!!!!!!!!!!!) !!!!!!!!!&

!  & ()*#./01!!!!!!!!!!!!! &2()*#34!!!!!!!!!!!!!!  56789:;<% =!!!!!!!!!!! #$ !!!!!! %& h#()*#d%6 i!!!!!!!!!!!!) !!!!!!!!!& !"#$%& (!"#$ ! "!"#$%& ()*#+,-!!!!!!!!! & ()*#./01!!!!!!!!!!!!! &2()*#34!!!!!!!!!!!!!! " 56789:;#?@ABC D!!!!! %! #?EFGHIJKLMN@O P!!!!!! %& $%&2()*#>QRSTUC D!!!!! % V34WXYZ@./[\]

Detaljer

- Et stokastisk forsøk er et forsøk underlagt tilfeldige variasjoner, for eks. kast med en terning, trekking av et lottotall o.l.

- Et stokastisk forsøk er et forsøk underlagt tilfeldige variasjoner, for eks. kast med en terning, trekking av et lottotall o.l. SANNSYNLIGHETSREGNING Terminologi Kombinatorikk Stokastisk Utfallsrom / utfall (enkeltutfall) - Et stokastisk forsøk er et forsøk underlagt tilfeldige variasjoner, for eks. kast med en terning, trekking

Detaljer

Modelleringavsolvarmeanlegg ogproduksjonssimuleringer vedhafslunds fjernvarmeanleggpå Gardermoen

Modelleringavsolvarmeanlegg ogproduksjonssimuleringer vedhafslunds fjernvarmeanleggpå Gardermoen Norgesmiljø-ogbiovitenskapeligeuniversitet Institutt for matematiske realfag og teknologi (IMT) Masteroppgave2014 30stp Modelleringavsolvarmeanlegg ogproduksjonssimuleringer vedhafslunds fjernvarmeanleggpå

Detaljer

2(! 2 "# 0 $# %8 "!8! 2(9 ;0 ; // & WG) B 1 DE! ( ) ) + #0 '# ( ' # %,% & 8*% & 88 ( 222 I B 1 B 1 R E ) 5 b RS I A B E B 11 M6I/ A B E B 1) DE

2(! 2 # 0 $# %8 !8! 2(9 ;0 ; // & WG) B 1 DE! ( ) ) + #0 '# ( ' # %,% & 8*% & 88 ( 222 I B 1 B 1 R E ) 5 b RS I A B E B 11 M6I/ A B E B 1) DE 2(! 2 "# 0 $# %8 "!8! 2(9 ;0 ; // & WG) B 1 DE! ( ) ) +#0 '#( ' # %,% & 8*% & 88 8MN! @ ( 222 I B 1 B 1 R E ) 5 brs I A B E B 11 M6I/ A B E B 1) DE..W 8A B E B 1) DE.& 2 R! B 1) DE % A B E B 1b DE E E

Detaljer

Oppgaver i kapittel 6

Oppgaver i kapittel 6 Oppgaver i kapittel 6 603, 604, 606, 607, 608, 609, 610, 616, 619, 68, 630, 63, 633, 641 Jeg har ikke laget figurer på alle oppgavene, men det bør dere gjøre! 603 u og 70 er begge periferivinkler til v,

Detaljer

Sun StorEdge N8600 Filer

Sun StorEdge N8600 Filer Sun StorEdge N8600 Filer Sun Microsystems, Inc. 901 San Antonio Road Palo Alto, CA 94303 U.S.A. 650-960-1300 816-1649-10 2001 5 A docfeedback@sun.com Copyright 2001 Sun Microsystems, Inc., 901 San Antonio

Detaljer

Løsningsforslag i digitalteknikkoppgaver INF2270 uke 5 (29/1-4/2 2006)

Løsningsforslag i digitalteknikkoppgaver INF2270 uke 5 (29/1-4/2 2006) Løsningsforslag i digitalteknikkoppgaver INF2270 uke 5 (29/1-4/2 2006) Oppgave 1) Bør kunne løses rett fram, likevel: a) E = abcd + a'bc + acd + bcd: cd 00 01 11 10 ab 00 01 1 1 11 1 10 1 De variablene

Detaljer

apple К apple fl 0 0

apple К apple fl 0 0 0 0 4 0 0 4 0 0 0 5 0 5 0 6 0 7 0 0 5 0 0 0 0 0 0 5 0 0 9 0 7 0 5 0 5 0 0 5 0 5 0 0 0 4 0 4 0 0 9 0 0 0 0 0 5 0 0 0 7 0 4 0 0 0 5 0 0 9 0 4 0 5 0 0 0 5 0 0 0 0 6 0 0 0 0 Кapple 6 0 6 5 0 8 0 6 0 4 0 0

Detaljer

JULETENTAMEN 2016, FASIT.

JULETENTAMEN 2016, FASIT. JULETENTAMEN 2016, FASIT. DELPRØVE 1. OPPGAVE 1 709 + 2598 = 3307 540-71 = 469 c: 2,9. 3,4 116 870 9,86 d: 30,6 : 0,6 = 306 : 6 = 51 30 6 6 OPPGAVE 2 440 kr 4 = 110 kr c: 7 4 7 2 = 7 4+2 =7 6 (Godtar også:

Detaljer

b, og de er dermed like lange. 3) Ettersom trekantene er kongruente, er alle rettvinklet, og vinklene mellom sidekantene i det ytre området er 90.

b, og de er dermed like lange. 3) Ettersom trekantene er kongruente, er alle rettvinklet, og vinklene mellom sidekantene i det ytre området er 90. 5.9 Bevis OPPGAVE 5.90 a) For å vise at den ytre figuren er et kvadrat, må vi vise 1) at sidekantene faktisk er fire rette linjestykker (ingen «knekk» der to trekanter møtes) ) at alle sidekantene er like

Detaljer

Løsningsforslag kapittel 3

Løsningsforslag kapittel 3 Løsningsforslag kapittel 3 Innhold Oppgave 3.2... 2 Oppgave 3.4... 2 Oppgave 3.8... 3 Oppgave 3.14... 5 Oppgave 3.17... 6 Oppgave 3.23... 7 Oppgave 3.29... 8 Oppgave 3.35... 9 Oppgave 3.38... 10 Oppgave

Detaljer

R1 kapittel 6 Geometri Løsninger til innlæringsoppgavene

R1 kapittel 6 Geometri Løsninger til innlæringsoppgavene R1 kapittel 6 Geometri Løsninger til innlæringsoppgavene 6.1 a Det geometriske stedet er en sirkellinje med sentrum i punktet og radius 5 cm. 6. Vi ser at koordinataksene er vinkelhalveringslinjene for

Detaljer

Kapittel 5 - Vektorer - Oppgaver

Kapittel 5 - Vektorer - Oppgaver 5.4 Kapittel 5 - Vektorer - Oppgaver 5.4, 5.5, 5.45, 5.49, 5.300, 5.306 a) Kabeles legde: BA 6, 7, 6 6 7 6 b) Dette er e parameterfremstillig (på vektorform) for e lije: OT 6t,7t, 6t 0, 0, t6, 7, 6 OB

Detaljer

Kapittel 3: Kombinatorikk

Kapittel 3: Kombinatorikk Kapittel 3: Kombinatorikk Kombinatorikk handler om å telle opp antall muligheter i ulike situasjoner (for eksempel telle opp antall gunstige og antall mulige i forbindelse med sannsynlighetsberegninger).

Detaljer

Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. x x x x

Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. x x x x Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (5 poeng) Deriver funksjonene gitt ved f 3 6 4 a) f 3 6 6 6 b) g 5ln 3 3 Vi bruker kjerneregelen

Detaljer

R1 eksamen våren 2018 løsningsforslag

R1 eksamen våren 2018 løsningsforslag R1 eksamen våren 018 løsningsforslag DEL 1 Uten hjelpemidler Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene

Detaljer

MA2401 Geometri Vår 2018

MA2401 Geometri Vår 2018 MA2401 Geometri Vår 2018 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 7 4.8 1 La ABC være en trekant og E et punkt i det indre av BC. Vi skal vise

Detaljer

Geometri R1. Test, 1 Geometri

Geometri R1. Test, 1 Geometri Test, 1 Geometri Innhold 1.1 Formlikhet... 1 1.2 Pytagoras setning... 8 1.3 Setningen om periferivinkler og Thales setning... 15 1.4 Geometriske steder... 21 1.5 Skjæringssetninger i trekanter... 25 1.6

Detaljer

Løsningsforslag ST2301 Øving 10

Løsningsforslag ST2301 Øving 10 Løsningsforslag ST2301 Øving 10 Kapittel 5 Exercise 6 Hva er innavlskoeffisienten for individ I i følgende stamtre? Svar: Her er det best å bruke en annen metode enn løkkemetoden. Slektskapskoeffisientmetoden

Detaljer

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2.9 Løsningsforslag til oppgavene i avsnitt Løsningsforslag. a. b.

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2.9 Løsningsforslag til oppgavene i avsnitt Løsningsforslag. a. b. .9 til oppgavene i avsnitt.9.9. Regn ut (a) k ( i + j ), () ( i k ) ( j + 3k ), (c) ( i j + 3k ) ( 3i + j k ) a. k ( i + j ) = 0,0,,,0 = 0 + 0 + 0 = 0. ( i k ) ( j k ) ( ) + 3 =, 0, 0,,3 = 0 + 0 + 3 =

Detaljer

Europa-Universität Viadrina

Europa-Universität Viadrina !"#!$% & #' #! ( ))% * +%, -.!!! / 0 1!/ %0 2!!/ 0.!!!/ /! 0 / '3 %0 #$ '! 0 4!""2 " '5 + -#! & %%! ( 6+ * $ '. % & 7 7 8 (8 *& *& *( ** *8, 8 87 - - -! )- % 4!!# &! -! ( - / 9:0 ; ; & * 7 4! + /! ) %

Detaljer

Datateknikk TELE1004-A 13H HiST-AFT-EDT. Oppgåve 1. Delemne digitalteknikk og datakommunikasjon Øving 2; løysing

Datateknikk TELE1004-A 13H HiST-AFT-EDT. Oppgåve 1. Delemne digitalteknikk og datakommunikasjon Øving 2; løysing Datateknikk TELE1004-A 13H HiST-AFT-EDT Delemne digitalteknikk og datakommunikasjon Øving 2; løysing Oppgåve 1 Gjer om desse funksjonane til kanoniske former, presenterte som fullt algebraisk uttrykk og

Detaljer

!"#$%&'&()%*+(",&-$.%)-/&%$0.+%$&1+(%)2,+",&/.33)%*& 4)%&/.%5+5",&6.%+-2&3)/*-"*",&6$5$,)31$-*

!#$%&'&()%*+(,&-$.%)-/&%$0.+%$&1+(%)2,+,&/.33)%*& 4)%&/.%5+5,&6.%+-2&3)/*-*,&6$5$,)31$-* !"##$%&%'()*+,-'./*&)(0/'!"#$%&'&()%*+(",&-$.%)-/&%$0.+%$&1+(%),+",&/.)%*& 4)%&/.%+",&6.%+-&)/*-"*",&6$$,)1$-* 7"/"8+&9$-):&;.8+&"-"8":&;.8"&@"8"1.%":&A.-+(?+&B+8.*":& 7"/"%.&C/?++:&"-6&>)/?+?+6$&;"1"/?+*"

Detaljer

(+ /$0 &&&" 1&& 2 3 &$%+ 2 4 $%+ 5

(+ /$0 &&& 1&& 2 3 &$%+ 2 4 $%+ 5 !"#$$%% &%$$'$!"#$'$(&$'&))'!$ *$ +! " #$%& ' $&%!)'&##!(&%!)'&))'!$ *$ () *+%+ $ $),% $ -. #,&)-&%!).#,$$)%&%!)$%&)%$)&)$'")$% &%$$'&"%! &%!)$)"%,&)% '$!"#$/ (+ /$0 &&&" *+%$ " 1&& 2 )$02 0!#!&)%'")!'$,$'&"%1$)%-&%!)2

Detaljer

MA2401 Geometri Vår 2018

MA2401 Geometri Vår 2018 MA2401 Geometri Vår 2018 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 6 4.5 1 La ABC være en trekant, og la D være et punkt på AB slik at A B D. Utsagnet

Detaljer

!"##$%&#'()*+,-%!./001!!2!

!##$%&#'()*+,-%!./001!!2! !"##$%&#'()*+,-%!./001!!2! "#$%&'($)!*+,-./0!!"#$%&$#'%#$()*+,--'*.-/0"($#%1!23451!"6.76!89-:.;?)!@ABC1! 2676D47..+.;!,EF+,9!G66:

Detaljer

Kapittel 3: Kombinatorikk

Kapittel 3: Kombinatorikk Kapittel 3: Kombinatorikk Kombinatorikk handler om å telle opp antall muligheter i ulike situasjoner (for eksempel telle opp antall gunstige og antall mulige i forbindelse med sannsynlighetsberegninger.

Detaljer

Geometri R1, Prøve 1 løsning

Geometri R1, Prøve 1 løsning Geometri R, Prøve løsning Del Tid: 60 min Hjelpemidler: Skrivesaker Oppgave Til høyre ser du en sirkel med sentrum i S. B ligger på sirkelperiferien og punktene Aog Cer skjæringspunkt mellom sirkelen med

Detaljer

age gender region education Hva er husstandens bruttoinntekt (før skatt)?

age gender region education Hva er husstandens bruttoinntekt (før skatt)? age Hva er din alder? BSE 1389 299 357 348 384 687 701 134 197 286 465 126 180 44 350 447 339 73 36 188 353 286 250 18-29 22% 100% 21% 22% 24% 25% 23% 17% 21% 26% 14% 28% 26% 13% 10% 19% 47% 18% 16% 9%

Detaljer

R1-6.1-6.4 Geometri. I Figuren viser et trapes ABCD, hvor CAB 30, DBC 40, BDC 30. Geometri. Løsningsskisse

R1-6.1-6.4 Geometri. I Figuren viser et trapes ABCD, hvor CAB 30, DBC 40, BDC 30. Geometri. Løsningsskisse R1-6.1-6.4 Geometri Løsningsskisse I Figuren viser et trapes ABCD, hvor CAB 30, DBC 40, BDC 30 a) Hvilke kongruente trekanter finner du her? b) Hvilke formlike trekanter finner du her? c) Finn alle vinklene

Detaljer

R2 kapittel 1 Vektorer Løsninger til kapitteltesten i læreboka

R2 kapittel 1 Vektorer Løsninger til kapitteltesten i læreboka R kapittel 1 Vektorer Løsninger til kapitteltesten i læreboka 1.A a Punktet P har koordinatene P = (,, 5). Det gir PQ = [1,, 3 5] = [1,, 8] b PQ = [1,, 8] = 1 + ( ) + ( 8) = 69 8, 3 c OR = OQ + QR = [1,,

Detaljer

Løsningsskisser til oppgaver i Kapittel 2: Trigonometri

Løsningsskisser til oppgaver i Kapittel 2: Trigonometri Løsningsskisser til oppgver i Kpittel : Trigonometri.07 Treknten i figuren hr: (Alle mål i cm.) grunnlinje: g 5 1 høyde: h Tilhørende sirkelsektor spenner over vinkelen v, der cosv 5 v 1.159 Arel Treknt

Detaljer

# $ # % & '! "#$%& & ' () * +,-./0 1 ( )* +,!"#$ %& 1!"#$%&' () * +,-./ '01 #$, * +,-./0789: ; 78DE 7 ', 1#$ FG HI J3K6LMN>O(, F * +,-

# $ # % & '! #$%& & ' () * +,-./0 1 ( )* +,!#$ %& 1!#$%&' () * +,-./ '01 #$, * +,-./0789: ; 78DE 7 ', 1#$ FG HI J3K6LMN>O(, F * +,- # $ # %!"#$%&& ' () *+,-./0 1( )*+,!"#$%& 1!"#$%&'() *+,-./ '01#$,23456 *+,-./0789:; ?@ABC?78DE7 ', 1#$FG HIJ3K6LMN>O(, F *+,-./0789,PQRCP3STU VW(, 1XYLMFLM>Z[5\]^O_` a5\bc3]q3,pqr,2 C)!789#$LM 13*+,-./0789

Detaljer

Oppfriskningskurs dag 1

Oppfriskningskurs dag 1 Oppfriskningskurs dag 1 og ligninger Steffen Junge Oppfriskningskurs i matematikk 3.-8. august 2009 Outline 1 Outline 1 Typiske problem Ranger følgende brøker etter størrelse: 1 2, 7 12, 2 3, 5 8, 17 24

Detaljer