Sannsynlighet og kombinatorikk tips til bruk av Smart tavle

Størrelse: px
Begynne med side:

Download "Sannsynlighet og kombinatorikk tips til bruk av Smart tavle"

Transkript

1 1 av 6 Sannsynlighet og kombinatorikk tips til bruk av Smart tavle Maximum Smart Tavle har to delverktøy: bokrommet og tavlerommet. I bokrommet kan du hente opp bokoppslagene på skjermen. Verktøyet gir deg mulighet til å isolere og fremheve en enkeltoppgave, et eksempel, bilder eller andre deler av oppslaget. I tavlerommet finner du illustrasjoner, bilder, figurer, ordforklaringer, interaktive elementer, bakgrunner og aktiviteter. Nedenfor finner du tips til hvordan du kan bruke de ulike elementene i tavlerommet under kapittel 9.5 Sannsynlighet og kombinatorikk. (Sidereferansene er fra Grunnbok 9) Bilder Utforskende oppgave (side 249) kan presenteres som en utfordring for elevene i grupper. La elevene snakke sammen om problemstillingen og etter hvert selv finne flere ulike metoder for å systematisere antallet muligheter det går an å ha 30 kr på. Elever som trenger en forenkling kan bruke lekepenger eller brikker som illustrerer 1-, 5-, 1,- og 2,-kroner. Bruk gjerne et mindre beløp, for eksempel 17 kr. De kan også jobbe med pengene i tavlerommet.

2 2 av 6 Ord Matematikkordene kan dras ut som kort i tavlerommet. Trykker du på pluss nederst i høyre hjørnet kommer ordforklaringen opp. La elevene to og to få diskutere lista med matematikkord (side 249). Be dem diskutere hvilke ord de kjenner betydningen av, og hvilke de er usikre på. Ulike elevgrupper kan ha ulike ord de kan forklare. Få fram ulike forklaringer på ord i samlet gruppe. Vær bevisst på å oppdage eventuelle misoppfatninger. Her kan du bruke matematikkordene i tavlerommet, og velg ut et par ord som grunnlag for å lage et tankekart med elevenes assosiasjoner til ordene.

3 3 av 6 Interaktive elementer Oppgave 5.2, Hvem av elevene har rett? (side 250) gir utgangspunkt for en matematisk samtale rundt sannsynlighet. Hva er sannsynligheten for at lykkehjulet lander på et partall, et oddetall eller et bestemt tall? Bruk gjerne spinneren som finnes under interaktive elementer i tavlerommet til å utforske denne oppgaven. Ved å trykke på tannhjulet kan antall sektorer endres og tall og farger slås av og på. Lag tre oversikter for de tre utsagnene til elevene i oppgavene. Her finnes det en tabell i tavlerommet som kan benyttes. Antall kolonner og rader endres ved å trykke på tannhjulet. Spinn spinneren 25 ganger. Plasser hvert resultat i alle de tre tabellene. Se om dere får det samme resultatet som dere diskuterte dere frem til i forkant.

4 4 av 6 Mynter og terninger Under interaktive elementer finnes også mynter og terninger som kan kastes. Det er mulig å velge fra en til seks mynter/terninger. Aktiviteter Under aktiviteter i tavlerommet finnes det tre aktivitetspakker. Pakkene inneholder alle elementene du trenger til aktiviteten inkludert en beskrivelse. Fordeling av drops står forklart for elevene på side 261 i Grunnbok 9. En gruppe kan jobbe med denne aktiviteten i tavlerommet. Bruk gjerne også aktivitetspakken til en oppsummering av aktiviteten. I aktiviteten jobber elevene sammen tre og tre. La dem bruke plastbrikker som drops, og be elevene i samme gruppe fordele dropsene mellom seg. Gi råd til dem om å prøve å finne en systematisk måte å starte fordelingen på, slik at de blir sikre på at de har fått med seg alle muligheten. Husk å si at fargefordelingen ikke skal tas hensyn til (ellers blir det altfor komplisert). Det er bare antallet som gjelder her. Spør elevene: Er det den samme kombinasjonen når Manus får ett drops og Thea og Malin får tre drops som hvis Magnus og Thea får tre drops og Malin får ett drops? De fleste elever vil nok si at det er det ikke. Det er altså ikke det samme om jeg selv får ett drops eller tre drops. La dette derfor være ulike fordelinger.

5 5 av 6 Først i mål står forklart for elevene på side 264 i Grunnbok 9. Tabellen finnes som kopioriginal (K.9.5.3). En gruppe kan jobbe med denne aktiviteten i tavlerommet. Bruk gjerne resultatene fra denne gruppa som utgangspunkt for en diskusjon i etterkant av aktiviteten. Elevene vil ha ulike strategier for å velge tall. Noen ser fort at tallet 1 aldri vil forekomme, mens dette for andre blir en aha-opplevelse litt ut i spillet. Noen forstår også fortere hvilke summer som opptrer oftere, fordi det er flere mulige terningkombinasjoner som gir dem. Diskuter med elevene spørsmålene som står nederst i aktiviteten. Spillet er ikke tilfeldig, noen summer er mer sannsynlige å få. Hvis spillet begynner med at elevene selv velger sifre, er det derfor lurt av dem å velge sifferet 7 først og deretter sifrene 6 eller 8. Elever som trenger utfordring kan finne sannsynligheten for de ulike summene en kan få når en triller to sekserterninger. La dem eventuelt også finne sannsynligheten for hver av summene hvis en heller bruker to tierterninger, tolverterninger eller tjuerterninger. Det er her viktig at elevene finner ut hvor mange ulike kombinasjoner som er mulige. Se lærerark i kopioriginal K for den teoretiske fordelingen av kombinasjoner og sannsynligheten for ulike summer.

6 6 av 6 Bingo står forklart for elevene på side 264 i Grunnbok 9. I aktivitetspakken finnes både tabell og terninger til å utføre aktiviteten. Diskuter med elevene spørsmålet som står nederst i aktiviteten. Elevene skal her vurdere sannsynligheten for ulike produkter når de plasserer tallene i rutene. Tallplasseringen kan dermed gjøres strategisk, men likevel er det også noe tilfeldighet som påvirker hvem som får fire på rad. Noen elever vil derfor se at hvis de har plassert tallene strategisk, vil det ofte være nødvendig å spille til «fult brett» for at de skal få utnyttet de strategisk valgte tallene på spillebrettet sitt. Bakgrunner Under bakgrunner i tavlerommet finnes det ruter i ulike størrelser, koordinatsystem og prikkeark. I tillegg finnes også tallmengder, tankekart og ulike venndiagram. På sidene i grunnbok 9 finnes det mange oppgaver med bruk av venndiagram. Bruk venndiagrammene i tavlerommet når du for eksempel skal ha en felles diskusjon i samlet klasse.

7 K Først i mål spillebrett 1 av 3 Beskrivelse av spillet finnes i Grunnbok 9 og i Lærerens bok 9 side 264. Mållinje Kopioriginaler. Maximum 9. Kapittel 5 Gyldendal Norsk Forlag AS

8 K Lærerark til «Først i mål» i Grunnbok 9 side av 3 Aktiviteten «Først i mål» Her er den teoretiske fordelingen av kombinasjoner og sannsynligheten for ulike summer ingen P = P = 5 6 P = Elevene kan lage en krysstabell. Sum av to terninger Terning 2 Terning Kopioriginaler. Maximum 9. Kapittel 5 Gyldendal Norsk Forlag AS

9 K Lærerark til Aktivitet «Bingo» i Grunnbok 9 side av 3 Aktiviteten «Bingo» Her er den teoretiske fordelingen av kombinasjoner og sannsynligheten for ulike produkt. Produkt Mulige utfall Sannsynlighet , , , 1 4, , , 1 6, 2 3, , , , 6 2, 3 4, , , , , , Det er ikke mulig å få produktene under med to sekserterninger: 7,11,13,14,17,19,21,22,23,26,27,28,29,31,32,33,34,35 Be elevene lage et nytt og bedre bingobrett, og spill en ny runde bingo. Elevene kan lage en krysstabell. Produkt av to terninger Terning Terning Kopioriginaler. Maximum 9. Kapittel 5 Gyldendal Norsk Forlag AS

Algebra og likninger tips til bruk av Smart tavle

Algebra og likninger tips til bruk av Smart tavle 1 av 5 Algebra og likninger tips til bruk av Smart tavle Maximum Smart Tavle har to delverktøy: bokrommet og tavlerommet. I bokrommet kan du hente opp bokoppslagene på skjermen. Verktøyet gir deg mulighet

Detaljer

FORFATTERE Bjørnar Alseth Ingvill Merethe Stedøy-Johansen Janneke Tangen Grete Normann Tofteberg

FORFATTERE Bjørnar Alseth Ingvill Merethe Stedøy-Johansen Janneke Tangen Grete Normann Tofteberg FORFATTERE Bjørnar Alseth Ingvill Merethe Stedøy-Johansen Janneke Tangen Grete Normann Tofteberg Slik bygger vi opp Maximum Grunnbok Oppgavebok Lærerens bok Papirkomponenter Lærerrom Vurderingsmateriell

Detaljer

Fire kort. Mål. Gjennomføring. Film. Problemløsing Fire kort Planleggingsdokument

Fire kort. Mål. Gjennomføring. Film. Problemløsing Fire kort Planleggingsdokument Fire kort Mål Generelt: Søke etter mønster og sammenhenger. Gjennomføre undersøkelse og begrunne resultat. Utfordre elevene på å resonnere og kommunisere. Spesielt: Finne alle kombinasjoner når de adderer

Detaljer

Fire kort. Mål. Gjennomføring. Film. Problemløsing Fire kort

Fire kort. Mål. Gjennomføring. Film. Problemløsing Fire kort Fire kort Mål Generelt: Søke etter mønster og sammenhenger. Gjennomføre undersøkelse og begrunne resultat. Utfordre elevene på å resonnere og kommunisere. Spesielt: Finne alle kombinasjoner når de adderer

Detaljer

Fire kort. Mål. Gjennomføring. Film. Problemløsing Fire kort

Fire kort. Mål. Gjennomføring. Film. Problemløsing Fire kort Fire kort Mål Generelt: Søke etter mønster og sammenhenger. Gjennomføre undersøkelse og begrunne resultat. Utfordre elevene på å resonnere og kommunisere. Spesielt: Finne alle kombinasjoner når de adderer

Detaljer

Telle med 0,3 fra 0,3

Telle med 0,3 fra 0,3 Telle med 0,3 fra 0,3 Mål Generelt: Søke etter mønster og sammenhenger. Gi grunner for at mønstrene oppstår. Lage nye mønstre ved å utnytte mønstre en allerede har funnet. Utfordre elevene på å resonnere

Detaljer

6. kurskveld Ila, 7. juni - 06 Statistikk og sannsynlighet

6. kurskveld Ila, 7. juni - 06 Statistikk og sannsynlighet . kurskveld Ila, 7. juni - 0 Statistikk og sannsynlighet Sannsynlighet og kombinatorikk Sannsynlighet er noe vi omgir oss med nesten daglig. Vi spiller Lotto og andre spill, og håper vi har flaks og vinner.

Detaljer

Oppgaver. Innhold. Sannsynlighet Vg1P

Oppgaver. Innhold. Sannsynlighet Vg1P Oppgaver Innhold Modul 1. Hva er sannsynlighet?... 2 Modul 2. Addisjon av sannsynligheter. Gunstige og mulige utfall... 6 Modul 3. Beregne sannsynligheter ved å bruke tabeller... 10 Modul 4. Beregne sannsynligheter

Detaljer

Telle med 4 fra 4. Mål. Gjennomføring. Telle i kor Telle med 4 fra 4 Planleggingsdokument

Telle med 4 fra 4. Mål. Gjennomføring. Telle i kor Telle med 4 fra 4 Planleggingsdokument Telle med 4 fra 4 Mål Generelt: Søke etter mønster og sammenhenger. Gi grunner for at mønstrene oppstår. Lage nye mønster ved å utnytte mønster en allerede har funnet. Utfordre elevene på å resonnere og

Detaljer

Oppgaver. Innhold. Sannsynlighet 1P, 1T og 2P-Y

Oppgaver. Innhold. Sannsynlighet 1P, 1T og 2P-Y Oppgaver Innhold 3.1 Hva er sannsynlighet?... 2 3.2 Addisjon av sannsynligheter. Gunstige og mulige utfall... 5 3.3 Beregne sannsynligheter ved å bruke tabeller... 9 3.4 Beregne sannsynligheter ved å bruke

Detaljer

Forfatterne bak Multi!

Forfatterne bak Multi! Multi i praktisk bruk Forfatterne bak Multi! Tilpasset opplæring Forfatterteam: Bjørnar Alseth Universitetet i Oslo Henrik Kirkegaard, Flisnes skole, Ålesund Mona Røsseland, Matematikksenteret Gunnar Nordberg,

Detaljer

VELKOMMEN! Ingvill Merethe Stedøy-Johansen Bjørnar Alseth Grete Normann Tofteberg Janneke Tangen

VELKOMMEN! Ingvill Merethe Stedøy-Johansen Bjørnar Alseth Grete Normann Tofteberg Janneke Tangen VELKOMMEN! Ingvill Merethe Stedøy-Johansen Bjørnar Alseth Grete Normann Tofteberg Janneke Tangen Vi ønsker at elevene skal jobbe aktivt og utforskende med matematikk. Lese, gjøre og diskutere matematikk

Detaljer

Sannsynlighet i uniforme modeller. Addisjon av sannsynligheter

Sannsynlighet i uniforme modeller. Addisjon av sannsynligheter Sannsynlighet i uniforme modeller. Addisjon av sannsynligheter Fagstoff Listen [] Hendelse En hendelse i en sannsynlighetsmodell består av ett eller flere utfall. Vi ser på det tilfeldige forsøket «kast

Detaljer

Sannsynlighet for alle.

Sannsynlighet for alle. Sannsynlighet for alle. Signe Holm Knudtzon Høgskolen i Buskerud og Vestfold Novemberkonferansen 2015 Novemberkonferansen 2015 Signe Holm Knudtzon. HBV. Sannsynlighet for alle 1 Sannsynlighet for alle.

Detaljer

Telle med 120 fra 120

Telle med 120 fra 120 Telle med 120 fra 120 Mål Generelt: Søke etter mønstre og sammenhenger. Gi grunner for at mønstrene oppstår. Lage nye mønstre ved å utnytte mønstre en allerede har funnet. Utfordre elevene på å resonnere

Detaljer

Ny GIV 12. april 2012

Ny GIV 12. april 2012 Ny GIV 12. april 2012 1 «NY GIV I HEL KLASSE.» Den matematiske samtalen God matematikkundervisning skjer i møtet mellom læreren, elevene og det matematiske fagstoffet. 2 Aktivt språkbruk Grunnleggende

Detaljer

Tall og algebra - begrep, forutsetninger og aktiviteter

Tall og algebra - begrep, forutsetninger og aktiviteter Tall og algebra - begrep, forutsetninger og aktiviteter Astrid Bondø NSMO 17-Sep-08 Hvordan gjøre oppgavene rikere? Oppgave A Regn ut svaret: a. 985 67 b. 897 65 c. 875 96 d. 586 97 addisjon subtraksjon

Detaljer

Matematisk samtale Refleksjonsspørsmål trinn. Kjerneelementene i matematikk. Gi utfordrende oppgaver

Matematisk samtale Refleksjonsspørsmål trinn. Kjerneelementene i matematikk. Gi utfordrende oppgaver Matematisk samtale 1. 4. trinn Ann-Christin Arnås ann-christin.arnas@gyldendal.no Kunnskapsløftet: Det er en del av den matematiske kompetansen å kunne kommunisere i og med matematikk. Elevene skal: -

Detaljer

VELKOMMEN TIL FØRLANSERING. Bjørnar Alseth Ingvill Merethe Stedøy-Johansen Janneke Tangen Grete Normann Tofteberg

VELKOMMEN TIL FØRLANSERING. Bjørnar Alseth Ingvill Merethe Stedøy-Johansen Janneke Tangen Grete Normann Tofteberg VELKOMMEN TIL FØRLANSERING Bjørnar Alseth Ingvill Merethe Stedøy-Johansen Janneke Tangen Grete Normann Tofteberg Innledning hvem og hvorfor Arbeidsmåter og aktiviteter Pause Arbeidsmåter og aktiviteter

Detaljer

3 x 3 ruter. Hvilke matematiske utfordringer finnes det i et spillebrett på 3x3 ruter? Her er noen eksempler på spill og problemløsningsoppgaver

3 x 3 ruter. Hvilke matematiske utfordringer finnes det i et spillebrett på 3x3 ruter? Her er noen eksempler på spill og problemløsningsoppgaver 3 x 3 ruter Hvilke matematiske utfordringer finnes det i et spillebrett på 3x3 ruter? Her er noen eksempler på spill og problemløsningsoppgaver som kan brukes i matematikktimene. Magisk kvadrat Du har

Detaljer

Løsninger. Innhold. Sannsynlighet 1P, 1T og 2P-Y

Løsninger. Innhold. Sannsynlighet 1P, 1T og 2P-Y Løsninger Innhold 3. Hva er sannsynlighet?... 2 3.2 Addisjon av sannsynligheter. Gunstige og mulige utfall... 3.3 Beregne sannsynligheter ved å bruke tabeller... 2 3.4 Beregne sannsynligheter ved å bruke

Detaljer

VELKOMMEN! Janneke Tangen Grete Normann Tofteberg Ingvill Merethe Stedøy-Johansen Bjørnar Alseth

VELKOMMEN! Janneke Tangen Grete Normann Tofteberg Ingvill Merethe Stedøy-Johansen Bjørnar Alseth VELKOMMEN! Janneke Tangen Grete Normann Tofteberg Ingvill Merethe Stedøy-Johansen Bjørnar Alseth Våren 2016 1 Grunnleggende ferdigheter og aktiv læring i fellesskap Motivasjon og tilpasning ved hjelp av

Detaljer

Full fart med funksjoner, prosent og potens Vg1T, TY, P, PY og Vg2P 75 minutter

Full fart med funksjoner, prosent og potens Vg1T, TY, P, PY og Vg2P 75 minutter Lærerveiledning Passer for: Varighet: Full fart med funksjoner, prosent og potens Vg1T, TY, P, PY og Vg2P 75 minutter Full fart med funksjoner, prosent og potens er et skoleprogram hvor elevene går fra

Detaljer

Spill "Til topps" - transkripsjon av samtalen

Spill Til topps - transkripsjon av samtalen Spill "Til topps" - transkripsjon av samtalen Elevene på 6. trinn sitter to og to ved pultene. Thomas er læreren og sier at de skal ha et spill i dag. 1 Thomas Det er slik at dere skal være på lag med

Detaljer

Sannsynlighet 1P, Prøve 2

Sannsynlighet 1P, Prøve 2 Sannsynlighet 1P, Prøve 2 Del 1 Tid: 90 min Hjelpemidler: Skrivesaker Oppgave 1 Du snurrer et lykkehjul som stanser tilfeldig på en av bokstavene. Se figuren ovenfor. a) Hvor mange mulige utfall finnes

Detaljer

Telle med 19 fra 19. Mål. Gjennomføring. Telle i kor Telle med 19 fra 19 Planleggingsdokument

Telle med 19 fra 19. Mål. Gjennomføring. Telle i kor Telle med 19 fra 19 Planleggingsdokument Telle med 19 fra 19 Mål Generelt: Søke etter mønstre og sammenhenger. Gi grunner for at mønstrene oppstår. Lage nye mønstre ved å utnytte mønstre en allerede har funnet. Utfordre elevene på å resonnere

Detaljer

Begynneropplæringen i matematikk. 1.-3.trinn 07.03.2012. Dagsoversikt. Tallfølelse

Begynneropplæringen i matematikk. 1.-3.trinn 07.03.2012. Dagsoversikt. Tallfølelse 07.03.2012 Begynneropplæringen i matematikk 1.-3.trinn Tillegskomponenter: Kartleggingsprøver: Halvårsprøve og årsprøve Grublishefte 1-4 og 5-7 Nettsted: www.gyldendal.no/multi Elevoppgaver Lærersider

Detaljer

Kommunikasjon og muntlig aktivitet

Kommunikasjon og muntlig aktivitet Kommunikasjon og muntlig aktivitet 1. 4. trinn Ann-Christin Arnås ann-christin.arnas@gyldendal.no Kunnskapsløftet: Det er en del av den matematiske kompetansen å kunne kommunisere i og med matematikk.

Detaljer

Løsninger. Innhold. Sannsynlighet Vg1P

Løsninger. Innhold. Sannsynlighet Vg1P Løsninger Innhold Modul. Hva er sannsynlighet?... 2 Modul 2. Addisjon av sannsynligheter. Gunstige og mulige utfall... 7 Modul 3. Beregne sannsynligheter ved å bruke tabeller... 3 Modul 4. Beregne sannsynligheter

Detaljer

Legg merke til at summen av sannsynlighetene for den gunstige hendelsen og sannsynligheten for en ikke gunstig hendelse, er lik 1.

Legg merke til at summen av sannsynlighetene for den gunstige hendelsen og sannsynligheten for en ikke gunstig hendelse, er lik 1. Sannsynlighet Barn spiller spill, vedder og omgir seg med sannsynligheter på andre måter helt fra de er ganske små. Vi spiller Lotto og andre spill, og håper vi har flaks og vinner. Men hvor stor er sannsynligheten

Detaljer

Læreplan i matematikk fellesfag kompetansemål

Læreplan i matematikk fellesfag kompetansemål ROSSELAND SKOLE LÆREPLAN I MATEMATIKK 1. TRINN Årstimetallet i faget: 152 Songdalen for livskvalitet Generell del av læreplanen, grunnleggende ferdigheter og prinsipper for opplæringen er innet i planen

Detaljer

Forfatterne bak Multi: Multi i praksis. 5.-7.trinn. En bred matematisk kompetanse. Oppbyggingen av Multi. Grunntanken bak Multi

Forfatterne bak Multi: Multi i praksis. 5.-7.trinn. En bred matematisk kompetanse. Oppbyggingen av Multi. Grunntanken bak Multi Forfatterne bak Multi: Multi i praksis 5.-7.trinn Bjørnar Alseth Universitetet i Oslo Henrik Kirkegaard, Flisnes skole, Ålesund Mona Røsseland, Matematikksenteret Gunnar Nordberg, Høgskolen i Oslo Grunntanken

Detaljer

Felles klasseundervisning og tilpasset opplæring kan det forenes?

Felles klasseundervisning og tilpasset opplæring kan det forenes? Felles klasseundervisning og tilpasset opplæring kan det forenes? 1.-4.trinn Innhold Hvordan skal vi klare å få alle elevene til å oppleve mestring og samtidig bli utfordret nok og få mulighet til å strekke

Detaljer

Tall: Hovedområdet tall og algebra handler om å utvikle tallforståing og innsikt i hvordan tall og tallbehandling inngår i

Tall: Hovedområdet tall og algebra handler om å utvikle tallforståing og innsikt i hvordan tall og tallbehandling inngår i Lærebok: Tusen Millioner, Gjerdrum og Skovdahl Tallbok (rutebok i A5 format) Barn lærer matematikk gjennom spill, leik, utforsking og aktiv samhandling. Språkets betydning er veldig viktig for å forstå

Detaljer

Oppgavestreng Halvering/dobling i multiplikasjon

Oppgavestreng Halvering/dobling i multiplikasjon Oppgavestreng Halvering/dobling i multiplikasjon Mål Generelt: Resonnere omkring egenskaper ved tall regneoperasjoner. Bruke ulike representasjoner i utforskning begrunnelse av egenskaper strategier. Spesielt:

Detaljer

Telle med 15 fra 4. Mål. Gjennomføring. Telle i kor Telle med 15 fra 4 Planleggingsdokument

Telle med 15 fra 4. Mål. Gjennomføring. Telle i kor Telle med 15 fra 4 Planleggingsdokument Telle med 15 fra 4 Mål Generelt: Søke etter mønster og sammenhenger. Gi grunner for at mønstrene oppstår. Lage nye mønstre ved å utnytte mønstre en allerede har funnet. Utfordre elevene på å resonnere

Detaljer

Læreplan i matematikk fellesfag kompetansemål

Læreplan i matematikk fellesfag kompetansemål ROSSELAND SKOLE LÆREPLAN I MATEMATIKK 1. TRINN Årstimetallet i faget: 152 Songdalen for livskvalitet Generell del av læreplanen, grunnleggende ferdigheter og prinsipper for opplæringen er innarbeidet i

Detaljer

Matematikk Hjemmeeksamen i gruppe, Høst Mandag 17. desember, kl.9.00 Torsdag 20. desember, kl Sett B

Matematikk Hjemmeeksamen i gruppe, Høst Mandag 17. desember, kl.9.00 Torsdag 20. desember, kl Sett B Matematikk 2 1-7 Hjemmeeksamen i gruppe, Høst 2012 Mandag 17. desember, kl.9.00 Torsdag 20. desember, kl. 9.00 Sett B Oppgaven tar utgangspunkt i den vedlagte casen. Eksamensbesvarelsen skal være en analyse

Detaljer

Statistikk, sannsynlighet og kombinatorikk

Statistikk, sannsynlighet og kombinatorikk NY GIV, januar/februar 2011 Oslo, Trondheim og Stavanger Statistikk, sannsynlighet og kombinatorikk Astrid Bondø NSMO 17-Feb-11 Sentralmål Eksempler fra eksamen Statistikkspill Eksempler på oppgaver Sannsynlighet

Detaljer

Statistikk, sannsynlighet og kombinatorikk. NY GIV - 1. Samling 2012/2013 Astrid Bondø

Statistikk, sannsynlighet og kombinatorikk. NY GIV - 1. Samling 2012/2013 Astrid Bondø Statistikk, sannsynlighet og kombinatorikk NY GIV - 1. Samling 2012/2013 Astrid Bondø Statistikk Eksamensoppgaver Eksempler på oppgaver Statistikkspill Sannsynlighet Eksamensoppgaver Baller i boksen Kombinatorikk

Detaljer

2.3 Delelighetsregler

2.3 Delelighetsregler 2.3 Delelighetsregler Begrepene multiplikasjon og divisjon og regneferdigheter med disse operasjonene utgjør sentralt lærestoff på barnetrinnet. Det er mange tabellfakta å huske og operasjonene skal kunne

Detaljer

Telle i kor med 120 fra 120 transkripsjon av samtalen

Telle i kor med 120 fra 120 transkripsjon av samtalen Telle i kor med 120 fra 120 transkripsjon av samtalen Elevene på 5. trinn sitter på stoler i to halvsirkler foran SMART Board-tavla. Lærer Olaug har introdusert aktiviteten «Telle i kor», se egen introduksjonsfilm.

Detaljer

Sannsynlighet 1T, Prøve 2 løsning

Sannsynlighet 1T, Prøve 2 løsning Sannsynlighet T, Prøve 2 løsning Del Tid: 60 min Hjelpemidler: Skrivesaker Oppgave Du snurrer et lykkehjul som stanser tilfeldig på én av bokstavene. Se figuren ovenfor. a) Hvor mange mulige utfall finnes

Detaljer

Tall, forståelse og eksamen Videregående skole (1P, 2P og 2PY)

Tall, forståelse og eksamen Videregående skole (1P, 2P og 2PY) Tall, forståelse og eksamen Videregående skole (1P, 2P og 2PY) Oslo, 16.-17.10.14 Astrid Bondø 19-Nov-15 Bygda Alvfjord Eksamen har i dag 5000 innbyggere. 2P 2014 Man regner med at innbyggertallet vil

Detaljer

Sannsynlighetsregning

Sannsynlighetsregning Sannsynlighetsregning Eksamensoppgaver Våren 2015 OPPGAVE 4 (UTEN HJELPEMIDLER) Tenk deg at du har ti bananer i skapet. Fem av dem er gule, tre er grønne, og to er blitt brune. Du tar tilfeldig to bananer.

Detaljer

De fire regningsartene

De fire regningsartene De fire regningsartene Det går ikke an å si at elevene først skal ha forstått posisjonssystemet, og deretter kan de begynne med addisjon og subtraksjon. Dette må utvikles gradvis og om hverandre. Elevene

Detaljer

Halvårsplan/årsplan i Matematikk for 2. trinn 2015/2016 Tema Læringsmål Grunnleggende ferdigheter

Halvårsplan/årsplan i Matematikk for 2. trinn 2015/2016 Tema Læringsmål Grunnleggende ferdigheter Uke/ perio de Kompetansemål KL- 06 33-39 TALL bygge mengder opp til 10, tiergrupper. Bruke tallinjen til beregning og til å vise tallstørelser. Halvårsplan/årsplan i Matematikk for 2. trinn 2015/2016 Tema

Detaljer

Kompetansemål Hva er sannsynlighet?... 2

Kompetansemål Hva er sannsynlighet?... 2 3 Sannsynlighet Innhold Kompetansemål... 2 3. Hva er sannsynlighet?... 2 Utfall og utfallsrom... 3 Tilfeldig forsøk... 3 Definisjon av sannsynlighet... 5 Sannsynlighetsmodeller... Andre eksempler på tilfeldige

Detaljer

Mattemoro! Går r det virkelig an å leke seg til ferdigheter i matematikk? Hva kjennertegner den. Oversikt. Spill til hjelp i automatiseringen av

Mattemoro! Går r det virkelig an å leke seg til ferdigheter i matematikk? Hva kjennertegner den. Oversikt. Spill til hjelp i automatiseringen av Mattemoro! Mona Røsseland, R som har tenkt å gjøre et forsøk! Går r det virkelig an å leke seg til ferdigheter i matematikk? Hva kjennertegner den gode lærer? l Entusiasme og engasjement. Kjennskap til

Detaljer

TUSEN TAKK! BUTIKKEN MIN! ...alt jeg ber om er.. Maren Finn dette og mer i. ... finn meg på nett! Grafiske lisenser.

TUSEN TAKK! BUTIKKEN MIN! ...alt jeg ber om er.. Maren Finn dette og mer i. ... finn meg på nett! Grafiske lisenser. TUSEN TAKK! Det at du velger å bruke mitt materiell for å spare tid og ha det kjekt sammen med elevene betyr mye for meg! Min lidenskap er å hjelpe flotte lærere i en travel hverdag, og å motivere elevene

Detaljer

Lærerhefte Forslag til praktiske aktiviteter på skolen

Lærerhefte Forslag til praktiske aktiviteter på skolen Lærerhefte Forslag til praktiske aktiviteter på skolen Til lærer Her finner du oppgaver som hvor elevene får praktisert regneferdighetene sine som kan supplere det teoretiske regnearbeidet. Vi har laget

Detaljer

04.01.2015. Dagsoversikt. Matematikkundervisningen har forandret seg. Hvordan bidra til at dine elever får større ferdigheter i matematikk?

04.01.2015. Dagsoversikt. Matematikkundervisningen har forandret seg. Hvordan bidra til at dine elever får større ferdigheter i matematikk? Hvordan bidra til at dine elever får større ferdigheter i matematikk? Haugalandsløftet 26. januar 2015 Tine Foss Pedersen 4-Jan-15 Dagsoversikt Læring basert på forståelse Ulike måter å regne på basert

Detaljer

Måling. Geometri. Tall. Statistikk. Fagplan/årsplan i matematikk 1.trinn 2016/2017 Faglærer: Linn Katrine Hegg Vike. Hovedområde

Måling. Geometri. Tall. Statistikk. Fagplan/årsplan i matematikk 1.trinn 2016/2017 Faglærer: Linn Katrine Hegg Vike. Hovedområde Fagplan/årsplan i matematikk 1.trinn 2016/2017 Faglærer: Linn Katrine Hegg Vike Hovedområde Tall Geometri Måling Statistikk Hovudområdet tal og algebra handlar om å utvikle talforståing og innsikt i korleis

Detaljer

Aktiviteter i sannsynlighetsregning på samlingen i MAT102 onsdag 8. februar

Aktiviteter i sannsynlighetsregning på samlingen i MAT102 onsdag 8. februar Aktiviteter i sannsynlighetsregning på samlingen i MAT102 onsdag 8. februar Her er en rekke aktiviteter som utvikler begrepsforståelsen i sannsynlighet. Målet med disse aktivitetene er å kunne vurdere

Detaljer

Årsplan i matematikk - 1. klasse 2014-2015

Årsplan i matematikk - 1. klasse 2014-2015 Antall timer pr : 4 timer Lærere: Ida Nystuen Askjer og Elise G. Solberg Læreverk: Multi Gyldendal Grunnbok 1A og 1B + Oppgavebok 1 Nettstedet: www.gyldendal.no/multi Årsplan i matematikk - 1. klasse 2014-2015

Detaljer

Forslag til opplegg for en foreldrekveld om matematikk (varighet: 2 timer) v/ Ingvill M. Stedøy-Johansen, 2007

Forslag til opplegg for en foreldrekveld om matematikk (varighet: 2 timer) v/ Ingvill M. Stedøy-Johansen, 2007 Forslag til opplegg for en foreldrekveld om matematikk (varighet: 2 timer) v/ Ingvill M. Stedøy-Johansen, 2007 Inviter foreldrene på matematisk aften (forslag til invitasjon nederst i dette dokumentet).

Detaljer

Magisk Matematikk. 75 minutter. Passer for: Varighet:

Magisk Matematikk. 75 minutter. Passer for: Varighet: Lærerveiledning Passer for: Varighet: Magisk Matematikk 9. - 10. trinn 75 minutter Magisk Matematikk er et skoleprogram som tar utgangspunkt i «magiske» talltriks i plenum som enkelt avsløres med algebra,

Detaljer

Løft matematikkundervisningen. med Multi 1.-4.trinn 24.11.2010. Oversikt. Dette er Multi! Kjernekomponenter. Grunntanken bak Multi

Løft matematikkundervisningen. med Multi 1.-4.trinn 24.11.2010. Oversikt. Dette er Multi! Kjernekomponenter. Grunntanken bak Multi Løft matematikkundervisningen med Multi 1.-4.trinn Oversikt Grunntanken bak Multi Hva er nytt i revisjonen? Vurdering i Multi Mona Røsseland Dette er Multi! Kjernekomponenter Grunntanken bak Multi Elevbok,

Detaljer

Sannsynlighet S1, Prøve 2 løsning

Sannsynlighet S1, Prøve 2 løsning Sannsynlighet S1, Prøve løsning Del 1 Tid: 70 min Hjelpemidler: Skrivesaker Oppgave 1 a) Skriv opp de øverste sju rekkene i Pascals trekant. b) Regn ut 5 a b. 5 5 4 4 5 a b a 5a b 10a b 10a b 5ab b c)

Detaljer

Dybdelæring begrepene brøk og desimaltall

Dybdelæring begrepene brøk og desimaltall Dybdelæring begrepene brøk og desimaltall APRIL 2019 Susanne Stengrundet, Anne-Mari Jensen og Ingunn Valbekmo NTNU Innholdsfortegnelse INNLEDNING... BRØK... HVOR LIGGER PROBLEMET?... Brøk som del av en

Detaljer

1. desember. Oppgaven

1. desember. Oppgaven 1. desember Tenk deg at du skal dele en rund pizza med kun rette streker. Hvor mange stykker er det mulig å få dersom du deler 4 ganger (du skal prøve å få til så mange som mulig de trenger ikke være like

Detaljer

INNHOLD. Matematikk for ungdomstrinnet

INNHOLD. Matematikk for ungdomstrinnet INNHOLD STATISTIKK... 2 FREKVENS... 2 RELATIV FREKVENS... 2 FREKVENSTABELL... 2 KLASSEDELING... 3 SØYLEDIAGRAM (STOLPEDIAGRAM)... 3 LINJEDIAGRAM... 4 SEKTORDIAGRAM... 4 HISTOGRAM... 4 FRAMSTILLING AV DATA...

Detaljer

Lærebok: Tusen millioner, Gjerdrum og Skovdal Barn lærer matematikk gjennom spill, lek, utforsking og aktiv samhandling. Språkets betydning er veldig

Lærebok: Tusen millioner, Gjerdrum og Skovdal Barn lærer matematikk gjennom spill, lek, utforsking og aktiv samhandling. Språkets betydning er veldig Lærebok: Tusen millioner, Gjerdrum og Skovdal Barn lærer matematikk gjennom spill, lek, utforsking og aktiv samhandling. Språkets betydning er veldig viktig for å forstå matematikk. Innenfor matematikkens

Detaljer

Kengurukonkurransen 2012

Kengurukonkurransen 2012 Kengurukonkurransen 2012 «Et sprang inn i matematikken» BENJAMIN (6. 8. trinn) FASIT Fasit med korte kommentarer Mange matematiske problem kan løses på ulike måter. Følgende forslag gir ingen fullstendig

Detaljer

FORELDREMØTE 8.februar 2017

FORELDREMØTE 8.februar 2017 FORELDREMØTE 8.februar 2017 Hva er Russisk matematikk utviklende opplæring i matematikk? - Prinsippene og tenkningen bak - Utfordringer - Erfaringer - Hvordan kan foresatte hjelpe? Hentet fra Russland

Detaljer

VERDENSDAGEN FOR PSYKISK HELSE 2018

VERDENSDAGEN FOR PSYKISK HELSE 2018 VERDENSDAGEN FOR PSYKISK HELSE 2018 PEDAGOGISK OPPLEGG UNGDOMSSKOLEN OG VIDEREGÅENDE SKOLE Årets tema: «Vær raus» Målgruppe: Ungdomsskole og videregående skole Merk: det finnes et eget opplegg for barneskole,

Detaljer

Karakter 2: 10p Karakter 3: 17p Karakter 4: 23p Karakter 5: 30p Karakter 6: 36p

Karakter 2: 10p Karakter 3: 17p Karakter 4: 23p Karakter 5: 30p Karakter 6: 36p 07.0.017 MATEMATIKK (MAT100) Sannsynlighetsregning DEL 1 (UTEN HJELPEMIDLER) 0 minutter DEL (MED HJELPEMIDLER) 0 minutter (Del 1 leveres inn etter nøyaktig 0 minutter og før hjelpemidlene kan benyttes)

Detaljer

Når tallene varierer.

Når tallene varierer. Når tallene varierer. Innføring i algebra med støtte i konkreter Astrid Bondø Ny GIV, februar/mars 2013 Når tallene varierer Det første variable skritt! Treff 10 Hesteveddeløp Rød og sort (Et Ess i Ermet,

Detaljer

Vi sier også at for eksempel 16 er kvadratet av 4. Kvadrattallene kan vi framstille som figurtall av kuler på denne måten:

Vi sier også at for eksempel 16 er kvadratet av 4. Kvadrattallene kan vi framstille som figurtall av kuler på denne måten: 10 Tall og figurer Tallene 1,, 3, 4,, kaller vi de naturlige tallene De naturlige tallene deler vi ofte i partall og oddetall Partallene er de tallene vi kan dele med Det er tallene, 4, 6, 8, 10, Oddetallene

Detaljer

Kvikkbilde Mål. Gjennomføring. Planleggingsdokument Kvikkbilde 4 12

Kvikkbilde Mål. Gjennomføring. Planleggingsdokument Kvikkbilde 4 12 Kvikkbilde 4 12 Mål Generelt: Sammenligne og diskutere ulike måter å se et antall på. Utfordre elevene på å resonnere omkring tallenes struktur og egenskaper, samt egenskaper ved regneoperasjoner. Spesielt:

Detaljer

Hvordan bidra til at dine elever får større ferdigheter i matematikk?

Hvordan bidra til at dine elever får større ferdigheter i matematikk? Hvordan bidra til at dine elever får større ferdigheter i matematikk? Haugalandsløftet 26. januar 2015 Tine Foss Pedersen 4-Jan-15 Dagsoversikt Læring basert på forståelse Ulike måter å regne på basert

Detaljer

10.4 Sannsynligheter ved flere i utvalget (kombinatorikk)

10.4 Sannsynligheter ved flere i utvalget (kombinatorikk) 10. er ved flere i utvalget (kombinatorikk) Så langt i framstillingen har vi diskutert den språklige siden, den matematiske tolkningen av sannsynlighetsbegrepet og presentert ulike modeller som kan anvendes

Detaljer

Kengurukonkurransen 2012

Kengurukonkurransen 2012 Kengurukonkurransen 2012 «Et sprang inn i matematikken» BENJAMIN (6. 8. trinn) Hefte for læreren BENJAMIN 3 poeng 1. Basil skrev HEIA KENGURU på en plakat. Bare like bokstaver ble skrevet med samme farge.

Detaljer

Praktisk oppgave i gymsalen.

Praktisk oppgave i gymsalen. Info til lærer Dette heftet inneholder oppgaver som passer å gjøre etter arbeidet med Brann i Matteboken, eller som en aktivitet i løpet av den perioden de arbeider med de andre oppgaveheftene. I aktivitetene

Detaljer

Årsplan i matematikk - 1. klasse

Årsplan i matematikk - 1. klasse Antall timer pr uke: 4 timer Lærere: Gro Åkerlund og Elise Solberg Læreverk: Multi Gyldendal Grunnbok 1A og 1B + Multismartøving Nettstedet: www.gyldendal.no/multi Årsplan i matematikk - 1. klasse 2016-2017

Detaljer

Inspirasjon og motivasjon for matematikk

Inspirasjon og motivasjon for matematikk Inspirasjon og motivasjon for matematikk Hvordan får vi aktive, engasjerte og motiverte elever og lærere i matematikk? Bjørnar Alseth Høgskolen i Oslo Styremedlem i Lamis Lærebokforfatter; MULTI Mona Røsseland

Detaljer

GØY MED MATTE! Sørlandsk lærerstevne : Kurs : Lunsj : Kurs : Pause : Kurs og oppsummering

GØY MED MATTE! Sørlandsk lærerstevne : Kurs : Lunsj : Kurs : Pause : Kurs og oppsummering GØY MED MATTE! Sørlandsk lærerstevne 2018 10.00 11.00: Kurs 11.00 12.00: Lunsj 12.00 13.00: Kurs 13.00 13.20: Pause 13.20 14.30: Kurs og oppsummering Anne Smedstad TALL OG REGNING Struts Matemagisk lærerveiledning

Detaljer

Elevene skal opparbeide ferdigheter i å kunne lese, formidle emner og ideer hvor det er naturlig å bruke matematikkens språk og symboler.

Elevene skal opparbeide ferdigheter i å kunne lese, formidle emner og ideer hvor det er naturlig å bruke matematikkens språk og symboler. GRUPPEOPPGAVER L97 Elevene skal opparbeide ferdigheter i å kunne lese, formidle emner og ideer hvor det er naturlig å bruke matematikkens språk og symboler. Muntlig matematikk kombinert med praktisk begrep-

Detaljer

Magisk Matematikk 9. - 10. trinn, Vg1 75 minutter

Magisk Matematikk 9. - 10. trinn, Vg1 75 minutter Lærerveiledning Passer for: Varighet: Magisk Matematikk 9. - 10. trinn, Vg1 75 minutter Magisk Matematikk er et skoleprogram som tar utgangspunkt i «magiske» talltriks i plenum som dere kan jobbe videre

Detaljer

FORELDREMØTE 25.april 2017

FORELDREMØTE 25.april 2017 FORELDREMØTE 25.april 2017 Hva er Russisk matematikk utviklende opplæring i matematikk? - Prinsippene og tenkningen bak - Eksempel på noen oppgaver - Hva legges vekt på? - Hva bør elevene ha lært på de

Detaljer

Divisjon med desimaltall

Divisjon med desimaltall Divisjon med desimaltall Mål Generelt: Divisjon med desimaltall. Mønster og sammenhenger i divisjon. Spesielt: Bruke overslag til å vurdere plassering av desimalkomma. Se hva som skjer med kvotienten når

Detaljer

Kommunikasjon og muntlig aktivitet

Kommunikasjon og muntlig aktivitet Kommunikasjon og muntlig aktivitet 5. 7. trinn Ann-Christin Arnås ann-christin.arnas@gyldendal.no Kunnskapsløftet: Det er en del av den matematiske kompetansen å kunne kommunisere i og med matematikk.

Detaljer

Vurdering for og av læring

Vurdering for og av læring Vurdering for og av læring Skolens nye trendord? Svein H. Torkildsen, NSMO Dagens program Arbeidet legges opp rundt 1. læreplanens kompetansemål 2. arbeidsmåter i faget 3. læreboka og pedagogens arbeid

Detaljer

A)8 B) 10 C) 14 D) 20 E) Sidekantene i en terning økes med 20%. Hvor mye øker terningens volum? A) 20 % B) 44 % C) 56,2 % D) 60 % E) 72,8 %

A)8 B) 10 C) 14 D) 20 E) Sidekantene i en terning økes med 20%. Hvor mye øker terningens volum? A) 20 % B) 44 % C) 56,2 % D) 60 % E) 72,8 % SETT 29 OPPGAVER FRA ABELS HJØRNE I DAGBLADET DAG 1 1. Per er i butikken for å kjøpe frukt. En appelsin koster 3 kroner, en banan koster 2 kroner, og et eple koster 1 krone. Per skal kjøpe for nøyaktig

Detaljer

Eksempler på lekpregede læringsaktiviteter

Eksempler på lekpregede læringsaktiviteter Eksempler på lekpregede læringsaktiviteter Illustrasjon: Pixabay.com Eksempel 1 Sorteringsaktivitet Ute: planter, blader, kongler, steiner, skjell, sportegn etter dyr, småkryp Inne: leketøy, geometriske

Detaljer

Hovedområder og kompetansemål fra kunnskapsløftet (matematikk):

Hovedområder og kompetansemål fra kunnskapsløftet (matematikk): INSPIRIA science center: Bjørnstadveien 16, 1712 GRÅLUM Telefon: 03245/ 69 13 93 00 E-post: post@inspiria.no www.inspiria.no Lærerveiledning: Passer for: Varighet: Hit og dit (programmering med Blue-Bot)

Detaljer

9.5 Uavhengige hendinger

9.5 Uavhengige hendinger 9. Uavhengige hendinger Vi kaster en terning to ganger og innfører hendingene A: Det første kastet gir sekser B: Det andre kastet gir sekser Om vi får sekser på det første kastet, endrer ikke det sannsynligheten

Detaljer

Oppgaver i sannsynlighetsregning 3

Oppgaver i sannsynlighetsregning 3 Oppgaver i sannsynlighetsregning 3 Oppgave 1 Vi har et lykkehjul med 8 like sektorer som er nummerert fra 1 til 8. Du har valgt sektor nummer 3. a) Tenk deg at du snurrer lykkehjulet en gang. Hva er sjansen

Detaljer

Lokal læreplan matematikk 1. trinn

Lokal læreplan matematikk 1. trinn Lokal læreplan matematikk 1. trinn Lærebok: Multi Antall uker Sortering Multi 1A kap.1 Kunne samle, sortere, notere og illustrere data med teljestrekar, tabellar og søylediagram og samtale om prosessen

Detaljer

Alle teller. - en introduksjon. Ny GIV 1. samling 2012/2013 Anne-Gunn Svorkmo Astrid Bondø Svein Hallvard Torkildsen

Alle teller. - en introduksjon. Ny GIV 1. samling 2012/2013 Anne-Gunn Svorkmo Astrid Bondø Svein Hallvard Torkildsen Alle teller - en introduksjon Ny GIV 1. samling 2012/2013 Anne-Gunn Svorkmo Astrid Bondø Svein Hallvard Torkildsen Håndbok - for lærere som underviser i matematikk i grunnskolen Forfatteren: Professor

Detaljer

Sannsynligheten for en hendelse (4.2) Empirisk sannsynlighet. ST0202 Statistikk for samfunnsvitere

Sannsynligheten for en hendelse (4.2) Empirisk sannsynlighet. ST0202 Statistikk for samfunnsvitere 2 Sannsynligheten for en hendelse (4.2) Sannsynligheten for en hendelse sier oss hvor ofte vi forventer at hendelsen inntreffer, dvs. den forventede relative frekvens av hendelsen. ST0202 Statistikk for

Detaljer

- 1000 til 1000 Du treng: Blyant, passar, linjal og binders.

- 1000 til 1000 Du treng: Blyant, passar, linjal og binders. - 00 til 00 Du treng: Blyant, passar, linjal og binders. 1. Lag ei talline for området -00 til +00. Velg inndeling alt etter storleiken på papiret. 2. Set blyantspissen i sentrum av spinner og snurr ein

Detaljer

Dybdelæring terskelbegrep brøk og desimaltall

Dybdelæring terskelbegrep brøk og desimaltall Dybdelæring terskelbegrep brøk og desimaltall MARS 2018 Susanne Stengrundet, Anne-Mari Jensen og Ingunn Valbekmo NTNU Innholdsfortegnelse INNLEDNING... 3 TERSKELBEGREP: BRØK... 3 HVOR LIGGER PROBLEMET?...

Detaljer

Utforsking og undring med kenguruoppgaver

Utforsking og undring med kenguruoppgaver Utforsking og undring med kenguruoppgaver Småtrinnet Anne-Gunn Svorkmo Litt fakta om Kengurukonkurransen En internasjonal matematikkonkurranse for elever fra 6 til 19 år Første gang arrangert i 1994 Norge

Detaljer

Fasit. Grunnbok. Kapittel 5. Bokmål

Fasit. Grunnbok. Kapittel 5. Bokmål Fasit Grunnbok Kapittel 5 Bokmål Kapittel 5 Fra erfaring til sannsynlighet 5. a P = 3 5.2 a P = 2 5.3 B har rett 5.4 a P = 4 b P = 4 b P = 2 b c P = 7 c P = 5 2 c d P = 25 d P = 5 2 5.5 a b Den eksperimentelle

Detaljer

Kapittel 5: Mengdelære

Kapittel 5: Mengdelære MAT1030 Diskret Matematikk Forelesning 9: Mengdelære Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kapittel 5: Mengdelære 17. februar 2009 (Sist oppdatert: 2009-02-17 15:56) MAT1030 Diskret

Detaljer

Eksamen i Elementær Diskret Matematikk - (MA0301)

Eksamen i Elementær Diskret Matematikk - (MA0301) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Steffen Junge (73 59 17 73 / 94 16 27 27) Eksamen i Elementær Diskret Matematikk -

Detaljer

Simulering på regneark

Simulering på regneark Anne Berit Fuglestad Simulering på regneark Trille terninger eller kaste mynter er eksempler som går igjen i sannsynlighetsregningen. Ofte kunne vi trenge flere forsøk for å se en klar sammenheng og få

Detaljer

ÅRSPLAN I MATEMATIKK 1. KLASSE BREIVIKBOTN SKOLE

ÅRSPLAN I MATEMATIKK 1. KLASSE BREIVIKBOTN SKOLE ÅRSPLAN I MATEMATIKK 1. KLASSE BREIVIKBOTN SKOLE 2012-2013 MÅLENE ER FRA LÆREPLANVERKET FOR KUNNSKAPSLØFTET 2006 OG VEKTLEGGER HVA ELEVENE SKAL HA TILEGNET SEG ETTER 2. KLASSE Grunnleggende ferdigheter

Detaljer