ST0202 Statistikk for samfunnsvitere [4]

Størrelse: px
Begynne med side:

Download "ST0202 Statistikk for samfunnsvitere [4]"

Transkript

1 ST0202 Statistikk for samfunnsvitere [4] Kapittel 4: Sannsynlighet 4.4: Disjunkte hendelser, 4.5: Uavhengige hendelser 4.6: Er disjunkthet og uavhengighet relatert til hverandre? Bruk av sannsynlighetsregning Mette Langaas Institutt for matematiske fag

2 2 Repetisjon: ikke-og-eller? Ā (ikke) A og B A eller B

3 3 Repetisjon: ikke-og-eller og setninger Komplementsetningen: (ikke) P(Ā)=1-P(A) Den generelle addisjonssetningen: (eller) P(A eller B)=P(A)+P(B)-P(A og B) Den generelle multiplikasjonssetningen: (og) P(A og B)=P(A) P(B A)=P(B) P(A B)

4 4 Kap i bruk En boks inneholder en rød (R), en blå (B) og en hvit (H) kule. Trekk to kuler uten tilbakelegging. (Trekk først en kule og legg den til side, trekk så en til. Se på hva du fikk.) Utfallene og deres sannsynligheter kan finnes ved hjelp av et sannsynlighetstre. Sannsynligheten for et utfall finnes ved å multiplisere (betingede) sannsynligheter langs grenene. (Den generelle multiplikasjonsregelen.) Sannsynligheten for en hendelse finnes ved å summere sannsynlighetene for de enkeltutfallene (grenene) som hører til hendelsen.

5 Det er 6 mulig utfall, og de lister vi som {(R, B), (R, H), (B, R), (B, H), (H, R), (H, B)}

6 Sannsynligheten for gren 1 (første kule rød og andre blå): P(R, B) = P(R)P(B R) = 1/3 1/2 = 1/6 Sannsynligheten for hendelsen en rød og en blå kule : Gren 1 og gren 3 gir en rød og en blå kule, så vi må summere disse to sannsynlighetene P(en rød og en blå kule) = 1/6 + 1/6 = 1/3

7 7 Betinget rødt: leksa fra igår Tre kort: Rødt på begge sider Rødt på en side, blått på en side Blått på begge sider Lukk øynene, trekk et kort og legg på bordet. Gitt at kortsiden du ser er rød, hva der da sannsynligheten for at også siden du ikke ser er rød?

8 8 Disjunkte hendelser (4.4) To disjunkte (gjensidig utelukkende) hendelser: Hendelser definert slik at dersom en av hendelsene inntreffer, kan den andre ikke inntreffe. dvs. P(A og B) = 0 eller med Venn-diagram:

9 Hvis vi har flere enn 2 hendelser, kalles disse parvis disjunkte ( mutually exclusive ) hvis hvert par av dem er disjunkte etter definisjonen på forrige slide. Eksempel: Betrakt et eksperiment der to terninger blir kastet. Tre hendelser er definert: A: Summen av tallene på terningene er 7 B: Summen av tallene på terningene er 10 C: Begge terningene viser samme tall. Er disse tre hendelsene parvis disjunkte?

10 A: Summen av tallene på terningene er 7 B: Summen av tallene på terningene er 10 C: Begge terningene viser samme tall. A og B er disjunkte. A og C er disjunkte. B og C er ikke disjunkte, fordi B og C = (5, 5) De tre hendelsene er dermed ikke parvis disjunkte (selv om alle tre ikke kan inntreffe samtidig).

11 11 Den spesielle addisjonsregelen For disjunkte hendelser A og B gjelder P(A eller B) = P(A) + P(B) Denne regelen kan generaliseres: For parvis disjunkte hendelser A, B, C... E gjelder P(A eller B eller C eller... eller E) = P(A)+P(B)+P(C)+...+P(E)

12 Illustrasjon av den spesielle addisjonsregelen: Her er A og B disjunkte, og vi har: P(A eller B) = P(A) + P(B)

13 13 Eksempel: Kast to terninger. Hva er sannsynligheten for at summen er 7 (hendelse A) eller at terningene er like (hendelse B)? Hendelse A (grønn) og B (blå) er disjunkte (inntreffer A kan ikke B inntreffe og motsatt, se figur under).

14 Regelen over gir da P(A eller B) = P(A) + P(B) = = 1 3

15 15 Disjunkt? Vi trekker tilfeldig en person fra en populasjon, og definerer tre hendelser: A: Personen er yngre enn 60 år. B: Personen er minst 70 år gammel. C: Personen er minst 80 år gammel. Tegn Venn-diagram og forklar hvilke hendelser som er disjunkte.

16 16 Uavhengige hendelser (4.5) To hendelser A og B er uavhengige hendelser hvis det at A har hendt (eller ikke har hendt) ikke påvirker sannsynligheten for at B skal hende, dvs. P(B) = P(B A) = P(B Ā) eller P(A) = P(A B) = P(A B) Dersom den ene av linjene er oppfylt vil alltid den andre være det også. Hendelser som ikke er uavhengige, kalles avhengige.

17 17 Eksempler på uavhengighet Kast en mynt to ganger. A er at mynten lander på H i første kast, B er at mynten lander på H i andre kast. Hvorfor er P(B A) = P(B)? Kast en terning og en mynt. A er at terningen gir en 6er, B er at mynten lander på Kron (H). Hvorfor er P(B A) = P(B)? Trekk to kort fra en kortstokk ved at det først trekkes ett kort, som legges tilbake, og at det så stokkes på ny og trekkes et nytt kort. A er at det er en spar i første trekning, B er at det er en hjerter i andre trekning. Forklar hvorfor A og B er uavhengige. Ville disse hendelsene være uavhengige dersom du ikke la tilbake det første kortet før du trakk det andre?

18 Husk den generelle multiplikasjonsregel: P(A og B) = P(A)P(B A) Dersom A og B er uavhengige, har vi P(B A) = P(B), og P(A B) = P(A) så vi får: Den spesielle multiplikasjonsregel: P(A og B) = P(A)P(B) Dette kan generaliseres til tilfellet med flere enn to uavhengige hendelser: For uavhengige hendelser A, B, C,..., E gjelder P(A og B og C og... og E) = P(A) P(B) P(C)... P(E)

19 19 Oppgave Kast en mynt to ganger. A er at mynten lander på H i første kast, B er at mynten lander på H i andre kast. Hva blir P(A og B)? Kast en mynt ti ganger (jmf. Siffer, episode 1). La A 1 være at mynten lander på H i første kast, A 2 at mynten lander på H i andre kast,..., A 10 at mynten lander på H i tidende kast. Hva blir P(A 1 og A 2 og og A 10 )?

20 20 Trekning med tilbakelegging En bolle inneholder 7 kuler, 5 gule (Y) og to røde (R). To kuler trekkes med tilbakelegging, dvs. at det først trekkes en kule, så legges denne tilbake, og det trekkes en kule til. La Da er A = den første kulen er gul (Y) B = den andre kulen er gul (Y) P(begge kulene er gule) = P(A og B) = P(A) P(B A) = = siden vi nå har at: er altså A og B uavhengige. P(B A) = 5 7 = P(B)

21 21 Vi husker: Trekning uten tilbakelegging En bolle (urne) inneholder 7 kuler, 5 gule (Y) og to røde (R). To kuler trekkes uten tilbakelegging, dvs. at det først trekkes en og at det så trekkes en til uten å legge den første tilbake. P(begge kulene er gule) = P(A og B) = P(A) P(B A) = = 20 42

22 Merk: nå er P(B A) = 4 6 og P(B Ā) = 5 6. Vi kan da umiddelbart konkludere at A og B er avhengige hendelser. Hva er P(B)? P(B) = P(A og B) + P(Ā og B) = P(A) P(B A) + P(Ā) P(B Ā) = = = = = 5 7 Som igjen medfører at A og B er avhengige.

23 23 Formel for betinget sannsynlighet Ved å stokke om på den generelle multiplikasjonsregelen, P(A og B) = P(A) P(B A) får vi et uttrykk for sannsynligheten for hendelsen A gitt at hendelsen B har inntruffet: P(A og B) P(B A) = P(A)

24 24 Eksempel En student blir trukket tilfeldig fra en populasjon bestående av 200 studenter hvorav 140 studerer fulltid (80 kvinner og 60 menn) og 60 studerer deltid (40 kvinner og 20 menn). La hendelsen A være at studenten studerer fulltid og hendelse C at studenten er kvinne. a) Finn P(A), P(C), P(A og C) b) Finn P(A C) og P(C A) c) Er A og C uavhengige?

25 25 Uavhengighet og disjunkthet (4.6) Uavhengighet og disjunkthet er begreper som ofte blandes. La A og B være to hendelser med positive sannsynligheter P(A) og P(B). At A og B er disjunkte, betyr at de ikke kan inntreffe samtidig, dvs. at P(A og B) = 0 At A og B er uavhengige betyr at sannsynligheten for B ikke endrer seg dersom vi vet om A har inntruffet, dvs. at vi har P(A og B) = P(A)P(B A) = P(A)P(B) Men dette kan ikke være 0 da både P(A) og P(B) er positive. To hendelser kan derfor ikke både være disjunkte og uavhengige.

26 26 Bruk av sannsynlighetsregning

27 27 Eksempel: Kvalitetskontroll En produsent produserer en artikkel. I gjennomsnitt er 80% av artiklene feilfrie. Hver artikkel blir kontrollert før den sendes ut. Kontrolløren feilklassifiserer artikkelen 10% av gangene (dvs. sier at artikkelen er feilfri når den har feil, eller at den har feil når den er feilfri). Hvilken andel av artiklene blir klassifisert som feilfrie? Definer følgende hendelser: F: Artikkelen er feilfri. K: Artikkelen er klassifisert som feilfri av kontrollør Tegn et trediagram.

28 Her er F* brukt for F og K* for K i trediagrammet. Artikkelen blir klassisfisert feilfri for gren 1 og gren 3. Dermed summeres sannsynligheten for gren 1 og gren 3: P(K ) = = 0.74

29 29 Eksempel (forts.) Anta at bare artikler som blir klassifisert som feilfrie blir utsendt. Hva er andelen av feilfrie artikler blant de utsendte artiklene? P(F K ) = P(F og K ) P(K ) = = Så kvalitetskontrollen øker andelen av feilfrie artikler fra 80% til 97.3%.

30 30 Oppgave: Dopingtesting En viss type doping forekommer i 1% av populasjonen. Testen kan påvise dette i 95% av tilfellene hvor personen er dopet, men påviser det også feilaktig i 2% av tilfelllene hvor personen ikke er dopet. Hva er sannsynlighenten for at personen er dopet dersom dopingtesten er positiv? La D=personen er dopet A=testen er positiv

31 31 Oppgave: Det er oppgitt at P(A) = 0.60 P(B Ā) = 0.15 P(B A) = 0.05 a) Er A og B uavhengige? b) Hva er P(B)? c) Hva er P(A B)? (Vink: Tegn et sannsynlighetstre)

32 32 Oppgave: En 60 år gammel storrøyker oppsøker lege med kronisk hoste og kortpustethet. Legen er bekymret og definerer følgende hendelser: A: Pasientens symptom er kronisk hoste og kortpustethet. B: Pasienten har lungekreft Erfaringer viser at vi kan anta følgende sannsynligheter for 60 årige storrøykere: P(A B)=0.9, P(A B)=0.01, P(B)=0.05 Hva er sannsynligheten for at pasienten har lungekreft gitt symptomene, dvs P(B A)? A) 0.91 B) 0.77 C) 0.50 D) 0.83 E) 0.99 (Vink: Sannsynlighetstre!)

33 33 Diagnostiske tester S= syk person, S=frisk person. T = positiv test, T = negativ test. For legemidler vet man: P(T S): sannsynligheten for at testen slår ut positivt, gitt at personen er syk (sensitiviteten til testen). Ønskes høyest mulig. P( T S): sannsynligheten for at testen slår ut negativt, gitt at personen er frisk. (spesifisitet). Ønskes høyest mulig Interessant for pasienten: P(S T ): sannsynligheten for at du er syk, gitt at du har fått en positiv test. Positiv prediktiv verdi. P( S T ): sannsynligheten for at du er frisk, gitt at du har fått en negativ test. Negativ prediktiv verdi.

34 34 Hvorfor utføres ikke HIV-test som masseundersøkelse? P(S T ) = P(S og T ) P(T ) Hva er sannsynligheten for at en person med positiv HIV-test virkelig er HIV-smittet, P(S T )? Anta Sensitivitet av testen: P(T S)= 0.98 Spesifisitet av testen: P( T S)= 0.995, dvs. P(T S) = Svaret er avhengig av forekomsten av HIV i populasjonen, P(S) (prevalensen). Anta at forekomsten av HIV i en populasjon er P(S) =

35 P(S og T ) P(S T ) = = P(T ) = 0.09

36 x-akse: andel smittede i befolkningen. y-akse: andel som er smittet blant de med positiv test.

37 37 HIV-test Norge som helhet: P(S) = (anslag fra lærebok i medisinsk statistikk) gir P(S T ) = Sprøytemisbrukere: P(S) = 0.1 gir P(S T ) = Storby i sentral-afrika: P(S) = 0.25 gir P(S T ) = Dette gir et problem ved masseundersøkelser. De fleste av personene med positiv prøve kan faktisk være friske.

38 38 Oppgave: disjunkt To terninger blir kastet. Hendelsene er A=summen er 7, C=terningene viser det samme tallet, E=summen er 8. a) Hvilke par av hendelser er disjunkte? b) Finn sannsynlighetene P(A eller C), P(A eller E), og P(C eller E) Fasit: a) A og C, A og E, b) 1/3, 11/36, 1/6

39 39 Oppgave (Eksamen høst 2005) Hva er sannsynligheten for at summen av to terninger er større enn eller lik 10 gitt at minst en av terningene er 6? A) 1/4 B) 1/3 C) 5/11 D) 6/11 E) 1/2 Fasit: 5/11

40 40 Oppgave: uavhengighet Dersom P(A)=0.3 og P(B)=0.4 og A og B er uavhengige hendelser. Hva er sannsynlighetene a) P(A og B) b) P(B A) c) P(A B) Fasit: a) 0.12, b) 0.4, 0.3

41 41 Fasit: betinget rødt P(andre rødt først rødt)=(sum av sanns for gren 1+2)/(sum av sanns for grenene 1+2+3)=2/3

42 42 Fasit: deltidsstuderende a) A=fulltid C=kvinne P(A og C) = P(A) = n(a) n(s) = = 0.7 P(C) = n(c) n(s) = = 0.6 n(a og C) n(s) = = 0.4

43 43 Fasit: deltidsstuderende b)+c) b) P(A C) = P(C A) = P(A og C) P(C) P(A og C) P(A) = = 0.67 = = 0.57 c) A og C er avhengige siden P(A C) P(A), P(C A) P(C)

44 44 Fasit: dopingtest P(D A) = P(D og A) P(A) = = 0.32

Trekking uten tilbakelegging. Disjunkte hendelser (4.5) Forts. ST0202 Statistikk for samfunnsvitere

Trekking uten tilbakelegging. Disjunkte hendelser (4.5) Forts. ST0202 Statistikk for samfunnsvitere 2 Trekking uten tilbakelegging ST0202 Statistikk for samfunnsvitere o Lindqvist Institutt for matematiske fag En bolle inneholder 7 kuler, 5 gule (Y) og to røde (). To kuler trekkes uten tilbakelegging,

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Sannsynligheten for en hendelse (4.2) Sannsynligheten for en hendelse sier oss hvor ofte vi forventer at hendelsen inntreffer,

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Kapittel 4: Sannsynlighetsregning Bo Lindqvist Institutt for matematiske fag 2 Sannsynligheten for en hendelse (4.1) Sannsynligheten for en hendelse sier oss hvor ofte

Detaljer

Sannsynligheten for en hendelse (4.2) Empirisk sannsynlighet. ST0202 Statistikk for samfunnsvitere

Sannsynligheten for en hendelse (4.2) Empirisk sannsynlighet. ST0202 Statistikk for samfunnsvitere 2 Sannsynligheten for en hendelse (4.2) Sannsynligheten for en hendelse sier oss hvor ofte vi forventer at hendelsen inntreffer, dvs. den forventede relative frekvens av hendelsen. ST0202 Statistikk for

Detaljer

Sannsynligheten for en hendelse (4.2) Empirisk sannsynlighet. ST0202 Statistikk for samfunnsvitere

Sannsynligheten for en hendelse (4.2) Empirisk sannsynlighet. ST0202 Statistikk for samfunnsvitere 2 Sannsynligheten for en hendelse (4.2) Sannsynligheten for en hendelse sier oss hvor ofte vi forventer at hendelsen inntreffer, dvs. den forventede relative frekvens av hendelsen. ST0202 Statistikk for

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Loven om total sannsynlighet La A og Ā være komplementære hendelser, mens B er en annen hendelse. Da er: P(B) =P(B oga)+p(b

Detaljer

Loven om total sannsynlighet. Bayes formel. Testing for sykdom. ST0202 Statistikk for samfunnsvitere

Loven om total sannsynlighet. Bayes formel. Testing for sykdom. ST0202 Statistikk for samfunnsvitere 2 Loven om total sannsynlighet La A og Ā være komplementære hendelser, mens B er en annen hendelse. Da er: P(B) P(B oga)+p(b ogā) P(B A)P(A)+P(B Ā)P(Ā) ST0202 Statistikk for samfunnsvitere Bo Lindqvist

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 2.8: Bayes regel 3.1: Stokastisk variabel 3.2: Diskrete sannsynlighetsfordelinger 3.3: Kontinuerlige sannsynlighetsfordelinger Mette Langaas Foreleses onsdag 1. september 2010

Detaljer

Kapittel 2: Sannsynlighet

Kapittel 2: Sannsynlighet Kapittel 2: Sannsynlighet 2.1, 2.2: Utfallsrom og hendelser 2.3, 2.4: Kombinatorikk og sannsynlighet 2.5, 2.6, 2.7: Regneregler, betinget sanns. 2.8: Bayes regel Eirik Mo Institutt for matematiske fag,

Detaljer

Betinget sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk. Vi trenger en definisjon av betinget sannsynlighet!

Betinget sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk. Vi trenger en definisjon av betinget sannsynlighet! MAT000V Sannsynlighetsregning og kombinatorikk Betinget sannsynlighet og uavhengige hendelser Produktsetningen Total sannsynlighet og Bayes' setning Betinget sannsynlighet Vil repeterer først et eksempel

Detaljer

Betinget sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk. Vi trenger en definisjon av betinget sannsynlighet!

Betinget sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk. Vi trenger en definisjon av betinget sannsynlighet! MAT000V Sannsynlighetsregning og kombinatorikk Betinget sannsynlighet Vi repeterer først et eksempel fra samlingen for sist uke Betinget sannsynlighet og uavhengige hendelser Produktsetningen Total sannsynlighet

Detaljer

Utfallsrom og hendelser. Disjunkte hendelser. Kapittel 2: Sannsynlighet. Eirik Mo Institutt for matematiske fag, NTNU

Utfallsrom og hendelser. Disjunkte hendelser. Kapittel 2: Sannsynlighet. Eirik Mo Institutt for matematiske fag, NTNU 3 Utfallsrom og hendelser Kapittel 2: Sannsynlighet 2., 2.2: Utfallsrom og hendelser 2.3, 2.4: Kombinatorikk og sannsynlighet 2.5, 2.6, 2.7: Regneregler, betinget sanns. 2.8: Bayes regel DEF 2. Ufallsrom:

Detaljer

Betinget sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk. Vi trenger en definisjon av betinget sannsynlighet!

Betinget sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk. Vi trenger en definisjon av betinget sannsynlighet! MAT0100V Sannsynlighetsregning og kombinatorikk Betinget sannsynlighet og uavhengige hendelser Produktsetningen Total sannsynlighet og Bayes' setning Betinget sannsynlighet Vil repeterer først et eksempel

Detaljer

Oppgave 1 dvs 2 kort med samme verdi og 3 kort med ulike andre verdier. 4 verdier paret kan ta, og de to kortene i paret kan velges på måter.

Oppgave 1 dvs 2 kort med samme verdi og 3 kort med ulike andre verdier. 4 verdier paret kan ta, og de to kortene i paret kan velges på måter. TMA0 Statistikk Vår 008 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer Løsningsskisse Oppgave a Ett par, dvs kort med samme verdi og kort med ulike andre verdier.

Detaljer

SANNSYNLIGHETSREGNING

SANNSYNLIGHETSREGNING SANNSYNLIGHETSREGNING Er tilfeldigheter tilfeldige? Når et par får vite at de skal ha barn, vurderes sannsynligheten for pike eller gutt normalt til rundt 50/50. Det kan forklare at det fødes omtrent like

Detaljer

Forelesning 4, kapittel 3. : 3.4: Betinget sannsynlighet.

Forelesning 4, kapittel 3. : 3.4: Betinget sannsynlighet. Forelesning 4, kapittel 3. : 3.4: Betinget sannsynlighet. Eksempel 1 (begrunnelse for definisjonen av betinget sannsynlighet): Hendelse A er "sum minst 8 på kast med 2 terninger" P(A) = 15/36 P(A) < 1/2

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 Kp. 2 Sannsynlighetsregning (sannsynlighetsteori) 1 Grunnbegrep Stokastisk forsøk: forsøk med uforutsigbart utfall Enkeltutfall: et av de mulige

Detaljer

Kapittel 2: Sannsynlighet [ ]

Kapittel 2: Sannsynlighet [ ] Kapittel 2: Sannsynlighet [2.6-2.8] TMA4240 Statistikk (F2 og E7) 2.6, 2.7, 2.8: Betinget sannsynlighet [23.august 2004] Ole.Petter.Lodoen@math.ntnu.no p.1/18 Oppsummering fra 2.1-2.5 FENOMEN Eksperiment

Detaljer

Blokk1: Sannsynsteori

Blokk1: Sannsynsteori Blokk1: Sannsynsteori Statistikk er vitskapen om læring frå data, og måling, kontroll og kommunikasjon av usikkerheit (Davians Louis, Science, 2012). Vi lærer frå data ved å spesifisere ein statistisk

Detaljer

MULTIPLE CHOICE ST0103 BRUKERKURS I STATISTIKK September 2016

MULTIPLE CHOICE ST0103 BRUKERKURS I STATISTIKK September 2016 MULTIPLE CHOICE ST0103 BRUKERKURS I STATISTIKK September 2016 SETT RING RUNDT DET RIKTIGE SVARET FOR HVER OPPGAVE. Oppgave 1 Stokastisk forsøk Stokastiske forsøk karakteriseres ved to av følgende egenskaper.

Detaljer

Statistikk og økonomi, våren 2017

Statistikk og økonomi, våren 2017 Statistikk og økonomi, våren 207 Obligatorisk oppgave 3 Løsningsforslag Oppgave Produsenten av en type bærbar datamaskin har registrert at sannsynligheten er 0.2 for at tastaturet svikter, 0.09 for at

Detaljer

Sannsynlighetsregning og Statistikk

Sannsynlighetsregning og Statistikk Sannsynlighetsregning og Statistikk Leksjon 2. Leksjon 2 omhandler begreper og regneregler for sannsynligheter. Dette er behandlet i kapittel 3.1 og 3.2 i læreboka. Du bør når du har fullført leksjon 2

Detaljer

Betinget sannsynlighet, total sannsynlighet og Bayes setning Kapittel 4.5

Betinget sannsynlighet, total sannsynlighet og Bayes setning Kapittel 4.5 Betinget sannsynlighet, total sannsynlighet og Bayes setning Kapittel 4.5 På bakgrunn av materiale fra Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Vi vil først ved hjelp av et eksempel se

Detaljer

Tema 1: Hendelser, sannsynlighet, kombinatorikk Kapittel ST1101 (Gunnar Taraldsen) :19

Tema 1: Hendelser, sannsynlighet, kombinatorikk Kapittel ST1101 (Gunnar Taraldsen) :19 Tema 1: Hendelser, sannsynlighet, kombinatorikk Kapittel 2.1-2.7 ST1101 (Gunnar Taraldsen) 2019-01-12 17:19 Sentrale definisjoner og regneregler Definisjoner: Stokastisk forsøk, utfallsrom, hendelser (snitt,

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 3, blokk I Løsningsskisse Oppgave 1 Hvis hendelsene A og B er uavhengige, vil enhver kunnskap om hvorvidt A har

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 2 Sannsynlighetsregning (sannsynlighetsteori) 1 Grunnbegrep Stokastisk forsøk: forsøk med uforutsigbart utfall Enkeltutfall: et av de mulige

Detaljer

Følgelig vil sannsynligheten for at begge hendelsene inntreffer være null,

Følgelig vil sannsynligheten for at begge hendelsene inntreffer være null, Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 3, blokk I Løsningsskisse Oppgave 1 Hvis hendelsene A og B er uavhengige, vil enhver kunnskap om hvorvidt A har

Detaljer

Kapittel 4: Betinget sannsynlighet

Kapittel 4: Betinget sannsynlighet Kapittel 4: Betinget sannsynlighet Ofte vil kunnskap om at en hendelse har inntruffet påvirke sannsynligheten for en annen hendelse. Definisjon: Den betingede sannsynligheten for A gitt B er: P(A B) P(A

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 2.5: Addisjonsregler (union) 2.6: Betinget sannsynlighet 2.7: Multiplikasjonsregler (snitt) 2.8: Bayes regel (starte litt) Mette Langaas Foreleses mandag 30. august 2010 2 Kapittel

Detaljer

Sannsynlighetsregning og kombinatorikk

Sannsynlighetsregning og kombinatorikk Sannsynlighetsregning og kombinatorikk Introduksjon Formålet med sannsynlighet og kombinatorikk er å kunne løse problemer i statistikk, somoftegårutpååfattebeslutninger i situasjoner der tilfeldighet rår.

Detaljer

Kapittel 4: Betinget sannsynlighet

Kapittel 4: Betinget sannsynlighet Kapittel 4: Betinget sannsynlighet Ofte vil kunnskap om at en hendelse har inntruffet påvirke sannsynligheten for en annen hendelse. Terningkast. ={1,2,3,4,5,6}. A= odde ={1,3,5}. B= mindre enn 4 = {1,2,3}.

Detaljer

Betinget sannsynlighet, total sannsynlighet og Bayes setning Kap. 4.5 STK1000 H11

Betinget sannsynlighet, total sannsynlighet og Bayes setning Kap. 4.5 STK1000 H11 Betinget sannsynlighet, total sannsynlighet og Bayes setning Kap. 4.5 STK1000 H11 På bakgrunn av materiale fra Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Vi vil først ved hjelp av et eksempel

Detaljer

Fagdag 5-08.01.09. 2) Du skal fylle ut en tippekupong. På hvor mange måter kan dette gjøres?

Fagdag 5-08.01.09. 2) Du skal fylle ut en tippekupong. På hvor mange måter kan dette gjøres? Fagdag Plan Fagdag - 08.01.0 1,2 time: Repetisjon kapittel 3 - Sannsynlighet Oppgaver Teori (lesestoff) 3, time: Arbeide med.1 og.2: 16, 17, 18, 1 3, time: Ekstra vurdering før terminoppgjør Repetisjon

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 Kp. 2 Sannsynlighetsregning i (sannsynlighetsteori) t i) 2.5 Betinget sannsynlighet 1 Betinget sannsynlighet (kp. 2.5) - innledning Eks.: Et terningkast;

Detaljer

6 Sannsynlighetsregning

6 Sannsynlighetsregning MATEMATIKK: 6 Sannsynlighetsregning 6 Sannsynlighetsregning 6.1 Forsøk. Utfallsrom. Sannsynlighet (sjanse). Sannsynlighetsmodell Ved ett kast med en terning vet vi at terningen vil vise enten ett, to,

Detaljer

Betinget sannsynlighet, total sannsynlighet og Bayes setning

Betinget sannsynlighet, total sannsynlighet og Bayes setning etinget sannsynlighet, total sannsynlighet og ayes setning Vi vil først ved hjelp av et eksempel se intuitivt på hva betinget sannsynlighet betyr: Vi legger fire røde kort og to svarte kort i en bunke

Detaljer

Slide 1. Slide 2 Statistisk inferens. Slide 3. Introduction to the Practice of Statistics Fifth Edition

Slide 1. Slide 2 Statistisk inferens. Slide 3. Introduction to the Practice of Statistics Fifth Edition Slide 1 David S. Moore George P. McCabe Introduction to the Practice of Statistics Fifth Edition Chapter 4: Probability: The Study of Randomness 9/22/2010 Copyright 2005 by W. H. Freeman and Company Slide

Detaljer

- Et stokastisk forsøk er et forsøk underlagt tilfeldige variasjoner, for eks. kast med en terning, trekking av et lottotall o.l.

- Et stokastisk forsøk er et forsøk underlagt tilfeldige variasjoner, for eks. kast med en terning, trekking av et lottotall o.l. SANNSYNLIGHETSREGNING Terminologi Kombinatorikk Stokastisk Utfallsrom / utfall (enkeltutfall) - Et stokastisk forsøk er et forsøk underlagt tilfeldige variasjoner, for eks. kast med en terning, trekking

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 ÅM0 Sannsynlighetsregning med statistikk, våren 00 Kp. Sannsynlighetsregning (sannsynlighetsteori).5 (kp..5) - innledning Eks.: Et terningkast; {,, 3, 4, 5, 6}. Ved bruk av uniform modell: hvert utfall

Detaljer

Forelesning 3, kapittel 3. : 3.2: Sannsynlighetsregning. Kolmogoroffs aksiomer og bruk av disse.

Forelesning 3, kapittel 3. : 3.2: Sannsynlighetsregning. Kolmogoroffs aksiomer og bruk av disse. Forelesning 3, kapittel 3. : 3.2: Sannsynlighetsregning. Kolmogoroffs aksiomer og bruk av disse. Den klassiske definisjonen (uniform modell) av sannsynlighet for en hendelse A i et utfallsrom S er at sannsynligheten

Detaljer

STK1100 våren Betinget sannsynlighet og uavhengighet. Svarer til avsnittene 2.4 og 2.5 i læreboka

STK1100 våren Betinget sannsynlighet og uavhengighet. Svarer til avsnittene 2.4 og 2.5 i læreboka STK1100 våren 2017 Betinget sannsynlighet og uavhengighet Svarer til avsnittene 2.4 og 2.5 i læreboka Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Eksempel 1 Vi vil først ved hjelp av et eksempel

Detaljer

B A. Figur 1: Venn-diagram for(a B) = A B

B A. Figur 1: Venn-diagram for(a B) = A B TM Statistikk Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer Løsningsskisse Oppgave Et venn-diagram for = er vist i figur. Hendelsen er hele det skraverte området,

Detaljer

Oppgaver. Innhold. Sannsynlighet 1P, 1T og 2P-Y

Oppgaver. Innhold. Sannsynlighet 1P, 1T og 2P-Y Oppgaver Innhold 3.1 Hva er sannsynlighet?... 2 3.2 Addisjon av sannsynligheter. Gunstige og mulige utfall... 5 3.3 Beregne sannsynligheter ved å bruke tabeller... 9 3.4 Beregne sannsynligheter ved å bruke

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 TMA0 Statistikk Høst 0 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer, blokk I Løsningsskisse Oppgave Hendelsene A og B er ikke disjunkte, det vil si at de kan

Detaljer

Introduction to the Practice of Statistics

Introduction to the Practice of Statistics David S. Moore George P. McCabe Introduction to the Practice of Statistics Fifth Edition Chapter 4: Probability: The Study of Randomness Copyright 2005 by W. H. Freeman and Company Statistisk inferens

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA0 Sannsynlighetsregning med statistikk, våren 0 Kp. 3 Diskrete tilfeldige variable Noen viktige sannsynlighetsmodeller Noen viktige sannsynlighetsmodeller ( Sanns.modell : nå betyr det klasse/type sanns.fordeling.

Detaljer

Oppgaver. Innhold. Sannsynlighet Vg1P

Oppgaver. Innhold. Sannsynlighet Vg1P Oppgaver Innhold Modul 1. Hva er sannsynlighet?... 2 Modul 2. Addisjon av sannsynligheter. Gunstige og mulige utfall... 6 Modul 3. Beregne sannsynligheter ved å bruke tabeller... 10 Modul 4. Beregne sannsynligheter

Detaljer

Løsninger. Innhold. Sannsynlighet Vg1P

Løsninger. Innhold. Sannsynlighet Vg1P Løsninger Innhold Modul. Hva er sannsynlighet?... 2 Modul 2. Addisjon av sannsynligheter. Gunstige og mulige utfall... 7 Modul 3. Beregne sannsynligheter ved å bruke tabeller... 3 Modul 4. Beregne sannsynligheter

Detaljer

Sannsynlighet (Kap 3)

Sannsynlighet (Kap 3) Sannsynlighet (Kap 3) Medisinsk statistikk Del I 3 sept. 2008 Eirik Skogvoll, 1.amanuensis/ overlege Hva er sannsynlighet? Grunnleggende sannsynlighetsregning 1 Brystkreft (Eks. 3.1) Forekomst av brystkreft

Detaljer

10.4 Sannsynligheter ved flere i utvalget (kombinatorikk)

10.4 Sannsynligheter ved flere i utvalget (kombinatorikk) 10. er ved flere i utvalget (kombinatorikk) Så langt i framstillingen har vi diskutert den språklige siden, den matematiske tolkningen av sannsynlighetsbegrepet og presentert ulike modeller som kan anvendes

Detaljer

4.4 Sum av sannsynligheter

4.4 Sum av sannsynligheter 4.4 Sum av sannsynligheter Nina trekker kort fra en vanlig kortstokk med 52 kort. Vi innfører hendingene H: Kortet er en hjerter S: Kortet er en spar Det er 13 hjerter og 13 spar i stokken. Sannsynligheten

Detaljer

Betinget sannsynlighet, Total sannsynlighet og Bayes setning

Betinget sannsynlighet, Total sannsynlighet og Bayes setning Betinget sannsynlighet, Total sannsynlighet og Bayes setning Innhold: Produktsetning, avhengighet, betinget sannsynlighet (.2,.) Setningen om total sannsynlighet (.4) Bayes setning (.4) Disse tingene henger

Detaljer

ECON Statistikk 1 Forelesning 3: Sannsynlighet. Jo Thori Lind

ECON Statistikk 1 Forelesning 3: Sannsynlighet. Jo Thori Lind ECON2130 - Statistikk 1 Forelesning 3: Sannsynlighet Jo Thori Lind j.t.lind@econ.uio.no Oversikt 1. Hva er sannsynlighet? 2. Grunnleggende regler for sannsynlighetsregning 3. Tilfeldighet i datamaskinen

Detaljer

TMA4240 Statistikk H2010 Kapittel 5: Diskrete sannsynlighetsfordelinger : Uniform, binomisk, hypergeometrisk fordeling

TMA4240 Statistikk H2010 Kapittel 5: Diskrete sannsynlighetsfordelinger : Uniform, binomisk, hypergeometrisk fordeling TMA4240 Statistikk H2010 Kapittel 5: Diskrete sannsynlighetsfordelinger 5.1-5.4: Uniform, binomisk, hypergeometrisk fordeling Mette Langaas 2 Arbeidshverdag etter endt studium Studere et fenomen (f.eks.

Detaljer

Kapittel 4: Sannsynlighet - Studiet av tilfeldighet

Kapittel 4: Sannsynlighet - Studiet av tilfeldighet Kapittel 4: Sannsynlighet - Studiet av tilfeldighet Vi så i forrige kapittel at utvalgsfordeling til en statistikk (observator) er fordelingen av verdiene til statistikken over alle utvalg av samme størrelse

Detaljer

Sannsynlighetsregning

Sannsynlighetsregning Sannsynlighetsregning Per G. Østerlie Thora Storm vgs per.osterlie@stfk.no 5. april 203 Hva og hvorfor? Hva? Vi får høre at det er sannsynlig at et eller annet kommer til å skje. Sannsynligheten for å

Detaljer

Kapittel 2, Sannsyn. Definisjonar og teorem på lysark, eksempel og tolking på tavla. TMA september 2016 Ingelin Steinsland

Kapittel 2, Sannsyn. Definisjonar og teorem på lysark, eksempel og tolking på tavla. TMA september 2016 Ingelin Steinsland Kapittel 2, Sannsyn 2.1 Utfallsrom Onsdag 2.2 Hendingar Onsdag 2.3 Telle mogeleg utfall: I dag 2.4 Sannsyn for ei hending: Onsdag 2.5 Addetive reglar: Onsdag 2.6 Betinga sannsyn, uavhengighet og produktregelen

Detaljer

Løsninger. Innhold. Sannsynlighet 1P, 1T og 2P-Y

Løsninger. Innhold. Sannsynlighet 1P, 1T og 2P-Y Løsninger Innhold 3. Hva er sannsynlighet?... 2 3.2 Addisjon av sannsynligheter. Gunstige og mulige utfall... 3.3 Beregne sannsynligheter ved å bruke tabeller... 2 3.4 Beregne sannsynligheter ved å bruke

Detaljer

TMA4240 Statistikk 2014

TMA4240 Statistikk 2014 TMA0 Statistikk 0 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer, blokk I Løsningsskisse Oppgave Hendelsene A og B er ikke disjunkte, det vil si at de kan ha

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Fra første forelesning: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av

Detaljer

ØVINGER 2017 Løsninger til oppgaver. 3.1 Myntkast For et enkelt myntkast har vi to mulige utfall, M og K. Utfallsrommet blir

ØVINGER 2017 Løsninger til oppgaver. 3.1 Myntkast For et enkelt myntkast har vi to mulige utfall, M og K. Utfallsrommet blir ØVINGER 017 Løsninger til oppgaver Øving 3.1 Myntkast For et enkelt myntkast har vi to mulige utfall, M og K. Utfallsrommet blir S = {M, K}. Med to etterfølgende myntkast blir utfallsrommet S = {MM, MK,

Detaljer

Fra første forelesning:

Fra første forelesning: 2 Fra første forelesning: ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag opulasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av populasjonen

Detaljer

9.5 Uavhengige hendinger

9.5 Uavhengige hendinger 9. Uavhengige hendinger Vi kaster en terning to ganger og innfører hendingene A: Det første kastet gir sekser B: Det andre kastet gir sekser Om vi får sekser på det første kastet, endrer ikke det sannsynligheten

Detaljer

Kapittel 4.3: Tilfeldige/stokastiske variable

Kapittel 4.3: Tilfeldige/stokastiske variable Kapittel 4.3: Tilfeldige/stokastiske variable Litt repetisjon: Sannsynlighetsteori Stokastisk forsøk og sannsynlighet Tilfeldig fenomen Individuelle utfall er usikre, men likevel et regulært mønster for

Detaljer

Total sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk = Vi kan skrive en hendelse B som en disjunkt

Total sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk = Vi kan skrive en hendelse B som en disjunkt MAT000V Sannsynlighetsregning og kombinatorikk Total sannsynlighet Vi kan skrive en hendelse B som en disjunkt union av A B og A B Total sannsynlighet og Bayes' setning Kombinatorikk Ordnede utvalg med

Detaljer

Betingede sannsynligheter Fra spøkefull Monty Hall til alvorsfull kreftdiagnostikk

Betingede sannsynligheter Fra spøkefull Monty Hall til alvorsfull kreftdiagnostikk Betingede sannsynligheter Fra spøkefull Monty Hall til alvorsfull kreftdiagnostikk Solve Sæbø IKBM, UMB Innhold The Monty Hall game Vinner du bilen eller geita? Den statistiske begrunnelsen for riktig

Detaljer

Quiz, 4 Kombinatorikk og sannsynlighet

Quiz, 4 Kombinatorikk og sannsynlighet Quiz, 4 Kombinatorikk og sannsynlighet Innhold 4.1 Begreper i sannsynlighetsregning... 2 4.2 Addisjon av sannsynligheter... 6 4.3 Produktsetningen for sannsynlighet... 12 4.4 Kombinatorikk og sannsynlighetsberegning...

Detaljer

Sannsynlighetsregning

Sannsynlighetsregning Kapittel 3: Sannsynlighetsregning Definisjoner: Noen grunnleggende begrep. Stokastisk forsøk: Et forsøk/eksperiment der det er tilfeldig hva utfallet blir. Utfallsrom, S: Mengden av alle mulige utfall

Detaljer

Fasit. Grunnbok. Kapittel 5. Bokmål

Fasit. Grunnbok. Kapittel 5. Bokmål Fasit Grunnbok Kapittel 5 Bokmål Kapittel 5 Fra erfaring til sannsynlighet 5. a P = 3 5.2 a P = 2 5.3 B har rett 5.4 a P = 4 b P = 4 b P = 2 b c P = 7 c P = 5 2 c d P = 25 d P = 5 2 5.5 a b Den eksperimentelle

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Kapittel 7: Utvalgsfordeling Bo Lindqvist Institutt for matematiske fag 2 Fra kapittel 1: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg

Detaljer

Høgskolen i Telemark. Institutt for økonomi og informatikk FORMELSAMLING Statistikk I. Til bruk ved eksamen. Per Chr. Hagen

Høgskolen i Telemark. Institutt for økonomi og informatikk FORMELSAMLING Statistikk I. Til bruk ved eksamen. Per Chr. Hagen Høgskolen i Telemark Institutt for økonomi og informatikk FORMELSAMLING 6005 Statistikk I Til bruk ved eksamen Per Chr. Hagen . Sannsynlighetsregning. Regneregler Komplementsetningen: Addisjonssetningen:

Detaljer

1 Section 4-1: Introduksjon til sannsynlighet. 2 Section 4-2: Enkel sannsynlighetsregning. 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger

1 Section 4-1: Introduksjon til sannsynlighet. 2 Section 4-2: Enkel sannsynlighetsregning. 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger 1 Section 4-1: Introduksjon til sannsynlighet 2 Section 4-2: Enkel sannsynlighetsregning 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger 4 Section 5-2: Tilfeldige variable 5 Section 5-3: Binomisk

Detaljer

Statistikk 1 kapittel 3

Statistikk 1 kapittel 3 Statistikk 1 kapittel 3 Nico Keilman ECON 2130 Vår 2014 Kapittel 3 Sannsynlighetsregning Formål: å kvantifisere usikkerhet ved hjelp av sannsynligheter Viktige begreper stokastisk forsøk: et forsøk der

Detaljer

Betinget sannsynlighet

Betinget sannsynlighet Betinget sannsynlighet Multiplikasjonsloven for sannsynligheter (s. 49 i bok): P( AB ) = P( A B ) P(B) Veldig viktig verktøy for å finne sannsynligheter for snitt. (Bevises ved rett fram manipulering av

Detaljer

TMA4240 Statistikk Høst 2013

TMA4240 Statistikk Høst 2013 TMA0 Statistikk Høst 0 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer, blokk I Løsningsskisse Oppgave Et venn-diagram for (A [ B) 0 = A 0 \ B 0 er vist i figur.

Detaljer

Formelsamling i medisinsk statistikk

Formelsamling i medisinsk statistikk Formelsamling i medisinsk statistikk Versjon av 6. mai 208 Dette er en formelsamling til O. O. Aalen (red.): Statistiske metoder i medisin og helsefag, Gyldendal, 208. Gjennomsnitt x = n (x + x 2 + x 3

Detaljer

Litt mer om den hypergeometriske fordelingen og dens tilnærming av binomisk fordeling.

Litt mer om den hypergeometriske fordelingen og dens tilnærming av binomisk fordeling. 1 ECON 2130 HG mars 2015 Litt mer om den hypergeometriske fordelingen og dens tilnærming av binomisk fordeling. Grunnen til dette supplementet er dels at forholdet mellom hypergeometrisk og binomisk fordeling

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 ÅMA0 Sannsynlighetsregning med statistikk, våren 008 Kp. Sannsynlighetsregning (sannsynlighetsteori).5 Betinget sannsynlighet Betinget sannsynlighet (kp..5) - innledning Eks.: Et terningkast; {,, 3, 4,

Detaljer

Løsningskisse seminaroppgaver uke 15

Løsningskisse seminaroppgaver uke 15 HG April 0 Løsningskisse seminaroppgaver uke 5 Oppg. 5.6 La X = antall barn i utvalget som har lærevansker. Andel barn med lærevansker i populasjonen av barn antas å være p = 0,5. Utvalgsstørrelsen er

Detaljer

TMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger

TMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger TMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger Binomisk fordeling* ( ) n b(x; n, p) = p x (1 p) n x = x ( ) n p x q n x, x x = 0, 1, 2,..., n Fenomén: i) n forsøk. ii) Suksess/fiasko

Detaljer

STK1100 våren Kombinatorikk = = Uniform sannsynlighetsmodell. Et stokastisk forsøk har N utfall. Det er de mulige utfallene for forsøket.

STK1100 våren Kombinatorikk = = Uniform sannsynlighetsmodell. Et stokastisk forsøk har N utfall. Det er de mulige utfallene for forsøket. ST1100 våren 2017 ombinatorikk Uniform sannsynlighetsmodell Et stokastisk forsøk har N utfall. Det er de mulige utfallene for forsøket. Vi antar at de N utfallene er like sannsynlige. Svarer til avsnitt

Detaljer

EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE

EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 Bokmål Faglig kontakt under eksamen: Øyvind Bakke, tlf. 99041673 EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE Tirsdag

Detaljer

TMA4240 Statistikk Høst 2008

TMA4240 Statistikk Høst 2008 TMA4240 Statistikk Høst 2008 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7 Oppgave 1 Tippekonkurranse Denne oppgaven er ment som en kjapp test på hva du har

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Grunnbegrep. Grunnbegrep, sannsynligheten for et utfall

ÅMA110 Sannsynlighetsregning med statistikk, våren Grunnbegrep. Grunnbegrep, sannsynligheten for et utfall ÅM110 Sannsynlighetsregning med statistikk, våren 006 Kp. Sannsynlighetsregning (sannsynlighetsteori) 1 Grunnbegrep Stokastisk forsøk: forsøk med uforutsigbart utfall Enkeltutfall: et av de mulige utfallen

Detaljer

Sannsynlighet 1T, Prøve 2 løsning

Sannsynlighet 1T, Prøve 2 løsning Sannsynlighet T, Prøve 2 løsning Del Tid: 60 min Hjelpemidler: Skrivesaker Oppgave Du snurrer et lykkehjul som stanser tilfeldig på én av bokstavene. Se figuren ovenfor. a) Hvor mange mulige utfall finnes

Detaljer

STK1100 våren 2017 Kombinatorikk

STK1100 våren 2017 Kombinatorikk STK1100 våren 2017 Kombinatorikk Svarer til avsnitt 2.3 i læreboka Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Uniform sannsynlighetsmodell Et stokastisk forsøk har N utfall. Det er de mulige

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 11: Anvendelser av kjikvadratfordelingen: Kjikvadrattester Situasjon: Et tilfeldig utvalg av n individer er trukket

Detaljer

Statistikk 1 kapittel 3

Statistikk 1 kapittel 3 Statistikk 1 kapittel 3 Nico Keilman ECON 2130 Vår 2016 Kapittel 3 Sannsynlighetsregning Formål: å kvantifisere usikkerhet ved hjelp av sannsynligheter Viktige begreper stokastisk forsøk: et forsøk der

Detaljer

sannsynlighet for hendelse = antall ganger hendelsen inntreffer antall forsøk

sannsynlighet for hendelse = antall ganger hendelsen inntreffer antall forsøk Forrige forelesning oppsummert på 90 sekunder "stokastisk forsøk": myntkast, terningkast, trekking av kort,... utfallsrom: alle de mulige utfallene av et stokastisk forsøk eksempel på utfallsrom: kaster

Detaljer

1 Sannsynlighetsrgning

1 Sannsynlighetsrgning 1 Sannsynlighetsrgning 1.1 Det er 13 grønne og 18 røde baller i en eske. Vi trekker ut to baller etter hverandre. a) Hva er sannsynligheten for å få to grønne baller? Svar: P(g 1, g 2 ) = p(g 1 ) p(g 2

Detaljer

Testobservator for kjikvadrattester

Testobservator for kjikvadrattester ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 11: Anvendelser av kjikvadratfordelingen: Kjikvadrattester Situasjon: t tilfeldig utvalg av n individer er trukket

Detaljer

Løsningskisse for oppgaver til undervisningsfri uke 8 ( februar 2012)

Løsningskisse for oppgaver til undervisningsfri uke 8 ( februar 2012) 1 ECON 130 HG - februar 01 Løsningskisse for oppgaver til undervisningsfri uke 8 (0.-. februar 01) Oppg..1. Variabel: x = antall kundehenvendelser pr. dag 1. Antall observasjoner: n = 100 dager. I Excel

Detaljer

Datainnsamling, video av forelesning og referansegruppe

Datainnsamling, video av forelesning og referansegruppe Datainnsamling, video av forelesning og referansegruppe Datainnsamling Om du ikkje alt har gjort det: https://wiki.math.ntnu.no/tma4240/2015h/start Video http://video.adm.ntnu.no/serier/55d47b463d96a Referansegruppe

Detaljer

Sannsynlighet: Studiet av tilfeldighet

Sannsynlighet: Studiet av tilfeldighet Sannsynlighet: Studiet av tilfeldighet Vi så i forrige kapittel at utvalgsfordeling til en observator er fordelingen av verdien til observatoren i alle utvalg av samme størrelse fra populasjonen. Spesielt

Detaljer

Statistikk 1 kapittel 5

Statistikk 1 kapittel 5 Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2017 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel med en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like

Detaljer

Statistikk 1 kapittel 5

Statistikk 1 kapittel 5 Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2015 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel om en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like

Detaljer

Emnenavn: Eksamenstid: 4 timer. Faglærer: Hans Kristian Bekkevard

Emnenavn: Eksamenstid: 4 timer. Faglærer: Hans Kristian Bekkevard EKSAMEN Emnekode: SFB107111 Emnenavn: Metode 1, statistikk deleksamen Dato: 16. mai 2017 Hjelpemidler: Godkjent kalkulator og vedlagt formelsamling m/tabeller Eksamenstid: 4 timer Faglærer: Hans Kristian

Detaljer

Statistikk 1 kapittel 5

Statistikk 1 kapittel 5 Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2016 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel med en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Tilfeldige variable (5.2) Dersom vi til hvert utfall av eksperimentet tilordner et tall, har vi laget en tilfeldig variabel.

Detaljer

Tilfeldige variable (5.2)

Tilfeldige variable (5.2) Tilfeldige variable (5.) Dersom vi til hvert utfall av eksperimentet tilordner et tall, har vi laget en tilfeldig variabel. Tilfeldig variabel: En variabel som har en numerisk verdi for hvert utfall i

Detaljer