1 Sannsynlighetsrgning

Størrelse: px
Begynne med side:

Download "1 Sannsynlighetsrgning"

Transkript

1 1 Sannsynlighetsrgning 1.1 Det er 13 grønne og 18 røde baller i en eske. Vi trekker ut to baller etter hverandre. a) Hva er sannsynligheten for å få to grønne baller? Svar: P(g 1, g 2 ) = p(g 1 ) p(g 2 g 1 ) = = = 0.17 b) Hva er sannsynligheten for å få grønn ball på første trekk og rød ball på andre trekk? Svar: P(g 1, r 2 ) = p(g 1 ) p(r 2 g 1 ) = = = 0.25 c) Hva er sannsynligheten for å få to røde baller? Svar: P(r 1, r 2 ) = p(r 1 ) p(r 2 r 1 ) = = = 0.33 d) Hva er sannsynligheten for å få en ball fra hver farge? Svar:P(g 1, r 2 ) + P(r 1, g 2 ) = P(g 1 ) P(r 2 g 1 ) + P(r 1 ) P(g 2 r 1 ) = = =

2 1.2 Det er 11 grønne og 13 røde baller i en eske. Vi trekker ut to baller etter hverandre. a) Hva er sannsynligheten for å få to grønne baller? Svar: P(g 1, g 2 ) = p(g 1 ) p(g 2 g 1 ) = = = 0.20 b) Hva er sannsynligheten for å få grønn ball på første trekk og rød ball på andre trekk? Svar: P(g 1, r 2 ) = p(g 1 ) p(r 2 g 1 ) = = = 0.26 c) Hva er sannsynligheten for å få to røde baller? Svar: P(r 1, r 2 ) = p(r 1 ) p(r 2 r 1 ) = = = 0.28 d) Hva er sannsynligheten for å få en ball fra hver farge? Svar:P(g 1, r 2 ) + P(r 1, g 2 ) = P(g 1 ) P(r 2 g 1 ) + P(r 1 ) P(g 2 r 1 ) = = =

3 1.3 Det er 5 grønne og 13 røde baller i en eske. Vi trekker ut to baller etter hverandre. a) Hva er sannsynligheten for å få to grønne baller? Svar: P(g 1, g 2 ) = p(g 1 ) p(g 2 g 1 ) = = = 0.07 b) Hva er sannsynligheten for å få grønn ball på første trekk og rød ball på andre trekk? Svar: P(g 1, r 2 ) = p(g 1 ) p(r 2 g 1 ) = = = 0.21 c) Hva er sannsynligheten for å få to røde baller? Svar: P(r 1, r 2 ) = p(r 1 ) p(r 2 r 1 ) = = = 0.51 d) Hva er sannsynligheten for å få en ball fra hver farge? Svar:P(g 1, r 2 ) + P(r 1, g 2 ) = P(g 1 ) P(r 2 g 1 ) + P(r 1 ) P(g 2 r 1 ) = = =

4 1.4 Du kaster en terning to ganger. Viktig utgangspunkt: For to terninger er det totalt 36 ulike mulighter!! (1, 1)(1, 2)(1, 3)(1, 4)(1, 5)(1, 6) (3, 1)(3, 2)(3, 3)(3, 4)(3, 5)(3, 6) (4, 1)(4, 2)(4, 3)(4, 4)(4, 5)(4, 6) a) Hva er sannsynligheten for å få en 5 er på første terning? Svar: Gunstige utfall med 5 på første terning: P(første terning viser 5) = 6 36 = 0.17 b) Hva er sannsynligheten for at sum antall øyne er lik 2? Svar: For sum = 2 er gunstige utfall: (1, 1) Konklusjon: Det er 1 muliheter for denne hendelsen. P(s = 2) = 1 36 = 0.03 c) Hva er sannsynligheten for å få minst en 5 er? Svar: Gunstige utfall for minst en 5 er: (1, 5), (5, 1), (2, 5), (5, 2), (3, 5), (5, 3), (4, 5), (5, 4), (5, 5), (6, 5), (5, 6) Konklusjon: Det er 11 muliheter for denne hendelsen. P(minst en 5 er) = = 0.31 d) Hva er sannsynligheten for at sum antall øyne er høyest 4? Svar: Legg merke til at sum antall øyne er høyest 4 består av: sum = 2 : som er (1, 1) sum = 3 : som er (1, 2), (2, 1) sum = 4 : som er (1, 3), (2, 2), (3, 1) P(sum høyest 4) = 6 36 =

5 1.5 Du kaster en terning to ganger. Viktig utgangspunkt: For to terninger er det totalt 36 ulike mulighter!! (1, 1)(1, 2)(1, 3)(1, 4)(1, 5)(1, 6) (3, 1)(3, 2)(3, 3)(3, 4)(3, 5)(3, 6) (4, 1)(4, 2)(4, 3)(4, 4)(4, 5)(4, 6) a) Hva er sannsynligheten for å få en 2 er på første terning? Svar: Gunstige utfall med 2 på første terning: P(første terning viser 2) = 6 36 = 0.17 b) Hva er sannsynligheten for at sum antall øyne er lik 3? Svar: For sum = 3 er gunstige utfall: (1, 2), (2, 1) Konklusjon: Det er 2 muliheter for denne hendelsen. P(s = 3) = 2 36 = 0.06 c) Hva er sannsynligheten for å få minst en 6 er? Svar: Gunstige utfall for minst en 6 er: (1, 6), (6, 1), (2, 6), (6, 2), (3, 6), (6, 3), (4, 6), (6, 4), (5, 6), (6, 5), (6, 6) Konklusjon: Det er 11 muliheter for denne hendelsen. P(minst en 6 er) = = 0.31 d) Hva er sannsynligheten for at sum antall øyne er høyest 5? Svar: Legg merke til at sum antall øyne er høyest 5 består av: sum = 2 : som er (1, 1) sum = 3 : som er (1, 2), (2, 1) sum = 4 : som er (1, 3), (2, 2), (3, 1) sum = 5 : som er (1, 4), (2, 3), (3, 2), (4, 1) Konklusjon: Det er 10 muliheter for denne hendelsen. P(sum høyest 5) = =

6 1.6 Du kaster en terning to ganger. Viktig utgangspunkt: For to terninger er det totalt 36 ulike mulighter!! (1, 1)(1, 2)(1, 3)(1, 4)(1, 5)(1, 6) (3, 1)(3, 2)(3, 3)(3, 4)(3, 5)(3, 6) (4, 1)(4, 2)(4, 3)(4, 4)(4, 5)(4, 6) a) Hva er sannsynligheten for å få en 6 er på første terning? Svar: Gunstige utfall med 6 på første terning: P(første terning viser 6) = 6 36 = 0.17 b) Hva er sannsynligheten for at sum antall øyne er lik 3? Svar: For sum = 3 er gunstige utfall: (1, 2), (2, 1) Konklusjon: Det er 2 muliheter for denne hendelsen. P(s = 3) = 2 36 = 0.06 c) Hva er sannsynligheten for å få minst en 2 er? Svar: Gunstige utfall for minst en 2 er: (1, 2), (2, 1), (2, 2), (3, 2), (2, 3), (4, 2), (2, 4), (5, 2), (2, 5), (6, 2), (2, 6) Konklusjon: Det er 11 muliheter for denne hendelsen. P(minst en 2 er) = = 0.31 d) Hva er sannsynligheten for at sum antall øyne er høyest 3? Svar: Legg merke til at sum antall øyne er høyest 3 består av: sum = 2 : som er (1, 1) sum = 3 : som er (1, 2), (2, 1) Konklusjon: Det er 3 muliheter for denne hendelsen. P(sum høyest 3) = 3 36 =

Trekking uten tilbakelegging. Disjunkte hendelser (4.5) Forts. ST0202 Statistikk for samfunnsvitere

Trekking uten tilbakelegging. Disjunkte hendelser (4.5) Forts. ST0202 Statistikk for samfunnsvitere 2 Trekking uten tilbakelegging ST0202 Statistikk for samfunnsvitere o Lindqvist Institutt for matematiske fag En bolle inneholder 7 kuler, 5 gule (Y) og to røde (). To kuler trekkes uten tilbakelegging,

Detaljer

TRINN 1: HVA ER ET SET?

TRINN 1: HVA ER ET SET? ALDER: 8 år til voksen ANTALL SPILLERE: 2 til 4 FORMÅL MED SPILLET: Å skåre flest poeng. Skår poeng ved å lage SET med din terning og de som allerede er på brettet. Jo flere SET du lager, jo flere poeng

Detaljer

Prøve 6 1T 24.02.12 80 minutter. Alle hjelpemidler

Prøve 6 1T 24.02.12 80 minutter. Alle hjelpemidler Prøve 6 T 24.02.2 80 minutter. Alle hjelpemidler Oppgave I boks A er det 6 svarte og 2 hvite kuler. I boks B er det 8 svarte og 4 hvite kuler. Vi trekker en kule fra en av krukkene. a) va er sannsynligheten

Detaljer

1 Section 4-1: Introduksjon til sannsynlighet. 2 Section 4-2: Enkel sannsynlighetsregning. 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger

1 Section 4-1: Introduksjon til sannsynlighet. 2 Section 4-2: Enkel sannsynlighetsregning. 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger 1 Section 4-1: Introduksjon til sannsynlighet 2 Section 4-2: Enkel sannsynlighetsregning 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger 4 Section 5-2: Tilfeldige variable 5 Section 5-3: Binomisk

Detaljer

Notater til forelesning i Sannsynlighetsregning SK 101 Matematikk i grunnskolen I

Notater til forelesning i Sannsynlighetsregning SK 101 Matematikk i grunnskolen I Notater til forelesning i Sannsynlighetsregning SK 101 Matematikk i grunnskolen I 4 Kombinatorikk Vi må lære tellemetoder når valgtrær, som vi brukte tidligere, blir for store og vanskelig å håndtere.

Detaljer

Mappeoppgave om sannsynlighet

Mappeoppgave om sannsynlighet Mappeoppgave om sannsynlighet Statistiske eksperimenter Første situasjon Vi kom frem til å bruke Yatzy som et spill vi ønsket å beregne sannsynlighet ut ifra. Vi valgte ut tre like og to par. Etter en

Detaljer

Deterministiske fenomener MAT0100V Sannsynlighetsregning og kombinatorikk

Deterministiske fenomener MAT0100V Sannsynlighetsregning og kombinatorikk Deterministiske fenomener MAT0100V Sannsynlighetsregning og kombinatorikk Almanakk for Norge viser: når det er fullmåne når det er soloppgang og solnedgang Grunnleggende sannsynlighetsregning Det er mulig

Detaljer

Læringsmiljø Hadeland. Felles skoleutviklingsprosjekt for Gran, Lunner og Jevnaker. Vurderingsbidrag

Læringsmiljø Hadeland. Felles skoleutviklingsprosjekt for Gran, Lunner og Jevnaker. Vurderingsbidrag Vurderingsbidrag Fag: Matematikk Tema: Sannsynlighet Trinn: 10 Tidsramme: 10 12 timer ----------------------------------------------------------------------------- Undervisningsplanlegging Konkretisering

Detaljer

ST0202 Statistikk for samfunnsvitere [4]

ST0202 Statistikk for samfunnsvitere [4] ST0202 Statistikk for samfunnsvitere [4] Kapittel 4: Sannsynlighet 4.4: Disjunkte hendelser, 4.5: Uavhengige hendelser 4.6: Er disjunkthet og uavhengighet relatert til hverandre? Bruk av sannsynlighetsregning

Detaljer

9.5 Uavhengige hendinger

9.5 Uavhengige hendinger 9. Uavhengige hendinger Vi kaster en terning to ganger og innfører hendingene A: Det første kastet gir sekser B: Det andre kastet gir sekser Om vi får sekser på det første kastet, endrer ikke det sannsynligheten

Detaljer

ENT3R. Oppgavehefte. Basert på tidligere eksamener for 10. klasse. Tommy Odland 2/4/2014

ENT3R. Oppgavehefte. Basert på tidligere eksamener for 10. klasse. Tommy Odland 2/4/2014 ENT3R Oppgavehefte Basert på tidligere eksamener for 10. klasse Tommy Odland 2/4/2014 Dette er et oppgavehefte med oppgaver inspirert fra tidligere eksamener for 10. klassinger. Målet er at heftet skal

Detaljer

Datainnsamling, video av forelesning og referansegruppe

Datainnsamling, video av forelesning og referansegruppe Datainnsamling, video av forelesning og referansegruppe Datainnsamling Om du ikkje alt har gjort det: https://wiki.math.ntnu.no/tma4240/2015h/start Video http://video.adm.ntnu.no/serier/55d47b463d96a Referansegruppe

Detaljer

Oppgaver. Innhold. Sannsynlighet Vg1P

Oppgaver. Innhold. Sannsynlighet Vg1P Oppgaver Innhold Modul 1. Hva er sannsynlighet?... 2 Modul 2. Addisjon av sannsynligheter. Gunstige og mulige utfall... 6 Modul 3. Beregne sannsynligheter ved å bruke tabeller... 10 Modul 4. Beregne sannsynligheter

Detaljer

Sannsynlighetsregning

Sannsynlighetsregning Sannsynlighetsregning Eksamensoppgaver Våren 2015 OPPGAVE 4 (UTEN HJELPEMIDLER) Tenk deg at du har ti bananer i skapet. Fem av dem er gule, tre er grønne, og to er blitt brune. Du tar tilfeldig to bananer.

Detaljer

Forelesning 4, kapittel 3. : 3.4: Betinget sannsynlighet.

Forelesning 4, kapittel 3. : 3.4: Betinget sannsynlighet. Forelesning 4, kapittel 3. : 3.4: Betinget sannsynlighet. Eksempel 1 (begrunnelse for definisjonen av betinget sannsynlighet): Hendelse A er "sum minst 8 på kast med 2 terninger" P(A) = 15/36 P(A) < 1/2

Detaljer

Regler for: Ungdomstrinnet. Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene!

Regler for: Ungdomstrinnet. Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! (x²) 1 2 Regler for: getsmart Grå Ungdomstrinnet 8 _ (x²) 1 2 4 (x²) 1 2 _ (x²) 1 2 _ 4 _ 8 Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! Sjekk

Detaljer

4.4 Sum av sannsynligheter

4.4 Sum av sannsynligheter 4.4 Sum av sannsynligheter Nina trekker kort fra en vanlig kortstokk med 52 kort. Vi innfører hendingene H: Kortet er en hjerter S: Kortet er en spar Det er 13 hjerter og 13 spar i stokken. Sannsynligheten

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 2.5: Addisjonsregler (union) 2.6: Betinget sannsynlighet 2.7: Multiplikasjonsregler (snitt) 2.8: Bayes regel (starte litt) Mette Langaas Foreleses mandag 30. august 2010 2 Kapittel

Detaljer

Forsøk med sannsynlighetsregning/fra forsøk til sannsynlighet

Forsøk med sannsynlighetsregning/fra forsøk til sannsynlighet Sannsynlighet Sannsynligheter angis som 1. (desimal)tall fra 0 til 1, der 0 angir at noe aldri vil skje og at 1 angir at noe vil skje hver gang 2. prosent mellom 0 og 100 %, der 0 % angir at noe aldri

Detaljer

Sannsynlighetsregning

Sannsynlighetsregning Sannsynlighetsregning Per G. Østerlie Thora Storm vgs per.osterlie@stfk.no 5. april 203 Hva og hvorfor? Hva? Vi får høre at det er sannsynlig at et eller annet kommer til å skje. Sannsynligheten for å

Detaljer

TMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger

TMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger TMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger Binomisk fordeling* ( ) n b(x; n, p) = p x (1 p) n x = x ( ) n p x q n x, x x = 0, 1, 2,..., n Fenomén: i) n forsøk. ii) Suksess/fiasko

Detaljer

RINGENES HERRE - HUSKELISTE FOR TURREKKEFØLGE

RINGENES HERRE - HUSKELISTE FOR TURREKKEFØLGE 46233i07 2/8/02 8:4 pm Page FORSTERKNING RINGENES HERRE - HUSKELISTE FOR TURREKKEFØLGE. Ta én bataljon for hvert 3. territorium du har. 2. Ta ytterligere bataljoner for områder du okkuperer helt. 3. Bytt

Detaljer

Sannsynligheten for en hendelse (4.2) Empirisk sannsynlighet. ST0202 Statistikk for samfunnsvitere

Sannsynligheten for en hendelse (4.2) Empirisk sannsynlighet. ST0202 Statistikk for samfunnsvitere 2 Sannsynligheten for en hendelse (4.2) Sannsynligheten for en hendelse sier oss hvor ofte vi forventer at hendelsen inntreffer, dvs. den forventede relative frekvens av hendelsen. ST0202 Statistikk for

Detaljer

Kapittel 10. Sannsynlighetsregning

Kapittel 10. Sannsynlighetsregning Kapittel 10. Sannsynlighetsregning Sannsynlighet handler om å finne ut hvor ofte noe vil skje i en prosess som kan gjentas mange ganger. Kapitlet handler blant annet om dette: Hva er sannsynlighet. Beregne

Detaljer

KappAbel 2010/11 Oppgaver 1. runde - Bokmål

KappAbel 2010/11 Oppgaver 1. runde - Bokmål Regler for poenggivning på oppgavene (i henhold til konkurransereglene) : Riktig svar gir 5 poeng. Galt svar gir 0 poeng Ubesvart oppgave gir 1 poeng. NB: På oppgavene 3, 4, 7 og 8 gis 5 poeng for 2 korrekte

Detaljer

42 elever sykler til skolen hver dag, mens 30 tar bussen. 26 går og 10 blir kjørt med bil. Da kan vi lage et diagram som gir en oversikt.

42 elever sykler til skolen hver dag, mens 30 tar bussen. 26 går og 10 blir kjørt med bil. Da kan vi lage et diagram som gir en oversikt. elever sykler til skolen hver dag, mens 0 tar bussen. går og 10 blir kjørt med bil. Da kan vi lage et diagram som gir en oversikt. 7 Hm, er det så mange satellitter over år?! Statistikk MÅL I dette kapitlet

Detaljer

Legg merke til at summen av sannsynlighetene for den gunstige hendelsen og sannsynligheten for en ikke gunstig hendelse, er lik 1.

Legg merke til at summen av sannsynlighetene for den gunstige hendelsen og sannsynligheten for en ikke gunstig hendelse, er lik 1. Sannsynlighet Barn spiller spill, vedder og omgir seg med sannsynligheter på andre måter helt fra de er ganske små. Vi spiller Lotto og andre spill, og håper vi har flaks og vinner. Men hvor stor er sannsynligheten

Detaljer

Regler for: Videregående. Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene!

Regler for: Videregående. Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! (x²) 1 2 Regler for: getsmart Grå Algebra Videregående 8 _ (x²) 1 2 Algebra 4 (2 2³) 1 4 _ xy (2 2³) 1 4 _ xy (x²) 1 2 _ (2 2³) 1 4 _ xy (x²) 1 2 _ (2 2³) 1 4 _ xy 4 Algebra Algebra _ 8 Det anbefales at

Detaljer

Niels Henrik Abels matematikkonkurranse 2014 2015

Niels Henrik Abels matematikkonkurranse 2014 2015 Niels Henrik Abels matematikkonkurranse 204 205 Første runde. november 204 Ikke bla om før læreren sier fra! Abelkonkurransens første runde består av 20 flervalgsoppgaver som skal løses i løpet av 00 minutter.

Detaljer

Matteoppgaver i Minecraft

Matteoppgaver i Minecraft Matteoppgaver i Minecraft Oppgavehåndbok av Tobias Andersen Mattemestring 2016 Oppgaveguide: Linjeduel (2 spillere) Krav: Minst 2 terninger, en datamaskin med minecraft som deltagerne bruker sammen eller

Detaljer

Mattemoro! Går r det virkelig an å leke seg til ferdigheter i matematikk? Hva kjennertegner den. Oversikt. Spill til hjelp i automatiseringen av

Mattemoro! Går r det virkelig an å leke seg til ferdigheter i matematikk? Hva kjennertegner den. Oversikt. Spill til hjelp i automatiseringen av Mattemoro! Mona Røsseland, R som har tenkt å gjøre et forsøk! Går r det virkelig an å leke seg til ferdigheter i matematikk? Hva kjennertegner den gode lærer? l Entusiasme og engasjement. Kjennskap til

Detaljer

6 Sannsynlighetsregning

6 Sannsynlighetsregning MATEMATIKK: 6 Sannsynlighetsregning 6 Sannsynlighetsregning 6.1 Forsøk. Utfallsrom. Sannsynlighet (sjanse). Sannsynlighetsmodell Ved ett kast med en terning vet vi at terningen vil vise enten ett, to,

Detaljer

Fagdag 5-08.01.09. 2) Du skal fylle ut en tippekupong. På hvor mange måter kan dette gjøres?

Fagdag 5-08.01.09. 2) Du skal fylle ut en tippekupong. På hvor mange måter kan dette gjøres? Fagdag Plan Fagdag - 08.01.0 1,2 time: Repetisjon kapittel 3 - Sannsynlighet Oppgaver Teori (lesestoff) 3, time: Arbeide med.1 og.2: 16, 17, 18, 1 3, time: Ekstra vurdering før terminoppgjør Repetisjon

Detaljer

Tall: Hovedområdet tall og algebra handler om å utvikle tallforståing og innsikt i hvordan tall og tallbehandling inngår i

Tall: Hovedområdet tall og algebra handler om å utvikle tallforståing og innsikt i hvordan tall og tallbehandling inngår i Lærebok: Tusen Millioner, Gjerdrum Skovdahl Tallbok (rutebok i A5 format) Barn lærer matematikk gjennom spill, leik, utforsking aktiv samhandling. Språkets betydning er veldig viktig for å forstå matematikk.

Detaljer

Utfallsrom og hendelser. Disjunkte hendelser. Kapittel 2: Sannsynlighet. Eirik Mo Institutt for matematiske fag, NTNU

Utfallsrom og hendelser. Disjunkte hendelser. Kapittel 2: Sannsynlighet. Eirik Mo Institutt for matematiske fag, NTNU 3 Utfallsrom og hendelser Kapittel 2: Sannsynlighet 2., 2.2: Utfallsrom og hendelser 2.3, 2.4: Kombinatorikk og sannsynlighet 2.5, 2.6, 2.7: Regneregler, betinget sanns. 2.8: Bayes regel DEF 2. Ufallsrom:

Detaljer

Så kaster neste spiller og gjør det samme. Den som kommer nærmest får 1 poeng. Er begge like nært får ingen poeng.

Så kaster neste spiller og gjør det samme. Den som kommer nærmest får 1 poeng. Er begge like nært får ingen poeng. REGNING DE FIRE REGNINGSARTENE: Når tallbegrepet er godt innarbeidet, og elevene forstår posisjonssystemet, begynner arbeidet med de fire regningsartene: sum (+), differens (-), multiplikasjon ( ) og divisjon(:).

Detaljer

Forelening 1, kapittel 4 Stokastiske variable

Forelening 1, kapittel 4 Stokastiske variable Forelening 1, kapittel 4 Stokastiske variable Eksempel X = "antall kron på kast med to mynter (før de er kastet)" Uniformt utfallsrom {MM, MK, KM, KK}. X = x beskriver hendelsen "antall kron på kast med

Detaljer

Matematikk GS3 Temaer våren 2013 DEL 1: GEOMETRI. 1. Måleenheter. 1.1 Lengdeenheter. 1.2 Arealenheter. Eksempel 1: Gjør om 5 m til dm, cm og mm

Matematikk GS3 Temaer våren 2013 DEL 1: GEOMETRI. 1. Måleenheter. 1.1 Lengdeenheter. 1.2 Arealenheter. Eksempel 1: Gjør om 5 m til dm, cm og mm Matematikk GS3 Temaer våren 2013 DEL 1: GEOMETRI 1. Måleenheter 1.1 Lengdeenheter Eksempel 1: Gjør om 5 m til dm, cm og mm m dm 5 m = 5 10 dm = 50 dm m cm 5 m = 5 10 10 cm = 5 10 2 cm = 500 cm m mm 5 m

Detaljer

Sannsynlighetsregning

Sannsynlighetsregning Sannsynlighetsregning Læreplan. Forsøk og simuleringer. Sannsynlighet 3.3 Sum av sannsynligheter 5.4 Multiplikasjonsprinsippet 9.5 Uavhengige hendinger 0. Avhengige hendinger 5 Symboler, formler og eksempler

Detaljer

1 3 5 7 9 10 11 13 15 [Nm] 400 375 350 325 300 275 250 225 200 175 150 125 155 PS 100 PS 125 PS [kw][ps] 140 190 130 176 120 163 110 149 100 136 100 20 1000 1500 2000 2500 3000 3500 4000 4500 RPM

Detaljer

Sannsynlighet og statistikk

Sannsynlighet og statistikk Sannsynlighet og statistikk Arkeologiske utgravinger har vist at mennesker har underholdt seg med forskjellige spill i tusener av år. Terninger fra India som ble brukt i spill, er faktisk 5000 år gamle.

Detaljer

Løsning eksamen 2P våren 2008

Løsning eksamen 2P våren 2008 Løsning eksamen 2P våren 2008 Oppgave 1 a) En avlesing av grafen viser at utgiftene er 40 000 kr når vi produserer 50 stoler. Utgiftene per stol blir 40 000 kr 50 = 800 kr b) 2,46 10 4 = 2,46 0,0001 =

Detaljer

Eksamen 27.05.2008. MAT1003 Matematikk 2P Elevar/Elever, Privatistar/Privatister. Nynorsk/Bokmål

Eksamen 27.05.2008. MAT1003 Matematikk 2P Elevar/Elever, Privatistar/Privatister. Nynorsk/Bokmål Eksamen 27.05.2008 MAT1003 Matematikk 2P Elevar/Elever, Privatistar/Privatister Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på del 1: Hjelpemidler på del 2: Vedlegg: 5 timer Del

Detaljer

Sannsynlighetsregning

Sannsynlighetsregning Sannsynlighetsregning 1 Sannsynlighet Mål for opplæringa er at eleven skal kunne formulere, eksperimentere med og drøfte enkle uniforme og ikkje-uniforme sannsynsmodellar berekne sannsyn ved hjelp av systematiske

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Kapittel 4: Sannsynlighetsregning Bo Lindqvist Institutt for matematiske fag 2 Sannsynligheten for en hendelse (4.1) Sannsynligheten for en hendelse sier oss hvor ofte

Detaljer

S1 kapittel 7 Sannsynlighet Løsninger til oppgavene i boka

S1 kapittel 7 Sannsynlighet Løsninger til oppgavene i boka S1 kapittel 7 Sannsynlighet Løsninger til oppgavene i oka 7.1 a c d 4 1 P (sum antall øyne lir 5) = = 36 9 6 1 P (sum antall øyne lir minst 10) = = 36 6 6 1 P (sum antall øyne lir høyst 4) = = 36 6 11

Detaljer

Regelhefte for: Terninger (-9 til 10)

Regelhefte for: Terninger (-9 til 10) Regelhefte for: Terninger (-9 til 10) Trening i tallinje I Vanskelighetsnivå: 3. klasse og oppover. Utstyr:En hvit og en rød spesialterning (-9 til 10). Aktivitet: Spillerne kaster terningene annenhver

Detaljer

Kapittel 9. Sannsynlighetsregning

Kapittel 9. Sannsynlighetsregning Kapittel 9. Sannsynlighetsregning Sannsynlighet handler om å finne ut hvor ofte noe vil skje i en prosess som kan gjentas mange ganger. Kapitlet handler blant annet om dette: Hva er sannsynlighet. Beregne

Detaljer

S1 kapittel 7 Sannsynlighet Løsninger til oppgavene i boka

S1 kapittel 7 Sannsynlighet Løsninger til oppgavene i boka S1 kapittel 7 Sannsynlighet Løsninger til oppgavene i oka 7.1 a c d 4 1 P (sum antall øyne lir 5) = = 6 9 6 1 P (sum antall øyne lir minst 10) = = 6 6 6 1 P(sum antall øyne lir høyst 4) = = 6 6 11 P(minst

Detaljer

Familiematematikk MATTEPAKKE. 7. Trinn

Familiematematikk MATTEPAKKE. 7. Trinn Familiematematikk MATTEPAKKE 7. Trinn Tangoes: Tangram er basert på et gammelt kinesiske puslespillet med former som kan settes sammen til et bilde eller et mønster. Tangram ble oppfunnet for mange århundrer

Detaljer

Eksamen 27.05.2008. MAT1003 Matematikk 2P Elevar/Elever, Privatistar/Privatister. Nynorsk/Bokmål

Eksamen 27.05.2008. MAT1003 Matematikk 2P Elevar/Elever, Privatistar/Privatister. Nynorsk/Bokmål Eksamen 27.05.2008 MAT1003 Matematikk 2P Elevar/Elever, Privatistar/Privatister Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på del 1: Hjelpemidler på del 2: Vedlegg: 5 timer Del

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 y (kroner) x (antall stoler) a) Grafen viser hva det koster for en fabrikk å produsere x stoler. Hva blir kostnadene per stol dersom bedriften produserer 50 stoler? 4

Detaljer

Løsning del 1 utrinn Høst 13

Løsning del 1 utrinn Høst 13 //06 Løsning del utrinn Høst - matematikk.net Løsning del utrinn Høst Contents DEL EN Oppgave + 679 = 0 89 78 = 8 c) 7,, 6 = 6, 6 d) : 0, = 0 : = 80 Oppgave 78 dl = 7,8 L, mil = kilometer = 000 m c), t

Detaljer

Blue Riband REGATTAREGLER

Blue Riband REGATTAREGLER REGATTAREGLER Blue Riband Kofferten innholder: 1 spillebrett 1 terning 12 brikker i 6 ulike farger (6 spillebrikker og 6 brikker for å samle redningsbøyene på) 30 lastebrikker i ulike farger 40 redningsbøyer

Detaljer

Løsningsforslag for eksamen i MAT1003 Matematikk 2P Privatister - 27.05.2008. eksamensoppgaver.org

Løsningsforslag for eksamen i MAT1003 Matematikk 2P Privatister - 27.05.2008. eksamensoppgaver.org Løsningsforslag for eksamen i MAT1003 Matematikk 2P Privatister - 27.05.2008 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 2P er gratis, og

Detaljer

Innledning kapittel 4

Innledning kapittel 4 Innledning kapittel 4 Sannsynlighet og tilfeldighet Basert på materiale fra Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Deterministiske fenomener Almanakk for Norge viser: når det er fullmåne

Detaljer

JULETENTAMEN, 9. KLASSE, 2015. FASIT

JULETENTAMEN, 9. KLASSE, 2015. FASIT JULETENTAMEN, 9. KLASSE, 2015. FASIT DELPRØVE 1. OPPGAVE 1.1: 367 + 254 = 621 c: 67. 88 536 536 = 5896 e: 18,4-9,06 = 9,34 24,8 + 7,53 = 32,33 d: 3,2 : 0,8 = 32 : 8 = 4 32 f: 12 2. 5 2 = 12 2. 25 = 12

Detaljer

Spillet der du erobrer verden

Spillet der du erobrer verden Spillet der du erobrer verden 2004 Hasbro. Med enerett. Distributed in the Nordic region by Hasbro Nordic, Ejby Industrivej 40, DK-2600 Glostrup, Denmark. www.hasbro.co.uk 040414538107 KO M M A N D O I

Detaljer

Regler for: getsmart Gul og Blå. Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene!

Regler for: getsmart Gul og Blå. Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! Regler for: getsmart Gul og Blå 6 Diagram Brøk Diagram 6 Brøk Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! Sjekk hjemmesiden for flere powerpoint-presentasjoner.

Detaljer

Sannsynligheten for en hendelse (4.2) Empirisk sannsynlighet. ST0202 Statistikk for samfunnsvitere

Sannsynligheten for en hendelse (4.2) Empirisk sannsynlighet. ST0202 Statistikk for samfunnsvitere 2 Sannsynligheten for en hendelse (4.2) Sannsynligheten for en hendelse sier oss hvor ofte vi forventer at hendelsen inntreffer, dvs. den forventede relative frekvens av hendelsen. ST0202 Statistikk for

Detaljer

MATEMATIKK (MAT1005) Tabeller / Diagrammer

MATEMATIKK (MAT1005) Tabeller / Diagrammer 04.11.2016 MATEMATIKK (MAT1005) Tabeller / Diagrammer DEL 1 (UTEN HJELPEMIDLER) 45 minutter DEL 2 (MED HJELPEMIDLER) 45 minutter (Del 1 må leveres inn før hjelpemidlene kan benyttes) Total poengsum: 40

Detaljer

I hvilken klasse går Ole? Barnehagen 1. klasse 2. klasse Hvor gammel er Kristine? 5 år 7 år 8 år. Hvor gammel er Ole?

I hvilken klasse går Ole? Barnehagen 1. klasse 2. klasse Hvor gammel er Kristine? 5 år 7 år 8 år. Hvor gammel er Ole? Kristine og dragen. Kristine er en fem år gammel jente. Hun har en eldre bror som heter Ole. Ole er åtte år og går i andre klasse på Puseby Skole. Kristine og Ole er som regel gode venner. Men av og til

Detaljer

R1 kapittel 7 Sannsynlighet. Kapitteltest. Oppgave 1. Oppgave 2. Oppgave 3. Del 1 Uten hjelpemidler. Løsninger til oppgavene i boka

R1 kapittel 7 Sannsynlighet. Kapitteltest. Oppgave 1. Oppgave 2. Oppgave 3. Del 1 Uten hjelpemidler. Løsninger til oppgavene i boka Løsninger til oppgvene i ok R1 kpittel 7 Snnsynlighet Løsninger til oppgvene i ok Kpitteltest Del 1 Uten hjelpemidler Oppgve 1 De fem lppene kn ordnes i rekkefølge på 5! = 15 = forskjellige måter. Vi kn

Detaljer

Regler for: getsmart Grønn. Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene!

Regler for: getsmart Grønn. Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! -6 Regler for: getsmart Grønn Hele tall 3 4 Hele tall 8-6 -6 3-6 3 8 Hele tall Hele tall 3 4 Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! Sjekk

Detaljer

Sannsynlighet og kombinatorikk i videregående skole

Sannsynlighet og kombinatorikk i videregående skole Sannsynlighet og kombinatorikk i videregående skole Helmer Aslaksen Institutt for lærerutdanning og skoleforskning/matematisk institutt Universitetet i Oslo helmer.aslaksen@gmail.com www.math.nus.edu.sg/aslaksen/

Detaljer

Betinget sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk. Vi trenger en definisjon av betinget sannsynlighet!

Betinget sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk. Vi trenger en definisjon av betinget sannsynlighet! MAT0100V Sannsynlighetsregning og kombinatorikk Betinget sannsynlighet og uavhengige hendelser Produktsetningen Total sannsynlighet og Bayes' setning Betinget sannsynlighet Vil repeterer først et eksempel

Detaljer

Et artig spill med smarte koblinger (A Curious Game of Clever Connections )

Et artig spill med smarte koblinger (A Curious Game of Clever Connections ) SET CUBED Et artig spill med smarte koblinger (A Curious Game of Clever Connections ) Instruksjoner Para instrucciones en Español por favor visiten www.setgame.com Pour des instructions en Français veuillez

Detaljer

Fasit. Grunnbok. Kapittel 5. Bokmål

Fasit. Grunnbok. Kapittel 5. Bokmål Fasit Grunnbok Kapittel 5 Bokmål Kapittel 5 Fra erfaring til sannsynlighet 5. a P = 3 5.2 a P = 2 5.3 B har rett 5.4 a P = 4 b P = 4 b P = 2 b c P = 7 c P = 5 2 c d P = 25 d P = 5 2 5.5 a b Den eksperimentelle

Detaljer

Hjemmearbeid matematikk eksamensklassen Ark 31 Leveres mandag 7. april 2014

Hjemmearbeid matematikk eksamensklassen Ark 31 Leveres mandag 7. april 2014 Hjemmearbeid matematikk eksamensklassen Ark 31 Leveres mandag 7. april 2014 Oppgave 1. Vanlig pris for en reise med buss mellom to byer er 80 kr. På bussen er det 14 voksne, 6 barn og 9 studenter. Hvor

Detaljer

Elasund Forberedelser Definér byggeområdet Spillerne får utdelt brikkene sine

Elasund Forberedelser Definér byggeområdet Spillerne får utdelt brikkene sine Elasund Flere år etter at dristige sjøfarere oppdaget og slo seg ned på øya Catan, har befolkningsveksten skutt fart. Det har vokst frem bosetninger over hele øya, og handelen mellom dem er yrende. Catan

Detaljer

GeoGebra-opplæring i Matematikk 1P

GeoGebra-opplæring i Matematikk 1P GeoGebra-opplæring i Matematikk 1P Emne Underkapittel Perspektivtegning I 3.8 Perspektivtegning II 3.8 Regulære mangekanter 3.9 Flislegging I 3.9 Flislegging II 3.9 Flislegging III 3.9 Terningkast 4.1

Detaljer

ALDER 10+ Approval: ROD. File Name: B _Risk_Core_INST_15.indd. Originator: CF 2 5 SPILLERE

ALDER 10+  Approval: ROD. File Name: B _Risk_Core_INST_15.indd. Originator: CF 2 5 SPILLERE ALDER 10+ 2 5 SPILLERE 0516B7404107 Aa SPILLVEILEDNING HASBRO GAMING og deres logo er varemerker som tilhører Hasbro. 2015 Hasbro. Med enerett. Produsert av: Hasbro SA, Rue Emile-Boéchat 31, 2800 Delémont

Detaljer

Tilfeldige variable (5.2)

Tilfeldige variable (5.2) Tilfeldige variable (5.) Dersom vi til hvert utfall av eksperimentet tilordner et tall, har vi laget en tilfeldig variabel. Tilfeldig variabel: En variabel som har en numerisk verdi for hvert utfall i

Detaljer

Regler for: getsmart Måling. Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene!

Regler for: getsmart Måling. Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! Regler for: getsmart Måling Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! Sjekk hjemmesiden for flere PowerPoint presentasjoner. Det vil bli lagt

Detaljer

10.4 Sannsynligheter ved flere i utvalget (kombinatorikk)

10.4 Sannsynligheter ved flere i utvalget (kombinatorikk) 10. er ved flere i utvalget (kombinatorikk) Så langt i framstillingen har vi diskutert den språklige siden, den matematiske tolkningen av sannsynlighetsbegrepet og presentert ulike modeller som kan anvendes

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Grunnbegrep. Grunnbegrep, sannsynligheten for et utfall

ÅMA110 Sannsynlighetsregning med statistikk, våren Grunnbegrep. Grunnbegrep, sannsynligheten for et utfall ÅM110 Sannsynlighetsregning med statistikk, våren 006 Kp. Sannsynlighetsregning (sannsynlighetsteori) 1 Grunnbegrep Stokastisk forsøk: forsøk med uforutsigbart utfall Enkeltutfall: et av de mulige utfallen

Detaljer

Innledning kapittel 4

Innledning kapittel 4 Innledning kapittel 4 Sannsynlighet og tilfeldighet Basert på materiale fra Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Deterministiske fenomener Almanakk for Norge viser: når det er fullmåne

Detaljer

Pentel Energel Spiss 0,7mm 642015 Blå 602016 Rød 602017 Sort. Pentel Energel Spiss 0,5mm 642018 Blå 602019 Rød 602020 Sort

Pentel Energel Spiss 0,7mm 642015 Blå 602016 Rød 602017 Sort. Pentel Energel Spiss 0,5mm 642018 Blå 602019 Rød 602020 Sort Skriveredskaper - Penner Pentel Energel Spiss 0,7mm 642015 Blå 602016 Rød 602017 Sort Pentel Energel Spiss 0,5mm 642018 Blå 602019 Rød 602020 Sort Pentel Hybrid gel m/ grip 6420 Blå 602011 Rød 6020 Sort

Detaljer

Korleis skal eg rekne, lærar?

Korleis skal eg rekne, lærar? Korleis skal eg rekne, lærar? Begynnaropplæring i matematikk med fokus på tal og utvikling av god tal forståing Mona Røsseland Nasjonalt senter for matematikk i opplæringen Matematisk kompetanse Det er

Detaljer

Regning som grunnleggende ferdighet Ny GIV! Møre og Romsdal

Regning som grunnleggende ferdighet Ny GIV! Møre og Romsdal Regning som grunnleggende ferdighet Ny GIV! Møre og Romsdal Hefte med praktiske eksempler Tone Elisabeth Bakken Molde, 29.januar 2013 Ønsker du beskrivelse av og informasjon om flere metoder, - ta kontakt!

Detaljer

oppgaver fra abels hjørne i dagbladet

oppgaver fra abels hjørne i dagbladet oppgaver fra abels hjørne i dagbladet sett 44 dag 1 1. Et lykkehjul er inndelt i 30 like store sektorer. En av sektorene er merket med 7 kr, to er merket med 4 kr, tre er merket 3 kr og fire er merket

Detaljer

[Skriv inn tekst] Her er en beskrivelse av den røde tråden i spillerutviklingen i Nordberg Tennisklubb.

[Skriv inn tekst] Her er en beskrivelse av den røde tråden i spillerutviklingen i Nordberg Tennisklubb. [Skriv inn tekst] "Jeg vokste opp med å spille tennis med store myke baller, veldig myke baller. Jeg kunne lett svinge gjennom slagene uten at ballene fløy av gårde. Roger Federer Her er en beskrivelse

Detaljer

Å ARBEIDE MED MATEMATIKK SAMMEN MED BARNET DITT

Å ARBEIDE MED MATEMATIKK SAMMEN MED BARNET DITT Å ARBEIDE MED MATEMATIKK SAMMEN MED BARNET DITT Matema&kk kan omhandle både antall, rom og form. Barn trenger mange og varierte erfaringer med å telle, tegne og snakke om tall. Kanskje er den matema&kken

Detaljer

3 x 3 ruter. Hvilke matematiske utfordringer finnes det i et spillebrett på 3x3 ruter? Her er noen eksempler på spill og problemløsningsoppgaver

3 x 3 ruter. Hvilke matematiske utfordringer finnes det i et spillebrett på 3x3 ruter? Her er noen eksempler på spill og problemløsningsoppgaver 3 x 3 ruter Hvilke matematiske utfordringer finnes det i et spillebrett på 3x3 ruter? Her er noen eksempler på spill og problemløsningsoppgaver som kan brukes i matematikktimene. Magisk kvadrat Du har

Detaljer

Svøm Bergen opplæringsbassenget/vanntilvenning/vannfølelse DAG 1 ØVELSE HVORFOR HVORDAN UTSTYR ANNET

Svøm Bergen opplæringsbassenget/vanntilvenning/vannfølelse DAG 1 ØVELSE HVORFOR HVORDAN UTSTYR ANNET DAG 1 «Epler og pærer» Se hvem som kan gå under vann/ hvem som ikke kan Elevene går rundt i en ring, alle skal dykke på 1-2-3 «Poteter og gulrøtter» Sprette opp av vannet på 1-2-3 Kaste ball Sprut i ansiktet

Detaljer

Fire kort. Mål. Gjennomføring. Film. Problemløsing Fire kort

Fire kort. Mål. Gjennomføring. Film. Problemløsing Fire kort Fire kort Mål Generelt: Søke etter mønster og sammenhenger. Gjennomføre undersøkelse og begrunne resultat. Utfordre elevene på å resonnere og kommunisere. Spesielt: Finne alle kombinasjoner når de adderer

Detaljer

Utarbeidet med økonomiske midler fra Utdanningsdirektoratet

Utarbeidet med økonomiske midler fra Utdanningsdirektoratet Fritt Fram 3 Temabok 3 Bliss-utgave 2007 Oversatt til Bliss av Astri Holgersen Tilrettelagt av Trøndelag kompetansesenter ved Jørn Østvik Utarbeidet med økonomiske midler fra Utdanningsdirektoratet Temabok

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 y (kroner) x (antall stoler) a) Grafen ovenfor viser hva det koster for en fabrikk for å produsere x stoler. Hva blir kostnadene per stol dersom bedriften produserer 50

Detaljer

Ferdige smykker. 14 www.maxkleiser.no Tlf: 24 14 97 70 E-post: post@maxkleiser.no. Apero Switzerland er alt vi forbinder med sveitsisk kvalitet.

Ferdige smykker. 14 www.maxkleiser.no Tlf: 24 14 97 70 E-post: post@maxkleiser.no. Apero Switzerland er alt vi forbinder med sveitsisk kvalitet. Ferdige smykker Apero Switzerland er alt vi forbinder med sveitsisk kvalitet. Smykkene lages aluminium og edelstål. Aluminiumsmykkene elokseres slik at de får strålende farger, farger som også er meget

Detaljer

Reisen til Morens indre. Kandidat 2. - Reisen til Morens indre -

Reisen til Morens indre. Kandidat 2. - Reisen til Morens indre - Reisen til Morens indre Kandidat 2 Reisen til Morens indre Et rolle- og fortellerspill for 4 spillere, som kan spilles på 1-2 timer. Du trenger: Dette heftet. 5-10 vanlige terninger. Om spillet Les dette

Detaljer

oppgaver fra abels hjørne i dagbladet

oppgaver fra abels hjørne i dagbladet oppgaver fra abels hjørne i dagbladet sett 45 dag 1 1. På et bord står to beholdere som begge inneholder litt vann. Uansett hvilken beholder du velger, og så heller halvparten av innholdet over i den andre

Detaljer

Hit med teppet ren lek

Hit med teppet ren lek Forslag og idéer til språkleker og bokstavinnlæring Av Gitte Skyum Kjøge Språk er ikke bare innhold, det er også form og lyder. Det finnes mange metoder og midler til å åpne barnas øyne for alle fasene.

Detaljer

FORTELLERKORT. Ved inge benn thomsen. Special-pædagogisk forlag

FORTELLERKORT. Ved inge benn thomsen. Special-pædagogisk forlag FORTELLERKORT Ved inge benn thomsen FORTELLINGSPLATER MED FORTELLINGSELEMENTER TIL ELEVER I ALLE ALDRE MED ALLE SPRÅK OG MED MANGE FORSKJELLIGE BEHOV. MÅLGRUPPE INTRODUKSJON StoryBoards 2 er til elever

Detaljer

Hva vil det si å kunne matematikk? Hva er tallforståelse? Gjett tre kort. Arbeide både praktisk og teoretisk. Det viktigste for læring

Hva vil det si å kunne matematikk? Hva er tallforståelse? Gjett tre kort. Arbeide både praktisk og teoretisk. Det viktigste for læring Hva vil det si å kunne matematikk? Gjett tre kort Hva er tallforståelse? Mona Røsseland Nasjonalt senter for Matematikk i opplæringen Lærebokforfatter; MULTI 9-Sep-08 9-Sep-08 2 Arbeide både praktisk og

Detaljer

Sannsynlighetsbegrepet

Sannsynlighetsbegrepet Sannsynlighetsbegrepet Notat til STK1100 Ørnulf Borgan Matematisk institutt Universitetet i Oslo Januar 2004 Formål Dette notatet er et supplement til kapittel 1 i Mathematical Statistics and Data Analysis

Detaljer

Familiematematikk MATTEPAKKE 6. Trinn

Familiematematikk MATTEPAKKE 6. Trinn Familiematematikk MATTEPAKKE 6. Trinn May Renate Settemsdal og Ingvill Merete Stedøy Aktiviteter Multisjablong Denne plata inneholder maler til mangekanter, alt fra tre- til tolv-kanter. Malen legges

Detaljer

Folketallsutviklingen i Troms 3. kvartal 2014

Folketallsutviklingen i Troms 3. kvartal 2014 November Folketallsutviklingen i Troms 3. kvartal Folketallsutviklingen i 3. kvartal Fødselsoverskudd, inn- og utvandring og innenlandsk inn- og utflytting i 3. kvartal Kvartalsvis befolkningsutvikling

Detaljer

R1 kapittel 7 Sannsynlighet

R1 kapittel 7 Sannsynlighet Løsninger til oppgvene i ok R kpittel 7 Snnsynlighet Løsninger til oppgvene i ok Oppgve 7. Hvis A hr inntruffet, ltså t den første kul er lå, så er det tre røde og én lå kule igjen i esken når vi skl trekke

Detaljer