ÅMA110 Sannsynlighetsregning med statistikk, våren 2007

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "ÅMA110 Sannsynlighetsregning med statistikk, våren 2007"

Transkript

1 ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 2 Sannsynlighetsregning (sannsynlighetsteori) 1 Grunnbegrep Stokastisk forsøk: forsøk med uforutsigbart utfall Enkeltutfall: et av de mulige utfallene av et stokastisk forsøk Utfallsrom: samling av alle mulige utfall Eks.: et terningkast; utfallsrommet kan bestå av de seks enkeltutfallene 1, 2, 3, 4, 5, og 6 (Andre utfallsrom er mulige) 2 1

2 Grunnbegrep, sannsynligheten for et utfall Utfallsrom: Ω = { u, u,...} 1 2 Sannsynligheten for utfallet, u: u), der 0 u) 1 og u ) + u ) + L = Dvs.: Sannsynligheten for utfallet, u, defineres til et tall mellom 0 og 1. 3 Grunnbegrep, sannsynligheten for et utfall Hvert utfall har en sannsynlighet, kjent eller ukjent Summen av alle sannsynligheter i utfallsrommet er lik 1 Tilordningen av sannsynlighet baseres på bl.a. erfaring og egenskaper ved det stokastiske forsøket God/realistisk tilordning: overensstemmelse mellom relativfrekvenser og sannsynligheter 4 2

3 Grunnbegrep, sannsynligheter og relativfrekvenser n gjentakelser av et stokastisk forsøk (f.eks. n kast med en terning) La n u være antall ganger utfallet u forkommer blant de n forøkene (f.eks. antall seksere blant alle kastene) Relativfrekvensen til u, er forholdet mellom n u og n: n u n EXCEL-simulering 5 Grunnbegrep, sannsynlighetsmodell Utfallsrommet med sannsynligheter tilordnet alle enkeltutfall, kalles en sannsynlighetsmodell 6 3

4 Grunnbegrep, uniform modell Utfallsrommet med sannsynligheter tilordnet alle enkeltutfall, kalles en sannsynlighetsmodell Uniform sannsynlighetsmodell: For et stokastisk forsøk med k (endelig) antall utfall, der alle utfall har like stor mulighet for å inntreffe, defineres sannsynligheten til å være den samme for alle utfallene, 1/k. Denne modellen kalles en uniform sannsynlighetsmodell. Eks. 1: kast med pengestykke; {mynt, kron} Eks. 2: kast med terning; {1, 2, 3, 4, 5, 6} 7 Grunnbegrep, uniform modell Eks. 3: trekke en rekke i LOTTO (7 av tallene 1, 2,..., 34); k = Uniform modell? (JA!) Sannsynligheten for en bestemt rekke: en bestemt rekke trekkes) = 1/ =

5 Grunnbegrep, uniform modell Eks. 4: kast med to terninger; betrakter summen av resultatene med de to terningene: {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, (k=11) sum = 7) = 1/11 (v/uniform sannsynlighetsmodell) 9 Grunnbegrep, uniform modell Eks. 4: kast med to terninger; betrakter summen av resultatene med de to terningene: {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, (k=11) sum = 7) = 1/11 (v/uniform sannsynlighetsmodell) Er dette rimelig?? F.eks. vil da ha at: sum=12) = sum=7)! 10 5

6 Grunnbegrep, uniform modell Uniform modell 0,18 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0, Grunnbegrep, uniform modell Virkeligheten 0,18 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,

7 Grunnbegrep, uniform modell Blå: uniform; rød: virkeligheten 0,18 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0, Grunnbegrep, uniform modell Nytt forslag til utfallsrom: { (1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1),... (2,6),... (6,1), (6,2), (6,3), (6,4), (6,5), (6,6) }; k=36 (f.eks. betyr (3,5): rød terning=3 og blå terning=5) Her er alle utfall like mulige!! (=> uniform modell) 14 7

8

9 Grunnbegrep, begivenheter En begivenhet er en samling av utfall. eks.: minst fem : {5, 6} partall : {2, 4, 6} Generelt : { u, u, K} Utfallsrom : Ω = 1 2 Begivenhet : A ( A Ω) Sannsynligheten for A: A) 15 Grunnbegrep, begivenheter Sannsynligheten for begivenheten er summen av sannsynlighetene til enkeltutfallene: Terningkast, A Sannsynligheten for A) = {5,6}) = + = = = "minst fem" = 1 3 A: {5}) + {6}) 16 8

10 Grunnbegrep, begivenheter Sannsynligheten for begivenheten er summen av sannsynlighetene til enkeltutfallene; Generelle formuleringer og implikasjoner: Sannsynligheten for A: A) A) = u) u A 0 A) 1 Ω) = 1 (husk at Ω er en begivenhet; den MÅinntreffe!) 17 Grunnbegrep, operasjoner med begivenheter (kp. 2.2, 2.3) Vi har ofte behov for å utrykke og finne sannsynligheten for sammensatte begivenheter; A eller B, A eller B eller C, B og C, osv. Snitt, union og komplement fra mengdelæren brukes. 18 9

11 Grunnbegrep, operasjoner med begivenheter (kp. 2.2, 2.3) Referanseeks.: Tre kast med pengestykke; vi betrakter rekkefølge av kron (K) og mynt (M). {KKK, KKM, KMK, MKK, KMM, MKM, MMK, MMM} = { u 1, u 2, u 3, u 4, u 5, u 6, u 7, u 8 } A: kron minst to ganger, B: mynt i første Da: A={u 1, u 2, u 3, u 4 } og B={u 4, u 6, u 7, u 8 } 19 Grunnbegrep, operasjoner med begivenheter; Venndiagram A={u 1, u 2, u 3, u 4 } og B={u 4, u 6, u 7, u 8 } Venndiagram: A u 4 B u 5 Veldig nyttig hjelpemiddel i en del situasjoner

12 Grunnbegrep, operasjoner med begivenheter Operasjon: Unionen mellom A og B Skrivemåte: A B Inntreffer A eller B (eller begge) inntreffer A u 4 B u 5 21 Grunnbegrep, operasjoner med begivenheter Operasjon: Skrivemåte: Inntreffer Snittet mellom A og B AB, A B A og B inntreffer A u 4 B u

13 Grunnbegrep, operasjoner med begivenheter Operasjon: Skrivemåte: Inntreffer Koplementet til A A C, A A ikke inntreffer A A C 23 Grunnbegrep, operasjoner med begivenheter To begivenheter sies å være disjunkte hvis og bare hvis begivenhetene ikke kan inntreffe samtidig. Disjunkte mengder har ingen felles element. C D C D = φ 24 12

14 Regneregler med sannsynlighet 1. Komplementsetningen: A) = 1 A) ( Ω) = 1) A A C 25 Regneregler med sannsynlighet 2. Addisjonssetningen (generell): A B) = A) + B) A B) A B 26 13

15 Regneregler med sannsynlighet Er addisjonssetningen gyldig for to disjunkte begivenheter? C D) = C) + D) C D) C D 27 Sannsynlighetsregning, eksempel A) = 1 A) A B) = A) + B) A B) Tokomponentsystem, parallellkoplet A System ok når minst en av B komponentene er ok. Anta at : A ok) = 0.9 = B ok) og begge ok) = a) Hva er sannsynligheten for at systemet er ok? 0.85 b) Hva er sannsynligheten for at ingen av komponentene er ok? 28 14

16 Sannsynlighetsregning, oppsummering av regneregler Sannsynligheten for A: A) = u), u A A) 0 A) 1, Ω) = 1 Komplementsetningen : A) = 1 A) Addisjonssetningen : A B) = A) + B) A B) Disjunkte begivenheter : C D = φ, ("den tomme mengden"; C og D har ingen felles element / utfall) 29 ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 2.4 Sannsynlighetsregning (sannsynlighetsteori); opptellingsregler 30 15

17 Opptellingsregler (kp. 2.4) Ved bruk av uniform modell: P ( A) = g k der g=antall utfall i begivenheten A, og k er antall utfall i utfallsrommet., Noen ganger enkelt: Trekk et tilfeldig kort fra en kortstokk; konge) = 4 52, 31 Opptellingsregler (kp. 2.4) Fort mer komplisert: Trekk to tilfeldige kort fra en kortstokk; g begge er konger) = =? k Vi trenger verktøy for å håndtere slike og (mange) lignende problemer! 32 16

18 Opptellingsregler, situasjon Situasjon; Med eller uten tilbakelegging? Ordnet eller uordnet utvalg? (ordnet: vi tar hensyn til rekkefølgen objektene blir trukket ut i) Populasjon, N ulike objekt N s... fire muligheter... Utvalg, s objekt 33 Opptellingsregler, situasjon Vi fokuserer på uordnede utvalg uten tilbakelegging. Men vi bruker ordnede utvalg underveis. Populasjon, N ulike objekt N Tilb.legging? s ja ja nei Utvalg, s objekt ordnet? nei 34 17

19 Opptellingsregler Multiplikasjonsregelen Dersom et forsøk består av to deler slik at første del kan ha m 1 ulike resultat og slik at det til hvert resultat i første del kan være m 2 ulike resultat i andre del, så er det totale antall ulike resultat lik m 1 m 2. Eks. 1: ruter- og kløverkort Eks. 2: Utvidelse til mer enn to deler Eks. 3: Bilnummer (se bok) 35 Opptellingsregler Ordnede utvalg uten tilbakelegging Antall mulige ulike utvalg: ( N ) s = N( N 1)( N 2) L( N s + 1) s faktorer Populasjon, N ulike objekt N s Eks.: Trekke tre av de 13 ruterkortene Utvalg, s objekt Begrunnelse for resultat: vha. multiplikasjonsregelen 36 18

20 Opptellingsregler Antall rekkefølger (permutasjoner) av N ulike objekt: (N) N = N(N-1)(N-2)...3*2*1 = N! N-fakultet Eks.: De 13 ruterkortene kan permuteres på 13! ulike måter. 37 Opptellingsregler Uordnede utvalg uten tilbakelegging: Eks.: Vi skal trekke tre av ruterkortene (uten tilbakelegging). Hvor mange ulike utvalg (uordnede) er mulig? Resonnement: 1. Ant. ordnede: 13*12*11 = Hvert av disse kan permuteres på 3!=3*2*1 måter 3. Da må vi ha: (ant. ordnede) = (ant. uordnede)*3! Dvs.: (ant. uordnede) = (ant. ordnede) / 3! 38 19

21 Opptellingsregler Antall uordnede utvalg uten tilbakelegging når s objekt trekkes fra N ulike objekt er : Populasjon, N ulike objekt N ( ) s! N s s Ant. ordnede: (N) s Ant. permutasjoner: s! 39 Opptellingsregler, uordnede utvalg uten tilbakelegging Skrivemåte: N ( N) = s s! s Populasjon, N ulike objekt N Vi kan se at: N = s N! s!( N s)! s N ( N) = s s! s N( N 1) L( N s + 1) ( N s)! N! = = s! ( N s)! s!( N s)! 40 20

22 Opptellingsregler, uordnede utvalg uten tilbakelegging Eks.: Syvmanns lag av ti spillere. Regel: N N = s N s Populasjon, N ulike objekt N s Obs.: N N = 1 ; Derfor defineres : = 1 N 0 41 Opptellingsregler, uordnede utvalg uten tilbakelegging Eks.: LOTTO. 34 kuler nummerert fra 1 til 34; Syv trekkes ut. Hvor mange muligheter finnes det? Populasjon, N ulike objekt N s 42 21

23 Opptellingsregler Tilfeldig utvalg Et utvalg av s objekter tatt fra N ulike sies å være et tilfeldig utvalg dersom alle N s mulige utvalg har lik sannsynlighet for å bli tatt ut. (Dette betyr at vi kan bruke uniform modell.) 43 Opptellingsregler, oppsummering Multiplikasjonsregelen : m m L m 1 2 k Antall ord. utvalg, s fra N : ( N) = N( N 1)( N 2) L ( N s + 1) s Antall permutasjoner av N : ( N) N = N( N 1)( N 2) L = N! Antall utvalg, s fra N N ( N) : = s s! s 44 22

24 Opptellingsregler, oppsummering Tre eksempler 1. To kort trekkes fra en kortstokk. Hva er sannsynligheten for at begge er konger? 2. Fem kort trekkes fra en kortstokk. Hva er sannsynligheten for at vi får akkurat to konger og to damer? (Dvs.: det femte kortet er noe annet enn konge eller dame.) 3. Meningsmåling 45

25 ÅMA 110 SANNSYNLIGHETSREGNING MED STATISTIKK Eksempel, meningsmåling (s. 1) Situasjon: N = stemmeberettigede; vi antar at vi vet at: (40 %) er for (en bestemt sak... ), og (60 %) er mot denne saken. (Vi antar videre at det ikke er "vet-ikke-individer"i populasjonen.) s = 1000 tilfeldig utvalgte spørres. Problem: Hva er sannsynligheten for at gallupen (meningsmålingen) viser flertall for (gir som resultat at mer enn 50 % er for)? ( ) N Utfallsrom: Ω = {alle mulige utvalg} s At utvalget gjøres tilfeldig, betyr at alle utvalg er like sannsynlige, og at vi dermed kan bruke uniform sannsynlighetsmodell. P (Gallup viser flertall for) = P (Mer enn 500 av de 1000 i utvalget er for) = P (501 for i utvalget 502 for i utvalget 1000 for i utvalget) }{{}}{{}}{{} A 1 A 2 A 500 = P (A 1 ) + P (A 2 ) + + P (A 500 ) Den siste likheten finner vi ved å bruke addisjonssetningen og at A i ene er disjunkte begivenheter. P (A 1 ): ( ) Antall utvalg der 501 kommer fra de for-individene er, og antall utvalg 501 ( ) der 499 (resten av utvalget) kommer fra de mot-individene er. Derfor blir 499 ( ) ( ) antall utvalg som er slik at A 1 inntreffer lik:. Da blir sannsynligheten for begivenheten A 1 : P (A 1 ) = ( ) ( ( ) )

26 ÅMA 110 SANNSYNLIGHETSREGNING MED STATISTIKK Eksempel, meningsmåling (s. 2) På tilsvarende måte kan finne sannsynlighetene for de andre begivenhetene. For A i (der i for-stemmere er med i utvalget, i = 1, 2,...) får vi: P (A i ) = ( ) ( i 500 i ( ) ) Derfor får vi: P (Gallup viser flertall for) = P (A 1 ) + P (A 2 ) + + P (A 499 ) + P (A 500 ) ( ) ( ) ( ) ( ) = 501 ( ) ( ) + + ( ) ( ) ( ) ( ( ) ( ) ) Vi ser altså at vi i prinsippet kan løse problemet. Men sannsynlighetene P (A i ) = ( ) ( i 500 i ( ) er veldig tungvinte å beregne, og vi må regne ut 500 slike! Vi skal seinere lære å bruke tilnærmingsmetoder for å finne slike sannsynligheter. Med disse metodene vil det være enkelt å finne svaret. )

27 ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 2 Sannsynlighetsregning (sannsynlighetsteori) 2.5 Betinget sannsynlighet 46 23

28 Betinget sannsynlighet (kp. 2.5) - innledning Eks.: Et terningkast; {1, 2, 3, 4, 5, 6}. Ved bruk av uniform modell: hvert utfall gis sannsynligheten 1/6. treer ) = 1/6 B: Ikke sekser. Dersom vi får vite at B har inntruffet, hva da med treer )?? (Vi kan åpenbart ikke lenger bruke uniform modell på {1, 2, 3, 4, 5, 6}! ) 47 Betinget sannsynlighet - innledning Opplysningen om at B har inntruffet, vil kunne føre til at treer ) endres fra det opprinnelige. Den nye sannsynligheten skriver vi: treer B ) Den betingede sannsynligheten for å få treer, gitt at B har inntruffet

29 Betinget sannsynlighet Def. For to begivenheter A og B definerer vi den betingede sannsynligheten for A gitt B (at B har inntruffet) ved: A B) = A B) B) (Sannsynlighetene på høyre side er vanlige, ubetingede.) 49 Betinget sannsynlighet Eks.: Hva bør treer B ) være??... Ved bruk av definisjonen: A={3}, B={1,2,3,4,5}, AB={3}; AB) = 1/6, B) = 5/6. Derfor: 50 25

30 Betinget sannsynlighet Eks.: Hva bør treer B ) være??... Ved bruk av definisjonen: A={3}, B={1,2,3,4,5}, AB={3}; AB) = 1/6, B) = 5/6. Derfor: 1 A B) {3}) A B) = = = 6 = B) {1,2,3,4,5}) Betinget sannsynlighet Motivering for definisjon Vi er interessert i A og A). A 52 26

31 Betinget sannsynlighet Motivering for definisjon Vi er interessert i A og A). A Når det forutsettes at B har inntruffet (skal inntreffe), er kun utfall i snittet AB av interesse derfor AB). A AB B 53 Betinget sannsynlighet Motivering for definisjon Vi er interessert i A og A). A Når det forutsettes at B har inntruffet (skal inntreffe), er kun utfall i snittet AB av interesse derfor AB). Vi ordner det slik at B B) = 1. Derfor: A B) A B) = B) A AB B 54 27

32 Betinget sannsynlighet C D C D ) =? E F E F ) =? F E ) =?? 55 Betinget sannsynlighet Eks.: Anta at sannsynligheten for regn i dag og imorgen er 0.3 og at sannsynligheten for regn i dag er 0.4. Dersom det regner i dag, hva er sannsynligheten for at det regner imorgen? 56 28

33 Betinget sannsynlighet Eks.: Anta at sannsynligheten for regn i dag og imorgen er 0.3 og at sannsynligheten for regn i dag er 0.4. Dersom det regner i dag, hva er sannsynligheten for at det regner imorgen? Løsning: La R 1 = det regner i dag, og la R 2 = det regner imorgen. Da vet vi: R 1 ) = 0.4 og R 1 R 2 ) = 0.3 Sannsynligheten for regn imorgen når det regner i dag er: R 2 R 1 ) = R 1 R 2 ) / R 1 ) = 0.3/0.4 =

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 Kp. 2 Sannsynlighetsregning (sannsynlighetsteori) 1 Grunnbegrep Stokastisk forsøk: forsøk med uforutsigbart utfall Enkeltutfall: et av de mulige

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Grunnbegrep. Grunnbegrep, sannsynligheten for et utfall

ÅMA110 Sannsynlighetsregning med statistikk, våren Grunnbegrep. Grunnbegrep, sannsynligheten for et utfall ÅM110 Sannsynlighetsregning med statistikk, våren 006 Kp. Sannsynlighetsregning (sannsynlighetsteori) 1 Grunnbegrep Stokastisk forsøk: forsøk med uforutsigbart utfall Enkeltutfall: et av de mulige utfallen

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Grunnbegrep. Grunnbegrep, sannsynligheten for et utfall

ÅMA110 Sannsynlighetsregning med statistikk, våren Grunnbegrep. Grunnbegrep, sannsynligheten for et utfall ÅM110 Sannynlighetregning med tatitikk, våren 2010 Kp. 2 Sannynlighetregning (annynlighetteori) 1 Grunnbegrep Stokatik forøk: forøk med uforutigbart utfall Enkeltutfall: et av de mulige utfallene av et

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 ÅM0 Sannsynlighetsregning med statistikk, våren 00 Kp. Sannsynlighetsregning (sannsynlighetsteori).5 (kp..5) - innledning Eks.: Et terningkast; {,, 3, 4, 5, 6}. Ved bruk av uniform modell: hvert utfall

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 ÅMA0 Sannsynlighetsregning med statistikk, våren 008 Kp. Sannsynlighetsregning (sannsynlighetsteori).5 Betinget sannsynlighet Betinget sannsynlighet (kp..5) - innledning Eks.: Et terningkast; {,, 3, 4,

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 Kp. 2 Sannsynlighetsregning i (sannsynlighetsteori) t i) 2.5 Betinget sannsynlighet 1 Betinget sannsynlighet (kp. 2.5) - innledning Eks.: Et terningkast;

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk (5sp), våren 2012 BMF100 Sannsynlighetsregning og statistikk 1 (10sp), våren 2012

ÅMA110 Sannsynlighetsregning med statistikk (5sp), våren 2012 BMF100 Sannsynlighetsregning og statistikk 1 (10sp), våren 2012 Introduksjon Prakstisk informasjon, s. 1 ÅMA110 Sannsynlighetsregning med statistikk (5sp), våren 2012 BMF100 Sannsynlighetsregning og statistikk 1 (10sp), våren 2012 Ny rammeplan for ingeniørfag Sannsynlighetsregning

Detaljer

Betinget sannsynlighet

Betinget sannsynlighet Betinget sannsynlighet Multiplikasjonsloven for sannsynligheter (s. 49 i bok): P( AB ) = P( A B ) P(B) Veldig viktig verktøy for å finne sannsynligheter for snitt. (Bevises ved rett fram manipulering av

Detaljer

MULTIPLE CHOICE ST0103 BRUKERKURS I STATISTIKK September 2016

MULTIPLE CHOICE ST0103 BRUKERKURS I STATISTIKK September 2016 MULTIPLE CHOICE ST0103 BRUKERKURS I STATISTIKK September 2016 SETT RING RUNDT DET RIKTIGE SVARET FOR HVER OPPGAVE. Oppgave 1 Stokastisk forsøk Stokastiske forsøk karakteriseres ved to av følgende egenskaper.

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA0 Sannsynlighetsregning med statistikk, våren 0 Kp. 3 Diskrete tilfeldige variable Noen viktige sannsynlighetsmodeller Noen viktige sannsynlighetsmodeller ( Sanns.modell : nå betyr det klasse/type sanns.fordeling.

Detaljer

Kapittel 2: Sannsynlighet

Kapittel 2: Sannsynlighet Kapittel 2: Sannsynlighet Definisjoner: Noen grunnleggende begrep. Stokastisk forsøk: Et forsøk/eksperiment der det er tilfeldig hva utfall blir. Utfallsrom, : Mengden av alle mulige utfall av et stokastisk

Detaljer

Sannsynlighet i uniforme modeller. Addisjon av sannsynligheter

Sannsynlighet i uniforme modeller. Addisjon av sannsynligheter Sannsynlighet i uniforme modeller. Addisjon av sannsynligheter Fagstoff Listen [] Hendelse En hendelse i en sannsynlighetsmodell består av ett eller flere utfall. Vi ser på det tilfeldige forsøket «kast

Detaljer

Sannsynlighetsregning og Statistikk

Sannsynlighetsregning og Statistikk Sannsynlighetsregning og Statistikk Leksjon 2. Leksjon 2 omhandler begreper og regneregler for sannsynligheter. Dette er behandlet i kapittel 3.1 og 3.2 i læreboka. Du bør når du har fullført leksjon 2

Detaljer

Sannsynlighetsregning og kombinatorikk

Sannsynlighetsregning og kombinatorikk Sannsynlighetsregning og kombinatorikk Introduksjon Formålet med sannsynlighet og kombinatorikk er å kunne løse problemer i statistikk, somoftegårutpååfattebeslutninger i situasjoner der tilfeldighet rår.

Detaljer

SANNSYNLIGHETSREGNING

SANNSYNLIGHETSREGNING SANNSYNLIGHETSREGNING Er tilfeldigheter tilfeldige? Når et par får vite at de skal ha barn, vurderes sannsynligheten for pike eller gutt normalt til rundt 50/50. Det kan forklare at det fødes omtrent like

Detaljer

statistikk, våren 2011

statistikk, våren 2011 ÅMA110 Sannsynlighetsregning med statistikk, våren 011 Kp. 3 Diskrete tilfeldige variable 1 Diskrete tilfeldige variable, innledning Hva er en tilfeldig variabel (stokastisk variabel)? Diskret tilfeldig

Detaljer

- Et stokastisk forsøk er et forsøk underlagt tilfeldige variasjoner, for eks. kast med en terning, trekking av et lottotall o.l.

- Et stokastisk forsøk er et forsøk underlagt tilfeldige variasjoner, for eks. kast med en terning, trekking av et lottotall o.l. SANNSYNLIGHETSREGNING Terminologi Kombinatorikk Stokastisk Utfallsrom / utfall (enkeltutfall) - Et stokastisk forsøk er et forsøk underlagt tilfeldige variasjoner, for eks. kast med en terning, trekking

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. ÅMA110 Sannsynlighetsregning med statistikk, våren 2010

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 ÅMA Sannsynlighetsregning med statistikk, våren Kp. Diskrete tilfeldige variable ÅMA Sannsynlighetsregning med statistikk, våren Kp. Diskrete tilfeldige variable Diskrete tilfeldige variable, innledning

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 21. april Bjørn H. Auestad Oppsummering våren

Detaljer

Fagdag 5-08.01.09. 2) Du skal fylle ut en tippekupong. På hvor mange måter kan dette gjøres?

Fagdag 5-08.01.09. 2) Du skal fylle ut en tippekupong. På hvor mange måter kan dette gjøres? Fagdag Plan Fagdag - 08.01.0 1,2 time: Repetisjon kapittel 3 - Sannsynlighet Oppgaver Teori (lesestoff) 3, time: Arbeide med.1 og.2: 16, 17, 18, 1 3, time: Ekstra vurdering før terminoppgjør Repetisjon

Detaljer

Kapittel 2: Sannsynlighet

Kapittel 2: Sannsynlighet Kapittel 2: Sannsynlighet 2.1, 2.2: Utfallsrom og hendelser 2.3, 2.4: Kombinatorikk og sannsynlighet 2.5, 2.6, 2.7: Regneregler, betinget sanns. 2.8: Bayes regel Eirik Mo Institutt for matematiske fag,

Detaljer

Deterministiske fenomener MAT0100V Sannsynlighetsregning og kombinatorikk

Deterministiske fenomener MAT0100V Sannsynlighetsregning og kombinatorikk Deterministiske fenomener MAT0100V Sannsynlighetsregning og kombinatorikk Almanakk for Norge viser: når det er fullmåne når det er soloppgang og solnedgang Grunnleggende sannsynlighetsregning Det er mulig

Detaljer

Statistikk 1 kapittel 3

Statistikk 1 kapittel 3 Statistikk 1 kapittel 3 Nico Keilman ECON 2130 Vår 2014 Kapittel 3 Sannsynlighetsregning Formål: å kvantifisere usikkerhet ved hjelp av sannsynligheter Viktige begreper stokastisk forsøk: et forsøk der

Detaljer

Utfallsrom og hendelser. Disjunkte hendelser. Kapittel 2: Sannsynlighet. Eirik Mo Institutt for matematiske fag, NTNU

Utfallsrom og hendelser. Disjunkte hendelser. Kapittel 2: Sannsynlighet. Eirik Mo Institutt for matematiske fag, NTNU 3 Utfallsrom og hendelser Kapittel 2: Sannsynlighet 2., 2.2: Utfallsrom og hendelser 2.3, 2.4: Kombinatorikk og sannsynlighet 2.5, 2.6, 2.7: Regneregler, betinget sanns. 2.8: Bayes regel DEF 2. Ufallsrom:

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Noen viktige sannsynlighetsmodeller. Binomisk modell. Kp. 3 Diskrete tilfeldige variable

ÅMA110 Sannsynlighetsregning med statistikk, våren Noen viktige sannsynlighetsmodeller. Binomisk modell. Kp. 3 Diskrete tilfeldige variable ÅMA Sannsynlighetsregning med statistikk, våren 006. 3 Diskrete tilfeldige variable Noen viktige sannsynlighetsmodeller Noen viktige sannsynlighetsmodeller (k. 3.6 Hyergeometrisk modell (k. 3.7 Geometrisk

Detaljer

Sannsynlighetsregning

Sannsynlighetsregning Sannsynlighetsregning 1 Sannsynlighet Mål for opplæringa er at eleven skal kunne formulere, eksperimentere med og drøfte enkle uniforme og ikkje-uniforme sannsynsmodellar berekne sannsyn ved hjelp av systematiske

Detaljer

6 Sannsynlighetsregning

6 Sannsynlighetsregning MATEMATIKK: 6 Sannsynlighetsregning 6 Sannsynlighetsregning 6.1 Forsøk. Utfallsrom. Sannsynlighet (sjanse). Sannsynlighetsmodell Ved ett kast med en terning vet vi at terningen vil vise enten ett, to,

Detaljer

Sannsynlighetsregning

Sannsynlighetsregning Sannsynlighetsregning Per G. Østerlie Thora Storm vgs per.osterlie@stfk.no 5. april 203 Hva og hvorfor? Hva? Vi får høre at det er sannsynlig at et eller annet kommer til å skje. Sannsynligheten for å

Detaljer

2.3: Kombinatorikk 2.4: Sannsynlighet, og Monte Carlo simulering. Foreleses onsdag 25. august 2010

2.3: Kombinatorikk 2.4: Sannsynlighet, og Monte Carlo simulering. Foreleses onsdag 25. august 2010 TMA4240 Statistikk H2010 2.3: Kombinatorikk 2.4: Sannsynlighet, og Monte Carlo simulering. Mette Langaas Foreleses onsdag 25. august 2010 2 Sist - Kap 0 Hva er statistikk, og hvorfor skal du lære det?

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 3 Diskrete tilfeldige variable. Diskrete tilfeldige variable, varians (kp. 3.

ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 3 Diskrete tilfeldige variable. Diskrete tilfeldige variable, varians (kp. 3. ÅMA Sannsynlighetsregning med statistikk, våren 8 Kp. Diskrete tilfeldige variable Kp. Diskrete tilfeldige variable Har sett på (tidligere: begrep/definisjoner; tilfeldig (stokastisk variabel sannsynlighetsfordeling

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 2.5: Addisjonsregler (union) 2.6: Betinget sannsynlighet 2.7: Multiplikasjonsregler (snitt) 2.8: Bayes regel (starte litt) Mette Langaas Foreleses mandag 30. august 2010 2 Kapittel

Detaljer

1 Section 4-1: Introduksjon til sannsynlighet. 2 Section 4-2: Enkel sannsynlighetsregning. 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger

1 Section 4-1: Introduksjon til sannsynlighet. 2 Section 4-2: Enkel sannsynlighetsregning. 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger 1 Section 4-1: Introduksjon til sannsynlighet 2 Section 4-2: Enkel sannsynlighetsregning 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger 4 Section 5-2: Tilfeldige variable 5 Section 5-3: Binomisk

Detaljer

Statistikk og økonomi, våren 2017

Statistikk og økonomi, våren 2017 Statistikk og økonomi, våren 207 Obligatorisk oppgave 3 Løsningsforslag Oppgave Produsenten av en type bærbar datamaskin har registrert at sannsynligheten er 0.2 for at tastaturet svikter, 0.09 for at

Detaljer

Kapittel 4: Sannsynlighet - Studiet av tilfeldighet

Kapittel 4: Sannsynlighet - Studiet av tilfeldighet Kapittel 4: Sannsynlighet - Studiet av tilfeldighet Vi så i forrige kapittel at utvalgsfordeling til en statistikk (observator) er fordelingen av verdiene til statistikken over alle utvalg av samme størrelse

Detaljer

Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk

Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk MAT000V Sannsynlighetsregning og kombinatorikk Tilfeldige variabler og sannsynlighetsfordelinger Hypergeometrisk fordeling Binomisk fordeling Ørnulf Borgan Matematisk institutt Universitetet i Oslo Tilfeldige

Detaljer

Blokk1: Sannsynsteori

Blokk1: Sannsynsteori Blokk1: Sannsynsteori Statistikk er vitskapen om læring frå data, og måling, kontroll og kommunikasjon av usikkerheit (Davians Louis, Science, 2012). Vi lærer frå data ved å spesifisere ein statistisk

Detaljer

Sannsynligheten for en hendelse (4.2) Empirisk sannsynlighet. ST0202 Statistikk for samfunnsvitere

Sannsynligheten for en hendelse (4.2) Empirisk sannsynlighet. ST0202 Statistikk for samfunnsvitere 2 Sannsynligheten for en hendelse (4.2) Sannsynligheten for en hendelse sier oss hvor ofte vi forventer at hendelsen inntreffer, dvs. den forventede relative frekvens av hendelsen. ST0202 Statistikk for

Detaljer

Statistikk 1 kapittel 3

Statistikk 1 kapittel 3 Statistikk 1 kapittel 3 Nico Keilman ECON 2130 Vår 2016 Kapittel 3 Sannsynlighetsregning Formål: å kvantifisere usikkerhet ved hjelp av sannsynligheter Viktige begreper stokastisk forsøk: et forsøk der

Detaljer

ST0202 Statistikk for samfunnsvitere [4]

ST0202 Statistikk for samfunnsvitere [4] ST0202 Statistikk for samfunnsvitere [4] Kapittel 4: Sannsynlighet 4.4: Disjunkte hendelser, 4.5: Uavhengige hendelser 4.6: Er disjunkthet og uavhengighet relatert til hverandre? Bruk av sannsynlighetsregning

Detaljer

4.4 Sum av sannsynligheter

4.4 Sum av sannsynligheter 4.4 Sum av sannsynligheter Nina trekker kort fra en vanlig kortstokk med 52 kort. Vi innfører hendingene H: Kortet er en hjerter S: Kortet er en spar Det er 13 hjerter og 13 spar i stokken. Sannsynligheten

Detaljer

Forsøk med sannsynlighetsregning/fra forsøk til sannsynlighet

Forsøk med sannsynlighetsregning/fra forsøk til sannsynlighet Sannsynlighet Sannsynligheter angis som 1. (desimal)tall fra 0 til 1, der 0 angir at noe aldri vil skje og at 1 angir at noe vil skje hver gang 2. prosent mellom 0 og 100 %, der 0 % angir at noe aldri

Detaljer

STK1100 våren 2017 Kombinatorikk

STK1100 våren 2017 Kombinatorikk STK1100 våren 2017 Kombinatorikk Svarer til avsnitt 2.3 i læreboka Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Uniform sannsynlighetsmodell Et stokastisk forsøk har N utfall. Det er de mulige

Detaljer

STK1100 våren Kombinatorikk = = Uniform sannsynlighetsmodell. Et stokastisk forsøk har N utfall. Det er de mulige utfallene for forsøket.

STK1100 våren Kombinatorikk = = Uniform sannsynlighetsmodell. Et stokastisk forsøk har N utfall. Det er de mulige utfallene for forsøket. ST1100 våren 2017 ombinatorikk Uniform sannsynlighetsmodell Et stokastisk forsøk har N utfall. Det er de mulige utfallene for forsøket. Vi antar at de N utfallene er like sannsynlige. Svarer til avsnitt

Detaljer

Sannsynlighet og statistikk

Sannsynlighet og statistikk Sannsynlighet og statistikk Arkeologiske utgravinger har vist at mennesker har underholdt seg med forskjellige spill i tusener av år. Terninger fra India som ble brukt i spill, er faktisk 5000 år gamle.

Detaljer

Motivasjon for kurset. ÅMA110 Sannsynlighetsregning med statistikk, våren 2008. Oppsummering. ÅMA110 Sannsynlighetsregning med statistikk våren 2008

Motivasjon for kurset. ÅMA110 Sannsynlighetsregning med statistikk, våren 2008. Oppsummering. ÅMA110 Sannsynlighetsregning med statistikk våren 2008 ÅMA0 Sannsynlighetsregning med statistikk, våren 008 Oppsummering ÅMA0 Sannsynlighetsregning med statistikk våren 008 Pensum: Pensumbok: Per Chr. Hagen: "Innføring i sannsynlighetsregning og statistikk",

Detaljer

Forelesning 3, kapittel 3. : 3.2: Sannsynlighetsregning. Kolmogoroffs aksiomer og bruk av disse.

Forelesning 3, kapittel 3. : 3.2: Sannsynlighetsregning. Kolmogoroffs aksiomer og bruk av disse. Forelesning 3, kapittel 3. : 3.2: Sannsynlighetsregning. Kolmogoroffs aksiomer og bruk av disse. Den klassiske definisjonen (uniform modell) av sannsynlighet for en hendelse A i et utfallsrom S er at sannsynligheten

Detaljer

Terningkast. Utfallsrommet S for et terningskast med en vanlig spillterning med 6 sider er veldefinert 1, 2, 3, 4, 5, 6

Terningkast. Utfallsrommet S for et terningskast med en vanlig spillterning med 6 sider er veldefinert 1, 2, 3, 4, 5, 6 Terningkast Halvor Aarnes, UiO, 2014 Innhold Ett terningkast og utfallsrom... 1 Union og snitt... 4 Betinget sannsynlighet... 5 Forventningsverdi E(X) og varianse Var(X)... 5 Konfidensintervall for proporsjoner...

Detaljer

Oppgaver. Innhold. Sannsynlighet Vg1P

Oppgaver. Innhold. Sannsynlighet Vg1P Oppgaver Innhold Modul 1. Hva er sannsynlighet?... 2 Modul 2. Addisjon av sannsynligheter. Gunstige og mulige utfall... 6 Modul 3. Beregne sannsynligheter ved å bruke tabeller... 10 Modul 4. Beregne sannsynligheter

Detaljer

Sannsynlighetsbegrepet

Sannsynlighetsbegrepet Sannsynlighetsbegrepet Notat til STK1100 Ørnulf Borgan Matematisk institutt Universitetet i Oslo Januar 2004 Formål Dette notatet er et supplement til kapittel 1 i Mathematical Statistics and Data Analysis

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Kapittel 5: Sannsynlighetsfordelinger for diskrete variabler Bo Lindqvist Institutt for matematiske fag 2 Tilfeldige variabler (5.1) Dersom vi til hvert utfall av eksperimentet

Detaljer

STK1100 våren Betinget sannsynlighet og uavhengighet. Svarer til avsnittene 2.4 og 2.5 i læreboka

STK1100 våren Betinget sannsynlighet og uavhengighet. Svarer til avsnittene 2.4 og 2.5 i læreboka STK1100 våren 2017 Betinget sannsynlighet og uavhengighet Svarer til avsnittene 2.4 og 2.5 i læreboka Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Eksempel 1 Vi vil først ved hjelp av et eksempel

Detaljer

Notater til forelesning i Sannsynlighetsregning SK 101 Matematikk i grunnskolen I

Notater til forelesning i Sannsynlighetsregning SK 101 Matematikk i grunnskolen I Notater til forelesning i Sannsynlighetsregning SK 101 Matematikk i grunnskolen I 4 Kombinatorikk Vi må lære tellemetoder når valgtrær, som vi brukte tidligere, blir for store og vanskelig å håndtere.

Detaljer

Total sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk = Vi kan skrive en hendelse B som en disjunkt

Total sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk = Vi kan skrive en hendelse B som en disjunkt MAT000V Sannsynlighetsregning og kombinatorikk Total sannsynlighet Vi kan skrive en hendelse B som en disjunkt union av A B og A B Total sannsynlighet og Bayes' setning Kombinatorikk Ordnede utvalg med

Detaljer

4: Sannsynlighetsregning

4: Sannsynlighetsregning Plan for hele året: - Kapittel 5: Januar - Kapittel 6: Februar - Kapittel 7: Februar/mars 4: Sannsynlighetsregning - Kapittel 8: Mars/april - Repetisjon: April/mai - Økter, prøver, prosjekter: Mai - juni

Detaljer

Innledning kapittel 4

Innledning kapittel 4 Innledning kapittel 4 Sannsynlighet og tilfeldighet Basert på materiale fra Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Deterministiske fenomener Almanakk for Norge viser: når det er fullmåne

Detaljer

Betinget sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk. Vi trenger en definisjon av betinget sannsynlighet!

Betinget sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk. Vi trenger en definisjon av betinget sannsynlighet! MAT0100V Sannsynlighetsregning og kombinatorikk Betinget sannsynlighet og uavhengige hendelser Produktsetningen Total sannsynlighet og Bayes' setning Betinget sannsynlighet Vil repeterer først et eksempel

Detaljer

STK1100 våren Introduksjon til sannsynlighetsbegrepet. Svarer til avsnittene 2.1 og 2.2 i læreboka

STK1100 våren Introduksjon til sannsynlighetsbegrepet. Svarer til avsnittene 2.1 og 2.2 i læreboka STK1100 våren 2017 Introduksjon til sannsynlighetsbegrepet Svarer til avsnittene 2.1 og 2.2 i læreboka Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Deterministiske fenomener Almanakk for Norge

Detaljer

STK1100 våren Introduksjon til sannsynlighetsbegrepet. Deterministiske fenomener. Stokastiske forsøk. Litt historikk

STK1100 våren Introduksjon til sannsynlighetsbegrepet. Deterministiske fenomener. Stokastiske forsøk. Litt historikk STK1100 våren 2017 Introduksjon til sannsynlighetsbegrepet Svarer til avsnittene 2.1 og 2.2 i læreboka Deterministiske fenomener Almanakk for Norge viser: når det er fullmåne når det er soloppgang og solnedgang

Detaljer

Sannsynlighetsregning

Sannsynlighetsregning Sannsynlighetsregning Læreplan. Forsøk og simuleringer. Sannsynlighet 3.3 Sum av sannsynligheter 5.4 Multiplikasjonsprinsippet 9.5 Uavhengige hendinger 0. Avhengige hendinger 5 Symboler, formler og eksempler

Detaljer

Notat kombinatorikk og sannsynlighetregning

Notat kombinatorikk og sannsynlighetregning Notat kombinatorikk og sannsynlighetregning av Peer Andersen Peer Andersen 2010 1 SANNSYNLIGHETSREGNING MED FLERE TRINN Sannsynlighetsregning med et trinn kan være situasjoner der vi spør hva sjansen er

Detaljer

Trekking uten tilbakelegging. Disjunkte hendelser (4.5) Forts. ST0202 Statistikk for samfunnsvitere

Trekking uten tilbakelegging. Disjunkte hendelser (4.5) Forts. ST0202 Statistikk for samfunnsvitere 2 Trekking uten tilbakelegging ST0202 Statistikk for samfunnsvitere o Lindqvist Institutt for matematiske fag En bolle inneholder 7 kuler, 5 gule (Y) og to røde (). To kuler trekkes uten tilbakelegging,

Detaljer

INNHOLD. Matematikk for ungdomstrinnet

INNHOLD. Matematikk for ungdomstrinnet INNHOLD STATISTIKK... 2 FREKVENS... 2 RELATIV FREKVENS... 2 FREKVENSTABELL... 2 KLASSEDELING... 3 SØYLEDIAGRAM (STOLPEDIAGRAM)... 3 LINJEDIAGRAM... 4 SEKTORDIAGRAM... 4 HISTOGRAM... 4 FRAMSTILLING AV DATA...

Detaljer

Innledning kapittel 4

Innledning kapittel 4 Innledning kapittel 4 Sannsynlighet og tilfeldighet Basert på materiale fra Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Deterministiske fenomener Almanakk for Norge viser: når det er fullmåne

Detaljer

Statistikk 1 kapittel 5

Statistikk 1 kapittel 5 Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2015 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel om en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like

Detaljer

Statistikk 1 kapittel 5

Statistikk 1 kapittel 5 Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2016 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel med en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like

Detaljer

Betinget sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk. Vi trenger en definisjon av betinget sannsynlighet!

Betinget sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk. Vi trenger en definisjon av betinget sannsynlighet! MAT000V Sannsynlighetsregning og kombinatorikk Betinget sannsynlighet og uavhengige hendelser Produktsetningen Total sannsynlighet og Bayes' setning Betinget sannsynlighet Vil repeterer først et eksempel

Detaljer

Kapittel 2, Sannsyn. Definisjonar og teorem på lysark, eksempel og tolking på tavla. TMA september 2016 Ingelin Steinsland

Kapittel 2, Sannsyn. Definisjonar og teorem på lysark, eksempel og tolking på tavla. TMA september 2016 Ingelin Steinsland Kapittel 2, Sannsyn 2.1 Utfallsrom Onsdag 2.2 Hendingar Onsdag 2.3 Telle mogeleg utfall: I dag 2.4 Sannsyn for ei hending: Onsdag 2.5 Addetive reglar: Onsdag 2.6 Betinga sannsyn, uavhengighet og produktregelen

Detaljer

Statistikk 1 kapittel 5

Statistikk 1 kapittel 5 Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2017 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel med en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like

Detaljer

10.4 Sannsynligheter ved flere i utvalget (kombinatorikk)

10.4 Sannsynligheter ved flere i utvalget (kombinatorikk) 10. er ved flere i utvalget (kombinatorikk) Så langt i framstillingen har vi diskutert den språklige siden, den matematiske tolkningen av sannsynlighetsbegrepet og presentert ulike modeller som kan anvendes

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Kapittel 4: Sannsynlighetsregning Bo Lindqvist Institutt for matematiske fag 2 Sannsynligheten for en hendelse (4.1) Sannsynligheten for en hendelse sier oss hvor ofte

Detaljer

Statistikk 1 kapittel 5

Statistikk 1 kapittel 5 Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2014 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel om en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like

Detaljer

MAT0100V Sannsynlighetsregning og kombinatorikk

MAT0100V Sannsynlighetsregning og kombinatorikk MAT000V Sannsynlighetsregning og kombinatorikk Uordnet utvalg uten tilbakelegging (repetisjon) Tilfeldige variabler og sannsynlighetsfordelinger Hypergeometrisk fordeling Binomisk fordeling Ørnulf Borgan

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Noen viktige sannsynlighetsmodeller. Noen viktige sannsynlighetsmodeller

ÅMA110 Sannsynlighetsregning med statistikk, våren Noen viktige sannsynlighetsmodeller. Noen viktige sannsynlighetsmodeller ÅMA0 Sannsnlighetsregning med statistikk, våren 008 Kp. 3 Diskrete tilfeldige variable Noen viktige sannsnlighetsmodeller Noen viktige sannsnlighetsmodeller Binomisk modell (kp. 3.6) Hpergeometrisk modell

Detaljer

Betinget sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk. Vi trenger en definisjon av betinget sannsynlighet!

Betinget sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk. Vi trenger en definisjon av betinget sannsynlighet! MAT000V Sannsynlighetsregning og kombinatorikk Betinget sannsynlighet Vi repeterer først et eksempel fra samlingen for sist uke Betinget sannsynlighet og uavhengige hendelser Produktsetningen Total sannsynlighet

Detaljer

SANNSYNLIGHETSREGNING I GRUNNSKOLEN

SANNSYNLIGHETSREGNING I GRUNNSKOLEN 1 I GRUNNSKOLEN Etterutdanningskurs for lærere på grunnskolens ungdomstrinn Opplegget som her presenteres til fordypning i STATISTIKK / SANNSYNLIGHETSDELEN av MATEMANIA er i utgangspunktet skrevet for

Detaljer

ST0103 Brukerkurs i statistikk Høst 2014

ST0103 Brukerkurs i statistikk Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag ST0103 Brukerkurs i statistikk Høst 2014 Løsningsforslag Øving 1 2.1 Frekvenstabell For å lage en frekvenstabell må vi telle

Detaljer

Lottotrekningen i Excel

Lottotrekningen i Excel Peer Andersen Lottotrekningen i Excel Mange leverer ukentlig inn sin lottokupong i håp om å vinne den store gevinsten. Men for de aller fleste blir den store gevinsten bare en uoppnåelig drøm. En kan regne

Detaljer

Undervisningsopplegg for ungdomstrinnet om statistikk og sannsynlighet

Undervisningsopplegg for ungdomstrinnet om statistikk og sannsynlighet Undervisningsopplegg for ungdomstrinnet om statistikk og sannsynlighet Kilde: www.clipart.com 1 Statistikk, sannsynlighet og kombinatorikk. Lærerens ark Hva sier læreplanen? Statistikk, sannsynlighet og

Detaljer

Forskjellige typer utvalg

Forskjellige typer utvalg Forskjellige typer utvalg Det skal deles ut tre pakker til en gruppe på seks. Pakkene inneholder en TV, en PC og en mobiltelefon. På hvor mange måter kan pakkene deles ut? Utdelingen skal være tilfeldig

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 2.8: Bayes regel 3.1: Stokastisk variabel 3.2: Diskrete sannsynlighetsfordelinger 3.3: Kontinuerlige sannsynlighetsfordelinger Mette Langaas Foreleses onsdag 1. september 2010

Detaljer

Basisoppgaver til 1P kap. 4 Sannsynlighet

Basisoppgaver til 1P kap. 4 Sannsynlighet Basisoppgaver til P kap. 4 Sannsynlighet 4. Sannsynlighet og relativ frekvens 4.2 Sannsynlighetsmodeller 4.3 Uniforme sannsynlighetsmodeller 4.4 Addisjonssetningen 4.5 Produktsetningen for uavhengige hendelser

Detaljer

b) Hvis det er mulig å svare blankt (dvs. vet ikke) blir det 5 svaralternativer på hvert spørsmål, og dermed mulige måter å svare på.

b) Hvis det er mulig å svare blankt (dvs. vet ikke) blir det 5 svaralternativer på hvert spørsmål, og dermed mulige måter å svare på. Diskret matematikk - Høgskolen i Oslo Løsningsforslag for en del oppgaver fra boken Discrete Mathematics and Its Applications Forfatter: Kenneth H. Rosen Avsnitt 5. Oppgave 3 Når et spørsmål har 4 svaralternativer

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 TMA0 Statistikk Høst 0 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer, blokk I Løsningsskisse Oppgave Hendelsene A og B er ikke disjunkte, det vil si at de kan

Detaljer

STK1100 våren Introduksjon til sannsynlighetsbegrepet. Deterministiske fenomener. Stokastiske forsøk. Litt historikk

STK1100 våren Introduksjon til sannsynlighetsbegrepet. Deterministiske fenomener. Stokastiske forsøk. Litt historikk STK1100 våren 2016 Introduksjon til sannsynlighetsbegrepet Svarer til avsnittene 2.1 og 2.2 i læreboka Geir Storvik Basert på presentasjon av Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Deterministiske

Detaljer

Forelesning 6, kapittel 3. : 3.6: Kombinatorikk.

Forelesning 6, kapittel 3. : 3.6: Kombinatorikk. Forelesning 6, kapittel 3. : 3.6: Kombinatorikk. Kombinatorikk betyr her: Formler for opptelling av antall kombinasjoner. Generelt er denne grenen av matematikk videre, og omfatter blant annet grafteori.

Detaljer

Forelesning 5, kapittel 3. : 3.5: Uavhengige hendelser.

Forelesning 5, kapittel 3. : 3.5: Uavhengige hendelser. Forelesning 5, kapittel 3. : 3.5: Uavhengige hendelser. Kast med to terninger, A er sekser på første terning og B er sekser på andre terning. Sekser på begge terningene er Fra definisjonen av betinget

Detaljer

Kombinatorikk og sannsynlighetsregning

Kombinatorikk og sannsynlighetsregning Kombinatorikk og sannsynlighetsregning Aasum, Jon-Henning & Maers, Rafael Lukas 1. april 2014 Sammendrag Denne artikkelen forsøker å gi en god forklaring på grunnleggende kombinatorikk og sannsynlighetsregning,

Detaljer

6. kurskveld Ila, 7. juni - 06 Statistikk og sannsynlighet

6. kurskveld Ila, 7. juni - 06 Statistikk og sannsynlighet . kurskveld Ila, 7. juni - 0 Statistikk og sannsynlighet Sannsynlighet og kombinatorikk Sannsynlighet er noe vi omgir oss med nesten daglig. Vi spiller Lotto og andre spill, og håper vi har flaks og vinner.

Detaljer

TMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger

TMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger TMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger Binomisk fordeling* ( ) n b(x; n, p) = p x (1 p) n x = x ( ) n p x q n x, x x = 0, 1, 2,..., n Fenomén: i) n forsøk. ii) Suksess/fiasko

Detaljer

Kapittel 3: Kombinatorikk

Kapittel 3: Kombinatorikk Kapittel 3: Kombinatorikk Kombinatorikk handler om å telle opp antall muligheter i ulike situasjoner (for eksempel telle opp antall gunstige og antall mulige i forbindelse med sannsynlighetsberegninger).

Detaljer

TMA4240 Statistikk 2014

TMA4240 Statistikk 2014 TMA0 Statistikk 0 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer, blokk I Løsningsskisse Oppgave Hendelsene A og B er ikke disjunkte, det vil si at de kan ha

Detaljer

Tall i arbeid Påbygging Kapittel 2 Sannsynlighetsregning Løsninger til innlæringsoppgavene

Tall i arbeid Påbygging Kapittel 2 Sannsynlighetsregning Løsninger til innlæringsoppgavene Tall i arbeid Påbygging Kapittel 2 Sannsynlighetsregning Løsninger til innlæringsoppgavene 2.4 a Du kan få 1, 2, 3, 4, 5 eller 6 øyne på terningen. Utfallsrommet er U = {1,2,3,4,5,6}. b Hvert av de seks

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST 101 Innføring i statistikk og sannsynlighetsregning. Eksamensdag: Mandag 30. november 1992. Tid for eksamen: 09.00 15.00.

Detaljer

LO118D Forelesning 3 (DM)

LO118D Forelesning 3 (DM) LO118D Forelesning 3 (DM) Mengder og funksjoner 27.08.2007 1 Mengder 2 Funksjoner Symboler x y Logisk AND, både x og y må være sanne x y Logisk OR, x eller y må være sann x Negasjon, ikke x x For alle

Detaljer

En kort innføring i sannsynlighetsregning

En kort innføring i sannsynlighetsregning En kort innføring i sannsynlighetsregning Harald Goldstein Sosialøkonomisk institutt Januar 2000 Innhold 1 Innledning 1 2 Begivenheter og sannsynlighet 4 2.1 Matematiskbeskrivelseavbegivenheter... 4 2.2

Detaljer

1T kapittel 4 Sannsynlighet Løsninger til innlæringsoppgavene

1T kapittel 4 Sannsynlighet Løsninger til innlæringsoppgavene 1T kapittel 4 Sannsynlighet Løsninger til innlæringsoppgavene 4.4 a Du kan få 1, 2, 3, 4, 5 eller 6 øyne på terningen. Utfallsrommet er U = {1,2,3,4,5,6}. b Hvert av de seks utfallene har samme sannsynlighet.

Detaljer

Utvalg med tilbakelegging

Utvalg med tilbakelegging Utvalg med tilbakelegging Gitt n forskjellige objekter. Vi skal velge r objekter på en slik måte at for hvert objekt vi velger, noterer vi hvilket det er og legger det tilbake. Det betyr at vi kan velge

Detaljer

TMA4240 Statistikk Høst 2008

TMA4240 Statistikk Høst 2008 TMA4240 Statistikk Høst 2008 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7 Oppgave 1 Tippekonkurranse Denne oppgaven er ment som en kjapp test på hva du har

Detaljer

Oppgaver i sannsynlighetsregning 3

Oppgaver i sannsynlighetsregning 3 Oppgaver i sannsynlighetsregning 3 Oppgave 1 Vi har et lykkehjul med 8 like sektorer som er nummerert fra 1 til 8. Du har valgt sektor nummer 3. a) Tenk deg at du snurrer lykkehjulet en gang. Hva er sjansen

Detaljer

Kapittel 10. Sannsynlighetsregning

Kapittel 10. Sannsynlighetsregning Kapittel 10. Sannsynlighetsregning Sannsynlighet handler om å finne ut hvor ofte noe vil skje i en prosess som kan gjentas mange ganger. Kapitlet handler blant annet om dette: Hva er sannsynlighet. Beregne

Detaljer