ST0202 Statistikk for samfunnsvitere

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "ST0202 Statistikk for samfunnsvitere"

Transkript

1 ST0202 Statistikk for samfunnsvitere Kapittel 4: Sannsynlighetsregning Bo Lindqvist Institutt for matematiske fag

2 2 Sannsynligheten for en hendelse (4.1) Sannsynligheten for en hendelse sier oss hvor ofte vi forventer at hendelsen inntreffer, dvs. den forventede relative frekvens av hendelsen. Sannsynligheter kan finnes på tre måter. Empirisk, dvs. ved å gjøre forsøk. Teoretisk, dvs. ved å regne. Subjektivt, dvs. ved (kvalifisert) gjetning.

3 Dette kalles store talls lov: Når antall forsøk n øker, vil Boden Lindqvist, relative ST0202, Kap. 4 3 Empirisk sannsynlighet Eksempel: Kast én terning. Hva er sannsynligheten for å få 1 er? La hendelse A være at terningen viser 1. Den teoretiske sannsynligheten for A skrives P(A). (P for probability). For en normal terning skal vi senere se at P(A) = 1/6. Empirisk sannsynlighet for A skrives P (A). Denne finnes ved å: kaste terningen n ganger registrere n(a), antall ganger A inntreffer regne ut P (A) = n(a) n som er den relative frekvensen av hendelse A. Når n blir stor vil P (A) etterhvert nærme seg P(A).

4

5 5 Teoretisk sannsynlighet for en hendelse ( event ) Eksperiment Aktiviteten som gir et resultat eller en observasjon. Utfall Et bestemt resultat fra et eksperiment ( outcome, sample point ) Utfallsrom Mengden av alle mulige utfall av et eksperiment, betegnet S ( sample space ). n(s) betegner antall utfall i utfallsrommet. Hendelse Et resultat av eksperimentet som vi ønsker sannsynligheten for. Vil være en delmengde A av utfallsrommet. For en hendelse A er n(a) antall utfall i A.

6 6 Teoretisk sannsynlighet (forts.) Sannsynlighet Hvis alle utfall i S er like sannsynlige, er teoretisk sannsynlighet for A = dvs. P(A) = n(a) n(s) antall utfall som gir A totalt antall utfall i S

7 7 Eksempel: Kast en mynt Utfall Krone (H) eller Mynt (T ) Utfallsrom S = {H, T} og n(s) = 2 Hendelse Ønsker for eksempel sannsynligheten for hendelsen A = Krone dvs. H. Da er n(a) = 1. dvs. Teoretisk sannsynlighet for A = P(A) = n(a) n(s) = 1 2 antall utfall som gir A totalt antall utfall i S

8 8 Eksempel: Kast en terning Utfall 1,2,3,4,5 eller 6 øyne Utfallsrom S = {1, 2, 3, 4, 5, 6} og n(s) = 6 Hendelse Ønsker for eksempel sannsynligheten for hendelsen A = minst 5 øyne = {5, 6}. Da er n(a) = 2. dvs. Teoretisk sannsynlighet for A = P(A) = n(a) n(s) = 2 6 = 1 3 antall utfall som gir A totalt antall utfall i S

9 9 Eksempel: Kast to terninger Utfallsrommet S har n(s) = 6 6 = 36 og kan skrives opp i et gitter. Merk at alle de 36 mulige utfallene er like sannsynlige. Andre terning ,1 1,2 1,3 1,4 1,5 1,6 2 2,1 2,2 2,3 2,4 2,5 2,6 Første 3 3,1 3,2 3,3 3,4 3,5 3,6 terning 4 4,1 4,2 4,3 4,4 4,5 4,6 5 5,1 5,2 5,3 5,4 5,5 5,6 6 6,1 6,2 6,3 6,4 6,5 6,6 La A = sum øyne er 5. Da er P(A) = n(a) n({(4, 1),(3, 2),(2, 3),(1, 4)}) = n(s) n(s) = 4 36 = 1 9

10 Oppgave: Kast to terninger og legg sammen tallene. Hvilke(n) sum(mer) er mest sannsynlig(e)? Andre terning ,1 1,2 1,3 1,4 1,5 1,6 2 2,1 2,2 2,3 2,4 2,5 2,6 Første 3 3,1 3,2 3,3 3,4 3,5 3,6 terning 4 4,1 4,2 4,3 4,4 4,5 4,6 5 5,1 5,2 5,3 5,4 5,5 5,6 6 6,1 6,2 6,3 6,4 6,5 6,6

11 Oppgave: Kast to terninger og la den interessante hendelsen være A at sum øyne er lik 5. Forklar at dersom utfallet defineres som sum antall øyne, kan utfallrommet skrives Hvorfor kan vi ikke da slutte at S = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} P(A) = n(a) n(s) = 1 11? (Husk at vi fikk 1 9 tidligere.)

12 12 Eksempel: Trediagram Kast tikrone og femkrone og registrer utfallet. Trediagrammet lages slik: 10 er H T 5 er H T H T Utfall H,H H,T T,H T,T Utfallsrom: S = {(H, H),(H, T),(T, H),(T, T)} n(s) = 4

13 13 Eksempel: Trediagram (fra boka) Trediagram for familie med tre barn (B=gutt, G=jente)

14 Oppgave: En mynt og en terning blir kastet. Skriv opp utfallsrommet S ved hjelp av et trediagram et gitter Hva er n(s)?

15 15 Egenskaper ved sannsynligheter Egenskap 1 for sannsynligheter: En sannsynlighet er alltid et tall mellom 0 og 1, dvs. 0 P(A) 1 Sannsynligheten er null dersom hendelsen ikke kan inntreffe. Sannsynligheten er 1 dersom hendelsen inntreffer hver gang. Ellers er den gitt ved en forventet relativ frekvens, dvs. forventet antall ganger A vil inntreffe i n forsøk dividert på n (som blir et tall mellom 0 og 1).

16 Egenskap 2 for sannsynligheter: Summen av sannsynlighetene for alle mulige utfall s i et eksperiment er eksakt lik 1, dvs. ΣP(s) = 1 Eksempel: Kast én terning. Da er S = {1, 2, 3, 4, 5, 6} og P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1 6. ΣP(s) = 1/6+1/ /6 = 1

17 17 Betinget sannsynlighet (4.2) En betinget sannsynlighet er den forventede relative frekvens for en hendelse dersom det er gitt en tilleggsinformasjon om en annen hendelse. P(A B) brukes for å uttrykke den betingede sannsynligheten for hendelsen A gitt at hendelsen B har inntruffet, dvs. kort: Sannsynligheten for A gitt B

18 18 I klasserommet Jeg utfører et eksperiment, der jeg tilfeldig velger ut en student, og definerer to hendelser. A Studenten er en kvinne. B Studenten er over 175 cm høy. Vi vet fra før hva som menes med P(A) og P(B): P(A) er sannsynligheten for å trekke en kvinne. P(B) er sannsynligheten for å trekke student som er over 175 cm høy. Nytt de betingede sannsynlighetene P(A B) og P(B A). P(A B): Gitt at jeg har trukket ut en student som er over 175 cm høy, så er dette sannsynligheten for at studenten er en kvinne. P(B A): Gitt at jeg har trukket ut en kvinnelig student, så er dette sannsynligheten for at studenten er over 175 cm høy.

19 19 I klasserommet (forts.) Hvor mange studenter er tilstede? n Hvor mange av studentene er kvinner? n(a) Hvor mange av studentene er over 175 cm høy? n(b) Hvor mange av de kvinnelige studentene er over 175 cm høy? n(a og B) A Studenten er en kvinne. B Studenten er over 175 cm høy. Finn P(A), P(B), P(A B) og P(B A) basert på antallene vi har talt opp over.

20 Se igjen på krysstabellen med frekvenser for gender og major for 30 studenter (Kap. 2). Rows: Gender Columns: Major BA LA T All F M All Anta at én av de 30 studentene velges tilfeldig. 1. Sannsynligheten for at denne har major i LA er 11/30 = MEN: Hvis vi får vite at den uttrukne er en kvinne, er sannsynligheten for at hun har major i LA lik 6/12 = OGSÅ: Hvis vi får vite at den uttrukne er en mann, er sannsynligheten for at han har major i LA lik 5/18 = 0.28 Dette er eksempler på betingede sannsynligheter.

21 (forts.) La A være hendelsen at den uttrukne har major LA. La B være hendelsen at den uttrukne er kvinne. La C være hendelsen at den uttrukne er mann. Da er sannynlighetene på forrige slide: P(A) = P(major i LA) = 0.37 P(A B) = P(major i LA kvinne) = 0.5 P(A C) = P(major i LA mann) = 0.28

22 22 Regler for sannsynligheter (4.3) Komplementet til en hendelse A: Mengden av alle utfall som ikke hører til A. Skrives Ā (leses A-komplement ) Fortolkning: Ā er hendelsen at A ikke inntreffer. Eksempel: Kast én terning og la A betegne partall antall øyne. Da er Ā hendelsen at antall øyne er et oddetall. Fordi A og Ā tilsammen dekker hele utfallsrommet, har vi at P(A)+P(Ā) = 1 Dette gir komplementregelen: Sannsynligheten for komplementet til A er lik 1 minus sannsynligheten for A, dvs. P(Ā) = 1 P(A)

23 Alle hendelser har et komplement. Iblant er det enklere å beregne sannsynligheten for Ā enn for A. Eksempel: Kast to terninger. Hva er sannsynligheten for at summen blir større enn eller lik 4? A=summen er større enn eller lik 4 Ā=summen er mindre enn eller lik 3 n(ā) P(A) = 1 P(Ā) = 1 n(s) n({(1, 1),(1, 2),(2, 1)}) = 1 n(s) = = = 11 12

24 Oppgave: La X være summen av to terningkast. Hva er P(X 3)? A) 1/6 B) 1/36 C) 35/36 D) 2/36 E) 11/12

25 25 Odds og sannsynlighet Eksempel: Anta at 3/4 av studentene består en bestemt test, mens 1/4 dermed stryker. Oddsen i favør av å bestå eksamen er da 3/4 1/4 = 3 Oddsen for en hendelse er generelt definert ved Odds(A) = P(A) P(Ā)

26 26 Sammensatte hendelser dvs. kombinasjoner av flere hendelser. Betrakt to hendelser A og B. Disse kan for eksempel være Kast en terning og registrer antall øyne: A=partall B=5 eller bedre Ta sit-ups A=flere enn 10 sit-ups B=færre enn 20 sit-ups Trekk student fra en populasjon A=kvinne B=fulltidsstudent

27 27 Enkel bruk av sammensatte hendelser Hva er P(A eller B), dvs. sannsynligheten for at hendelse A eller B (eller begge) inntreffer? Hva er P(A og B), dvs. sannsynligheten for at både A og B inntreffer? Hva er P(A B), dvs. den betingede sannsynligheten for at A inntreffer gitt at B har inntruffet? (Har allerede sett eksempel på dette)

28 28 Den generelle addisjonsregel La A og B være to hendelser definert i et utfallsrom S. sannsynligheten for A eller B (eller begge) = sannsynligheten for A + sannsynligheten for B - sannsynligheten for A og B, dvs. P(A eller B) = P(A)+P(B) P(A og B)

29 29 Illustrasjon av den generelle addisjonsregel P(A eller B) = P(A)+P(B) P(A og B)

30 30 Eksempel Kast to terninger. Hva er sannsynligheten for at summen er 10 (hendelse A) eller at terningene viser to like (hendelse B)?

31 P(A eller B) = P(A)+P(B) P(A og B) = = 8 36 = 2 9 siden hendelsen A og B her svarer til det ene utfallet (5, 5).

32 Se igjen på krysstabellen med frekvenser for gender og major for 30 studenter (Kap. 2). Rows: Gender Columns: Major BA LA T All F M All Anta at én av de 30 studentene velges tilfeldig. La A være hendelsen at den uttrukne har major LA. La B være hendelsen at den uttrukne er kvinne. Da er: P(A eller B) = P(A)+P(B) P(A og B) = = 17 30

33 33 Den generelle multiplikasjonsregel La A og B være to hendelser definert i et utfallsrom S. Hva er sannsynligheten for at både A og B inntreffer? sannsynligheten for A og B = sannsynligheten for A sannsynligheten for B gitt A, dvs. P(A og B) = P(A) P(B A)

34 34... eller også (siden A og B kan byttes om:) P(A og B) = P(B) P(A B)

35 Se nok en gang på krysstabellen med frekvenser for gender og major for 30 studenter (Kap. 2). Rows: Gender Columns: Major BA LA T All F M All der A er hendelsen at den uttrukne har major LA, og B er hendelsen at den uttrukne er kvinne. Vi har tidligere funnet at: P(B) = 12 30, P(A B) = 6 12 = 1 2 hvorfor? Den generelle multiplikasjonsregel gir da at P(A og B) = P(B) P(A B) = = som vi også kan lese av fra tabellen. Bo Lindqvist, ST0202, Kap. 4

36 36 Trekking uten tilbakelegging En bolle inneholder 7 kuler, 5 gule (Y) og to røde (R). To kuler trekkes uten tilbakelegging, dvs. at det først trekkes en og at det så trekkes en til uten å legge den første tilbake. La A B = den første kulen er gul (Y) = den andre kulen er gul (Y) P(begge kulene er gule) = P(A og B) = P(A) P(B A) = = 20 42

37 37 Forts. P(en av hver farge) = P(YR)+P(RY) = = = P(to røde) = P(RR) = = 2 42

38 38 Betinget rødt... Tre kort: Rødt på begge sider Rødt på en side, blått på en side Blått på begge sider Lukk øynene, trekk et kort og legg på bordet. Gitt at kortsiden du ser er rød, hva er da sannsynligheten for at også siden du ikke ser er rød? (Følgende resonnement viser seg å være galt: Sannsynligheten må være 1/2 siden det er to kort som er røde på den ene siden, og det ene av dem er rødt også på den andre siden...)

39 39 Betinget rødt... gjør som lekse Tegn et trediagram. Sett sannsynligheter på greinene. Bruk den generelle multiplikasjonsregelen til å regne ut den betingede sannsynligheten for at undersiden er rød, gitt at oversiden er rød.

40 40 The Monty Hall Problem (hvis du trenger utfordringer) Spill med en programleder og en deltaker. Tre dører. Bak en av dørene er det en flott bil. Bak de to andre dørene er det geiter.

41 41 Selve spillet 1. Deltakeren velger en av dørene, men åpner den ikke. 2. Programlederen åpner en av dørene som ikke er valgt, hvor han vet at det er en geit. (NB VIKTIG: programlederen VET hvor bilen er.) 3. Deltakeren får valget mellom å beholde døra som først ble valgt eller bytte til den andre lukkede døra. Bør deltakeren bytte dør?

42 42 Hva tror du? Tegn et trediagram. Sett på sannsynligheter og regn ut sannsynligheten for å vinne hvis du bytter og hvis du ikke bytter. Sjekk svaret ved simulering: statistikk/porsche.html Marilyn vos Savant (som først løste problemet): articles/gameshow.html

43 43 Disjunkte hendelser (4.4) To disjunkte (gjensidig utelukkende) hendelser: Hendelser definert slik at dersom en av hendelsene inntreffer, kan den andre ikke inntreffe. dvs. P(A og B) = 0 eller med Venn-diagram:

44 Hvis vi har flere enn 2 hendelser, kalles disse parvis disjunkte ( mutually exclusive ) hvis hvert par av dem er disjunkte etter definisjonen på forrige slide. Eksempel: Betrakt et eksperiment der to terninger blir kastet. Tre hendelser er definert: A: Summen av tallene på terningene er 7 B: Summen av tallene på terningene er 10 C: Begge terningene viser samme tall. Er disse tre hendelsene parvis disjunkte?

45 A: Summen av tallene på terningene er 7 B: Summen av tallene på terningene er 10 C: Begge terningene viser samme tall. A og B er disjunkte. A og C er disjunkte. B og C er ikke disjunkte, fordi B og C = (5, 5) De tre hendelsene er dermed ikke parvis disjunkte (selv om alle tre ikke kan inntreffe samtidig).

46 46 Den spesielle addisjonsregelen For disjunkte hendelser A og B gjelder P(A eller B) = P(A)+P(B) Denne regelen kan generaliseres: For parvis disjunkte hendelser A, B, C... E gjelder P(A eller B eller C eller... eller E) = P(A)+P(B)+P(C)+...+P(E)

47 Illustrasjon av den spesielle addisjonsregelen: Her er A og B disjunkte, og vi har: P(A eller B) = P(A)+P(B)

48 Eksempel: Kast to terninger. Hva er sannsynligheten for at summen er 7 (hendelse A) eller at terningene er like (hendelse B)? Hendelse A (grønn) og B (blå) er disjunkte (inntreffer A kan ikke B inntreffe og motsatt, se figur under).

49 Regelen over gir da P(A eller B) = P(A)+P(B) = = 1 3

50 50 Oppgave To terninger blir kastet. Hendelsene er A=summen er 7 C=to like E=summen er 8. a) Hvilke par av hendelser er disjunkte? b) Finn sannsynlighetene P(A eller C), P(A eller E), og P(C eller E)

51 51 Uavhengige hendelser (4.5) To hendelser A og B er uavhengige hendelser hvis det at A har hendt (eller ikke har hendt) ikke påvirker sannsynligheten for at B skal hende, dvs. eller P(A) = P(A B) = P(A ikke B) P(B) = P(B A) = P(B ikke A) Dersom den ene av linjene er oppfylt vil alltid den andre være det også. Hendelser som ikke er uavhengige, kalles avhengige.

52 52 Eksempler på uavhengighet Kast en terning og en mynt. A er at terningen gir en 6er, B er at mynten lander på Kron (H). Hvorfor er P(B A) = P(B)? Hva blir P(A og B)? Kast en mynt to ganger. A er at mynten lander på H i første kast, B er at mynten lander på H i andre kast. Hvorfor er P(B A) = P(B)? Hva blir P(A og B)? Trekk to kort fra en kortstokk ved at det først trekkes ett kort, som legges tilbake, og at det så stokkes på ny og trekkes et nytt kort. A er at det er en spar i første trekning, B er at det er en hjerter i andre trekning. Forklar hvorfor A og B er uavhengige. Ville disse hendelsene være uavhengige dersom du ikke la tilbake det første kortet før du trakk det andre?

53 Husk den generell multiplikasjonsregel: P(A og B) = P(A)P(B A) Dersom A og B er uavhengige, har vi P(B A) = P(B), så vi får: Den spesielle multiplikasjonsregel: P(A og B) = P(A)P(B) Dette kan generaliseres til tilfellet med mer enn to uavhengige hendelser: For uavhengige hendelser A, B, C... E gjelder P(A og B og C og... og E) = P(A) P(B) P(C)... P(E)

54 54 Oppgave Kast en mynt to ganger. A er at mynten lander på H i første kast, B er at mynten lander på H i andre kast. Hva blir P(A og B)? Kast en mynt ti ganger. La A 1 være at mynten lander på H i første kast, A 2 at mynten lander på H i andre kast,..., A 10 at mynten lander på H i tiende kast. Hva blir P(A 1 og A 2 og og A 10 )? (Så du programmet Siffer på NRK i fjor høst?).

55 55 Trekking med tilbakelegging En bolle inneholder 7 kuler, 5 gule (Y) og to røde (R). To kuler trekkes med tilbakelegging, dvs. at det først trekkes en kule, så legges denne tilbake, og det trekkes en kule til. La Da er A B = den første kulen er gul (Y) = den andre kulen er gul (Y) P(begge kulene er gule) = P(A og B) = P(A) P(B A) = = siden vi nå har at: er altså A og B uavhengige. P(B A) = 5 7 = P(B)

56 56 Formel for betinget sannsynlighet Ved å stokke om på generell multiplikasjonsregel, P(A og B) = P(A) P(B A) får vi et uttrykk for sannsynligheten for hendelsen A gitt at hendelsen B har inntruffet: P(A og B) P(B A) = P(A)

57 57 Eksempel En student blir trukket tilfeldig fra en populasjon bestående av 200 studenter hvorav 140 studerer fulltid (80 kvinner og 60 menn) 60 studerer deltid (40 kvinner og 20 menn) La hendelse A være at studenten studerer fulltid og hendelse C at studenten er kvinne a) Finn P(A), P(C), P(A og C) b) Finn P(A C) og P(C A) c) Er A og C uavhengige?

58 a) A=fulltid C=kvinne P(A og C) = P(A) = n(a) n(s) = = 0.7 P(C) = n(c) n(s) = = 0.6 n(a og C) n(s) = = 0.4

59 b) P(A C) = P(C A) = P(A og C) P(C) P(A og C) P(A) = = 0.67 = = 0.57 c) A og C er avhengige siden P(A C) P(A), P(C A) P(C)

60 Oppgave (eksamen høst 2005): Hva er sannsynligheten for at summen av to terninger er større enn eller lik 10 gitt at minst en av terningene er 6? A) 1/4 B) 1/3 C) 5/11 D) 6/11 E) 1/2

61 61 Uavhengighet og disjunkthet (4.6) Uavhengighet og disjunkthet er begreper som ofte blandes. La A og B være to hendelser med positive sannsynligheter P(A) og P(B). At A og B er disjunkte, betyr at de ikke kan inntreffe samtidig, dvs. at P(A og B) = 0 At A og B er uavhengige betyr at sannsynligheten for B ikke endrer seg dersom vi vet om A har inntruffet, dvs. at vi har P(A og B) = P(A)P(B A) = P(A)P(B) Men dette kan ikke være 0 da både P(A) og P(B) er positive. To hendelser kan defor ikke både være disjunkte og uavhengige.

62 Oppgave: Dersom P(A)=0.3 og P(B)=0.4 og A og B er uavhengige hendelser. Hva er sannsynlighetene a) P(A og B) b) P(B A) c) P(A B)

63 Oppgave: Trekk et kort fra en standard kortstokk. Definer tre hendelser A=kortet er knekt,dame eller konge B=kortet er rødt C=kortet er hjerter Er følgende par av hendelser uavhengige? a) A og B b) A og C c) B og C

64 Oppgave: Trekk et kort fra en standard kortstokk bortsett fra at kløver 2 mangler. Definer tre hendelser A=kortet er knekt,dame eller konge B=kortet er rødt C=kortet er hjerter Er følgende par av hendelser uavhengige? a) A og B b) A og C c) B og C

65 65 Bruk av sannsynlighetsregning La oss bruke reglene vi har vært igjennom. Først et enkelt eksempel: En boks inneholder en rød, en blå og en hvit kule. Trekk to kuler uten tilbakelegging. Dette kan gjøres ved først å trekke den ene kula, legge den til side, og så trekke den andre. Utfallene og deres sannsynligheter kan da finnes ved hjelp av et sannsynlighetstre. Sannsynligheten for et utfall finnes ved å multiplisere (betingede) sannsynligheter langs grenene: P(R,B)=P(R)P(B R) osv. Sannsynligheten for en hendelse finnes ved å summere sannsynlighetene for de utfall som hører til hendelsen.

66 1/3 1/3 1/3 R B H 1/2 1/2 1/2 1/2 1/2 1/2 B H R H R B Gren Utfall P (R,B) 1/6 (R,H) 1/6 (B,R) 1/6 (B,H) 1/6 (H,R) 1/6 (H,B) 1/6

67 Sannsynligheten for gren 1: P(R, B) = P(R)P(B R) = 1/3 1/2 = 1/6 Sannsynligheten for hendelsen en rød og en blå kule : Gren 1 og gren 3 gir en rød og en blå kule, så addisjonsregelen gir: P(en rød og en blå kule) = 1/6+1/6 = 1/3 1/3 1/3 1/3 R B H 1/2 1/2 1/2 1/2 1/2 1/2 B H R H R B Gren Utfall P (R,B) 1/6 (R,H) 1/6 (B,R) 1/6 (B,H) 1/6 (H,R) 1/6 (H,B) 1/6

68 68 Eksempel: Kvalitetskontroll En produsent produserer en artikkel. I gjennomsnitt er 20% av artiklene defekte. Hver artikkel blir kontrollert før den sendes ut. Kontrolløren feilklassifiserer artikkelen 10% av gangene. Hvilken andel av artiklene blir klassifisert som feilfrie? Definer følgende hendelser: G: Artikkelen er feilfri D: Artikkelen er defekt CG: Artikkelen er klassisfisert feilfri av kontrollør CD: Artikkelen er klassifisert defekt av kontrollør Tegn et trediagram.

69 G D Gren Utfall P CG 1 (G,CG) 0.72 CD CG CD (G,CD) 0.08 (D,CG) 0.02 (D,CD) 0.18 Artikkelen blir klassisfisert feilfri for gren 1 og gren 3. Dermed summeres sannsynligheten for gren 1 og gren 3: P(CG) = = 0.74

70 70 Eksempel (forts.) Anta at bare artikler som blir klassifisert som feilfrie blir utsendt. Hva er andelen av feilfrie artikler blant de utsendte artiklene? P(G CG) = P(G og CG) P(CG) = = Så kvalitetskontrollen øker andelen av feilfrie artikler fra 80% til 97.3%.

71 71 Eksempel: Dopingtesting En viss type doping forekommer i 1% av populasjonen. Testen kan påvise dette i 95% av tilfellene hvor personen er dopet, men påviser det også feilaktig i 2% av tilfelllene hvor personen ikke er dopet. Hva er sannsynlighenten for at personen er dopet om testen er positiv? La D=personen er dopet A=testen er positiv

72 P(D)=0.01 P(D )=0.99 D D P(A D)=0.95 P(A D)=0.05 P(A D )=0.02 P(A D )=0.98 Gren Utfall P A 1 (D,A) A 2 (D,A ) A 3 (D,A) A 4 (D,A ) P(D A) = P(D og A) P(A) = = 0.32

73 Oppgave: Det er oppgitt at P(A) = 0.60 P(B Ā) = 0.15 P(B A) = 0.05 a) Er A og B uavhengige? b) Hva er P(B)? c) Hva er P(A B)? (Vink: Tegn et sannsynlighetstre)

74 Oppgave: En 60 år gammel storrøyker med kronisk hoste og kortpustethet oppsøker lege. Legen er bekymret og definerer følgende hendelser: A: Pasientens symptom er kronisk hoste og kortpustethet. B: Pasienten har lungekreft. Erfaringer viser at vi kan anta følgende sannsynligheter for 60 årige storrøykere: P(A B)=0.9, P(A B)=0.01, P(B)=0.05 Hva er sannsynligheten for at pasienten har lungekreft gitt symptomene, dvs P(B A)? A) 0.91 B) 0.77 C) 0.50 D) 0.83 E) 0.99 (Vink: Sannsynlighetstre!)

75 75 Diagnostiske tester S= syk person, S=frisk person. T = positiv test, T = negativ test. For legemidler vet man: P(T S): Sannsynligheten for at testen slår ut positivt, gitt at personen er syk (sensitiviteten til testen). Ønskes høyest mulig. P( T S): Sannsynligheten for at testen slår ut negativt, gitt at personen er frisk (spesifisiteten). Ønskes høyest mulig. Interessant for pasienten: P(S T): Sannsynligheten for at du er syk, gitt at du har fått en positiv test (positiv prediktiv verdi). P( S T): Sannsynligheten for at du er frisk, gitt at du har fått en negativ test (negativ prediktiv verdi).

76 76 Hvorfor utføres ikke HIV-test som masseundersøkelse? P(S T) = P(S og T) P(T) Hva er sannsynligheten for at en person med positiv HIV-test virkelig er HIV-smittet, P(S T)? Anta Sensitivitet av testen: P(T S)= 0.98 Spesifisitet av testen: P( T S)= 0.995, dvs. P(T S) = Svaret er avhengig av forekomsten av HIV i populasjonen, P(S) (prevalensen). Anta at forekomsten av HIV i en populasjon er P(S) =

77 P(S og T) P(S T) = = P(T) = 0.09

78 x-akse: andel smittede i befolkningen, P(S) y-akse: andel som er smittet blant de med positiv test, P(S T)

79 79 HIV-test Norge som helhet: P(S) = (anslag fra lærebok i medisinsk statistikk) gir P(S T) = Sprøytemisbrukere: P(S) = 0.1 gir P(S T) = Storby i sentral-afrika: P(S) = 0.25 gir P(S T) = Dette gir et problem ved masseundersøkelser. De fleste av personene med positiv prøve kan faktisk være friske!

80 80 Fasit: Betinget rødt P(undersiden er rød oversiden er rød)=(sum av sanns for gren 1+2)/(sum av sanns for grenene 1+2+3)=2/3

ST0202 Statistikk for samfunnsvitere [4]

ST0202 Statistikk for samfunnsvitere [4] ST0202 Statistikk for samfunnsvitere [4] Kapittel 4: Sannsynlighet 4.4: Disjunkte hendelser, 4.5: Uavhengige hendelser 4.6: Er disjunkthet og uavhengighet relatert til hverandre? Bruk av sannsynlighetsregning

Detaljer

Sannsynligheten for en hendelse (4.2) Empirisk sannsynlighet. ST0202 Statistikk for samfunnsvitere

Sannsynligheten for en hendelse (4.2) Empirisk sannsynlighet. ST0202 Statistikk for samfunnsvitere 2 Sannsynligheten for en hendelse (4.2) Sannsynligheten for en hendelse sier oss hvor ofte vi forventer at hendelsen inntreffer, dvs. den forventede relative frekvens av hendelsen. ST0202 Statistikk for

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Sannsynligheten for en hendelse (4.2) Sannsynligheten for en hendelse sier oss hvor ofte vi forventer at hendelsen inntreffer,

Detaljer

Sannsynligheten for en hendelse (4.2) Empirisk sannsynlighet. ST0202 Statistikk for samfunnsvitere

Sannsynligheten for en hendelse (4.2) Empirisk sannsynlighet. ST0202 Statistikk for samfunnsvitere 2 Sannsynligheten for en hendelse (4.2) Sannsynligheten for en hendelse sier oss hvor ofte vi forventer at hendelsen inntreffer, dvs. den forventede relative frekvens av hendelsen. ST0202 Statistikk for

Detaljer

Trekking uten tilbakelegging. Disjunkte hendelser (4.5) Forts. ST0202 Statistikk for samfunnsvitere

Trekking uten tilbakelegging. Disjunkte hendelser (4.5) Forts. ST0202 Statistikk for samfunnsvitere 2 Trekking uten tilbakelegging ST0202 Statistikk for samfunnsvitere o Lindqvist Institutt for matematiske fag En bolle inneholder 7 kuler, 5 gule (Y) og to røde (). To kuler trekkes uten tilbakelegging,

Detaljer

Loven om total sannsynlighet. Bayes formel. Testing for sykdom. ST0202 Statistikk for samfunnsvitere

Loven om total sannsynlighet. Bayes formel. Testing for sykdom. ST0202 Statistikk for samfunnsvitere 2 Loven om total sannsynlighet La A og Ā være komplementære hendelser, mens B er en annen hendelse. Da er: P(B) P(B oga)+p(b ogā) P(B A)P(A)+P(B Ā)P(Ā) ST0202 Statistikk for samfunnsvitere Bo Lindqvist

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Loven om total sannsynlighet La A og Ā være komplementære hendelser, mens B er en annen hendelse. Da er: P(B) =P(B oga)+p(b

Detaljer

Kapittel 2: Sannsynlighet

Kapittel 2: Sannsynlighet Kapittel 2: Sannsynlighet 2.1, 2.2: Utfallsrom og hendelser 2.3, 2.4: Kombinatorikk og sannsynlighet 2.5, 2.6, 2.7: Regneregler, betinget sanns. 2.8: Bayes regel Eirik Mo Institutt for matematiske fag,

Detaljer

Utfallsrom og hendelser. Disjunkte hendelser. Kapittel 2: Sannsynlighet. Eirik Mo Institutt for matematiske fag, NTNU

Utfallsrom og hendelser. Disjunkte hendelser. Kapittel 2: Sannsynlighet. Eirik Mo Institutt for matematiske fag, NTNU 3 Utfallsrom og hendelser Kapittel 2: Sannsynlighet 2., 2.2: Utfallsrom og hendelser 2.3, 2.4: Kombinatorikk og sannsynlighet 2.5, 2.6, 2.7: Regneregler, betinget sanns. 2.8: Bayes regel DEF 2. Ufallsrom:

Detaljer

SANNSYNLIGHETSREGNING

SANNSYNLIGHETSREGNING SANNSYNLIGHETSREGNING Er tilfeldigheter tilfeldige? Når et par får vite at de skal ha barn, vurderes sannsynligheten for pike eller gutt normalt til rundt 50/50. Det kan forklare at det fødes omtrent like

Detaljer

Sannsynlighetsregning og Statistikk

Sannsynlighetsregning og Statistikk Sannsynlighetsregning og Statistikk Leksjon 2. Leksjon 2 omhandler begreper og regneregler for sannsynligheter. Dette er behandlet i kapittel 3.1 og 3.2 i læreboka. Du bør når du har fullført leksjon 2

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 2.8: Bayes regel 3.1: Stokastisk variabel 3.2: Diskrete sannsynlighetsfordelinger 3.3: Kontinuerlige sannsynlighetsfordelinger Mette Langaas Foreleses onsdag 1. september 2010

Detaljer

Oppgaver. Innhold. Sannsynlighet Vg1P

Oppgaver. Innhold. Sannsynlighet Vg1P Oppgaver Innhold Modul 1. Hva er sannsynlighet?... 2 Modul 2. Addisjon av sannsynligheter. Gunstige og mulige utfall... 6 Modul 3. Beregne sannsynligheter ved å bruke tabeller... 10 Modul 4. Beregne sannsynligheter

Detaljer

- Et stokastisk forsøk er et forsøk underlagt tilfeldige variasjoner, for eks. kast med en terning, trekking av et lottotall o.l.

- Et stokastisk forsøk er et forsøk underlagt tilfeldige variasjoner, for eks. kast med en terning, trekking av et lottotall o.l. SANNSYNLIGHETSREGNING Terminologi Kombinatorikk Stokastisk Utfallsrom / utfall (enkeltutfall) - Et stokastisk forsøk er et forsøk underlagt tilfeldige variasjoner, for eks. kast med en terning, trekking

Detaljer

MULTIPLE CHOICE ST0103 BRUKERKURS I STATISTIKK September 2016

MULTIPLE CHOICE ST0103 BRUKERKURS I STATISTIKK September 2016 MULTIPLE CHOICE ST0103 BRUKERKURS I STATISTIKK September 2016 SETT RING RUNDT DET RIKTIGE SVARET FOR HVER OPPGAVE. Oppgave 1 Stokastisk forsøk Stokastiske forsøk karakteriseres ved to av følgende egenskaper.

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 Kp. 2 Sannsynlighetsregning (sannsynlighetsteori) 1 Grunnbegrep Stokastisk forsøk: forsøk med uforutsigbart utfall Enkeltutfall: et av de mulige

Detaljer

6 Sannsynlighetsregning

6 Sannsynlighetsregning MATEMATIKK: 6 Sannsynlighetsregning 6 Sannsynlighetsregning 6.1 Forsøk. Utfallsrom. Sannsynlighet (sjanse). Sannsynlighetsmodell Ved ett kast med en terning vet vi at terningen vil vise enten ett, to,

Detaljer

Kapittel 2: Sannsynlighet [ ]

Kapittel 2: Sannsynlighet [ ] Kapittel 2: Sannsynlighet [2.6-2.8] TMA4240 Statistikk (F2 og E7) 2.6, 2.7, 2.8: Betinget sannsynlighet [23.august 2004] Ole.Petter.Lodoen@math.ntnu.no p.1/18 Oppsummering fra 2.1-2.5 FENOMEN Eksperiment

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 Kp. 2 Sannsynlighetsregning i (sannsynlighetsteori) t i) 2.5 Betinget sannsynlighet 1 Betinget sannsynlighet (kp. 2.5) - innledning Eks.: Et terningkast;

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 2 Sannsynlighetsregning (sannsynlighetsteori) 1 Grunnbegrep Stokastisk forsøk: forsøk med uforutsigbart utfall Enkeltutfall: et av de mulige

Detaljer

4.4 Sum av sannsynligheter

4.4 Sum av sannsynligheter 4.4 Sum av sannsynligheter Nina trekker kort fra en vanlig kortstokk med 52 kort. Vi innfører hendingene H: Kortet er en hjerter S: Kortet er en spar Det er 13 hjerter og 13 spar i stokken. Sannsynligheten

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 ÅM0 Sannsynlighetsregning med statistikk, våren 00 Kp. Sannsynlighetsregning (sannsynlighetsteori).5 (kp..5) - innledning Eks.: Et terningkast; {,, 3, 4, 5, 6}. Ved bruk av uniform modell: hvert utfall

Detaljer

Sannsynlighetsregning

Sannsynlighetsregning Sannsynlighetsregning Per G. Østerlie Thora Storm vgs per.osterlie@stfk.no 5. april 203 Hva og hvorfor? Hva? Vi får høre at det er sannsynlig at et eller annet kommer til å skje. Sannsynligheten for å

Detaljer

Sannsynlighetsregning og kombinatorikk

Sannsynlighetsregning og kombinatorikk Sannsynlighetsregning og kombinatorikk Introduksjon Formålet med sannsynlighet og kombinatorikk er å kunne løse problemer i statistikk, somoftegårutpååfattebeslutninger i situasjoner der tilfeldighet rår.

Detaljer

Betinget sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk. Vi trenger en definisjon av betinget sannsynlighet!

Betinget sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk. Vi trenger en definisjon av betinget sannsynlighet! MAT000V Sannsynlighetsregning og kombinatorikk Betinget sannsynlighet og uavhengige hendelser Produktsetningen Total sannsynlighet og Bayes' setning Betinget sannsynlighet Vil repeterer først et eksempel

Detaljer

Betinget sannsynlighet, total sannsynlighet og Bayes setning Kapittel 4.5

Betinget sannsynlighet, total sannsynlighet og Bayes setning Kapittel 4.5 Betinget sannsynlighet, total sannsynlighet og Bayes setning Kapittel 4.5 På bakgrunn av materiale fra Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Vi vil først ved hjelp av et eksempel se

Detaljer

Følgelig vil sannsynligheten for at begge hendelsene inntreffer være null,

Følgelig vil sannsynligheten for at begge hendelsene inntreffer være null, Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 3, blokk I Løsningsskisse Oppgave 1 Hvis hendelsene A og B er uavhengige, vil enhver kunnskap om hvorvidt A har

Detaljer

Statistikk og økonomi, våren 2017

Statistikk og økonomi, våren 2017 Statistikk og økonomi, våren 207 Obligatorisk oppgave 3 Løsningsforslag Oppgave Produsenten av en type bærbar datamaskin har registrert at sannsynligheten er 0.2 for at tastaturet svikter, 0.09 for at

Detaljer

1 Section 4-1: Introduksjon til sannsynlighet. 2 Section 4-2: Enkel sannsynlighetsregning. 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger

1 Section 4-1: Introduksjon til sannsynlighet. 2 Section 4-2: Enkel sannsynlighetsregning. 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger 1 Section 4-1: Introduksjon til sannsynlighet 2 Section 4-2: Enkel sannsynlighetsregning 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger 4 Section 5-2: Tilfeldige variable 5 Section 5-3: Binomisk

Detaljer

STK1100 våren Betinget sannsynlighet og uavhengighet. Svarer til avsnittene 2.4 og 2.5 i læreboka

STK1100 våren Betinget sannsynlighet og uavhengighet. Svarer til avsnittene 2.4 og 2.5 i læreboka STK1100 våren 2017 Betinget sannsynlighet og uavhengighet Svarer til avsnittene 2.4 og 2.5 i læreboka Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Eksempel 1 Vi vil først ved hjelp av et eksempel

Detaljer

Forelesning 3, kapittel 3. : 3.2: Sannsynlighetsregning. Kolmogoroffs aksiomer og bruk av disse.

Forelesning 3, kapittel 3. : 3.2: Sannsynlighetsregning. Kolmogoroffs aksiomer og bruk av disse. Forelesning 3, kapittel 3. : 3.2: Sannsynlighetsregning. Kolmogoroffs aksiomer og bruk av disse. Den klassiske definisjonen (uniform modell) av sannsynlighet for en hendelse A i et utfallsrom S er at sannsynligheten

Detaljer

Betinget sannsynlighet, Total sannsynlighet og Bayes setning

Betinget sannsynlighet, Total sannsynlighet og Bayes setning Betinget sannsynlighet, Total sannsynlighet og Bayes setning Innhold: Produktsetning, avhengighet, betinget sannsynlighet (.2,.) Setningen om total sannsynlighet (.4) Bayes setning (.4) Disse tingene henger

Detaljer

Statistikk 1 kapittel 3

Statistikk 1 kapittel 3 Statistikk 1 kapittel 3 Nico Keilman ECON 2130 Vår 2014 Kapittel 3 Sannsynlighetsregning Formål: å kvantifisere usikkerhet ved hjelp av sannsynligheter Viktige begreper stokastisk forsøk: et forsøk der

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Fra første forelesning: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av

Detaljer

Betinget sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk. Vi trenger en definisjon av betinget sannsynlighet!

Betinget sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk. Vi trenger en definisjon av betinget sannsynlighet! MAT0100V Sannsynlighetsregning og kombinatorikk Betinget sannsynlighet og uavhengige hendelser Produktsetningen Total sannsynlighet og Bayes' setning Betinget sannsynlighet Vil repeterer først et eksempel

Detaljer

Betinget sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk. Vi trenger en definisjon av betinget sannsynlighet!

Betinget sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk. Vi trenger en definisjon av betinget sannsynlighet! MAT000V Sannsynlighetsregning og kombinatorikk Betinget sannsynlighet Vi repeterer først et eksempel fra samlingen for sist uke Betinget sannsynlighet og uavhengige hendelser Produktsetningen Total sannsynlighet

Detaljer

Slide 1. Slide 2 Statistisk inferens. Slide 3. Introduction to the Practice of Statistics Fifth Edition

Slide 1. Slide 2 Statistisk inferens. Slide 3. Introduction to the Practice of Statistics Fifth Edition Slide 1 David S. Moore George P. McCabe Introduction to the Practice of Statistics Fifth Edition Chapter 4: Probability: The Study of Randomness 9/22/2010 Copyright 2005 by W. H. Freeman and Company Slide

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Kapittel 7: Utvalgsfordeling Bo Lindqvist Institutt for matematiske fag 2 Fra kapittel 1: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg

Detaljer

Kapittel 4: Betinget sannsynlighet

Kapittel 4: Betinget sannsynlighet Kapittel 4: Betinget sannsynlighet Ofte vil kunnskap om at en hendelse har inntruffet påvirke sannsynligheten for en annen hendelse. Definisjon: Den betingede sannsynligheten for A gitt B er: P(A B) P(A

Detaljer

Fagdag 5-08.01.09. 2) Du skal fylle ut en tippekupong. På hvor mange måter kan dette gjøres?

Fagdag 5-08.01.09. 2) Du skal fylle ut en tippekupong. På hvor mange måter kan dette gjøres? Fagdag Plan Fagdag - 08.01.0 1,2 time: Repetisjon kapittel 3 - Sannsynlighet Oppgaver Teori (lesestoff) 3, time: Arbeide med.1 og.2: 16, 17, 18, 1 3, time: Ekstra vurdering før terminoppgjør Repetisjon

Detaljer

Forelesning 4, kapittel 3. : 3.4: Betinget sannsynlighet.

Forelesning 4, kapittel 3. : 3.4: Betinget sannsynlighet. Forelesning 4, kapittel 3. : 3.4: Betinget sannsynlighet. Eksempel 1 (begrunnelse for definisjonen av betinget sannsynlighet): Hendelse A er "sum minst 8 på kast med 2 terninger" P(A) = 15/36 P(A) < 1/2

Detaljer

Introduction to the Practice of Statistics

Introduction to the Practice of Statistics David S. Moore George P. McCabe Introduction to the Practice of Statistics Fifth Edition Chapter 4: Probability: The Study of Randomness Copyright 2005 by W. H. Freeman and Company Statistisk inferens

Detaljer

Betinget sannsynlighet, total sannsynlighet og Bayes setning Kap. 4.5 STK1000 H11

Betinget sannsynlighet, total sannsynlighet og Bayes setning Kap. 4.5 STK1000 H11 Betinget sannsynlighet, total sannsynlighet og Bayes setning Kap. 4.5 STK1000 H11 På bakgrunn av materiale fra Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Vi vil først ved hjelp av et eksempel

Detaljer

Fra første forelesning:

Fra første forelesning: 2 Fra første forelesning: ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag opulasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av populasjonen

Detaljer

Betingede sannsynligheter Fra spøkefull Monty Hall til alvorsfull kreftdiagnostikk

Betingede sannsynligheter Fra spøkefull Monty Hall til alvorsfull kreftdiagnostikk Betingede sannsynligheter Fra spøkefull Monty Hall til alvorsfull kreftdiagnostikk Solve Sæbø IKBM, UMB Innhold The Monty Hall game Vinner du bilen eller geita? Den statistiske begrunnelsen for riktig

Detaljer

Oppgave 1 dvs 2 kort med samme verdi og 3 kort med ulike andre verdier. 4 verdier paret kan ta, og de to kortene i paret kan velges på måter.

Oppgave 1 dvs 2 kort med samme verdi og 3 kort med ulike andre verdier. 4 verdier paret kan ta, og de to kortene i paret kan velges på måter. TMA0 Statistikk Vår 008 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer Løsningsskisse Oppgave a Ett par, dvs kort med samme verdi og kort med ulike andre verdier.

Detaljer

10.4 Sannsynligheter ved flere i utvalget (kombinatorikk)

10.4 Sannsynligheter ved flere i utvalget (kombinatorikk) 10. er ved flere i utvalget (kombinatorikk) Så langt i framstillingen har vi diskutert den språklige siden, den matematiske tolkningen av sannsynlighetsbegrepet og presentert ulike modeller som kan anvendes

Detaljer

Betinget sannsynlighet

Betinget sannsynlighet Betinget sannsynlighet Multiplikasjonsloven for sannsynligheter (s. 49 i bok): P( AB ) = P( A B ) P(B) Veldig viktig verktøy for å finne sannsynligheter for snitt. (Bevises ved rett fram manipulering av

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 3, blokk I Løsningsskisse Oppgave 1 Hvis hendelsene A og B er uavhengige, vil enhver kunnskap om hvorvidt A har

Detaljer

Kapittel 2: Sannsynlighet

Kapittel 2: Sannsynlighet Kapittel 2: Sannsynlighet Definisjoner: Noen grunnleggende begrep. Stokastisk forsøk: Et forsøk/eksperiment der det er tilfeldig hva utfall blir. Utfallsrom, : Mengden av alle mulige utfall av et stokastisk

Detaljer

TMA4240 Statistikk 2014

TMA4240 Statistikk 2014 TMA0 Statistikk 0 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer, blokk I Løsningsskisse Oppgave Hendelsene A og B er ikke disjunkte, det vil si at de kan ha

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 TMA0 Statistikk Høst 0 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer, blokk I Løsningsskisse Oppgave Hendelsene A og B er ikke disjunkte, det vil si at de kan

Detaljer

ST0103 Brukerkurs i statistikk Høst 2014

ST0103 Brukerkurs i statistikk Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag ST0103 Brukerkurs i statistikk Høst 2014 Løsningsforslag Øving 1 2.1 Frekvenstabell For å lage en frekvenstabell må vi telle

Detaljer

Tilfeldige variable (5.2)

Tilfeldige variable (5.2) Tilfeldige variable (5.) Dersom vi til hvert utfall av eksperimentet tilordner et tall, har vi laget en tilfeldig variabel. Tilfeldig variabel: En variabel som har en numerisk verdi for hvert utfall i

Detaljer

Sannsynlighet i uniforme modeller. Addisjon av sannsynligheter

Sannsynlighet i uniforme modeller. Addisjon av sannsynligheter Sannsynlighet i uniforme modeller. Addisjon av sannsynligheter Fagstoff Listen [] Hendelse En hendelse i en sannsynlighetsmodell består av ett eller flere utfall. Vi ser på det tilfeldige forsøket «kast

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 ÅMA0 Sannsynlighetsregning med statistikk, våren 008 Kp. Sannsynlighetsregning (sannsynlighetsteori).5 Betinget sannsynlighet Betinget sannsynlighet (kp..5) - innledning Eks.: Et terningkast; {,, 3, 4,

Detaljer

Betinget sannsynlighet, total sannsynlighet og Bayes setning

Betinget sannsynlighet, total sannsynlighet og Bayes setning etinget sannsynlighet, total sannsynlighet og ayes setning Vi vil først ved hjelp av et eksempel se intuitivt på hva betinget sannsynlighet betyr: Vi legger fire røde kort og to svarte kort i en bunke

Detaljer

Kapittel 4.3: Tilfeldige/stokastiske variable

Kapittel 4.3: Tilfeldige/stokastiske variable Kapittel 4.3: Tilfeldige/stokastiske variable Litt repetisjon: Sannsynlighetsteori Stokastisk forsøk og sannsynlighet Tilfeldig fenomen Individuelle utfall er usikre, men likevel et regulært mønster for

Detaljer

Blokk1: Sannsynsteori

Blokk1: Sannsynsteori Blokk1: Sannsynsteori Statistikk er vitskapen om læring frå data, og måling, kontroll og kommunikasjon av usikkerheit (Davians Louis, Science, 2012). Vi lærer frå data ved å spesifisere ein statistisk

Detaljer

Prøve 6 1T 24.02.12 80 minutter. Alle hjelpemidler

Prøve 6 1T 24.02.12 80 minutter. Alle hjelpemidler Prøve 6 T 24.02.2 80 minutter. Alle hjelpemidler Oppgave I boks A er det 6 svarte og 2 hvite kuler. I boks B er det 8 svarte og 4 hvite kuler. Vi trekker en kule fra en av krukkene. a) va er sannsynligheten

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 2.5: Addisjonsregler (union) 2.6: Betinget sannsynlighet 2.7: Multiplikasjonsregler (snitt) 2.8: Bayes regel (starte litt) Mette Langaas Foreleses mandag 30. august 2010 2 Kapittel

Detaljer

Sannsynlighet (Kap 3)

Sannsynlighet (Kap 3) Sannsynlighet (Kap 3) Medisinsk statistikk Del I 3 sept. 2008 Eirik Skogvoll, 1.amanuensis/ overlege Hva er sannsynlighet? Grunnleggende sannsynlighetsregning 1 Brystkreft (Eks. 3.1) Forekomst av brystkreft

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Kapittel 5: Sannsynlighetsfordelinger for diskrete variabler Bo Lindqvist Institutt for matematiske fag 2 Tilfeldige variabler (5.1) Dersom vi til hvert utfall av eksperimentet

Detaljer

Kapittel 4: Sannsynlighet - Studiet av tilfeldighet

Kapittel 4: Sannsynlighet - Studiet av tilfeldighet Kapittel 4: Sannsynlighet - Studiet av tilfeldighet Vi så i forrige kapittel at utvalgsfordeling til en statistikk (observator) er fordelingen av verdiene til statistikken over alle utvalg av samme størrelse

Detaljer

INNHOLD. Matematikk for ungdomstrinnet

INNHOLD. Matematikk for ungdomstrinnet INNHOLD STATISTIKK... 2 FREKVENS... 2 RELATIV FREKVENS... 2 FREKVENSTABELL... 2 KLASSEDELING... 3 SØYLEDIAGRAM (STOLPEDIAGRAM)... 3 LINJEDIAGRAM... 4 SEKTORDIAGRAM... 4 HISTOGRAM... 4 FRAMSTILLING AV DATA...

Detaljer

9.5 Uavhengige hendinger

9.5 Uavhengige hendinger 9. Uavhengige hendinger Vi kaster en terning to ganger og innfører hendingene A: Det første kastet gir sekser B: Det andre kastet gir sekser Om vi får sekser på det første kastet, endrer ikke det sannsynligheten

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA0 Sannsynlighetsregning med statistikk, våren 0 Kp. 3 Diskrete tilfeldige variable Noen viktige sannsynlighetsmodeller Noen viktige sannsynlighetsmodeller ( Sanns.modell : nå betyr det klasse/type sanns.fordeling.

Detaljer

6 Sannsynlighetsregning

6 Sannsynlighetsregning 6 Sannsynlighetsregning Det anbefales å lese orienteringsstoffet om kombinatorikk som følger etter oppgave 34. 1 a) Sett opp alle mulige kombinasjoner for et kast med to terninger. b) Regn ut sannsynlighetene

Detaljer

TMA4240 Statistikk H2010 Kapittel 5: Diskrete sannsynlighetsfordelinger : Uniform, binomisk, hypergeometrisk fordeling

TMA4240 Statistikk H2010 Kapittel 5: Diskrete sannsynlighetsfordelinger : Uniform, binomisk, hypergeometrisk fordeling TMA4240 Statistikk H2010 Kapittel 5: Diskrete sannsynlighetsfordelinger 5.1-5.4: Uniform, binomisk, hypergeometrisk fordeling Mette Langaas 2 Arbeidshverdag etter endt studium Studere et fenomen (f.eks.

Detaljer

Testobservator for kjikvadrattester

Testobservator for kjikvadrattester ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 11: Anvendelser av kjikvadratfordelingen: Kjikvadrattester Situasjon: Et tilfeldig utvalg av n individer er trukket

Detaljer

Sannsynlighetsbegrepet

Sannsynlighetsbegrepet Sannsynlighetsbegrepet Notat til STK1100 Ørnulf Borgan Matematisk institutt Universitetet i Oslo Januar 2004 Formål Dette notatet er et supplement til kapittel 1 i Mathematical Statistics and Data Analysis

Detaljer

Litt mer om den hypergeometriske fordelingen og dens tilnærming av binomisk fordeling.

Litt mer om den hypergeometriske fordelingen og dens tilnærming av binomisk fordeling. 1 ECON 2130 HG mars 2015 Litt mer om den hypergeometriske fordelingen og dens tilnærming av binomisk fordeling. Grunnen til dette supplementet er dels at forholdet mellom hypergeometrisk og binomisk fordeling

Detaljer

Fire kort. Mål. Gjennomføring. Film. Problemløsing Fire kort Planleggingsdokument

Fire kort. Mål. Gjennomføring. Film. Problemløsing Fire kort Planleggingsdokument Fire kort Mål Generelt: Søke etter mønster og sammenhenger. Gjennomføre undersøkelse og begrunne resultat. Utfordre elevene på å resonnere og kommunisere. Spesielt: Finne alle kombinasjoner når de adderer

Detaljer

Statistikk 1 kapittel 3

Statistikk 1 kapittel 3 Statistikk 1 kapittel 3 Nico Keilman ECON 2130 Vår 2016 Kapittel 3 Sannsynlighetsregning Formål: å kvantifisere usikkerhet ved hjelp av sannsynligheter Viktige begreper stokastisk forsøk: et forsøk der

Detaljer

1 Sannsynlighetsrgning

1 Sannsynlighetsrgning 1 Sannsynlighetsrgning 1.1 Det er 13 grønne og 18 røde baller i en eske. Vi trekker ut to baller etter hverandre. a) Hva er sannsynligheten for å få to grønne baller? Svar: P(g 1, g 2 ) = p(g 1 ) p(g 2

Detaljer

6. kurskveld Ila, 7. juni - 06 Statistikk og sannsynlighet

6. kurskveld Ila, 7. juni - 06 Statistikk og sannsynlighet . kurskveld Ila, 7. juni - 0 Statistikk og sannsynlighet Sannsynlighet og kombinatorikk Sannsynlighet er noe vi omgir oss med nesten daglig. Vi spiller Lotto og andre spill, og håper vi har flaks og vinner.

Detaljer

Fire kort. Mål. Gjennomføring. Film. Problemløsing Fire kort

Fire kort. Mål. Gjennomføring. Film. Problemløsing Fire kort Fire kort Mål Generelt: Søke etter mønster og sammenhenger. Gjennomføre undersøkelse og begrunne resultat. Utfordre elevene på å resonnere og kommunisere. Spesielt: Finne alle kombinasjoner når de adderer

Detaljer

Innledning kapittel 4

Innledning kapittel 4 Innledning kapittel 4 Sannsynlighet og tilfeldighet Basert på materiale fra Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Deterministiske fenomener Almanakk for Norge viser: når det er fullmåne

Detaljer

Notat kombinatorikk og sannsynlighetregning

Notat kombinatorikk og sannsynlighetregning Notat kombinatorikk og sannsynlighetregning av Peer Andersen Peer Andersen 2010 1 SANNSYNLIGHETSREGNING MED FLERE TRINN Sannsynlighetsregning med et trinn kan være situasjoner der vi spør hva sjansen er

Detaljer

Fire kort. Mål. Gjennomføring. Film. Problemløsing Fire kort

Fire kort. Mål. Gjennomføring. Film. Problemløsing Fire kort Fire kort Mål Generelt: Søke etter mønster og sammenhenger. Gjennomføre undersøkelse og begrunne resultat. Utfordre elevene på å resonnere og kommunisere. Spesielt: Finne alle kombinasjoner når de adderer

Detaljer

Denne uken: Kapittel 4.3 og 4.4

Denne uken: Kapittel 4.3 og 4.4 Sist: Kapittel 4.1, 4.2, 4.5 Tilfeldighet Sannsynlighetsmodeller Regler for sannsynlighet Denne uken: Kapittel 4.3 og 4.4 Tilfeldige variable Forventning og varians til tilfeldige variable Litt repetisjon:

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Kapittel 3: Beskrivende analyse og presentasjon av data for to variabler (bivariate data) Bo Lindqvist Institutt for matematiske fag 2 Presentasjon av bivariate data

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Grunnbegrep. Grunnbegrep, sannsynligheten for et utfall

ÅMA110 Sannsynlighetsregning med statistikk, våren Grunnbegrep. Grunnbegrep, sannsynligheten for et utfall ÅM110 Sannsynlighetsregning med statistikk, våren 006 Kp. Sannsynlighetsregning (sannsynlighetsteori) 1 Grunnbegrep Stokastisk forsøk: forsøk med uforutsigbart utfall Enkeltutfall: et av de mulige utfallen

Detaljer

Fasit. Grunnbok. Kapittel 5. Bokmål

Fasit. Grunnbok. Kapittel 5. Bokmål Fasit Grunnbok Kapittel 5 Bokmål Kapittel 5 Fra erfaring til sannsynlighet 5. a P = 3 5.2 a P = 2 5.3 B har rett 5.4 a P = 4 b P = 4 b P = 2 b c P = 7 c P = 5 2 c d P = 25 d P = 5 2 5.5 a b Den eksperimentelle

Detaljer

SANNSYNLIGHETSREGNING I GRUNNSKOLEN

SANNSYNLIGHETSREGNING I GRUNNSKOLEN 1 I GRUNNSKOLEN Etterutdanningskurs for lærere på grunnskolens ungdomstrinn Opplegget som her presenteres til fordypning i STATISTIKK / SANNSYNLIGHETSDELEN av MATEMANIA er i utgangspunktet skrevet for

Detaljer

Oppgave 1 a) Antall måter å velge ut k elementer fra en populasjon på n er gitt av binomialkoeffisienten

Oppgave 1 a) Antall måter å velge ut k elementer fra en populasjon på n er gitt av binomialkoeffisienten Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalte oppgaver 2, blokk I Løsningsskisse Oppgave 1 a) Antall måter å velge ut k elementer fra en populasjon på n er gitt

Detaljer

Terningkast. Utfallsrommet S for et terningskast med en vanlig spillterning med 6 sider er veldefinert 1, 2, 3, 4, 5, 6

Terningkast. Utfallsrommet S for et terningskast med en vanlig spillterning med 6 sider er veldefinert 1, 2, 3, 4, 5, 6 Terningkast Halvor Aarnes, UiO, 2014 Innhold Ett terningkast og utfallsrom... 1 Union og snitt... 4 Betinget sannsynlighet... 5 Forventningsverdi E(X) og varianse Var(X)... 5 Konfidensintervall for proporsjoner...

Detaljer

Løsningskisse for oppgaver til undervisningsfri uke 8 ( februar 2012)

Løsningskisse for oppgaver til undervisningsfri uke 8 ( februar 2012) 1 ECON 130 HG - februar 01 Løsningskisse for oppgaver til undervisningsfri uke 8 (0.-. februar 01) Oppg..1. Variabel: x = antall kundehenvendelser pr. dag 1. Antall observasjoner: n = 100 dager. I Excel

Detaljer

TMA4240 Statistikk Høst 2013

TMA4240 Statistikk Høst 2013 TMA0 Statistikk Høst 0 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer, blokk I Løsningsskisse Oppgave Et venn-diagram for (A [ B) 0 = A 0 \ B 0 er vist i figur.

Detaljer

Sannsynlighet: Studiet av tilfeldighet

Sannsynlighet: Studiet av tilfeldighet Sannsynlighet: Studiet av tilfeldighet Vi så i forrige kapittel at utvalgsfordeling til en observator er fordelingen av verdien til observatoren i alle utvalg av samme størrelse fra populasjonen. Spesielt

Detaljer

2.3: Kombinatorikk 2.4: Sannsynlighet, og Monte Carlo simulering. Foreleses onsdag 25. august 2010

2.3: Kombinatorikk 2.4: Sannsynlighet, og Monte Carlo simulering. Foreleses onsdag 25. august 2010 TMA4240 Statistikk H2010 2.3: Kombinatorikk 2.4: Sannsynlighet, og Monte Carlo simulering. Mette Langaas Foreleses onsdag 25. august 2010 2 Sist - Kap 0 Hva er statistikk, og hvorfor skal du lære det?

Detaljer

Sannsynlighetsregning

Sannsynlighetsregning Sannsynlighetsregning Eksamensoppgaver Våren 2015 OPPGAVE 4 (UTEN HJELPEMIDLER) Tenk deg at du har ti bananer i skapet. Fem av dem er gule, tre er grønne, og to er blitt brune. Du tar tilfeldig to bananer.

Detaljer

Tall i arbeid Påbygging Kapittel 2 Sannsynlighetsregning Løsninger til innlæringsoppgavene

Tall i arbeid Påbygging Kapittel 2 Sannsynlighetsregning Løsninger til innlæringsoppgavene Tall i arbeid Påbygging Kapittel 2 Sannsynlighetsregning Løsninger til innlæringsoppgavene 2.4 a Du kan få 1, 2, 3, 4, 5 eller 6 øyne på terningen. Utfallsrommet er U = {1,2,3,4,5,6}. b Hvert av de seks

Detaljer

STK1100 våren Introduksjon til sannsynlighetsbegrepet. Svarer til avsnittene 2.1 og 2.2 i læreboka

STK1100 våren Introduksjon til sannsynlighetsbegrepet. Svarer til avsnittene 2.1 og 2.2 i læreboka STK1100 våren 2017 Introduksjon til sannsynlighetsbegrepet Svarer til avsnittene 2.1 og 2.2 i læreboka Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Deterministiske fenomener Almanakk for Norge

Detaljer

STK1100 våren Introduksjon til sannsynlighetsbegrepet. Deterministiske fenomener. Stokastiske forsøk. Litt historikk

STK1100 våren Introduksjon til sannsynlighetsbegrepet. Deterministiske fenomener. Stokastiske forsøk. Litt historikk STK1100 våren 2017 Introduksjon til sannsynlighetsbegrepet Svarer til avsnittene 2.1 og 2.2 i læreboka Deterministiske fenomener Almanakk for Norge viser: når det er fullmåne når det er soloppgang og solnedgang

Detaljer

STK1100 våren Introduksjon til sannsynlighetsbegrepet. Deterministiske fenomener. Stokastiske forsøk. Litt historikk

STK1100 våren Introduksjon til sannsynlighetsbegrepet. Deterministiske fenomener. Stokastiske forsøk. Litt historikk STK1100 våren 2016 Introduksjon til sannsynlighetsbegrepet Svarer til avsnittene 2.1 og 2.2 i læreboka Geir Storvik Basert på presentasjon av Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Deterministiske

Detaljer

Sannsynlighet og statistikk

Sannsynlighet og statistikk Sannsynlighet og statistikk Arkeologiske utgravinger har vist at mennesker har underholdt seg med forskjellige spill i tusener av år. Terninger fra India som ble brukt i spill, er faktisk 5000 år gamle.

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Mål på beliggenhet (2.6) Kvartiler: Deler de ordnede dataene inn i fire like store deler: 1. kvartil Q 1 : 25% av dataene

Detaljer

Innledning kapittel 4

Innledning kapittel 4 Innledning kapittel 4 Sannsynlighet og tilfeldighet Basert på materiale fra Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Deterministiske fenomener Almanakk for Norge viser: når det er fullmåne

Detaljer

Løsningskisse seminaroppgaver uke 15

Løsningskisse seminaroppgaver uke 15 HG April 0 Løsningskisse seminaroppgaver uke 5 Oppg. 5.6 La X = antall barn i utvalget som har lærevansker. Andel barn med lærevansker i populasjonen av barn antas å være p = 0,5. Utvalgsstørrelsen er

Detaljer