Vi lager hydrogengass og tester gassen Rapport i Naturfag 1 2011/12 Magne Svendsen og Frank Ove Sørensen, GLU 5-10NP, Universitetet i Nordland



Like dokumenter
Fire hvite stoffer fra kjøkkenet Rapport 1 i Naturfag 1 del /12 Magne Svendsen, GLU 5-10NP, Universitetet i Nordland

Fremstille og påvise hydrogengass

!!"#$%&'((#)*+),-.'%#)/01"*+#2+3%%) 43,,*"&)56789:) A2'.#"%'&#&#&)')5*"1(321) !!

Saltet isløft Rapport 3, Naturfag del 1 Våren Av: Magne Andreassen og Therese Størkersen GLU C

Det forventede resultatet er at vannet skal bli blått etter at magnesiumbiten har reagert med det

Praktisk labarbeid i kjemiundervisning

Studentenes navn: Olav Myrvoll, Ida Henriette Tostrup og Line Antonsen Hagevik 06. september NA153 Naturfag 1 Del 1 Nr.

Magne Andreassen. Dato: NA154L - Naturfag 1 Del 2. Nr. 2 av 4 rapporter. Sky i flaske

Rapport 3 Fenomener og stoffer. Destillering av Pepsi Max.

A+%-,0$%/,/,/(%(.)0B#"+B(

Naturfagsrapport 2. Destillasjon

Nr. 9 Egg i Eddik. Av Kristine Pedersen, Arne Olav Berg og NN

Sky i flaske. Innledning. Rapport 2 NA154L, Naturfag 1 del 2. Håvard Jeremiassen. Lasse Slettli

Forskerspiren i ungdomsskolen

Spis 10 g gulrot, fyll inn skjemaet og regn ut. Husk å ta tiden når du går opp og ned. Gjenta dette med 10 g potetgull.

ÅRSPLAN I NATURFAG 8.TRINN

Rapport : Forskerspiren. Fenomener og stoffer. "Å lage nakne egg"

Mappetekst 1 Musefellebilen

Reflekser. Naturfag Hanne Marie Freding & Ida-Johanne Klaussen

HARALDSVANG SKOLE Årsplan 8. trinn FAG: NATURFAG

MÅLING AV TYNGDEAKSELERASJON

HARALDSVANG SKOLE Årsplan 8. trinn FAG: NATURFAG

PARTIKKELMODELLEN. Nøkler til naturfag. Ellen Andersson og Nina Aalberg, NTNU. 27.Mars 2014

Rødkålsaft som indikator Rapport 2 i Naturfag 1 del /12 Magne Svendsen, Frank Ove Sørensen og Eivind Aakvik, GLU 5-10NP, Universitetet i

Fag: Naturfag. Periode Kompetansemål Grunnleggende ferdigheter. Underveisvurdering Tverrfaglige emner

Resultatet blir tilgjengelig på studentweb første virkedag etter sensurfrist, dvs (se

Årsplan i naturfag for 10. trinn, 2013/2014.

Emneplan Naturfag 1 for trinn. Videreutdanning for lærere. HBV - Fakultet for humaniora og utdanningsvitenskap, studiested Drammen

Veke Emne Kompetansemål Elevforsøk, aktivitetar Evaluering (tips til neste gang)

Utdrag fra Rammeplan for barnehagen: Natur, miljø og teknologi og utdrag fra Kunnskapsløftet: Læreplan i naturfag (NAT1-03)

KUNNSKAPSLØFTET og morgendagens studenter

Forskerspiren. ringsmål? nye læringsml. Inst. for fysikk og teknologi Universitetet i Bergen

FAGPLANER Breidablikk ungdomsskole. FAG: Naturfag TRINN: 9. Tema/opplegg (eksempler, forslag), ikke obligatorisk

Program. og Eli. Ellen. Ellen Repetere og sammenligne Lærer Jane Inkl. pause

Formål og hovedinnhold naturfag Grünerløkka skole

NATRONBOMBE. Forfattere: Aleksander og Mads. Samtlige figurer i rapporten er bilder vi selv har tatt.

Årsplan i naturfag 8.trinn 2017/18 Eureka 8!

ELEKTRISITET. - Sammenhengen mellom spenning, strøm og resistans. Lene Dypvik NN Øyvind Nilsen. Naturfag 1 Høgskolen i Bodø

Læreplan i naturfag trinn En sammenlikning mellom Kunnskapsløftet 2006 og Kunnskapsløftet 2013

Sammenhengen mellom strøm og spenning

TID TEMA KOMPETANSEMÅL ARBEIDSMETODER VURDERINGSFORMER RESSURSER (materiell, ekskursjoner, lenker etc.)

TID TEMA KOMPETANSEMÅL ARBEIDSMETODER VURDERINGSFORMER RESSURSER (materiell, ekskursjoner, lenker etc.)

Klasseromsmodell /kateterundervisn ing. Delt klasse med gruppearbeid når vi har forsøk og aktiviteter. Papirfly. Pendel.

Forskerspiren. nye læringsml. Inst. for fysikk og teknologi Universitetet i Bergen. Forskerspiren som Hovedområde

LOKAL LÆREPLAN SKEIENE UNGDOMSSKOLE

Årsplan i naturfag 8.trinn 2017/18 Eureka 8!

1. rapport Naturfag Therese Størkersen (redigert ) Kamilla Pedersen. Egg i eddik

Karbondioksid i pusten

Dokument for kobling av triks i boka Nært sært spektakulært med kompetansemål fra læreplanen i naturfag.

TID TEMA KOMPETANSEMÅL ARBEIDSMETODER VURDERINGSFORMER RESSURSER (materiell, ekskursjoner, lenker etc) bruke begrepene,

Grunnleggende ferdigheter

Årsplan Naturfag 8 trinn 2018/2019

Dannelse av trykk i kolbe med ballonglokk

Kjemi i grunnopplæringen og lærerutdanningen av grunnskolelærere. Anders Isnes NTVA 15. mars 2011 Naturfagsenteret

Karakterane 3 og 4 Nokså god eller god kompetanse i faget. Kommuniserer

Årsplan i naturfag for 8. klasse

Nova 8 elevboka og kompetansemål

BallongMysteriet trinn 60 minutter

Kjemi på ungdomstrinnet

Årsplan Naturfag 8 trinn 2017/2018

Kjemieksperimenter for mellomtrinnet. Ellen Andersson og Nina Aalberg Skolelaboratoriet, NTNU

Norge blir til. - IKT i naturfag

Formål med faget. Fag: Naturfag høsten Klasse: 9. klasse (05AB) Faglærer: Frank Borkamo

Årsplan i naturfag Trinn 8 Skoleåret Haumyrheia skole Jostein Torvnes og Elizabeth N Malja

Studentenes navn: Olav Myrvoll og Line Antonsen Hagevik 12. oktober NA153 Naturfag 1 Del 1 Nr. 2 av 4 rapporter

Årsplan Naturfag 8 trinn 2016/2017

Fag: Naturfag høsten Klasse: 9. klasse. Faglærer: Heidi Langmo og Frank Borkamo Hovedområde og emne

Årsplan i naturfag 2016/2017

Naturfag 6. trinn

Studentenes navn: Kamilla Pedersen, Ida Henriette Tostrup og. Therese Størkersen. 12. oktober NA153 Naturfag 1 Del 1. Nr.

Frakkagjerd ungdomsskole Årsplan 8.trinn FAG: Naturfag

Årsplan i NATURFAG ved Blussuvoll skole.

Prosjektet «Naturfag, naturligvis!» Litt om bakgrunnen for prosjektet

Årsplan - Naturfag. Kompetansemål Tidspunkt Tema/Innhold Lærestoff Arbeidsmåter Vurdering

RENDALEN KOMMUNE Fagertun skole. Årsplan i naturfag for 6. og 7. trinn 2013/14. Læreverk Gaia 6, naturfag for barnetrinnet.

Innsamling. Hypoteser. Utforskning. Konklusjoner. Formidling. Figur01.01

8.trinn 9.trinn 10.trinn Kompetansemål: Forskerspiren Mål for opplæringen er at eleven skal kunne

FYR. Handlingsrom, arbeidsmåter og vurdering

Halvårsplan i naturfag for klasse 01 AB våren 2017

Nova 8 kompetansemål og årsplan for Nord-Aurdal ungdomsskole, redigert 2014

Årsplan Naturfag 2016/2017 Årstrinn: 8

Naturfag 1 ( trinn) ; Kjemi og geofag 1

SKOLEÅR: 2016/2017. FAGLÆRERE: Jørgen Eide & Arne Christian Ringsbu Uke Tema og kompetansemål Arbeidsmåter og læringsresurser Eureka 8 TRINN: 8.

KORT INFORMASJON OM KURSHOLDER

Gjenvinn spenningen!

Naturfag 7. trinn

NTNU KOMPiS Studieplan for Naturfag 1 ( trinn) Studieåret 2014/2015

Naturfag barnetrinn 1-2

ÅRSPLAN I NATURFAG FOR 9. TRINN 2016/2017

Studentenes navn: Øystein Bjørnstrøm, Olav Myrvoll og Line Antonsen Hagevik 17. april NA154L Naturfag 1 Del 2 Nr.

Kjemi på boks 1 for Høgskulen i Volda. Loen 26. og 28. november 2007

Yrkesretting og relevans i naturfag 5E-modellen

La oss starte med et høvelig forsøk. Kjent fra før? Det er ikke bare å gjøre et forsøk Vi må også utnytte læringsarenaen som skapes

Naturfag 1 ( trinn) ; Kjemi og geofag 1

Naturfag 6. trinn

Ny læreplan nye muligheter: Naturfag i yrke og hverdag

Lokal læreplan i naturfag Sunnland skole

Å R S P L A N. Fag: Naturfag Årstrinn: 9 Skoleår:

SKOLEÅR: 2017/2018. FAGLÆRERE: Jørgen Eide, Geir Nordhaug, Trond Even Wanner, Kåre Djupesland TRINN: 8.

ÅRSPLAN I NATURFAG FOR SINSEN SKOLE Sist revidert:

Transkript:

Vi lager hydrogengass og tester gassen Rapport i Naturfag 1 2011/12 Magne Svendsen og Frank Ove Sørensen, GLU 5-10NP, Universitetet i Nordland

Innholdsfortegnelse 1 Innledning... 3 2 Teori... 4 3 Materiell og metode... 5 3.1 Utstyr... 5 3.2 Framgangsmåte... 5 4 Resultater... 8 5 Drøfting... 9 5.1 Naturvitenskapelig drøfting... 9 5.2 Naturfagdidaktisk drøfting... 10 6 Konklusjon... 12 7 Kildeliste... 13 2

1 Innledning Vi har i dette forsøket fremstilt og påvist hydrogengass ved hjelp av eddik og magnesium. Dette er et vanlig forsøk i grunnskolen. Her kan elevene få trening på oppsamling av gass ved fortrengning av vann, samt at det kan gi dem god øvelse i bruk av vanlig stativ- og glassutsyr (Hannisdal & Ringnes 2011). Sett ut i fra læreplanen havner dette forsøket inn under hovedområdet Fenomener og stoffer. Dette hovedområdet omfatter sentrale områder fra fysikk og kjemi, og her behandles bl.a. hvordan stoffer er oppbygd og reagerer med hverandre. Etter 7.trinn: - gjennomføre forsøk med kjemiske reaksjoner og forklare hva som kjennetegner disse Etter 10.trinn: - vurdere egenskaper til grunnstoffer og forbindelser ved bruk av periodesystemet - undersøke kjemiske egenskaper til noen vanlige stoffer fra hverdagen - planlegge og gjennomføre forsøk med påvisningsreaksjoner (Læreplanverket for Kunnskapsløftet 2006) Forsøket vi har gjennomført passer nok best til elever på ungdomsskolen. Men kanskje kan det være aktuelt som demonstrasjonsforsøk på 7.trinn, eller gjennomføring i små grupper under oppsyn fra lærer. Forsøket bør ikke gjennomføres isolert sett, men bør kobles opp mot aktuelle tema og undervisning i forbindelse med for eksempel periodesystemet, grunnstoffenes oppbygning og egenskaper, kjemiske reaksjoner, sikkerhet og øving i praktisk arbeid på naturfagrommet. Forsøket er hentet fra nettressursen til læreboka Kjemi for lærere av Merete Hannisdal & Vivi Ringnes (2011). Siden vi er nettstudenter og bor langt fra hverandre, har vi hver for oss gjennomført forsøket på naturfagrommet på skolene vi jobber på, og deretter møttes på nettet for sammenligning av resultater og bearbeidelse av rapporten. 3

2 Teori Grunnstoffet Hydrogen symboliseres med bokstaven H i det periodiske system, og har atomnummer 1. Hydrogengassen er fargeløs og luktfri. Når den antennes vises en svak blå flamme. På Jorden forekommer fritt hydrogen i svært små mengder og det meste av hydrogenet på jorden er kjemisk bundet. Mesteparten i form av vann, men også i form av f.eks. næringsstoffer som fett, proteiner og karbohydrater. Også på Solen og i universet er hydrogenet det dominerende grunnstoffet. 84 % av Solens atomer er hydrogenatomer. I universet som helhet er det beregnet at ca. 90 % av alle atomene er hydrogenatomer. Hydrogen kan fremstilles på flere måter. På skolelaboratoriet kan man ta et uedelt metall, f.eks sink eller magnesium, og la det reagere med saltsyre(hcl). Hydrogen kan også fremstilles ved elektrolyse av natronlut. (NaOH) I grunnskolen skal elever under 15år ikke håndtere sterke syrer. Da skal man bruke substitutter i undervisningen så langt det lar seg gjøre. I forsøket vårt har vi brukt eddiksyre som substitutt for f.eks. saltsyre, slik at forsøket får lavere risiko. (Store norske leksikon, 2009) (Ekeland, Johansen, Strand, & Rygh, 2006) Nedenfor er en forenklet reaksjonslikning, tilpasset ungdomsskolen, for forsøket vårt: Mg + 2H + à Mg 2+ + H 2 Reaksjonen avgir energi i form av varme, derfor blir reagensrøret varmt. Reaksjonen skjer fordi elektroner flytter seg fra magnesium til hydrogenionene. Når vi tenner på hydrogengassen blandet med luft, skjer følgende kjemiske reaksjon: 2H 2 + O 2 à 2H 2 O + energi. (Ekeland, Johansen, Strand, & Rygh, 2006) 4

3 Materiell og metode 3.1 Utstyr Du trenger: magnesiumbånd (Mg, 5-6 cm), eddik (35 %), 3 reagensglass, kork med glassrør og slange, skål med vann, fyrstikker, gjerne et stativ for glassutstyr (ikke nødvendig). Sikkerhetsutstyr: vernebriller Oversikt over brukt utstyr (Foto: Magne Svendsen) 3.2 Framgangsmåte 1. Først fylte vi skålen med vann. Deretter fylte vi det ene reagensglasset med vann, satte tommelen foran åpningen, og satte det ned i skålen med vann. Tommelen må ikke tas vekk før åpningen er under vann, slik at vannet ikke renner ut av reagensglasset. 2. Så helte vi eddik i et annet reagensglass, ca. halvfullt. Dette monterte vi fast på et stativ, slik at vi hadde friere hender i fortsettelsen av forsøket. Deretter slapp vi magnesiumbåndet ned i glasset sammen med eddiken. Vi fikk en umiddelbar reaksjon mellom eddiken og magnesiumbåndet. Gassen som dannes er hydrogengass. 5

Eddik fylles i reagensglass fastmontert til et stativ (Foto: Monica Svendsen) 3. Korken med glassrøret ble så satt på, og vi ventet 10-15 sekunder før vi startet oppsamlingen av hydrogengassen. Dette for å være sikker på at luften som var i systemet ved start var presset ut. Gassen samles ved at glassrøret føres inn i åpningen til reagensglasset som er fylt med vann i glasskålen. (Se figur 3.1) Vi lot reagensglasset fylles helt med hydrogengass. Figur 3.1 Oppsamling av hydrogengass (Hentet fra Kjemi for lærere" 2011) 4. Vi satte så tommelen foran reagensglasset som var fylt med hydrogengass. Løftet det opp av vannet og holdte det med bunnen opp. Vi tok så et reagensglass fylt med luft og satte åpningen mot åpningen til glasset med hydrogengass. Disse vendte vi så slik at glasset med luft kom øverst. Siden hydrogengass er den letteste av alle gasser vil den stige opp i glasset med luft. (Se figur 3.2) 6

Figur 3.2 Blanding av hydrogengass med luft (Hentet fra Kjemi for lærere 2011) 5. Så tente vi en fyrstikk, satte den bort til åpningen på det øverste reagensglasset og registrerte hva som skjedde. 6. Dersom vi ennå hadde en gassutvikling mellom eddiken og magnesiumet, skulle vi ta av korken og presse tommelen mot åpningen av reagensglasset. Når vi kjente et tydelig gasstrykk mot tommelen, førte vi en brennende fyrstikk bort til røråpningen samtidig som tommelen ble tatt vekk. Igjen skulle vi registrere hva som skjedde. Skal dette forsøket gjennomføres med elever ville det vært mest gunstig med relativt små grupper. Kanskje 2-3 på hver gruppe for å få flest mulig av elevene engasjert og at flest mulig får konkrete arbeidsoppgaver. Antallet elever på hver gruppe begrenses jo også selvsagt av tilgang på utstyr og stoffer. Elevene i hver gruppe bør også bli enige om, eller tildeles bestemte arbeidsoppgaver, slik at for eksempel ikke hele forsøket gjennomføres uten at noen har notert underveis eller at ikke noen blir sittende å se på mens andre gjør alt arbeidet. Når det gjelder risikovurdering av stoffene som benyttes i dette forsøket er det viktig å huske på at eddik i 35 % konsentrasjon er etsende. Magnesium er også brannfarlig og brenner med veldig høy temperatur og kan heller ikke slukkes med vann. I tillegg brukes åpen flamme ved antennelse av gassen. Vernebriller skal derfor benyttes under hele forsøket. 7

4 Resultater Antenning av hydrogengass blandet med luft Ved den første antenningen, der vi blandet hydrogen og luft, observerte vi umiddelbart et tydelig lag av vanndamp på innsiden av reagensrøret. Etter en kort stund kondenserte dampen til vann og en liten vanndråpe samlet seg i reagensrøret. Hydrogenet og oksygenet reagerte ved antenningen og dannet vann og utviklet varme: 2H 2 + O 2 à 2H 2 O + energi. Antenning av tilnærmet ren hydrogengass Den andre antenningen foretok vi etter å ha holdt tommelen over reagensrøret der eddiken og magnesiumet reagerte. Vi kunne kjenne hvordan trykket bygget seg opp under tommelen. For lite gassutvikling igjen til å få en reaksjon. (Foto: Monica Svendsen) Når fyrstikken ble ført inntil reagensrøret kunne vi høre et distinkt «bjeff» i det hydrogenet antente. Flammen var vanskelig å se i det sterkt opplyste klasserommet og kunne så vidt observeres. 8

Litt mer magnesium ga et bedre resultat på andre forsøk. (Foto: Monica Svendsen) 5 Drøfting 5.1 Naturvitenskapelig drøfting Resultatene vi observerte samsvarte godt både med teori på det aktuelle området og våre forventinger til resultatene. Under den første antenningen ble vanndamp og etter hvert vann observert, som forventet. Det eneste lille avviket, hvis det kan kalles for det, var at vi hadde litt for lite magnesium i reagensrøret. Dette førte til at reaksjonen mellom eddiken og magnesiumet etter hvert avtok, og det ble dannet for lite hydrogen til den andre antenningen. Ved å tilsette mer magnesium og antenne på nytt, ble resultatet som forventet og flammen observert. Det som kunne vært gjort annerledes etter vår mening, er at vi kunne hatt mer magnesium i reagensrøret fra starten av og vi kunne dempet belysningen i rommet før andre antenning. Da hadde vi sluppet den «mislykkede» antenningen og den blåaktige flammen som kommer fra brennende hydrogen ville vært lettere å se. 9

5.2 Naturfagdidaktisk drøfting Gjennom kjemiundervisningen i skolen vil elevene møte utvalgte emner fra kjemien. En god del tid må brukes til innlæring av teori, men vi kan ikke bare snakke om stoffene. Teorien må undersøkes mot virkeligheten og demonstrasjoner og forsøk har derfor sin naturlige plass i undervisningen. Elevene bør få muligheten til å gjøre seg kjent med, og skaffe erfaringer med de stoffene de leser om i naturfagsbøkene i skolen. Kjemikapitlene omhandler i stor grad stoffer og reaksjoner som er aktuelle i dagliglivet. Gjennom kjemiundervisningen kan elevene lære om egenskapene til disse stoffene, hvordan de bør håndteres og oppbevares (Hannisdal & Ringnes 2011). Resultatene fra et slikt forsøk som dette gjennomført med elever, må først sees i lys av målene vi hadde satt oss på forhånd før førsøket. Var målet for eksempel at elevene skulle få trening i laboratoriearbeid og god laboratorieskikk, bruk av utstyr og/eller håndtering av kjemikalier, må det vurderes opp mot dette. Som nevnt i innledningen kan også dette forsøket gjennomføres som et demonstrasjonsforsøk for yngre elever. I et slikt forsøk håndterer vi kjemikalier og utstyr på en profesjonell og sikkerhetsmessig forsvarlig måte. Gjennom et slikt forsøk kan lærestoffet konkretiseres uten at man bruker for lang tid. Andre argumenter kan være miljømessige aspekter med tanke på avfall, dårlig økonomi og manglende utstyr ved skolen (Hannisdal & Ringnes 2011). I vårt tilfelle var målet for forsøket å fremstille hydrogen, teste gassen og se på egenskapene til stoffet. Vi gjennomførte det vi kan kalle for et kokebokforsøk hvor fremgangsmåten er beskrevet i detalj og gjerne punktvis. Kokebokforsøk er hensiktsmessig hvis elevene skal trene på behandling av utstyr og stoffer, observere spesielle reaksjoner og lære spesielle arbeidsteknikker (Hannisdal & Ringnes 2011). Uansett hvilken type elevforsøk man gjennomfører i naturfagene er det viktig å huske på forsøket må hensikt, og det må ha en teoriforankring. God planlegging og god ledelse av læreren underveis har mye å si for hvor mye elevene får ut av forsøket. Elevene må gjøres kjent med hensikten med forsøket. Det er naturlig at det har en tilknytning til et fagstoff og bør gå hånd i hånd med annet læringsarbeid. Til slutt og kanskje det viktigste; et forsøk må oppsummeres og læringsutbyttet må sikres ved at elevene får hjelp av læreren til å koble sammen det de har observert med teori. Hvis ikke blir det ikke noe mer enn en happening 10

for elevene, og en avveksling fra de mer vanlige aktivitetene i skolen (Hannisdal & Ringnes 2011). Etter et slikt forsøk er blir det også naturlig å la elevene skrive logg og/eller rapport om hva de har gjennomført, observert og hva de har lært. Grunnleggende ferdigheter i alle fag; å kunne uttrykke seg muntlig og skriftlig, lese, regne og bruke digitale verktøy er integrert i kompetansemålene i læreplanen der de bidrar til utvikling av og er en del av fagkompetansen. I læreplanen for naturfagene står det at elevene skal kunne benytte digitale verktøy i prosessen med bl.a. registrering, dokumentasjon og publisering ved forsøk og i feltarbeid (Læreplanverket for Kunnskapsløftet 2006). Dette forsøket og andre elevforsøk er et godt eksempel på praktisk arbeid i naturfagene. Men hvorfor gjennomfører vi praktisk arbeid i faget? Først kan vi se på en generell definisjon av praktisk arbeid (etter Millar et al. 1999 i van Marion & Strømme 2008): Praktisk arbeid er alle de undervisnings- og læringsaktivitetene i naturfagene hvor eleven på en eller annen måte og i en eller annen fase av aktiviteten observerer eller på annen måte arbeider praktisk med objekter, materialer eller naturfaglige fenomener. Definisjonen gir altså ingen begrensninger på hvor dette arbeidet blir utført. Det kan skje i et naturfaglaboratorium, i et vanlig klasserom, hjemme eller ute i felten. Verdt å legge merke til er at definisjonen snakker om i en eller annen fase. Det er fordi den i stor grad omhandler kognitive prosesser, og først og fremst de praktiske metodene som er karakteristiske for naturvitenskapens disipliner (van Marion & Strømme 2008). Så tilbake til spørsmålet om hvorfor vi gjennomfører praktisk arbeid i naturfagene? Sjøberg (2004) sier i van Marion & Strømme (2008) at naturvitenskap kan sees på som både et produkt og en prosess, hvor produktet er den kunnskapen som naturvitenskapen frembringer. Etter hvert som kunnskapen er akseptert og etablert i vitenskapssamfunnene, vil den også finne veien til skolens læreplaner for naturfagene. Men praktisk arbeid alene fører ikke til denne kunnskapen, den blir heller av de fleste sett på som tilnærming som støtter opp under tilegnelsen av kunnskapen. Praktisk arbeid kan også sees på som et viktig verktøy for å nå de overordnede målene, skape variert undervisning og skape motivasjon og interesse for faget. 11

I læreplanen for naturfag under formål for faget finner vi følgende utdrag: Å arbeide både praktisk å teoretisk i laboratorier og naturen med ulike problemstillinger er nødvendig for å få erfaring med og utvikle kunnskap om naturvitenskapens metoder og tenkemåter Varierte læringsmiljøer som feltarbeid i naturen, eksperimenter i laboratoriet og ekskursjoner til museer, vitensentre og bedrifter vil berike opplæringen i naturfag og gi rom for undring, nysgjerrighet og fascinasjon (Læreplanverket for Kunnskapsløftet 2006) Mange av kompetansemålene blant annet under kjemi i læreplanen for naturfagene forutsetter at elevene gjennomfører praktisk arbeid, som for eksempel forsøk (Hannisdal & Ringnes 2011). 6 Konklusjon Å fremstille hydrogengass og påvise gassen er et tradisjonelt forsøk i naturfaget kjemi. Forsøket er som nevnt tidligere i rapporten, hensiktsmessig hvis elevene skal trene på behandling av utstyr og stoffer, lære spesielle arbeidsteknikker i laboratoriearbeid eller å observere spesielle reaksjoner. Det gir også en fin mulighet til å konkretisere lærestoff og gir elevene mulighet til å knytte teori og begreper til virkelige observasjoner. Dette, og også andre kokebokførsøk, kan gjøres mer spennende ved at ett av stoffene fungerer som ukjent. Da kan elevene få mulighet til å teste sin nyervervede kunnskap til å bestemme hvilket stoff som er ukjent. Slike forsøk kan også omtales som detektivoppgave (Hannisdal & Ringnes 2011). En annen mulighet er å gjøre et slikt forsøk som et utforskende forsøk i tråd med Forskerspiren. Da deltar elevene i planlegging av forsøket, og hensikten er ønsket om å vite mer om noe de lurer på. Elevene må trenes i å stille spørsmål og i å formulere en hypotese. Dette finnes igjen i flere kompetansemål under Forskerspiren i LK06 både for mellom- og ungdomstrinnet. Den mest kjente av disse utforskende arbeidsmåter er Nysgjerrigpermetoden (Hannisdal & Ringnes 2011). 12

7 Kildeliste Ekeland, P. R., Johansen, O.-I., Strand, S. B., & Rygh, O. (2006). Tellus 8 - Naturfag for ungdomstrinnet. Oslo: Aschehoug. Hannisdal, Merete & Ringnes, Vivi (2011) Kjemi for lærere. Gyldendal Akademisk, Oslo. 324 s. Millar, R. (1999) Mapping the domain. Varieties of practical work. I: van Marion, Peter & Strømme, Alex (red.) (2008) Biologididaktikk. Høyskoleforlaget, Kristiansand, 224 s Sjøberg, S. (2004) Naturfag som allmenndannelse. I: van Marion, Peter & Strømme, Alex (red.) (2008) Biologididaktikk. Høyskoleforlaget, Kristiansand, 224 s Store norske leksikon. (2009, 06 03). Store norske leksikon. Hentet oktober 10, 2011 fra http://snl.no/hydrogen Utdanningsdirektoratet (2006) Læreplanverket for Kunnskapsløftet. Kunnskapsdepartementet, Oslo, 232 s. van Marion, Peter & Strømme, Alex (red.) (2008) Biologididaktikk. Høyskoleforlaget, Kristiansand, 224 s. 13