Utforskende matematikkundervisning

Like dokumenter
Utforskende matematikkundervisning

Eksempelundervisning utforsking. Nord-Gudbrandsdalen mars 2016 Anne-Gunn Svorkmo Astrid Bondø

Utvikling av kreativ og robust matematikklærerkompetanse

Click to edit Master title style

Barn beviser. Andrea Hofmann og Sigurd Hals Førsteamanuensis og Stipendiat Fakultet for Humaniora, Idrettsog Utdanningsvitenskap

Kommunikasjon og muntlig aktivitet

Sammen leker vi matematikk

Tenk det! Utforsking, forståelse og samarbeid i matematikkundervisningen

Resonnering med GeoGebra

Hva kjennetegner god matematikkundervisning? Click to edit Master title style

Undersøkende matematikk i barnehage og skole. Barnehagekonferanser Bodø og Oslo, november 2016

Click to edit Master title style. Rike oppgaver..eller rik undervisning

Nye læreplaner, nye utfordringer i matematikk!

Click to edit Master title style

Ulike uttrykksformer i matematikk

Læringsfellesskap i matematikk utvikling og forskning i samarbeid.

1 av 7. Institutt for lærerutdanning Matematikksenteret. Hvordan utfordre? Forfatter: Anne-Gunn Svorkmo. Publisert: 8. januar Matematikksenteret

MAM Mestre Ambisiøs Matematikkundervisning. Realfagskonferansen Trondheim,

Diagnostisk undervisning

Fire kort. Mål. Gjennomføring. Film. Problemløsing Fire kort

Fire kort. Mål. Gjennomføring. Film. Problemløsing Fire kort

MAM Mestre Ambisiøs Matematikkundervisning. Novemberkonferansen 2015

Hva kjennetegner god matematikkundervisning? Sammen om oppdraget! Gardermoen Airport hotel, 15. november 2017 Astrid Bondø, NSMO

Digital interaktiv matematikk Inquiry spørrende og undersøkende aktiviteter

Planlegging, prosess & produkt

Kommunikasjon og muntlig aktivitet

Lærer: vil du høre hvordan vi har tenkt?

Lærerveiledning uke 2-7: Geometri. volum, overflate og massetetthet Kompetansemål Geometri Måling Læringsmål Trekantberegning Kart og målestokk

Matematisk samtale Refleksjonsspørsmål trinn. Kjerneelementene i matematikk. Gi utfordrende oppgaver

Problemløsning og utforsking i geometri

Tenk det! Utforsking, forståelse og samarbeid i matematikkundervisningen

Telle med 4 fra 4. Mål. Gjennomføring. Telle i kor Telle med 4 fra 4 Planleggingsdokument

Fire kort. Mål. Gjennomføring. Film. Problemløsing Fire kort Planleggingsdokument

MATEMATISK KOMPETANSE PRINSIPPER FOR EFFEKTIV UNDERVISNING

Lese og snakke og skrive og regne er bra - og digitale verktøy skal FULL PAKKE! Nå er det Kunnskapsløftet som gjelder! Ingvill Merete Stedøy-Johansen

Sensorveiledning for Matematikk 103 Måling, tall og algebra og funksjoner LBMAT10311

Kvikkbilder i arbeid med tallforståelse. Forfatter Astrid Bondø

«Matematikkforståelse er en gave som noen har og andre ikke har», eller..,? November-16 Lisbet Karlsen

VELKOMMEN TIL FØRLANSERING. Bjørnar Alseth Ingvill Merethe Stedøy-Johansen Janneke Tangen Grete Normann Tofteberg

Takk for fine framføringer

Kjøkkenhager, hobbypinner og kvadratiske funksjoner

Likninger - en introduksjon på 8. trinn Hva er en likning og hva betyr å løse den?

Kvikkbilde Mål. Gjennomføring. Planleggingsdokument Kvikkbilde 4 12

FORFATTERE Bjørnar Alseth Ingvill Merethe Stedøy-Johansen Janneke Tangen Grete Normann Tofteberg

Nye læreplaner og læringsfremmende vurdering. Multiaden 2019

Nytt fra Matematikk-Norge. Matematikksenterets NRICH-prosjekt. Click to edit Master title style

Oppgavestreng Halvering/dobling i multiplikasjon

Bruk av nettressurser i utvikling av matematikkundervisning. Seminar Realfagskommuner Pulje 1, 26. september 2016

Begrepslæring og begrepsforståelse i matematikk

Figurtall en kilde til kreativitet

Felles klasseundervisning og tilpasset opplæring kan det forenes?

Takk for fine framføringer

Emne Multiplikativ tenking (proporsjonalitet, målestokk, forstørring, brøk som operator).

Vetenskapliga teorier och beprövad erfarenhet

Dybdelæring begrepene brøk og desimaltall

Modul nr Til værs med tall - Et luftig oppdrag

2.3 Delelighetsregler

Læreren i utforskende arbeidsmåter. PhD-studenter i ElevForsk Anne Kristine Byhring Birgitte Bjønness

Eksempel på utforskende matematikk-oppgaver med digitale enheter. På vei mot pytagoras... Forkorting av brøk Matematikk i tre akter

Hva ligger i arbeid med realfag i ny rammeplan? - og hvordan kan dette overføres til arbeid i SFO og skole

Barns tenking og den matematiske samtalen. Olaug Lona Svingen og Astrid Bondø Novemberkonferansen 2017

Semester: Høst År: 2015 Eksamenstype: Individuell skriftlig

Den ideelle matematikkøkta

Vurdering for og av læring

Grep for å aktivisere elever i matematikk - om å skape kognitivt aktive elever og dybdelæring

Den gode profesjonelle læreren feel good! Hanan M. Abdelrahman Matematikkhjelperen/Lofsrud skole 27. september 2017 på Campus i Bodø

Tenke, lytte og samtale i matematikktimen.

Språk og kommunikasjon


Dybdelæring å gripe terskelbegrepene

Divisjon med desimaltall

Matematikkeksamen i grunnskolen. Norsk matematikkråd Svein Anders Heggem

5E-modellen og utforskende undervisning

Utforskende arbeidsmåter Fra gjøring til læring. Naturfagkonferansen 18. oktober 2018 Berit S. Haug og Sonja M. Mork, Naturfagsenteret

Nye læreplaner, nye utfordringer!

Felles klasseundervisning og tilpasset opplæring kan det forenes?

IALOG DIALO. Lærerveiledning. Snakke. speaking. for BuildToExpress. Lytte. Dialogue Dialogue. Reflektere. Reflection. Reflection

MUNTLIG EKSAMEN - OG LITT OM VEIEN DIT

Inspirasjon og motivasjon for matematikk

MAT503 Samling Notodden uke Dagen: Dagens LUB-er:

VELKOMMEN! Janneke Tangen Grete Normann Tofteberg Ingvill Merethe Stedøy-Johansen Bjørnar Alseth

Hvordan hjelpe elever til å utvikle teoretisk kunnskap når de gjør praktisk arbeid i naturfag?

Telle med 15 fra 4. Mål. Gjennomføring. Telle i kor Telle med 15 fra 4 Planleggingsdokument

Representasjoner i matematikk

Definisjoner av gjennomsnitt

Undervisning Planlegging, prosess og produkt

Forslag til opplegg for en foreldrekveld om matematikk (varighet: 2 timer) v/ Ingvill M. Stedøy-Johansen, 2007

Matematikk 1 for 1-7. Høgskolen i Oslo og Akershus. Ida Heiberg Solem og Elisabeta Iuliana Eriksen

Familiematematikk MATTEPAKKE. 1. Trinn. May Renate Settemsdal og Ingvill Merete Stedøy

Telle i kor. Forfatter Morten Svorkmo, Matematikksenteret

Hva er god matematikkundervisning?

Rike oppgaver. Kirkenes, May-08

Gjett tre kort Mastermind Resultat i matematikk på kunnskapsnivåer, 8.trinn Utstyr En kortstokk

Dybdelæring terskelbegrep brøk og desimaltall

HELHETLIG PLAN I REGNING VED OLSVIK SKOLE.

Nye læreplaner, nye utfordringer! Gi meg et tresifret. Oversikt. Intensjoner med den nye læreplanen. Hva er ulikt fra L97? 4.

Telle med 0,3 fra 0,3

Oppgavestrenger i arbeid med tallforståelse. Forfatter Anita Valenta, Matematikksenteret

Kritisk refleksjon. Teorigrunnlag

Gjett tre kort. Symboler. Gode regningsstrategier i addisjon og subtraksjon Matematikkundervisningens to dimensjoner

Transkript:

Utforskende matematikkundervisning DATO: FEBRUAR 2018 Ingvill M. Stedøy NTNU

Innholdsfortegnelse HVA ER UTFORSKING?... 3 STRUKTUR PÅ TIMEN... 3 UNDERVISNING FOR FORSTÅELSE... 3 Nøkkelelementer i utforskende undervisning... 3 Oppgavevalg... 4 LEGGE TIL RETTE FOR UTFORSKING... 6 BRUK AV TRADISJONELLE OPPGAVER... 6 REFERANSER... 8 2

Hva er utforsking? Gjennom utforskende (inquiry basert) undervisning skal elevene utforske og undersøke en matematisk problemstilling. De skal planlegge løsningsmetoder, forklare og begrunne løsningene, og oppmuntres til å stille nye spørsmål som de skal prøve å finne svar på. Utforskende undervisning skiller seg fra undervisning basert på et oppgaveparadigme, der elevene lærer hvordan de skal løse oppgaven, men ikke hvorfor metoden virker. Struktur på timen I begynnelsen av timen presenterer læreren en ny og kognitivt krevende oppgave eller aktivitet for elevene. Deretter får elevene god tid til å jobbe med denne aktiviteten. Læreren observerer arbeidet deres og kan oppmuntre dem til å finne nye løsninger eller til å beskrive hvordan de tenker. Timen blir avsluttet med at hele klassen diskuterer aktiviteten og de forskjellige løsningsmetodene elevene har benyttet. Læreren leder diskusjonen på en måte som gjør at elevene blir oppmerksomme på hvordan de ulike løsningene henger sammen og hvordan løsningene deres er relatert til læringsmålene for timen. Undervisning for forståelse Gjennom å arbeide utforskende med aktiviteter og problemstillinger som stimulerer til matematisk tenking og kritisk refleksjon, kan elevene utvikle begrepsmessig forståelse. De oppmuntres til å generalisere og til å se etter sammenhenger i matematikk. Nøkkelelementer i utforskende undervisning I det såkalte LBM-prosjektet (Lær Bedre Matematikk) brukte de en modell for utforsking som består av seks nøkkelelementer: spørre, undersøke, skape, diskutere, reflektere og undre, men ikke nødvendigvis i den rekkefølgen (Madeleine Haugene, 2012): De seks elementene kan utdypes slik: - Spørre: På dette stadiet beskriver elevene hva de lurer på. - Undersøke: Elevene begynner å samle informasjon, for eksempel gjennom å lese, eksperimentere, observere eller lete etter andre kilder. - Skape: På dette stadiet kobler elevene informasjonsbiter sammen. Nye tanker, ideer og teorier skapes. - Diskutere: Elevene diskuterer nye ideer med hverandre, slik at disse utvikles og den nye kunnskapen settes inn i en sammenheng. - Reflektere: Det er viktig at elevene ser tilbake og vurderer spørsmålet, undersøkelsene og konklusjonene. - Undre: Diskusjoner og refleksjoner kan medføre undring. Her kan nye spørsmål dukke opp, og disse har mulighet til å sette i gang en ny runde i inquirysyklusen. 3

Et viktig element i en utforskingsprosess er ifølge denne modellen å skape. Dette handler om å sette sammen informasjonsbiter slik at nye tanker, ideer og teorier oppstår, altså lage seg hypoteser. I et klassemiljø preget av hypoteseframstilling er det ifølge Askew (2012) elevene selv som diskuterer og avgjør om et forslag er riktig eller ikke. Han understreker at det for læreren her handler om å akseptere og notere ned alle forslag, gjøre det klart at ikke alle kan være riktige og sette elevene i gang med å diskutere hvilke de tror er korrekte. I tillegg til å skape og stille opp hypoteser, foreslår modellen over også at elevene kan reflektere over det de har kommet fram til. Det vil si at de får utforske egne tanker om fenomenet som undersøkes, og relatere dette til annen relevant kunnskap de måtte sitte med (Askew, 2012). Oppgavevalg Oppgaver som kan stimulere til utforskning for alle elever bør ha en lav inngangsterskel og samtidig gi rom for utvidelse og utfordringer på forskjellige nivå. Oppgavene kan være lukkede, delvis åpne eller helt åpne. En lukket oppgave har bare begrensede løsningsmetoder, og løsningene er faste og udiskutable. En delvis åpen oppgave, kan ha mange vesensforskjellige løsningsmetoder, men løsningene er fortsatt faste og udiskutable. En helt åpen oppgave har mange ulike løsningsmetoder, og elevene må muligens gjøre forutsetninger og valg, slik at løsningene kan bli veldig forskjellige. Eksempel 1 Spillet NIM: Spillet er for to spillere. Start med 21 pinner i en haug. Spillerne skal fjerne 1 eller 2 pinner fra haugen hver sin gang. Den som får siste pinne(r), vinner spillet. Oppdrag Spill spillet noen ganger. Tenk over, diskuter og prøv å finne svar på følgende spørsmål: - Finnes det en vinnende strategi? - Hvis det finnes en strategi, lønner det seg å begynne eller ikke? - Hvis det finnes en strategi, beskriv hvordan strategien kan gjennomføres. - Hvis det finnes en vinnende strategi, forklar hvorfor strategien virker. Denne oppgaven gir rom for utforsking. Elevene må prøve seg fram, diskutere, stille hypoteser, teste dem ut, og finne forklaringer og bevis. Den er lukket, fordi det finnes en bestemt vinnende strategi og en riktig forklaring og bevis. Den kan utvides ved å stille nye spørsmål, som for eksempel: 4

- Hva hvis det er 22 eller et annet antall pinner i haugen til å begynne med, blir strategien da annerledes? - Hva hvis det er lov å ta 1, 2 eller 3 eller et annet antall pinner, blir strategien da annerledes? - Hva slags matematikk må vi bruke for å forstå strategiene? Eksempel 2 Snu trekanten: Dere trenger tellebrikker. Hvis du legger tre tellebrikker i en trekant som på Figur 1 kan du snu trekanten så det ene hjørnet kommer under «grunnlinja» ved å flytte én brikke. Resultatet blir som på Figur 2. FIGUR 1 FIGUR 2 Oppdrag a) Legg 6 brikker i et trekantmønster som på Figur 3. Hva er det minste antall brikker du må flytte for at trekanten skal bli snudd som på Figur 4? b) Legg 10 brikker i et trekantmønster som på Figur 5. FIGUR 3 FIGUR 4 FIGUR 5 Hva er det minste antall brikker du må flytte for at trekanten skal bli snudd slik som over? c) Legg større og større trekanter. Utforsk hvordan du kan flytte så få brikker som mulig for å snu trekanten. Skriv ned det du finner ut, og vis hvordan du flytter brikkene. Denne oppgaven inviterer også til utforsking. Elevene må prøve seg fram, diskutere, stille hypoteser, teste dem ut, og finne forklaringer og bevis. Den er lukket, fordi det finnes et minste antall brikker som må flyttes, men den er delvis åpen fordi det finnes mange måter å flytte på, og mange måter å forklare på. Oppgaven kan utvides ved at elevene finner en formel for antall brikker som må flyttes når størrelsen på trekanten er gitt. 5

Eksempel 3 Oppdrag Skriv så mange naturlige tall du klarer ved å bruke fire firetall. Denne oppgaven inviterer også til utforsking. Elevene må stille mange spørsmål. Er det lov å bruke 4 som siffer, eller må alle 4-tallene stå alene? Kan vi bruke alle regneartene? Kan vi bruke potenser? Kan vi bruke kvadratrot? Hvis elevene selv kan legge premissene, blir utforskingen enda mer åpen. Det vil være mange ulike måter å skrive samme tallet på. Oppgaven kan utvides, og bare fantasien setter grenser. Legge til rette for utforsking Mange elever vil være ukjente med en utforskende arbeidsmåte, og de får derfor ikke uten videre fullt utbytte av en oppgave som inviterer til utforsking. Det er heller ikke å forvente at verken du som lærer eller dine elever skal endre undervisning og arbeidsmåte på et øyeblikk. Oppgavene og aktivitetene kan være gode, og invitere til utforsking, men det krever øvelse både av lærer og elever å mestre alle elementene i en utforskende aktivitet. Det kan være klokt å velge ut noen av de seks elementene fra LBM-prosjektet og øve på å få til det. Da må du som lærer tenke over hvordan du skal få elevene til å diskutere eller undre seg, hvis det er de elementene du ønsker at elevene dine skal trene på. Etter hvert som både du og elevene dine får erfaringer med arbeidsmåten og oppgaver som inviterer til utforsking, vil dere kunne ha med alle de seks elementene. Men selv da, vil det kunne være god utforsking selv om ikke alle elementene er tydelige under gjennomføringen med elevene. Bruk av tradisjonelle oppgaver Enhver matematikkoppgave kan være utgangspunkt for utforsking ved at du som lærer «åpner» den. Det kan gjøres på mange måter. Du kan utelate noen opplysninger. Du kan forandre på noe, utforske hva som skjer hvis, og sammenlikne de ulike resultatene. Du kan stille større krav til forklaringer. Be elevene lage et liknende problem som er vanskeligere eller lettere. Be elevene stille nye spørsmål og endre på forutsetningene i oppgaven. Be elevene å undersøke om resultatene kan generaliseres. Hvis elevene skal kunne arbeide utforskende er det flere forutsetninger som må være til stede. Jo Boaler (2016) peker på følgende: 6

Åpne opp oppgavene så det kan brukes flere metoder, løsninger og representasjoner Presentere problemstillingen før metodene er undervist Bruke visualisering og utfordre elevene til å tegne de matematiske situasjonene og forklaringene Utvide oppgaven så det blir lav inngangsterskel men «høyt tak» Be elvene begrunne og være kritiske Det er ikke nødvendig å oppfylle alle punktene over. Hvis ett eller flere av punktene er oppfylt, vil det kunne resultere i at elevene arbeider utforskende. Alle eksemplene ovenfor har lav inngangsterskel. Det er ikke vanskelig å sette seg inn i hva oppgaven går ut på, og komme i gang. Elevene skal argumentere for og begrunne sine løsninger. Oppgavene kan utvides slik at de gir mer utfordringer, og dermed har «stor takhøyde». De to første eksemplene kan visualiseres. Eksempel 3 er mer manipulering med symboler, regnerekkefølge og tall. Lærebøker og eksamensoppgaver inneholder mange lukkede oppgaver. Hvis elevene kun møter denne typen oppgaver, mister de muligheten for å få erfaring med utforsking. Følgende eksempel viser hvordan en liten endring kan gjøre den store forskjellen. Eksempel 4 Denne oppgaven ble gitt til eksamen på 10. trinn våren 2016. Oppgave 8 (4 poeng) Fibonacci-tallene har fått navn etter Leonardo Fibonacci fra Pisa (ca. 1170 ca. 1250). Fibonacci-tallene er en tallfølge der de to første tallene er 1. Hvert av de neste tallene er summen av de to tallene foran: 1 + 1 = 2, 1 + 2 = 3, 2 + 3 = 5, 3 + 5 = 8 og så videre. De åtte første Fibonacci-tallene er 1, 1, 2, 3, 5, 8, 13, 21 a) Skriv opp de neste fire Fibonacci-tallene i tallfølgen ovenfor. Vis løsningsforslag. b) I en tallfølge er de to første leddene a og b. Hvert av de neste leddene er summen av de to leddene foran: a, b, a + b, a + 2b, 2a + 3b, 3a + 5b Skriv opp de fire neste leddene i denne tallfølgen. 7

En lukket oppgave av denne typen gir elevene forklaringer og en start de skal fortsette på. Det kan være grunner for å gi den type oppgaver til en eksamen der elevene har begrenset tid til å arbeide undersøkende. Men slike lukkede oppgaver kan faglærer bruke som utgangspunkt, åpne den og legge til rette for utforsking. Utfordringen for elevene kan for eksempel formuleres slik: Fibonacci-tallene er en tallfølge der de to første tallene er 1. Hvert av de neste tallene er summen av de to tallene foran. Utforsk Fibonacci-tallene og finn egenskaper til tallene i tallfølgen. Disse justeringene møter flere av Jo Boalers forslag til hvordan oppgaver og utfordringer kan invitere til utforsking. Referanser Askew, M. (2012). Transforming primary mathematics. Abingdon: Routledge. Boaler, J. (2016). Mathematical Mindsets. Jossey-Bass, San Francisco, CA. Fuglestad, A. B. (2010). Bedre matematikkundervisning. Tangenten, 21(4), 9-14. Fuglestad, A. B. (2010). Læringsfellesskap og inquiry. Tangenten, 21(4), 2. Haugene, M. (2012). Utvikling av inquirybasert matematikkundervisning. Masteroppgave, UIA. Jaworski, B. (2006). Theory and practice in mathematics teaching development: critical inquiry as a mode of learning in teaching. Journal of Mathematics Teacher Education, 2006(9), 187-211. 8