Divisjon med desimaltall
|
|
|
- Lisbeth Nilssen
- 9 år siden
- Visninger:
Transkript
1 Divisjon med desimaltall Mål Generelt: Divisjon med desimaltall. Mønster og sammenhenger i divisjon. Spesielt: Bruke overslag til å vurdere plassering av desimalkomma. Se hva som skjer med kvotienten når divisor blir ti ganger større eller ti ganger mindre. Gjennomføring Oppgaver: 249 : : : : 0,7 24,9 : 7 Læreren forteller om Stian som har en kalkulator som er ødelagt slik at desimalkomma ikke vises på skjermen. Når han skriver 249 : 7, får han som siffer på skjermen. Skjermen på kalkulatoren viser riktige siffer, men angir svaret uten desimalkomma. Hvor skal desimalkommaet stå? Læreren skriver første oppgave på tavla og sifrene som Stian fikk. Elevene får tid til å tenke gjennom hvor de vil plassere komma. Når de fleste elevene viser at de har tenkt ferdig, spør læreren hvordan de kom fram til svaret. Deretter presenterer læreren oppgavene en og en på tavla. Elevene begrunner sine svar og argumenterer for sine løsninger. Læreren noterer elevenes tenkemåte og leder diskusjonen om de ulike strategiene. I diskusjonen fremhever læreren strategien der man utnytter relasjonen mellom dividendene og mellom divisorene. Læreren utfordrer elevene på å bruke svarene og resonnementene fra de foregående oppgavene til å forstå og forklare hva som skjer når verdiene i dividend og divisor endres. Vær hele tida oppmerksom på å snakke om å gjøre tallet ti ganger større/mindre og at sifrene endrer verdi i stedet for å bruke betegnelsen «å flytte desimalkommaet». Det kan være en idé å spare på notatet slik at det kan brukes senere. I vedlagte undervisningsnotat er det forslag til en progresjon for gjennomføring og retning for en diskusjon som fremmer de faglige målene. Læreren bør bruke samtaletrekkene slik at elevene blir oppmerksomme på og reflekterer over hva andre sier. Elevene må få tid til å tenke. Det er mulig å gjennomføre opplegget på ca. 15 minutter. 1
2 Matematiske sammenhenger Oppgaver: 249 : : : : 0,7 24,9 : 7 Posisjonssystemet Oppgavestrengen gir en mulighet til å diskutere posisjonssystemet og desimaltall. Mange elever bruker begreper som å flytte komma, legge til eller fjerne nuller når det er snakk om å gjøre tall ti ganger større eller ti ganger mindre. Noen bruker disse begrepene og har forståelse for posisjonssystemet og hvordan verdien av sifrene endres, men mange reflekterer ikke over hva som egentlig skjer. I arbeidet med denne oppgavestrengen utfordres forståelsen for posisjonssystemet. Sifrenes verdi i avhenger av hvor elevene plasserer desimalkommaet. Overslagsregning I denne sekvensen knytter vi divisjon til overslagsregning. Det krever at elevene kjenner divisjon som regneart, og at de også er i stand til å se sammenhengen mellom divisjon og multiplikasjon. Når elevene skal vurdere hvor desimalkommaet skal stå i 249 : 7, ser de at svaret må bli større enn 3,5571 men mindre enn 355,71 fordi 3 7 er mye mindre enn 249, og er mye mer enn 249. Ved å knytte divisjonsforståelse til overslagsregning, kan det kanskje gi elevene flere strategier til å vurdere svar i praktiske oppgaver med desimalkomma, eller når man foretar beregninger med en kalkulator. Begrunnelser I denne strengen har vi valgt å gå på begrunnelser ut fra posisjonssystemet og overslagsregning. Når vi skal begrunne hvorfor divisjon med 7 gir et svar som er ti ganger større enn divisjon med 70, er det viktig å betrakte tallet 7 som ti ganger mindre enn 70. Skal man gå dypere inn i begrunnelsen hvorfor det skjer, kan man illustrere divisjon gjennom en regnefortelling (målingsdivisjon) eller på en tallinje som vist. Her kan regnefortellingen være at du har en planke på 249 cm som skal deles i biter på 7 cm eller biter på 70 cm. Hvor mange får du? Når man går videre i denne oppgavestrengen er ikke målet å få vist representasjonen med alle regnestykkene, men heller å bruke den kunnskapen man får i de to første oppgavene i strengen til å resonnere hvordan svaret må bli i de etterfølgende oppgavene. 249 : 7 = 35,571 og 249 : 70 = 3,5571 2
3 Erfaringer fra utprøving Erfaringen som er beskrevet er hentet fra gjennomføring med to elevgrupper fra 7. trinn med rundt 15 elever i hver gruppe. Inngangsspørsmålet var her hvor desimalkommaet skal stå i divisjonen 249 : 7 der sifrene er. Mange elever resonnerer slik vi hadde forventet, nemlig at desimalkommaet må stå slik at svaret blir 35,571. Morten (lærer): Du sier at 3 gange 7 er 21? Peder: Ja. Morten: Så det betyr at det kan ikke være Peder: komma foran 5-eren eller etter 3-eren der da. Morten: Nei, akkurat. Men kunne ikke desimalkommaet stått bak den femmeren her da? Peder: Nei, fordi da blir det 355 Noen elever var også inne på at svaret i en divisjon kan ikke bli større en det tallet du starter med (kvotienten alltid mindre enn dividenden). Vi hadde forventet dette innspillet, men valgte å behandle dette senere i diskusjonen. Når man videre i sekvensen endrer tallene slik at man gjør tallene ti ganger større, får vi igjen et svar med begrunnelse ut fra overslagstenking, men også svar som tar utgangspunkt i at desimalkommaet i svaret må flyttes eller at en kan fjerne eller legge til nuller. Thea: Jeg tror den røde er riktig fordi det kan ikke være det samme svaret. På den øverste fordi du har lagt begge fordi du har lagt på en null på 249 og på 7, så da blir det jo 70 og Så det kan ikke bli det samme svaret på begge to. Morten: Det kan ikke det? Thea: Så jeg tror den røde er mest riktig. Morten: Snakk sammen to og to. Prat sammen. Elevene snakker sammen i sekunder. Morten: Her har vi to forslag. Og jeg vil gjerne høre hva dere tenker her nå. Det er mange som har hendene i været. Skal vi se, Jørgen? Jørgen: Det er den svarte. Morten: Den svarte, fordi? Jørgen: Fordi at det er 70, hvis du tar 490 : Så blir det samme som 49 : 7. Morten: Så 2490 : 70 er det samme som 249 : 7? Jørgen: Ja. Hvis du bare fjerner nullene, så blir det det samme. Morten: Ja, kan jeg bare fjerne nullene som jeg vil da? Jørgen: Du kan kanskje sette dem på etterpå da. Hva betyr det egentlig å flytte komma eller legge på eller fjerne nuller? Hvordan endres verdien til tallet? Noen elever mener at man kan flytte desimalkommaet likt i dividend og kvotient og bruker overslagstenkning til å begrunne at dette blir riktig. Andre argumenterer for at når dividenden blir ti ganger større, må også kvotienten bli ti ganger større. 3
4 Det kan se ut som om det er vanskeligere å forstå at kvotienten blir ti ganger mindre når divisor blir ti ganger større enn når dividend og kvotient begge blir ti ganger større. De som begrunner dette gjør det ut fra overslagstenking, noe som ut fra vår målsetting med sekvensen er helt greit. I divisjon med desimaltall, 249 : 0,7, er det noen som får problemer med å forklare at kvotienten her blir større enn 249. Kan kvotienten bli større enn dividenden? Elevene blir utfordret på å forklare dette, og en elev bruker et eksempel der han tar utgangspunkt i deling med et helt tall: 100 : 50 = : 10 = : 5 = : 1 = : 0,7 > 100 «Når du gjør divisor mindre og mindre, blir svaret større og større, og hvis du da deler med et tall som er mindre enn 1, for eksempel 0,7, må svaret bli større enn det tallet du deler.» En elev uttalte: «Jeg ser at det blir riktig, men jeg skjønner det ikke.» I en annen sekvens kom denne begrunnelsen med utgangspunkt i regnestykkene som sto på tavla. Jakob: 249 : 7 blir 35,571, mens du, når du tar 0,7 i stedet for 7, så tar du å... Det er 10 ganger mindre enn 7. Null komma sju er 10 ganger mindre enn 7. Så da flytter du komma en lenger til høyre. Morten: Akkurat. Sånn at du kikker på den du? (peker på 249 : 7). Jakob: Ja, jeg kikker på den, og så... Morten: og den her (peker på 249 : 0,7; markerer 7 og 0,7 med grønt på tavla). Så sier du at 0,7, for her det samme tallet vi deler med. Så sier du at 0,7 er 10 ganger mindre enn 7 Jakob:.. enn 7 for du må gange 0,7 med 10 for å få 7. Morten: Ja, og da blir svaret her... Jakob: Mest sannsynlig 355,71. Morten: Ja, du snakker om å flytte kommaet, da? Ja, Martine? Martine: Det blir 10 ganger større. Vi erfarte at det var utfordrende å gå videre med begrunnelser for de ulike relasjonene mellom dividend, divisor og kvotient ut fra denne oppgavestrengen. Oppgavestrengen kan brukes for å diskutere overslagsregning i forhold til divisjon, og da kanskje helst som en oppgavestreng der man bruker sammenhengen mellom divisjon og multiplikasjon til å vurdere hvor desimalkommaet skal stå og hva svaret skal bli. Dersom en ønsker å gå grundigere inn på hva som skjer når divisor endres med 10, bør en heller finne eksempler og regnefortellinger med enklere tall slik at en kan bruke representasjoner som gir en støtte til forståelse av divisjon der divisor endres. Et mulig utgangspunkt for en regnefortelling kan være : 14 liter skal deles på kanner som rommer 7 liter. 14 : 7 = 2 14 liter skal deles på kanner som rommer 0,7 liter. 14 : 0,7 = 20 Denne oppgavestrengen gir også mulighet til å bruke konkreter. En diskusjon om disse relasjonene er viktig for arbeid med desimaltall og bør tas opp med elevene i en annen sammenheng. Våre erfaringer tilsier at det er viktig å heller ha flere korte økter med en klar faglig målsetting enn å forsøke å nå for mange faglige mål i en og samme oppgavestreng. 4
5 Oppsummering Vi har prøvd denne oppgavestrengen i flere sammenhenger og opplever at den er relativt krevende for elever på mellomtrinnet. Den forutsetter en forståelse for divisjon, og ikke minst en forståelse for sammenhengen mellom divisjon og multiplikasjon. Dersom elever skal benytte overslagsregning, må de være i stand til å veksle mellom divisjon og multiplikasjon. Oppgavestrengen er også utfordrende med tanke på forskjellen mellom målingsdivisjon og delingsdivisjon. Dersom læreren ønsker en regnefortelling og representasjon på ei tallinje, er det viktig at man på forhånd har tenkt gjennom hvilken type divisjon man ønsker et bilde på. Er dette 249 cm delt i deler på 7 cm eller er det 249 cm delt i 7 deler? Det er avgjørende for hvordan illustrasjonen blir på tallinja og også hvordan eleven vil se for seg denne oppgaven. 5
6 Undervisningsnotat Mål: Forstå hva som skjer når du dividerer og gjør divisor 10 ganger større eller 10 ganger mindre. Forklare hvordan overslag kan brukes til å reflektere over om svaret i en divisjon kan være rimelig. Operasjon Progresjon for gjennomføring Planlagt retning for diskusjon En kalkulator mangler tegnet for Begrunnelser ut fra overslag: 3,5 er for lite, : 7 desimalkomma. Hvordan kan vi finne svaret når vi vet at sifrene er riktige? for mye. Egentlig 42 Skrive divisjonsstykket på tavla. TENKETID Begrunne svaret. Hvordan kan du være sikker? 249 : : : 0,7 24,9 : 7 Oppsummering Hvor skal desimalkommaet settes her? Er det noen sammenheng mellom oppgavene? SNU OG SNAKK Kan være aktuelt å bruke begrepene dividend og divisor for å vite hvilket tall en snakker om, men samtidig må ikke det føre til at elever faller fra på grunn av begrepene. Pek gjerne på tallene samtidig. Hvor skal desimalkommaet settes her? Kan dette bli det samme som 249 : 7? Ser du noen sammenheng? Både divisor og dividend er ti ganger større enn i første regnestykket. Hva skjer med svaret? Begrunn. SNU OG SNAKK Hvor skal desimalkommaet settes her? Hva er sammenhengen med 249 : 7? Dividenden er ti ganger mindre enn i første regnestykke. Hva skjer med svaret? Begrunn. SNU OG SNAKK Ut fra det du nå vet, hvordan kan du besvare 24,9 : 7 TENKETID Hva av dette kunne du tidligere? Var det noe som overrasket deg eller som du ikke hadde ventet? Har du lært noe nytt? Bruke overslag og sammenhengen mellom divisorene 7 og 70. Understreke sammenhengen og bruke begrepene ti ganger større enn, ti ganger mindre enn. Utfordre elevene på å begrunne at 35,571 er ti ganger større enn 3,5571. Bruke overslag og sammenhengen mellom divisorene 7 og 70 og sammenhengen mellom dividendene 249 og Understreke sammenhengen og bruke begrepene ti ganger større enn, ti ganger mindre enn. Diskutere ut fra overslag og evt ut fra en regnefortelling eller en tallinje. Mulig det er noen som overraskes over at svaret blir større enn dividenden. Få en diskusjon rundt hva som skjer når du deler med et tall mindre enn 1. Diskutere 0,7 som ti ganger mindre enn 7. Diskutere ut fra overslag og evt ut fra en regnefortelling eller en tallinje. Ønsker å få refleksjon rundt både at divisor og dividend blir ti ganger større/mindre og se sammenhengen med overslag. Reflektere over svar. Ønsker at elevene skal sette ord på hvordan overslag og de gitte relasjonene kan brukes i divisjon med desimaltall. 6
Oppgavestreng divisjon med desimaltall - transkripsjon av samtalen
Oppgavestreng divisjon med desimaltall - transkripsjon av samtalen Elevene på 7. trinn sitter i lyttekroken foran tavla. Morten er lærer. 1 Morten Da skal vi kjøre i gang med en sekvens med divisjon, deling.
Telle med 0,3 fra 0,3
Telle med 0,3 fra 0,3 Mål Generelt: Søke etter mønster og sammenhenger. Gi grunner for at mønstrene oppstår. Lage nye mønstre ved å utnytte mønstre en allerede har funnet. Utfordre elevene på å resonnere
Oppgavestrenger i arbeid med tallforståelse. Forfatter Anita Valenta, Matematikksenteret
Forfatter Anita Valenta, Matematikksenteret Publisert dato: Mai 2016 Matematikksenteret Oppgavestreng En oppgavestreng 1 er en sekvens med 4-6 relaterte regnestykker som er designet for å engasjere elever
Oppgavestreng Halvering/dobling i multiplikasjon
Oppgavestreng Halvering/dobling i multiplikasjon Mål Generelt: Resonnere omkring egenskaper ved tall regneoperasjoner. Bruke ulike representasjoner i utforskning begrunnelse av egenskaper strategier. Spesielt:
Telle med 120 fra 120
Telle med 120 fra 120 Mål Generelt: Søke etter mønstre og sammenhenger. Gi grunner for at mønstrene oppstår. Lage nye mønstre ved å utnytte mønstre en allerede har funnet. Utfordre elevene på å resonnere
Telle med 19 fra 19. Mål. Gjennomføring. Telle i kor Telle med 19 fra 19 Planleggingsdokument
Telle med 19 fra 19 Mål Generelt: Søke etter mønstre og sammenhenger. Gi grunner for at mønstrene oppstår. Lage nye mønstre ved å utnytte mønstre en allerede har funnet. Utfordre elevene på å resonnere
Telle med 15 fra 4. Mål. Gjennomføring. Telle i kor Telle med 15 fra 4 Planleggingsdokument
Telle med 15 fra 4 Mål Generelt: Søke etter mønster og sammenhenger. Gi grunner for at mønstrene oppstår. Lage nye mønstre ved å utnytte mønstre en allerede har funnet. Utfordre elevene på å resonnere
Kvikkbilde Mål. Gjennomføring. Planleggingsdokument Kvikkbilde 4 12
Kvikkbilde 4 12 Mål Generelt: Sammenligne og diskutere ulike måter å se et antall på. Utfordre elevene på å resonnere omkring tallenes struktur og egenskaper, samt egenskaper ved regneoperasjoner. Spesielt:
Telle med 4 fra 4. Mål. Gjennomføring. Telle i kor Telle med 4 fra 4 Planleggingsdokument
Telle med 4 fra 4 Mål Generelt: Søke etter mønster og sammenhenger. Gi grunner for at mønstrene oppstår. Lage nye mønster ved å utnytte mønster en allerede har funnet. Utfordre elevene på å resonnere og
Misoppfatninger knyttet til tallregning
Misoppfatninger knyttet til tallregning 17.04.18 Olav Dalsegg Tokle, Astrid Bondø og Roberth Åsenhus MATEMATIKKSENTERET, NTNU Innholdsfortegnelse INNLEDNING... 3 FJERNE OG LEGGE TIL NULLER... 4 OPPGAVER...
Kvikkbilde 8 6. Mål. Gjennomføring. Planleggingsdokument Kvikkbilde 8 6
Kvikkbilde 8 6 Mål Generelt: Sammenligne og diskutere ulike måter å se et antall på. Utfordre elevene på å resonnere omkring tallenes struktur og egenskaper, samt egenskaper ved regneoperasjoner. Spesielt:
Sensorveiledning nasjonal deleksamen
Sensorveiledning nasjonal deleksamen 05.12.2017 Karakterer gis i henhold til total poengskår og følgende karakterskala fastsatt av eksamensgruppen: A: 36 40 B: 31 35 C: 23 30 D: 18 22 E: 16 17 F: 0 15
Spill "Lag det tallet" - transkripsjon av samtalen
Spill "Lag det tallet" - transkripsjon av samtalen Elevene på 7. trinn sitter i lyttekroken foran tavla. Olaug er lærer. Klassen skal spille Lag det tallet. Det er første gang elevene skal spiller det.
Fire kort. Mål. Gjennomføring. Film. Problemløsing Fire kort Planleggingsdokument
Fire kort Mål Generelt: Søke etter mønster og sammenhenger. Gjennomføre undersøkelse og begrunne resultat. Utfordre elevene på å resonnere og kommunisere. Spesielt: Finne alle kombinasjoner når de adderer
Fire kort. Mål. Gjennomføring. Film. Problemløsing Fire kort
Fire kort Mål Generelt: Søke etter mønster og sammenhenger. Gjennomføre undersøkelse og begrunne resultat. Utfordre elevene på å resonnere og kommunisere. Spesielt: Finne alle kombinasjoner når de adderer
Lag det tallet. Mål. Gjennomføring. Utstyr: Kortstokk. Organisering: 3-4 elever spiller sammen. Spillets gang:
Lag det tallet Mål Generelt: Vurdere tallstørrelser og forståelse for hva de ulike regneoperasjonene gjør med tallene. Eksperimentering med tall og øvelse i hoderegning. Spesielt: Prioritering av regnearter.
NASJONAL DELEKSAMEN I MATEMATIKK FOR GRUNNSKOLELÆRER - UTDANNINGENE GLU 1 7 OG GLU 5 10
NASJONAL DELEKSAMEN I MATEMATIKK FOR GRUNNSKOLELÆRER - UTDANNINGENE GLU 1 7 OG GLU 5 10 BOKMÅL Dato: 10.05.17 Eksamenstid: 9 1 Hjelpemidler: Ingen Oppgavesettet består av 4 oppgaver. Alle deloppgavene,
ADDISJON FRA A TIL Å
ADDISJON FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til addisjon 2 2 Grunnleggende om addisjon 3 3 Ulike tenkemåter 4 4 Hjelpemidler i addisjoner 9 4.1 Bruk av tegninger
Fire kort. Mål. Gjennomføring. Film. Problemløsing Fire kort
Fire kort Mål Generelt: Søke etter mønster og sammenhenger. Gjennomføre undersøkelse og begrunne resultat. Utfordre elevene på å resonnere og kommunisere. Spesielt: Finne alle kombinasjoner når de adderer
Skredder og skjerf - transkripsjonen av samtalen
Skredder og skjerf - transkripsjonen av samtalen Aktiviteten er blitt gjennomført samme dag i to ulike elevgrupper (klasser) på 6. trinn og i filmen får vi innblikk i arbeidet fra begge. Utsagn 1-34 er
Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1. Semester: VÅR År: 2016 Eksamenstype: Skriftlig
Sensurveiledning Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1 Semester: VÅR År: 2016 Eksamenstype: Skriftlig Oppgave 1 Figuren viser hvordan en nettside forklarer en metode for addisjon og
Eksempel på grubliser
Utviklende læring 3. trinn innhold eksempel på ukeplan og oppgaver 4. trinn innhold eksempel på ukeplan og oppgaver 5. trinn - hva nå? Tilpasset opplæring Erfaring fra ulike perspektiv - foreldre - lærer
MAM Mestre Ambisiøs Matematikkundervisning. Realfagskonferansen Trondheim,
MAM Mestre Ambisiøs Matematikkundervisning Realfagskonferansen Trondheim, 03.05.16 Mestre Ambisiøs Matematikkundervisning matematikksenteret.no Utvikle en modell med tilhørende ressurser for skolebasert
Matematikk 1 1-7, LGU11004/ 4MX1 1-7E1 A,B,C
Skriftlig eksamen i Matematikk -7, LGU004/ 4MX -7E A,B,C 5 studiepoeng ORDINÆR/UTSATT EKSAMEN 9. mai 204. Sensurfrist: 09.06.204 BOKMÅL Resultatet blir gjort tilgjengelig fortløpende på studentweb., senest
Planlegging, prosess & produkt
MAM Mestre Ambisiøs Matematikkundervisning Planlegging, prosess & produkt Novemberkonferansen 2016 Ambisiøs matematikkundervisning En undervisningspraksis hvor lærerne engasjerer seg i elevens tenkning,
Halvårsplan i matematikk Vår 5. trinn 2011-2012
Halvårsplan i matematikk Vår 5. trinn 2011-2012 UKE 1 EMNE / PÅ SKOLEN Varmt og kaldt Tallinjen SIDE TALL RØD 12 13 SIDE TALL Gul 22 23 HJEMMELEKSE GRØNN RØD SVART Du skal vite hvordan man setter opp en
MATEMATIKK 1, 4MX15-10E1 A
Skriftlig eksamen i MATEMATIKK 1, 4MX15-10E1 A 15 studiepoeng ORDINÆR EKSAMEN 20. desember 2010. Sensur faller innen 11. januar 2011. BOKMÅL Resultatet blir tilgjengelig på studentweb første virkedag etter
NY/UTSATT NASJONAL DELEKSAMEN I MATEMATIKK FOR GRUNNSKOLELÆRER - UTDANNINGENE GLU 1 7 OG GLU 5 10
NY/UTSATT NASJONAL DELEKSAMEN I MATEMATIKK FOR GRUNNSKOLELÆRER - UTDANNINGENE GLU 7 OG GLU 5 0 BOKMÅL Dato: 05.2.7 Eksamenstid: 9 3 Hjelpemidler: Ingen Oppgavesettet består av 4 oppgaver. Alle deloppgavene,
Case 2 - Fordeling av sjokoladekake
Case 2 - Fordeling av sjokoladekake Thomas er lærer på 6.trinn og han begynner timen med å presentere følgende oppgave: Vi skal holde på med en oppgave som handler om at man skal dele rettferdig i mellom
Kvikkbilde (4 3) 2 - transkripsjonen av samtalen
Kvikkbilde (4 3) 2 - transkripsjonen av samtalen Elevene på 4. trinn sitter ved pultene som er ordnet i en hestesko. Jørn Ove er lærer. 1 Jørn Ove Vi skal se på noen bilder. Det er noen kvikkbilder, noen
Tallregning Vi på vindusrekka
Tallregning Vi på vindusrekka Addisjon... 2 Addisjon: Oppstilling... 3 Addisjon med minnetall... 4 Addisjon med desimaltall... 5 Subtraksjon... 6 Subtraksjon uten låning... 7 Subtraksjon med låning...
Telle i kor med 0,3 fra 0,3 - transkripsjonen av samtalen
Telle i kor med 0,3 fra 0,3 - transkripsjonen av samtalen Elevene på 7. trinn sitter i lyttekroken. Olaug er lærer. 1 Olaug I dag skal vi telle i kor med 0, 3 i gangen. Før vi begynner å telle så har jeg
2.3 Delelighetsregler
2.3 Delelighetsregler Begrepene multiplikasjon og divisjon og regneferdigheter med disse operasjonene utgjør sentralt lærestoff på barnetrinnet. Det er mange tabellfakta å huske og operasjonene skal kunne
MATEMATIKK 1, 4MX15-10E1 A
Skriftlig eksamen i MATEMATIKK 1, 4MX15-E1 A 15 studiepoeng UTSATT EKSAMEN. mai 011. Sensur faller innen 15. juni 011. BOKMÅL Resultatet blir tilgjengelig på studentweb første virkedag etter sensurfrist,
Tema Kompetansemål Læringsmål Metoder og læringsressurser Gr.ferdigheter Vurdering. Jeg kan lese av og plassere i rutenett og koordinatsystem.
Mer enn 1000 og mindre enn 0 Koordinatsystem Uke Tema Kompetansemål Læringsmål Metoder og læringsressurser Grunnleggende ferdigheter Vurdering 34-36 36-41 Elevene skal kunne lese av, plassere og beskrive
Sensorveiledning nasjonal deleksamen
Sensorveiledning nasjonal deleksamen 10.05.2017 Karakterer gis i henhold til total poengskår og følgende karakterskala fastsatt av eksamensgruppen: A: 36 40 B: 31 35 C: 23 30 D: 18 22 E: 16 17 F: 0 15
Oppgavestreng halvering/dobling - transkripsjonen av samtalen
Oppgavestreng halvering/dobling - transkripsjonen av samtalen Elevene på 5. trinn sitter i lyttekroken foran tavla. Maren er lærer. 1 Maren Ok, jeg kommer til å skrive opp to regnestykker på tavla her
Sensorveiledning nasjonal deleksamen
Sensorveiledning nasjonal deleksamen 01.12.2016 Karakterer gis i henhold til total poengskår og følgende karakterskala fastsatt av eksamensgruppen: A: 36 40 B: 31 35 C: 23 30 D: 18 22 E: 16 17 F: 0 15
Misoppfatninger knyttet til brøk
Misoppfatninger knyttet til brøk 17.04.18 Olav Dalsegg Tokle, Astrid Bondø og Roberth Åsenhus MATEMATIKKSENTERET, NTNU Innholdsfortegnelse INNLEDNING... 3 NEVNER REPRESENTERER ANTALL DELER - UAVHENGIG
ÅRSPLAN I MATEMATIKK FOR 4.TRINN
Balsfjord kommune for framtida Storsteinnes skole Mulighetenes skole med trygghet, ansvar og respekt former vi framtida. ÅRSPLAN I MATEMATIKK FOR 4.TRINN 2017-18 *Vi bruker læreverket Multi 4. Oppgaveboka
Multiplikasjon og divisjon av brøk
Geir Martinussen, Bjørn Smestad Multiplikasjon og divisjon av brøk I denne artikkelen vil vi behandle multiplikasjon og divisjon av brøk, med særlig vekt på hvilke kontekster vi kan bruke og hvordan vi
LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2016
LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2016 TID EMNE DELMÅL LÆRINGSKJENNETEGN/ VURDERINGSKRITERIER Høy Middels Lav måloppnåelse måloppnåelse måloppnåelse KJØP OG SALG Lære om : - Sedler og mynters
LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2018
LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2018 TID EMNE DELMÅL LÆRINGSKJENNETEGN/ VURDERINGSKRITERIER Høy Middels Lav måloppnåelse måloppnåelse måloppnåelse J A N U A R KJØP OG SALG Læringsstrategier:
Problemløsning "Sjokoladekake" - transkripsjonen av samtalen
Problemløsning "Sjokoladekake" - transkripsjonen av samtalen Elevene på 6. trinn sitter ved pultene. Thomas er lærer. 1 Thomas: Vi skal holde på med en oppgave som handler om at man skal dele rettferdig
Posisjonsystemet FRA A TIL Å
Posisjonsystemet FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til posisjonsystemet P - 2 2 Grunnleggende om posisjonsystemet P - 2 3 Titallsystemet P - 3 4 Posisjonsystemet
MAM Mestre Ambisiøs Matematikkundervisning. Novemberkonferansen 2015
MAM Mestre Ambisiøs Matematikkundervisning Novemberkonferansen 2015 Eksempel: Telle i kor Film Kort omtale av aktiviteten Oversikt Introduksjon av aktiviteten Eksempler på aktiviteter Link til plandokument
Telle i kor. Forfatter Morten Svorkmo, Matematikksenteret
Telle i kor Forfatter Morten Svorkmo, Matematikksenteret Publisert dato: April 2016 Matematikksenteret Hva er Telle i kor? Telle i kor er en aktivitet hvor klassen teller sammen ved å legge til eller trekke
Telle i kor med 4 fra 5 - transkripsjonen av samtalen
Telle i kor med 4 fra 5 - transkripsjonen av samtalen Elevene på 5. trinn sitter parvis i klasserommet. Morten er lærer. Tallene skrives rad for rad i fem kolonner. Før tellingen starter har Morten skrevet
Kvikkbilder i arbeid med tallforståelse. Forfatter Astrid Bondø
Forfatter Astrid Bondø Publisert dato: April 2016 Matematikksenteret Kvikkbilde Aktiviteten Kvikkbilde er designet for å engasjere elever i å visualisere tall og å forme mentale representasjoner av en
Kyrkjekrinsen skole Årsplan for perioden: 2012-2013
Kyrkjekrinsen skole Årsplan for perioden: 2012-2013 Fag: Matematikk År: 2012-2013 Trinn og gruppe: 3ab Lærer: Therese Hermansen og Monica Strand Brunvoll Uke Årshjul Hovedtema Kompetansemål Delmål Arbeidsmetode
Årsplan matematikk 4. klasse, Læreverk: Multi 4a og 4b Lærer: Irene Jørgensen Skaret
Årsplan matematikk 4. klasse, 2016-2017 Læreverk: Multi 4a og 4b Lærer: Irene Jørgensen Skaret Uke Kompetansemål (K06) Tema Arbeidsmåter Vurdering 34-35 Lese av, plassere og beskrive posisjoner i rutenett,
Sensorveiledning nasjonal deleksamen
Sensorveiledning nasjonal deleksamen 07.05.2018 Karakterer gis i henhold til total poengskår og følgende karakterskala fastsatt av eksamensgruppen: A: 36 40 B: 31 35 C: 23 30 D: 18 22 E: 16 17 F: 0 15
Desimaltall FRA A TIL Å
Desimaltall FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side Innledning til desimaltall D - 2 2 Grunnleggende om desimaltall D - 2 2. Tideler, hundredeler og tusendeler D - 6 3 Å regne
Bruk av nettressurser i utvikling av matematikkundervisning. Seminar Realfagskommuner Pulje 1, 26. september 2016
Bruk av nettressurser i utvikling av matematikkundervisning Seminar Realfagskommuner Pulje 1, 26. september 2016 Hva er matematikk? Måter å se matematikk på: Regler resonnering Redskap eget fag Huske kreativitet
Eksamensoppgave i LGU51014 MATEMATIKK 1 (5-10), EMNE 1
Institutt for grunnskolelærerutdanning 5.-0. og bachelor i tegnspråk og tolking Eksamensoppgave i LGU504 MATEMATIKK (5-0), EMNE Faglig kontakt under eksamen: Øyvind Andersen Lundeby Tlf.: 95776288 / 7342628
PRØVER OG STØRRE SKRIFTLIGE/MUNTLIGE ARBEIDER: Småtester i gangetabell m.m. test etter hver avsluttende kapittel. Uke EMNE Lærestoff Kompetansemål
Matematikk 4. trinn LÆREBOK: Multi 4 a og b oppgavebok, Gyldendal Forlag. LÆREMIDLER: Læreboken Smart øving Classroom METODER/ARBEIDSMÅTER Tavleundervisning. Samtale. Individuelt arbeid. Gruppearbeid.
arbeide med konkreter praktisk arbeid stasjoner uteskole pc samtale samarbeid gruppearbeid arbeide i læreverket andre skriftlige oppgaver
Årsplan i matematikk for 3. trinn 2015/2016 Lærerverk og bøker: Tusen millioner, oppgavebok og tallbok Uke Mål: eleven skal kunne Tema Arbeidsform Vurdering 34,35,36 T.M s. 4-21 tallene, bruke positive
ÅRSPLAN I MATEMATIKK 4. KLASSE 2015/2016. Endringer kan forekomme
ÅRSPLAN I MATEMATIKK 4. KLASSE 2015/2016 Endringer kan forekomme Uke Kompetansemål Innhold Arbeidsmåter Vurdering 34 35 Geometri: Elevene skal kunne lese av, plassere og beskrive posisjoner i rutenett,
Kapittel 1 Tall og tallregning Mer øving Oppgave 1 Hva er verdien av hvert av sifrene i tallene? a 123,45 b 305,29 c 20,406 d 0,235
Kapittel 1 Tall og tallregning Mer øving Oppgave 1 Hva er verdien av hvert av sifrene i tallene? a 123,45 b 305,29 c 20,406 d 0,235 Oppgave 2 Skriv tallene med sifre a To hundrere, en tier, fem enere og
Fagplan Matte, 3. trinn, 2010/2011
Fagplan Matte, 3. trinn, 2010/2011 Måned Kompetansemål K06 Læringsmål / Delmål Kjennetegn på måloppnåelse / kriterier August 34-35 Mål for opplæringen er at eleven skal kunne: samle, sortere, notere og
Takk for fine framføringer
Takk for fine framføringer Etter oppfordring Kan skolene sende meg det dere har brukt i dag og som foreligger elektronisk? Presentasjoner små hefter - annet? Det blir lagt på Mattelyst-siden til gjensidig
Kvikkbilde transkripsjonen av samtalen
Kvikkbilde 2 4+3 4 - transkripsjonen av samtalen Elevene på 4. trinn sitter i lyttekroken foran tavla. Jørn Ove er lærer. 1 Jørn Ove Vi skal se noen kvikkbilder i dag. De vises bare i tre sekunder. Og
Moro med regning trinn 90 minutter
Lærerveiledning Passer for: Varighet: Moro med regning 3. 4. trinn 90 minutter Moro med regning er et skoleprogram hvor elevene får bruke sine regneferdigheter i praktisk oppgaveløsning. Med spill og leker
Telle i kor med 120 fra 120 transkripsjon av samtalen
Telle i kor med 120 fra 120 transkripsjon av samtalen Elevene på 5. trinn sitter på stoler i to halvsirkler foran SMART Board-tavla. Lærer Olaug har introdusert aktiviteten «Telle i kor», se egen introduksjonsfilm.
Kjennetegn på måloppnåelse TALL OG ALGEBRA. Kunne plassverdisystemet for hele- og desimaltall
MATEMATIKK 6.trinn KOMPETANSEMÅL Mål for opplæringen er at eleven skal kunne: VURDERINGSKRITERIER Kjennetegn på måloppnåelse TALL OG ALGEBRA Elevene skal: Beskrive og bruke plassverdisystemet for desimaltall.
Kartlegging av tallforståelse trinn
Kartlegging av tallforståelse 1. 10. trinn Ingvill Merete Stedøy-Johansen og May Renate Settemsdal 29-Oct-06 Veiledning Kartleggingstester Vurderingsskjemaer Retningslinjer for oppfølgende intervju 29-Oct-06
Språk og kommunikasjon i matematikk-klasserommet
Språk og kommunikasjon i matematikk-klasserommet Geir Botten og Hermund Torkildsen Høgskolen i Sør-Trøndelag Avdeling for lærer- og tolkeutdanning 1 Læring av geometriske begreper gjennom aktiv kommunikasjon
SAMMENDRAG OG FORMLER
SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER Nye Mega 8A Kapittel A GEOMETRI LINJE, LINJESTYKKE OG STRÅLE linje stråle linjestykke VINKLER VINKELBEIN OG TOPPUNKT En vinkel har et toppunkt. Denne vinkelen
Click to edit Master title style
Click to edit Master title style Mestre Ambisiøs Matematikkundervisning København, 9. april 2019 [email protected] Et innblikk i MAM-prosjektet hva vi legger i ambisiøs matematikkundervisning
NTNU Fakultet for lærer- og tolkeutdanning
NTNU Fakultet for lærer- og tolkeutdanning Emnekode(r): Emnenavn: LGU11100-A Matematikk 1 (1-7) emne 1A Studiepoeng: 15 Eksamensdato: 10.mai 2016 Varighet/Timer: 6 Målform: Kontaktperson/faglærer: (navn
Matematikk 1, 4MX15-10E1 A
Skriftlig eksameni Matematikk 1, 4MX15-10E1 A 15 studiepoeng ORDINÆR EKSAMEN 19. desember 2011. Sensur faller innen onsdag 11. januar 2012. BOKMÅL Resultatet blir tilgjengelig på studentweb første virkedag
Takk for fine framføringer
Takk for fine framføringer Etter oppfordring Kan skolene sende meg det dere har brukt i dag og som foreligger elektronisk? Presentasjoner små hefter - annet? Det blir lagt på Mattelyst-siden til gjensidig
Hvor mye må jeg betale for 2 kg appelsiner?
Hvor mye må jeg betale for 2 kg appelsiner? 5 Jeg har omtrent 380 kr 400 kr! Avrunding og overslag MÅL I dette kapitlet skal du lære om avrunding av hele tall avrunding av desimaltall overslag i addisjon
Sensurveiledning til skriftlig eksamen i Matematikk 1, 1-7
Sensurveiledning til skriftlig eksamen i Matematikk 1, 1-7 24. mai 2011 Oppgavesettet besto av 3 oppgaver. Alle oppgavene skulle besvares og svarene begrunnes. Oppgavene telte i utgangspunktet som vist
Multiplikation och division av bråk
Geir Martinussen & Bjørn Smestad Multiplikation och division av bråk Räkneoperationer med bråk kan visualiseras för att ge stöd åt resonemang som annars kan upplevas som abstrakta. I denna artikel visar
Ti år med nasjonale prøver i regning
Ti år med nasjonale prøver i regning Resultater knyttet til symbolbruk og forståelse.. og en del annet Trondheim 28. november 2017 Grethe Ravlo Leder for prøveutviklingsgruppa ved Nasjonalt senter for
Kapittel 1. Tallregning
Kapittel 1. Tallregning Regning med tall er grunnlaget for mer avansert matematikk. I dette kapitlet repeteres følgende fra grunnskolen: Brøkregning Desimaltall Regning med positive og negative tall Potenser
Telle i kor steg på 120 frå 120
Telle i kor steg på 120 frå 120 Erfaringer fra utprøving Erfaringene som er beskrevet i det følgende er gjort med lærere og elever som gjennomfører denne typen aktivitet for første gang. Det var fire erfarne
Halvårsplan for: 3. trinn, høst 2017 Fag: Matematikk
Halvårsplan for: 3. trinn, høst 2017 Fag: Matematikk Uke Tema/emne Læremidler Kompetansemål Læringsmål Vurdering Ansvar samle, sortere, notere samle inn data 33-34 Data og statistikk Grunnbok 3a og illustrere
Høgskoleni østfold EKSAMEN. LSVIMAT12 Matematikk 1, V 1: Tall og algebra. funksjoner 1. Dato: 16. desember Eksamenstid: kl til kl 15.
Høgskoleni østfold EKSAMEN Emnekode: Emne: LSVIMAT12 Matematikk 1, V 1: Tall og algebra. funksjoner 1 Dato: 16. desember Eksamenstid: kl 09.00 til kl 15.00 2015 Hjelpemidler: Faglærer: Khaled Jemai Kalkulator
Halvårsplan for: 3. trinn, høst 2018
Halvårsplan for: 3. trinn, høst 2018 Fag: Matematikk Uke Tema/emne Læremidler Kompetansemål Læringsmål Vurdering Ansvar 34-36 Data og statistikk Kap. 1 samle, sortere, notere og illustrere data på formålstenlege
Dybdelæring å gripe terskelbegrepene
Dybdelæring å gripe terskelbegrepene MARS 2018 Anne-Mari Jensen NTNU Innholdsfortegnelse INNLEDNING... 3 BRØK... 3 HVOR LIGGER PROBLEMET?... 3 HVORDAN KAN VI ARBEIDE FOR Å SKAPE BEDRE FORSTÅELSE?... 5
Sensurveiledning Matematikk 1, 5-10, emne 1 Høsten 2013
Sensurveiledning Matematikk 1, 5-10, emne 1 Høsten 2013 Oppgave 1 a) =2 = 5 2 =5 2 = = 25 4 = 25 8 Full uttelling gis for arealet uttrykt over. Avrundinger gis noe uttelling. b) DC blir 5 cm og bruk av
Læreverk: Multi grunnbok 3A og 3B, Oppgavebok, Multi kopiperm, Multi 1-4 grublishefte og Multi sine nettsider.
ÅRSPLAN I MATEMATIKK FOR 3. TRINN 2014/2015 Utarbeidet av: Elly Østensen Rørvik Læreverk: Multi grunnbok 3A og 3B, Oppgavebok, Multi kopiperm, Multi 1-4 grublishefte og Multi sine nettsider. UKE TEMA KOMPETANSEMÅL
3. kurskveld. Gjennomgang av hjemmeleksa. Hvilke tall tenker jeg på?
3. kurskveld Gjennomgang av hjemmeleksa Hvilke tall tenker jeg på? Læreren tenker på to etterfølgende tall mellom 1 og 10. To elever får en lapp med hvert sitt av de to tallene. Elev A: Jeg vet ikke hvilket
Dybdelæring begrepene brøk og desimaltall
Dybdelæring begrepene brøk og desimaltall APRIL 2019 Susanne Stengrundet, Anne-Mari Jensen og Ingunn Valbekmo NTNU Innholdsfortegnelse INNLEDNING... BRØK... HVOR LIGGER PROBLEMET?... Brøk som del av en
Mal for vurderingsbidrag
Fag: Matematikk Læringsmiljø Mal for vurderingsbidrag Tema: Multiplikasjon og divisjon Trinn: 4.trinn Tidsramme: 3 timer ----------------------------------------------------------------------------- Undervisningsplanlegging
Undervisning Planlegging, prosess og produkt
Undervisning Planlegging, prosess og produkt Forfatter: Svein H. Torkildsen Publisert dato: April 2016 Matematikksenteret Planlegging, prosess og produkt Å lære matematikk består i å lære ulike måter å
Click to edit Master title style
Click to edit Master title style Ambisiøs matematikkundervisning Sandefjord 21.03.18 Ambisiøs Matematikkundervisning Kl. 12.15 13.00 Kvikkbilde Prinsipper og praksiser Ressurser Til neste gang? UTPRØVING
LOKAL LÆREPLAN Matte Trinn 5
LOKAL LÆREPLAN Matte Trinn 5 Gol kommune side 1 Kjennetegn på måloppnåelse Læringsmål Mestringsnivå 1 Mestringsnivå 2 Mestringsnivå 3 Eleven skal kunne: Eleven skal kunne: Eleven skal kunne: Eleven skal
Desimaltall og standard algo ritmen for divisjon med papir Elise Klaveness
Desimaltall og standard algo ritmen for divisjon med papir Elise Klaveness Figur 1. Standardalgoritme for divisjon. Jeg underviser i matematikk for lærerstudenter og opplever år etter år at de færreste
Lokal læreplan matematikk 3. trinn
Lokal læreplan matematikk 3. trinn Lærebok: Multi 3 Antall uker Tema: (Statistikk) 2 Data og statistikk Multi grunnbok 3a s.2-15. Oppgavebok s. 2-7. Nettoppgave 2, nivå 1 og 3. Bruke legoklosser, knapper,
super:bit-oppdraget Lærerveiledning Versjon 1, august 19.
super:bit-oppdraget Lærerveiledning Versjon 1, august 19. Innhold 1 Oppvarming analog programmering (10 minutter)... 3 2 Kom i gang med micro:bit (15 minutter)... 5 3 Kjør en meter med BitBot... 6 4 Kjør
Dybdelæring terskelbegrep brøk og desimaltall
Dybdelæring terskelbegrep brøk og desimaltall MARS 2018 Susanne Stengrundet, Anne-Mari Jensen og Ingunn Valbekmo NTNU Innholdsfortegnelse INNLEDNING... 3 TERSKELBEGREP: BRØK... 3 HVOR LIGGER PROBLEMET?...
Læreplan, nivå 1. Innhold / tema. Hovedområde Kompetansemål Elevene skal kunne: Tall og algebra:
Kartlegging / vurdering av nivå Begynn året med et kort kurs i tall-lære og matematiske symboler. Deretter kartlegging som plasserer elevene i nivågruppe. De som kan dette, jobber med tekstoppgaver / problemløsning.
Sensorveiledning nasjonal deleksamen
Sensorveiledning nasjonal deleksamen 10.12.2018 Karakterer gis i henhold til total poengskår og følgende karakterskala fastsatt av eksamensgruppen: A: 36 40 B: 31 35 C: 23 30 D: 18 22 E: 16 17 F: 0 15
Uke Tema Læreplanmål Læringsmål Læremiddel
Uke Tema Læreplanmål Læringsmål Læremiddel 34-35 Data og statistikk - samle, sortere, notere og illustrere data på formålstenlege måtar med teljestrekar, tabellar og søylediagram, med og utan digitale
