Fagdag 1 - S2. Kommentarer og oppsummering. Oppgave 1 - Tre grunnleggende aritmetiske følger og rekker
|
|
- Ida Eriksson
- 7 år siden
- Visninger:
Transkript
1 Fagdag - S Kommentarer og oppsummering Oppgave - Tre grunnleggende aritmetiske følger og rekker De naturlige tallene: Det n-te leddet er rett og slett det samme som nummeret (indeksen) i rekken: (Kunne regnet ut dette som a n a d n n n n, men det er jo litt unødvendig...) Summen: S n a a n n n n n n Denne formelen er verdt å huske, da den ofte dukker opp i andre følger og rekker! Formelen gir de berømte trekanttallene (Se senere i oppgave );,3,6,0,5,,... a n n De ulike (odde) tallene: a n a d n n n n (også verdt å huske) S n a a n n n n n n n Summer avulike tall gir altså kvadrattallene,4,9,6,...! De like tallene: a n n (Vi ser direkte uten regning at de like tallene er det dobbelte av indeksen.) S n a a n n n n n n n n Oppgave - Bruk av geometriske figurer (Figurtall) Den første figuren viser summen av de ulike tallene I figuren ser vi at S , da vi kan telle kulene ved å multiplisere "grunnlinjen" av 6 fd_kom.tex
2 med "høyden". 4 ledd gir altså 4, og dette gjelder generelt, så vi har S n n, akkurat som vi så i oppgave. Den andre figuren er en måte å illustrere summer av like tall: Vi ser her at S (Antall bortover multiplisert med antall oppover.) Generelt har vi altså S n n n, da det er en mer enn indeksen n bortover og n oppover. Samme resultat som vi regnet ut i oppgave! Trekanttallene: Figuren viser, hvis man ser litt nøyere på den, at: Altså er delsummene i n... trekanttallene! Dermed har vi: n n n (eller n n) Antall kuler i slike trekanter er altså gitt ved formelen n n når det er n kuler i hver side. Dette kan vi utnytte i andre figurtall! Rektangeltallene: av 6 fd_kom.tex
3 Her kan vi stable i rektangler: x, 3x, 4x3 osv. (Se også like tall i oppgave.) Formelen for n-te ledd blir derfor: a n n n n n (Altså er rektangeltallene summen av liketallene.) Kabeltallene: n : n... a n : ? 6?... Differanser: 6 8? 4? 30?... Hypotese: Differansene er 6,,8,4,30,36,4,...,6 n Da får vi en rekursiv formel: a a n a n 6 n For å få en eksplisitt formel kan vi dele opp i: Parallellogrammer, hvor antall kuler er produktet av antall kuler i to av sidene. (Se oppgaven med rektangeltall.) Trekanter, hvor antall kuler er n n. (Se oppgaven med trekanttallene!) Et eksempel på hvordan dette kan gjøres: (Du finner sikkert flere måter å gjøre det på!) 3 av 6 fd_kom.tex
4 a 3 er her sammensatt av 3 parallellogrammer med sider og 3 og en enkelt kule i midten, altså: Generelt har vi derfor: a n 3 n n 3n 3n En annen måte: Her er rektanglene for n 3: Generelt får vi derfor for n: a n n n n n n n n n n n n 3n 3n En geometrisk rekke: I figuren i boken ser vi at vi kan "vippe opp" den nederste trekanten for -rektangelet opp under 3 rektanglet for. Fortsetter vi slik oppover vil vi fylle ut den øverste halvdelen av hele kvadratet. 9 Altså må summen gå mot halvparten av arealet av kvadratet, altså! Oppgave 4 - Spill a) Litt prøving og feiling avdekker noen prinsipper/retningslinjer: Prøv å få hvit og svart annenhver gang under flyttingen Pass på å "følge på" for å holde annenhvergang-mønsteret 4 av 6 fd_kom.tex
5 Hvis man har problemer, kan det være lurt å starte med av hver farve, deretter av hver farve og se om man oppdager noe! Forenkling er et vanlig problemløsningstriks! Man bør oppdage at trengs henholdsvis 3, 8 og 5 flytt. b) Dette gir tabellen: n : n... a n : c) Differanser: 5,7,9,...,n,... (De ulike tallene er et like tall pluss/minus : n ) Rekursivt uttrykk: a 3 a n a n n d) Ved å sammenligne n raden og a n raden, oppdager man antagelig at hver a n er produktet av n rett over og n to plasser mot høyre i n raden, altså har vi: 3 3, 4 8,3 5 5,4 6 4,...,n n,... Så a n n n n n e) 00 brikker på hver side gir da a flytt Oppgave 5: a) Vanlig brøkregning gir: n : a n : S n : Vi ser antagelig mønsteret: a n n n og S n n n En annen interessant variant er ikke å trekke sammen brøkene for a n og summere direkte: S Vi ser at siste brøken i forrige ledd og første brøken i neste ledd kansellerer hverandre, og kan derfor generalisere til: 5 av 6 fd_kom.tex
6 S n n n n n n Oppsummering Dette notatet er i seg selv en oppsummering av arbeidet, på et overordnet plan bør man ha merket seg at: Matematikk er ikke bare å sette inn i formler, men også å lage formler og strategier selv! Dette krever at man også trener seg opp i å bruke intuisjon, fantasi og kreativitet, gjetninger, prøving og feiling og uttesting av egne forslag og hypoteser! Tabeller, differanser og geometriske "kule"-figurer er til stor hjelp når man skal arbeide med følger og rekker! Anvendelser Kanskje ikke så lett for dere å se anvendelsene av oppgavene her, så jeg peker på noen muligheter: Kabeltvinning: Kabeltvinning selvfølgelig, kan være aktuelt å se på feks. vektøkning ift. antall kordeler. Kabler med optiske fibre, hvilke kabelstørrelser er aktuelle hvis vi skal lage kabler som har tilstrekkelig kapasitet til å overføre feks. internett-forbindelser vha. standardiserte delkabler. Spill: Problematikken er aktuell feks. hvis man skal regne ut hvor lang tid datamaskiner trenger på å analysere n trekk fremover i et spill, feks. sjakk og andre brikkespill. 6 av 6 fd_kom.tex
Fagdag 3. Kommentarer og oppsummering
Fagdag 3 Kommentarer og oppsummering Oppgave I - Pascals trekant Se løsningsforslag oppgave 05 i uke 44. (www.ulven.biz/r/algebra/oppgaver.pdf) Oppgave II - Figurtall " Trekanttallene": a) Kan tenke oss
DetaljerR2-01.09.14 - Løsningsskisser
R - 0.09.4 - Løsningsskisser Algebra Oppgave Finn den eksplisitte formelen for n te ledd i tallfølgene: a), 4, 6, 8, 0,... b),, 5, 7, 9,... c), 4, 9, 6, 5,... d),, 4, 5 4, 6 5,... a) Vi ser at følgen med
DetaljerLøsningsskisser og kommentarer til oppgaver i kapittel 1 - Rekker
.3 Løsningsskisser og kommentarer til oppgaver i kapittel - Rekker Se også fagdag!.3,.7,.0,.30,.3,.47,.5,.7,.83,.93,.94 Trekanttallene:, 3, 6, 0, 5,... a)viseratdifferanseneer,3,4,5,...osv. Fortsetter
DetaljerPlan for fagdag 1. Plan: Viktig å få gjort arbeidsoppgavene! Differanse- og summefølger. Bruk av kurvetilpasning. Fagdag R
Plan for fagdag 1 R2-04.09.2014 Plan: Teori: Litt om de vanlige teknikkene for å finne ut av følger og rekker: - Differanse- og summefølger. - Bruk av kurvetilpasning. (Regresjon.) - Figur-tall. - Sammenhengen:
DetaljerKommentarer til oppgavene
Kommentarer til oppgavene 7.4, 7.7, 7.0, 7.4, 7., 7.98, 7.9 Teknikker: Se/gjette/prøve, gjerne i kombinasjon med tabeller, differanser og: Figurtall. (Eksempel 5, eksempel og figuren nederst side 59, 7.5,
DetaljerTallfølger med figurer.
Tallfølger med figurer. Når du skal lese til eksamen i forhold til oppgaver gitt på delprøve 1 med temaet tallfølger er det første du kan lære deg er aritmetiske tallfølger. Aritmetiske tallfølger er alle
DetaljerVi kan finne formler som gir oss neste tall i tallfølgen dersom vi kjenner ett tall. Det er den rekursive formelen. gir oss gir oss alle tallene a
Tallfølger, figurtall, algebra (utgave beregnet for GLU1-7). Av Geir Martinussen, Høgskolen i Oslo og Akershus (Se også: http://www.matematikk.org/uopplegg.html?tid=114140 ) Tallfølger er en nyttig ressurs
DetaljerKengurukonkurransen 2019
2019 «Et sprang inn i matematikken» Benjamin (6. 8. trinn) Løsninger og registreringsskjema Dette heftet inneholder: Fasit og korte løsningsforslag Registreringsskjema Fasit med korte kommentarer Mange
DetaljerFigurtall en kilde til kreativitet
Vigdis Brevik Petersen Figurtall en kilde til kreativitet I læreplanen er det lagt vekt på at elevene skal bruke initiativ, kreativitet og utforskning for å etablere kjennskaper og innsikt i matematikkfaget.
DetaljerTenk deg at du skal lage figurer av blå og hvite ruter som vist ovenfor.
Tall og figurer Eksamensoppgaver Våren 016 OPPGAVE 4 (MED HJELPEMIDLER) Figur 1 Figur Figur 3 Tenk deg at du skal lage figurer av blå og hvite ruter som vist ovenfor. a) Skriv av tabellen nedenfor, og
DetaljerVi sier også at for eksempel 16 er kvadratet av 4. Kvadrattallene kan vi framstille som figurtall av kuler på denne måten:
10 Tall og figurer Tallene 1,, 3, 4,, kaller vi de naturlige tallene De naturlige tallene deler vi ofte i partall og oddetall Partallene er de tallene vi kan dele med Det er tallene, 4, 6, 8, 10, Oddetallene
DetaljerAreal av polygoner med GeoGebra
1. Vi starter med å lage forskjellige rektangler og kvadrater med følgende arealer: 1 rute, 2 ruter, 3 ruter, 4 ruter, 5 ruter, 6 ruter, 7 ruter, 8 ruter, 9 ruter og 10 ruter 2. Tegn så mange ulike figurer
DetaljerLøsningsforslag MATEMATIKK 1, MX130
Løsningsforslag ATEATIKK 1, X130 UTSATT EKSAEN 8. januar 2010 Oppgave 1 a) Alle flisene forutsettes å være like store. Vi tenker oss at sidekantene på flisene er 1 enhet lang og at arealet av hver flis
DetaljerTest, 2 Algebra. Innhold. 2.1 Tallfølger. R2, Algebra Quiz
Test, Algebra Innhold. Tallfølger.... Tallrekker.... Uendelige geometriske rekker... 7. Induksjonsbevis... 0 Grete Larsen. Tallfølger ) En rekursiv formel uttrykker et ledd i en tallfølge ved hjelp av
DetaljerOVERFLATE FRA A TIL Å
OVERFLATE FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til overflate... 2 2 Grunnleggende om overflate.. 2 3 Overflate til:.. 3 3 3a Kube. 3 3b Rett Prisme... 5 3c
DetaljerPlan for fagdag 3. Plan: Litt om differanse- og summefølger. Sammenhengen a n a 1 n 1 i 1
Pla for fagdag 3 R2-18.11.10 Pla: Litt om differase- og summefølger. Sammehege a a 1 1 i 1 d i. Geometriske resoemet. Arbeidsoppgaver. Differase- og summefølger Regresjo med lommereger Differaser er ofte
DetaljerDenne følgen har N+1 ledd. En generell uendelig følge kan settes opp slik:
Følger En følge (eng: sequence) er en oppramsing av tall. Hvert tall i oppramsingen har et nummer eller en posisjon som er bestemt av hvor i følgen tallet står. Det første tallet har vanligvis posisjonen
DetaljerLærerveiledning. Oppgave 1. Hva er arealet av det grå området i figuren? Tips til veiledning:
Oppgave 1 Hva er arealet av det grå området i figuren? A 3 B 5 C 6 D 9 E 1 Hva slags geometriske figurer er det grå området er sammensatt av? Finn grå områder som er like store. Tenke dere de mørke bitene
Detaljer5. TRINN MATEMATIKK PERIODEPLAN 2
1 5. TRINN MATEMATIKK PERIODEPLAN 2 KOMPETANSEMÅL Tall og algebra Mål for opplæringa er at eleven skal kunne: beskrive plassverdisystemet for desimaltal, rekne med positive og negative heile tal, desimaltal,
DetaljerKapittel 5. Areal, omkrets, volum og overflate
Kapittel 5. Areal, omkrets, volum og overflate Mål for kapittel 5: Kompetansemål Mål for opplæringen er at eleven skal kunne løse problem som gjelder lengde, vinkel, areal og volum Læringsmål Etter at
DetaljerDEL 1. Uten hjelpemidler. er a2 4 og a5 13. a) Bestem den generelle løsningen av differensiallikningen.
DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) Deriver funksjonene a) f( x) cos( x ) b) g( x) x sin x Oppgave (5 poeng) Bestem integralene a) b) c) (4 3 ) d x x x 4 ln d 1 0 x x x x dx 4 x Oppgave 3 (3 poeng)
DetaljerLøsningsforslag til tidligere mappeoppgaver
til tidligere mappeoppgaver Avdeling for Lærerutdanning Høgskolen i Vestfold M1 høst 007 9. november 007 Her legger vi ut løsningsforslag til noen oppgaver fra tidligere i år. Se på http://www-lu.hive.no/team/t06ab/todelt-logg.htm
DetaljerOrdliste matematikk. Addere (addisjon) Areal. Divisjon. Addere er å "legge sammen" tall.
Ordliste matematikk Addere (addisjon) Addere er å "legge sammen" tall. Regnetegnet for addisjon er +. 3+4 er en addisjon. Summen er 7. Tallene som adderes kalles ledd. Areal Areal er et mål for hvor stor
DetaljerEksamen vår 2009 Løsning Del 1
S Eksamen, våren 009 Løsning Eksamen vår 009 Løsning Del Oppgave a) Deriver funksjonene: ) f f f 3 3 f f 4 ) g e 3 g e g e e g e b) ) Gitt rekka 468 Finn ledd nummer 0 og summen av de 0 første leddene.
DetaljerPå samme måten er de spesielle trekantene likesidet, likebeint, rettvinklet.
GEOMETRI GRUNNLEGGENDE GEOMETRI Geometriske former Trekant, firkant, sirkel. - Hva er det? Hvordan ser det ut? Deltakerne fikk i oppdrag å tegne: en firkant, en trekant og en runding. Som forventet, tegnet
DetaljerKengurukonkurransen 2018
2018 «Et sprang inn i matematikken» Cadet (9. 10. trinn) Løsninger og registreringsskjema Dette heftet inneholder: Fasit og korte løsningsforslag Registreringsskjema Fasit med korte kommentarer Mange matematiske
DetaljerR2 eksamen våren 2018 løsningsforslag
R eksamen våren 08 løsningsforslag DEL Uten hjelpemidler Oppgave ( poeng) Deriver funksjonene a) f ( x) = cos ( x ) f ( x) = sin( x ) = sin( x ) b) g ( x) = x sin x g ( x) = sin x + x cos x = sin x + x
DetaljerLøsningsforslag til del 2 av oppgavesettet Geometri i Sirkel oppgavebok 10B, kapittel 6
Geometri Del Løsningsforslag til del av oppgavesettet Geometri i Sirkel oppgavebok 10B, kapittel 6 Oppgave.1 a Lengden til golvet på tegningen blir: 400 cm 8cm Bredden til golvet på tegningen blir: 300
DetaljerR2 eksamen våren ( )
R Eksamen V01 R eksamen våren 01. (1.05.01) Løsningsskisser (Versjon 1.05.1) Del 1 - Uten hjelpemidler Oppgave 1 a) f x sin x sin x b) Kjerneregel (u x): g x 6 cosx 6 cosx c) Produktregel: h x e x sinx
DetaljerUnge Abel NMCC. Prosesslogg. Nord-Trøndelag, Norge 27.03.2015
2015 Unge Abel NMCC Prosesslogg Nord-Trøndelag, Norge 27.03.2015 Innhold UngeAbel logg... 2 Faglig rapport... 5 Innledning:... 5 UngeAbel oppgave Aa... 6 GeoGebra... 8 Excel... 9 Konklusjon... 10 UngeAbel
DetaljerVi anbefaler at elevene blir introdusert for likninger via en praktisk problemstilling. Det kan for eksempel være:
Likninger og algebra Det er større sprang fra å regne med tall til å regne med bokstaver enn det vi skulle tro. Vi tror at både likninger og bokstavregning (som er den algebraen elevene møter i grunnskolen)
Detaljer2 Om å lære matematikk og litt om vurdering av måloppnåelse/kompetanse
Fagdag 5-3MX Innhold: 1. Tilbakemelding på første termin 2. Om å lære matematikk og vurdering 3. Sannsynlighetsfordelinger (7.2), forventning og varians (7.3, 7.4): Gjennomgåelse 4. Oppgaver 1 Tilbakemelding
DetaljerLøsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K
Løsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K ORDINÆR EKSAMEN 11.1.009 Oppgave 1 a) En følge av parallellaksiomet er at samsvarende vinkler ved parallelle linjer er like store.
Detaljer2P, Modellering Quiz fasit. Test, 3 Modellering
Test, 3 Modellering Innhold 3.1 Lineære modeller og lineær regresjon... 3. Modell for svingetiden til en pendel... 8 3.3 Potensfunksjon som modell... 8 3.4 Eksponentialfunksjon som modell... 18 3.5 Polynomfunksjoner
DetaljerPlassere positive og negative tall på tallinjen KOPIERINGSORIGINAL 2.1. Navn: KAPITTEL 2 Tall og tallforståelse. Oppgave 4a. Oppgave 4b.
KOPIERINGSORIGINAL 2.1 KAPITTEL 2 Tall og tallforståelse Plassere positive og negative tall på tallinjen Navn: Oppgave 4a 0 1 Oppgave 4b 40 0 40 Oppgave 4c 20 0 20 Oppgave 5a 6 3 0 1 4 Oppgave 5b 2 1 0
DetaljerRelativt primiske tall
Relativt primiske tall To heltall a og b (der ikke begge er 0) kalles relativt primiske hvis gcd(a, b) = 1, dvs. de har ingen felles faktorer utenom 1. NB! a og b trenger ikke være primtall for at de skal
DetaljerEksamen R2, Høsten 2015, løsning
Eksamen R, Høsten 05, løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (4 poeng) Deriver funksjonene a) f( ) 5cos( ) f 5 sin 0sin
DetaljerLag et bilde av geometriske figurer, du også!
Lag et bilde av geometriske figurer, du også! 6 Geometri 1 MÅL I dette kapitlet skal du lære om firkanter trekanter sammensatte figurer sirkler KOPIERINGSORIGINALER 6.1 Tangram 6.4 Felles problemløsing
DetaljerVOLUM 1 FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE
VOLUM 1 FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER 1 Innledning til volum 1 V - 2 2 Grunnleggende om volum 1 V - 2 3 av V - 5 3a Kube V - 5 3b Rett prisme V - 7 3c Sylinder V - 8 3d
DetaljerMAT1030 Diskret Matematikk
MAT1030 Diskret Matematikk Forelesning 21: Mer kombinatorikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo 15. april 2009 (Sist oppdatert: 2009-04-15 00:05) Kapittel 9: Mer kombinatorikk
DetaljerStørste felles divisor. (eng: greatest common divisors)
Største felles divisor. (eng: greatest common divisors) La a og b være to tall der ikke begge er 0. Største felles divisor (eller faktor) for a og b er det største heltallet som går opp i både a og b.
DetaljerSensorveiledning nasjonal deleksamen
Sensorveiledning nasjonal deleksamen 10.05.2017 Karakterer gis i henhold til total poengskår og følgende karakterskala fastsatt av eksamensgruppen: A: 36 40 B: 31 35 C: 23 30 D: 18 22 E: 16 17 F: 0 15
DetaljerStomachion. Kristian Ranestad. 10. Mars 2005
10. Mars 2005 Et gammelt puslespill og et matematisk problem Et gammelt puslespill Manuskriptet Arkimedes Palimpsest dukket opp på en auksjon hos Christie s i New York i 1998. Kjøperen som betalte to millioner
Detaljer11 Nye geometriske figurer
11 Nye geometriske figurer Det gylne snitt 1 a) Mål lengden og bredden på et bank- eller kredittkort. Regn ut forholdet mellom lengden og bredden. Hvilket tall er forholdet nesten likt, og hva kaller vi
DetaljerBrann i matteboken. Elevhefte Tall og regning
Elevhefte Til eleven. Du skal i en periode arbeide med fotball og matematikk. Først skal dere besøke VilVite, hvor dere får flere praktiske oppgaver som dere skal gjøre. Dere skal for eksempel: måle hastigheten
DetaljerVerdens korteste grunnkurs i Excel (2007-versjonen)
Verdens korteste grunnkurs i Excel (2007-versjonen) NB! Vær oppmerksom på at Excel kan se annerledes ut hos dere enn det gjør på bildene under. Her er det tatt utgangspunkt i programvaren fra 2007, mens
DetaljerKengurukonkurransen 2017
2017 «Et sprang inn i matematikken» Cadet (9. 10. trinn) Løsninger og registreringsskjema Dette heftet inneholder: Fasit og korte løsningsforslag Registreringsskjema Fasit med korte kommentarer Mange matematiske
DetaljerÅrsplan i matematikk Trinn 9 Skoleåret Haumyrheia skole
Årsplan i matematikk Trinn 9 Skoleåret 2016-2017 Tids rom 3 Kompetansemål Hva skal vi lære? (Læringsmål) Hvordan jobber vi? (Metoder) sammenligne og regne tall på standardform og uttrykke slike tall på
DetaljerR2 - Algebra
R - Algebra - 9.09.14 Løsningsskisser Oppgave 1 Gitt 5 tallfølger: 1 1) 1,, 1, 1,... ) 7, 49, 343, 401,... 3 4 3 3) 1, 3, 7, 11,... 4) 1,, 5, 7,... 4 9 16 5) 1, 3, 6, 10, 15, 1,... Skriv opp det eksplisitte
DetaljerLOKAL LÆREPLAN Matte Trinn 5
LOKAL LÆREPLAN Matte Trinn 5 Gol kommune side 1 Kjennetegn på måloppnåelse Læringsmål Mestringsnivå 1 Mestringsnivå 2 Mestringsnivå 3 Eleven skal kunne: Eleven skal kunne: Eleven skal kunne: Eleven skal
DetaljerGeometri. Mål. for opplæringen er at eleven skal kunne
8 1 Geometri Mål for opplæringen er at eleven skal kunne bruke geometri i planet til å analysere og løse sammensatte teoretiske og praktiske problemer knyttet til lengder, vinkler og areal 1.1 Vinkelsummen
DetaljerR2 kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka
R kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka E Bruker formelen cos 36 cos( 8 ) E sin 8 v og sin8 5 cos v sin sin8 5 5 6 5 5 8 5 5 8 6 5 8 6 5 8 8 3 5 5 5 a f ( ) sin 5 cos f ( ) 5cos
DetaljerUke Tema: Kunnskapsløftet
Uke Tema: Kunnskapsløftet Matematisk innhold Kompetansemål: Læringsmål: Metoder/Vurdering 34-39 Kap. 1: Tall Titallssystemet o Store tall Addisjon og subtr. o Store tall Negative tall Multiplikasjon og
DetaljerFaktor terminprøve i matematikk for 9. trinn
Faktor terminprøve i matematikk for 9. trinn Høsten 2013 Bokmål Navn: Gruppe: Prøveinformasjon Prøvetid: 5 timer totalt. Del 1 og Del 2 blir utdelt samtidig. Del 1 skal du levere innen 2 timer. Del 2 skal
DetaljerHøgskoleni østfold EKSAMEN. LSV1MAT12 Matematikk Vl: Tall, algebra og funksjoner 1
13/. Høgskoleni østfold EKSAMEN Emnekode: Emne: LSV1MAT1 Matematikk Vl: Tall, algebra og funksjoner 1 Dato: 1.1.013 Eksamenstid: kl. 9 til kl. 15 Hjelpemidler: Kalkulator uten grafisk skjerm. Faglærer:
DetaljerKengurukonkurransen 2019
2019 «Et sprang inn i matematikken» Cadet (9. 10. trinn) Løsninger og registreringsskjema Dette heftet inneholder: Fasit og korte løsningsforslag Registreringsskjema Fasit med korte kommentarer Mange matematiske
DetaljerBegrepslæring og begrepsforståelse i matematikk
Begrepslæring og begrepsforståelse i matematikk MARS 019 Susanne Stengrundet, Ingunn Valbekmo, NTNU Innholdsfortegnelse BEGREPER, MATEMATIKKENS BYGGESTEINER... 3 ULIKE TYPER BEGREPER... 4 BEGREPSSTRUKTURER...
Detaljer6 Determinanter TMA4110 høsten 2018
6 Determinanter TMA4110 høsten 2018 En matrise inneholder mange tall og dermed mye informasjon så mye at det kan være litt overveldende Vi kan kondensere ned all informasjonen i en kvadratisk matrise til
Detaljer1.1 Tall- og bokstavregning, parenteser
MATEMATIKK: 1 Algebra 1 Algebra 1.1 Tall- og bokstavregning, parenteser Matematikk er et morsomt fag hvis vi får det til. Som på de fleste områder er det er morsomt og givende når vi lykkes. Skal en f.eks.
DetaljerHeldagsprøve R
Heldagsprøve R - 7.04. Løsningsskisser Versjon 03.05. Del - Uten hjelpemidler Oppgave a) Deriver funksjonene: ) fx x ln x ) gx 3 cos4x 3) hx ax ln x ) Produktregel: f x x ln x x x x ln x x x ln x ) Kjerneregel:
Detaljer2 Likninger. 2.1 Førstegradslikninger med én ukjent
MATEMATIKK: 2 Likninger 2 Likninger 2.1 Førstegradslikninger med én ukjent Ulike problemer kan løses på ulike måter. I den gamle folkeskolen brukte man delingsregning ved løsning av enkelte oppgaver. Eksempel
Detaljer4 Matriser TMA4110 høsten 2018
Matriser TMA høsten 8 Nå har vi fått erfaring med å bruke matriser i et par forskjellige sammenhenger Vi har lært å løse et lineært likningssystem ved å sette opp totalmatrisen til systemet og gausseliminere
Detaljer6. kurskveld Ila, 7. juni - 06 Statistikk og sannsynlighet
. kurskveld Ila, 7. juni - 0 Statistikk og sannsynlighet Sannsynlighet og kombinatorikk Sannsynlighet er noe vi omgir oss med nesten daglig. Vi spiller Lotto og andre spill, og håper vi har flaks og vinner.
DetaljerÅrsplan Matematikk Skoleåret 2015/2016
Årsplan Matematikk Skoleåret 2015/2016 Mål for faget Elevene elsker matematikk og gleder seg over hver time de skal ha i faget. Elevene skal kjenne tallsymbolene fra 0 til 20. Elevene skal beherske å skrive
DetaljerJULETENTAMEN, 9. KLASSE, 2015. FASIT
JULETENTAMEN, 9. KLASSE, 2015. FASIT DELPRØVE 1. OPPGAVE 1.1: 367 + 254 = 621 c: 67. 88 536 536 = 5896 e: 18,4-9,06 = 9,34 24,8 + 7,53 = 32,33 d: 3,2 : 0,8 = 32 : 8 = 4 32 f: 12 2. 5 2 = 12 2. 25 = 12
DetaljerMatriser. Kapittel 4. Definisjoner og notasjon
Kapittel Matriser Vi har lært å løse et lineært ligningssystem ved å sette opp totalmatrisen til systemet gausseliminere den ved hjelp av radoperasjoner på matrisen Vi skal nå se nærmere på egenskaper
DetaljerOppgavesamling i matematikk
Oppgavesamling i matematikk Grunnskolelærerutdanning 1-7 Repetisjonsoppgaver knyttet til matematikkfaglige temaer som er aktuelle ved skriftlig eksamen i Matematikk 1 Geir Martinussen og James Gray Høgskolen
DetaljerTMA4140 Diskret Matematikk Høst 2016
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4140 Diskret Matematikk Høst 2016 Seksjon 10.2 18 La G = (V,E) være en enkel graf med V 2. Ettersom G er enkel er de mulige
DetaljerTall og algebra - begrep, forutsetninger og aktiviteter
Tall og algebra - begrep, forutsetninger og aktiviteter Astrid Bondø NSMO 17-Sep-08 Hvordan gjøre oppgavene rikere? Oppgave A Regn ut svaret: a. 985 67 b. 897 65 c. 875 96 d. 586 97 addisjon subtraksjon
DetaljerEspen Hjardar Jan-Erik Pedersen Illustratør: Line Jerner. Faktor. Grunnbok. Bokmål
Espen Hjardar Jan-Erik Pedersen Illustratør: Line Jerner Faktor 9 Grunnbok Bokmål Hei til deg som skal bruke Faktor! Dette er Faktor 9 Grunnbok. Til grunnboka hører det en oppgavebok. Her ser du ungdommene
DetaljerSensurveiledning Matematikk 1, 5-10, emne 1 Høsten 2013
Sensurveiledning Matematikk 1, 5-10, emne 1 Høsten 2013 Oppgave 1 a) =2 = 5 2 =5 2 = = 25 4 = 25 8 Full uttelling gis for arealet uttrykt over. Avrundinger gis noe uttelling. b) DC blir 5 cm og bruk av
DetaljerSpikerbrettet oppdaget på nytt
22 TANGENTEN 1 1995 Christoph Kirfel Spikerbrettet oppdaget på nytt Spikerbrettet eller pluggbrettet er et hjelpemiddel som for mange av oss kanskje virker en smule barnslig. Men det viser seg faktisk
DetaljerLGU51005 A, Matematikk
Skriftlig eksamen i LGU51005 A, Matematikk 1 5-10 15 studiepoeng ORDINÆR EKSAMEN 10. desember 2013. BOKMÅL Sensur faller innen torsdag 9. januar 2014. Resultatet blir tilgjengelig på studentweb første
DetaljerHusk at løsningsforslag er bare forslag, og at det går an å tenke og løse oppgavene på mange ulike måter. Det er imidlertid kun ett riktig svar.
Fasit med tips og kommentarer Julekalender 2018. 5. -7. trinn Nivå 1 og nivå 2. De letteste oppgavene kommer først. Alle oppgavene egner seg for samarbeid der elevene diskuterer egne løsningsforslag. Tips
DetaljerMangekanter og figurtall
Mangekanter og figurtall ra papirbretting til algebra og funksjoner eskrivelse Opplegget starter med bretting av noen regulære mangekanter og en analyse av dem Her er vinkelberegning, kongruente og formlike
DetaljerMAT1030 Diskret Matematikk
MAT3 Diskret Matematikk Forelesning 2: Mer kombinatorikk Dag Normann Matematisk Institutt, Universitetet i Oslo 3. april 2 (Sist oppdatert: 2-4-3 4:3) Kapittel 9: Mer kombinatorikk MAT3 Diskret Matematikk
DetaljerSnakk om algebra! Et solid grunnlag for et avansert symbolspråk. Svein H. Torkildsen NSMO
Snakk om algebra! Et solid grunnlag for et avansert symbolspråk Svein H. Torkildsen NSMO Riktig sykkel? Seterørslengde: fra toppen av sadelen til midten av krankakselen: Seterørslengde = Skrittlengde
DetaljerAnalysedrypp I: Bevis, mengder og funksjoner
Analysedrypp I: Bevis, mengder og funksjoner Hensikten med Analysedrypp er å bygge en bro mellom MAT1100 og MAT1110 på den ene siden og MAT2400 på den andre. Egentlig burde det være unødvendig med en slik
Detaljeroppgaver fra abels hjørne i dagbladet
oppgaver fra abels hjørne i dagbladet sett 38 dag 1 1. På en hylle står det tre bøker. Den første boken er like tykk som de to andre til sammen. Den andre boken er på 150 sider, mens den tredje boken er
DetaljerEt detaljert induksjonsbevis
Et detaljert induksjonsbevis Knut Mørken 0. august 014 1 Innledning På forelesningen 0/8 gjennomgikk vi i detalj et induksjonsbevis for at formelen n i = 1 n(n + 1) (1) er riktig for alle naturlige tall
DetaljerNår tallene varierer.
Når tallene varierer. Innføring i algebra med støtte i konkreter Astrid Bondø Ny GIV, februar/mars 2013 Når tallene varierer Det første variable skritt! Treff 10 Hesteveddeløp Rød og sort (Et Ess i Ermet,
DetaljerLøsningsforslag til eksamen Matematikk 1 3.juni 2009
Løsningsforslag til eksamen Matematikk 1.juni 009 Oppgave 1 a) Det kan være ulike tolkninger når det gjelder geometriske figurer på flismønsteret. Vi kan finne trekanter i de fire hjørnene og også på midten.
DetaljerDEL 1. Uten hjelpemidler. Oppgave 1 (2 poeng) Oppgave 2 (4 poeng) Oppgave 3 (4 poeng) I er en konstant. Deriver funksjonene
DEL 1 Uten hjelpemidler Oppgave 1 ( poeng) Deriver funksjonene 3 a) f( x) 5x x 5 b) g( x) x e x Oppgave (4 poeng) Polynomfunksjonen P er gitt ved 3 P( x) x x 10x 8, DP a) Faktoriser P( x ) i førstegradsfaktorer.
DetaljerKapittel 7. Lengder og areal
Kapittel 7. Lengder og areal Dette kapitlet handler om å: Beregne sider i rettvinklede trekanter med Pytagoras setning. Beregne omkrets av trekanter, firkanter og sirkler. Beregne areal av enkle figurer,
DetaljerSystem av likninger. Den andre likningen løses og gir x=1, hvis man setter x=1 i første likning får man
System av likninger System av likninger er en mengde likninger med flere ukjente. I økonomiske sammenheng er disse svært vanlige ved optimering. Ofte må vi kreve deriverte lik null for å optimere. I kurset
DetaljerMatematikk GS3 Temaer våren 2013 DEL 1: GEOMETRI. 1. Måleenheter. 1.1 Lengdeenheter. 1.2 Arealenheter. Eksempel 1: Gjør om 5 m til dm, cm og mm
Matematikk GS3 Temaer våren 2013 DEL 1: GEOMETRI 1. Måleenheter 1.1 Lengdeenheter Eksempel 1: Gjør om 5 m til dm, cm og mm m dm 5 m = 5 10 dm = 50 dm m cm 5 m = 5 10 10 cm = 5 10 2 cm = 500 cm m mm 5 m
DetaljerFamiliematematikk MATTEPAKKE 6. Trinn
Familiematematikk MATTEPAKKE 6. Trinn May Renate Settemsdal og Ingvill Merete Stedøy Aktiviteter Multisjablong Denne plata inneholder maler til mangekanter, alt fra tre- til tolv-kanter. Malen legges
DetaljerSammensetningen h = f g er en funksjon fra A til C, h: A -> C og er definert ved h(a) = f(g(a)) Viktig: f g g f
Sammensetningen av to funksjoner. Gitt mengdene A, B og C. La f og g være funksjonene der g: A -> B f: B -> C Da kan vi lage sammensetningen h av f og g. Den betegnes som h = f g (lese som «f ring g»).
DetaljerR2 - Differensialligninger og Algebra
R - Differensialligninger og Algebra - 30.03.017 Oppgave 1 Gitt 3 tallfølger: 1) 4, 1, 36, 108,... ), 7, 1, 17,... 3), 3 4, 4 9, 5 16,... a) Skriv opp det eksplisitte uttrykket for n te ledd, a n, for
DetaljerArbeid med geometriske figurer på 1. trinn
Bjørg Skråmestø Arbeid med geometriske figurer på 1. trinn På 1. trinn har vi jobbet med geometriske figurer på forskjellige måter. Vi har lagt vekt på at barna skulle få bli kjent med figurene gjennom
DetaljerEksamen R1 høsten 2014
Eksamen R1 høsten 014 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Deriver funksjonene 3 a) f x x x x b) gxx e 5 5 Oppgave
DetaljerÅRSPLAN I MATEMATIKK 9. TRINN 2015/ 2016
Læreverk: Faktor 2 matematikk for ungdomstrinnet, Hjardar og Pedersen, Cappelen Vi gjør oppmerksom på at det kan bli forandringer i årsplanen, men emnene vil bli de samme. Frosta skole, 20.08.2015 Faglærere:
DetaljerLøsningsforslag eksamen 4MX230UM2-K 5.desember 2013
Løsningsfrslag eksamen 4MX230UM2-K 5.desember 2013 Løsningsfrslag eksamen 4MX230UM2-K 5.desember 2013 Oppgave 1 a) Løs andregradslikningen med fullstendige kvadraters metde. En gutt står på en brygge.
DetaljerÅRSPLAN I MATEMATIKK 9. TRINN 2014/ 2015
Læreverk: Faktor 2 matematikk for ungdomstrinnet, Hjardar og Pedersen, Cappelen Vi gjør oppmerksom på at det kan bli forandringer i årsplanen, men emnene vil bli de samme. Frosta skole, 18.08.2014 Faglærere:
DetaljerÅRSPLAN I MATEMATIKK 9. TRINN 2017/ 2018
Læreverk: Faktor 2 matematikk for ungdomstrinnet, Hjardar og Pedersen, Cappelen Vi gjør oppmerksom på at det kan bli forandringer i årsplanen, men emnene vil bli de samme. Faglærere: Heidi Kvamvold, Bodil
DetaljerInnlevering i Matematikk Obligatorisk Innlevering 2 Innleveringsfrist 12. november 2010 kl Antall oppgaver 9. Oppgave 1.
Innlevering i Matematikk Obligatorisk Innlevering 2 Innleveringsfrist 12. november 2010 kl. 13.00 Antall oppgaver 9 Løsningsforslag Oppgave 1 a) sin A = BC AC 3, 2 cm = = 0, 627 5, 1 cm A = sin 1 0, 627
DetaljerAktiviteter: Bretting (stjerneforma oktaeder, stjerne, eske) Spill (Speilspill, Set, Geomag, Domino, Speilograf) Problemløsning
Tema: Juleverksted Aktiviteter: Bretting (stjerneforma oktaeder, stjerne, eske) Spill (Speilspill, Set, Geomag, Domino, Speilograf) Problemløsning Tidsbruk: 4 timer Utstyr: Origamipapir A4- ark Speilspill,
DetaljerA) 7,5% B) 10% C) 12% D) 20% E) 25% 1. E. I klassen er det 12 (40% av 30) som bruker briller. 3 av disse er venstrehendte, og det svarer til!
SETT 22 OPPGAVER FRA ABELS HJØRNE I DAGBLADET DAG 1 1. I en klasse med 30 elever er det 40% som bruker briller. Alle de tre venstrehendte elevene i klassen bruker briller. Hvor stor andel av de i klassen
DetaljerMAT1030 Diskret Matematikk
MAT1030 Diskret Matematikk Forelesning 16: Rekursjon og induksjon Roger Antonsen Institutt for informatikk, Universitetet i Oslo 17. mars 009 (Sist oppdatert: 009-03-17 11:4) Forelesning 16 MAT1030 Diskret
Detaljer