Største felles divisor. (eng: greatest common divisors)

Størrelse: px
Begynne med side:

Download "Største felles divisor. (eng: greatest common divisors)"

Transkript

1 Største felles divisor. (eng: greatest common divisors) La a og b være to tall der ikke begge er 0. Største felles divisor (eller faktor) for a og b er det største heltallet som går opp i både a og b. Dette betegnes ofte med gcd(a,b). OBS! gcd(a,b) er alltid et positivt tall! Største felles divisor (gcd) ved hjelp av primtallsfaktorisering. Finn primtallsfaktoriseringen til a og b. Da vil gcd(a, b) være produktet av de primtallsfaktorene som går opp i både a og b. Hvis et primtall p forekommer m ganger i a og n gangere i b, så tas det med så mange ganger som det minste tallet av m og n, dvs. vi velger laveste potens av p. Eksempel 1 Eksempel 2 1

2 Eksempel 3 gcd ved hjelp av Euklids algoritme: Husk definisjonen av kvotient og rest: Hvis a og b er til hele tall med b > 0, så finnes entydige hele tall slik at a = q b + r, 0 r < b Setning. La b > 0. Da er gcd(a, b) = gcd( b, r). Bevis. For å vise at gcd(a, b) = gcd(b, r) må vi vise at c også er faktor i r. La gcd(a, b) = c være det største heltallet som går opp i både a og b. Det betyr at a = c x og b = c y. Vi har a = q b + r som er lik r = a - q b. Vi setter så inn c x for a og c y for b og får da: r = c x - q c y = c(x - q y). Vi ser at c er faktor i r, dvs. c går opp i r, og dermed er det bevist. 2

3 Eksempel på bruk av skjema for Euklids algoritme. gcd(42, 18) = 6. Euklids algoritme er basert på at gcd(a, b) = gcd(b, r). Med primtallsfaktorisering: 42 = 2 3 7, 18 = gcd(42, 18) = 2 3 = 6 Et litt større eksempel: Med primtallsfaktorisering: 740 = , 420 = , gcd(740, 420) = = 20 3

4 Tilsvarende java-metode: (NB! Her går vi ut av løkka når b = 0. Da har allerede b har blitt tilordnet r og a blitt tilordnet verdien til b og derfor returnerer vi a.) Relativt primiske tall To heltall a og b (der ikke begge er 0) kalles relativt primiske hvis gcd(a, b) = 1, dvs. de har ingen felles faktorer utenom 1. NB! a og b trenger ikke være primtall for at de skal være relativt primiske tall. Eksempel. a = 40 = b = 21 = 3 7 Vi ser at a og b har ingen felles faktorer (utenom 1). Følgelig er gcd(40, 21) = 1 og tallene 40 og 21 er relativt primiske. 4

5 Parvis relativt primiske. Tre eller flere heltall kalles for parvis relativt primiske hvis to og to av dem er relativt primiske. Eksempel a = 21, b = 22, c = 25 gcd(21, 22) = 1, gcd(22, 25) = 1 og gcd(21, 25 ) = 1. Tallene 21, 22 og 25 er derfor parvis relativt primiske. Minste felles multiplum (least common multiple lcm) Minste felles multiplum for to positive heltall er det minste positive heltallet som begge tallene går opp i: a lcm(a, b) og b lcm(a, b) (Både a og b må være faktor i lcm(a, b) og følgelig må alle faktorene i begge tallene inngå i lcm(a, b).) Eksempel 1 La a = 12 og b = 15. Vi primtallsfaktoriserer begge tallene: a = b = 3 5 Det minste tallet som både a og b går opp i blir da lcm(a, b) = = 60. Vi ser at både a og b er faktorer i 60 ( og ) 5

6 (Dette tilsvarer det å finne fellesnevneren i brøkregning når vi skal summere brøker med ulike nevnere.) Eksempel 2 La a = og b = Da blir minste felles multiplum lcm(a, b) = Formel gcd(a,b) og lcm(a,b): Hvis gcd(a, b) er største felles divisor for a og b og lcm(a, b) er minste felles multiplum for a og b, så er a b = gcd(a, b) lcm(a, b) der a > 0, b > 0 Eksempel = 180 gcd(12, 15) lcm(12, 15) = 3 60 = 180 Kongruensligninger Se notat om kongruens og modulo-regning La a, b og m være hele tall der m > 0. Da har vi følgende generelle kongruensligning: a x b(mod m) Vi skal finne en x der 0 x < m slik at kongruensen er sann. 6

7 Eksempel La a = 3, b = 5 og m = 7. Løs ligningen 3x 5(mod 7) Vi må finner verdier til x som går utsagnet over sant. Vi kan bruke «prøving og feiling» for å finne x: Vi ser at x = 4 er en løsningen av 3x 5(mod 7) fordi 7 (12-5) Kongruensligningen har flere løsninger. Tallene som er kongruente med 5(mod 7) må tilhøre den aritmetiske tallfølgen med 7 som differanse:, -2, 5, 7, 12, 19, 26, 33,. Hvis 3 går opp i et tall i følgen, dvs. tallet kan skrives som 3 x, vil x være en løsning på kongruensligningen: 3 x = 12, gir x = (mod 7) fordi 7 (12-5) 3 x = 33, gir x = (mod 7) fordi 7 (33-5) Kontrollsiffer anvendelse av kongruensregning Kontrollsiffer brukes for å unngå at tallkoder som brukes til å identifikasjon skrives feil. Eksempler på dette er blant annet fødselsnummer (11 siffer) 7

8 kontonummer (11 siffer) KID-nummer for regninger ISBN-nummer for bøker (10 eller 13 siffer). I oblig 2 tas ISBN-13 opp. Nå skal vi se på et tilsvarende eksempel med ISBN-10. Bokforlaget bestemmer de 9 første sifrene. Det tiende siffer er et kontrollsiffer som er beregnet på grunnlag av de 9 første sifrene ved hjelp av en formel. La de 9 første sifrene være s 1, s 2, s 3,.., s 9. Det tiende sifferet, s 10, bestemmes på følgende måte: 9 s 10 = ( i=1 i s i )mod 11 = (1 s s s s s 9 )mod 11 Når vi brukes mod 11, kan resten bli et tall i intervallet fra og med 0 til og med 10. Hvis resten blir 10 brukes vi isteden bokstaven X som er romertall 10, slik at 10 blir representert med bare et «siffer». Eksempel Forrige utgave av vår lærebok i Diskret matematikk hadde følgende ISBN-kode: Det siste sifferet er et kontrollsiffer. Vi skal nå undersøke om 3 er riktig: 9 s 10 = ( i=1 i s i ) mod 11 = ( ) mod 11 = ( ) mod 11 = 179 mod 11 = 3 Vi ser at siste siffer i ISBN-nummeret er 3 og det stemmer med utregningen vår. 8

Primtall. Et heltall p > 0 kalles et primtall hvis kun 1 og p går opp i p.

Primtall. Et heltall p > 0 kalles et primtall hvis kun 1 og p går opp i p. Primtall Et heltall p > 0 kalles et primtall hvis kun 1 og p går opp i p. Hvordan avgjøre om et heltall a > 1 er et primtall? Regel: Hvis a > 1 ikke er et primtall, så må det finnes et primtall p a som

Detaljer

Relativt primiske tall

Relativt primiske tall Relativt primiske tall To heltall a og b (der ikke begge er 0) kalles relativt primiske hvis gcd(a, b) = 1, dvs. de har ingen felles faktorer utenom 1. NB! a og b trenger ikke være primtall for at de skal

Detaljer

Eksempler på praktisk bruk av modulo-regning.

Eksempler på praktisk bruk av modulo-regning. Eksempler på praktisk bruk av modulo-regning. Se http://www.cs.hioa.no/~evav/dm/emner/modulo1.pdf Tverrsum Tverrsummen til et heltall er summen av tallets sifre. Eksempel. a = 7358. Tverrsummen til a er

Detaljer

Øvingsforelesning 4. Modulo hva er nå det for no? TMA4140 Diskret Matematikk. 24. og 26. september 2018

Øvingsforelesning 4. Modulo hva er nå det for no? TMA4140 Diskret Matematikk. 24. og 26. september 2018 Modulo hva er nå det for no? Øvingsforelesning 4 TMA4140 Diskret Matematikk 24. og 26. september 2018 Dagen i dag Repetere den euklidske algoritmen, kongruensregning og annet underveis H11.3a: Inverser

Detaljer

Løsningsforslag Øving 5 TMA4140 Diskret matematikk Høsten 2010

Løsningsforslag Øving 5 TMA4140 Diskret matematikk Høsten 2010 Løsningsforslag Øving 5 TMA4140 Diskret matematikk Høsten 2010 1. a) Ingen andre tall enn en deler en, og en deler fire, så (1, 4) = 1 b) 1 c) 7 er et primtall og 7 er ikke en faktor i 41, så største felles

Detaljer

Heltallsdivisjon og rest div og mod

Heltallsdivisjon og rest div og mod Heltallsdivisjon og rest div og mod La a og b være to heltall med a 0. Vi sier at a går opp i b (eng. a divides b) hvis det finnes et heltall c slik at b = ac. I så fall kalles a for en faktor i b og b

Detaljer

b) 17 går ikke opp i 84 siden vi får en rest på 16 når 84 deles med 17 c) 17 går opp i 357 siden

b) 17 går ikke opp i 84 siden vi får en rest på 16 når 84 deles med 17 c) 17 går opp i 357 siden Avsnitt. Oppgave Diskret matematikk - Høgskolen i Oslo Løsningsforslag for en del oppgaver fra boken Discrete Mathematics and Its Applications Forfatter: Kenneth H. Rosen a) 7 går opp i 68 siden 68 7 b)

Detaljer

Heltallsdivisjon og rest div og mod

Heltallsdivisjon og rest div og mod Heltallsdivisjon og rest div og mod La a og b være to heltall med a 0. Vi sier at a går opp i b (eng. a divides b) hvis det finnes et heltall c slik at b = ac. I så fall kalles a for en faktor i b og b

Detaljer

Øvingsforelesning 5. Binær-, oktal-, desimal- og heksidesimaletall, litt mer tallteori og kombinatorikk. TMA4140 Diskret Matematikk

Øvingsforelesning 5. Binær-, oktal-, desimal- og heksidesimaletall, litt mer tallteori og kombinatorikk. TMA4140 Diskret Matematikk Binær-, oktal-, desimal- og heksidesimaletall, litt mer tallteori og kombinatorikk Øvingsforelesning 5 TMA4140 Diskret Matematikk 1. og 3. oktober 2018 Dagen i dag Repetere binære, oktale osv. heltallsrepresentasjoner,

Detaljer

TMA4140 Diskret Matematikk Høst 2018

TMA4140 Diskret Matematikk Høst 2018 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4140 Diskret Matematikk Høst 2018 Seksjon 4.1 6 Dersom a c og b d, betyr dette at det eksisterer heltall s og t slik at c

Detaljer

Euklids algoritmen. p t 2. 2 p t n og b = p s 1. p min(t 2,s 2 )

Euklids algoritmen. p t 2. 2 p t n og b = p s 1. p min(t 2,s 2 ) For å finne største felles divisor (gcd) kan vi begrense oss til N, sidenfor alle a, b Z, harvi gcd(a, b) =gcd( a, b ). I prinsippet, dersom vi vet at a = p t 1 kan vi se at 1 p t 2 2 p t n og b = p s

Detaljer

Modulo-regning. hvis a og b ikke er kongruente modulo m.

Modulo-regning. hvis a og b ikke er kongruente modulo m. Modulo-regning Definisjon: La m være et positivt heltall (dvs. m> 0). Vi sier at to hele tall a og b er kongruente modulo m hvis m går opp i (a b). Dette betegnes med a b (mod m) Vi skriver a b (mod m)

Detaljer

Dette brukte vi f.eks. til å bevise binomialteoremet. n i. (a + b) n = a i b n i. i=0

Dette brukte vi f.eks. til å bevise binomialteoremet. n i. (a + b) n = a i b n i. i=0 Prinsippet om matematisk induksjon: anta du har en påstand som er avhengig av et positivt heltall n. Om du kan vise to ting, nemlig at påstanden er sann for n = 1 og at om påstanden er sann for n = k,

Detaljer

Oversikt over lineære kongruenser og lineære diofantiske ligninger

Oversikt over lineære kongruenser og lineære diofantiske ligninger Oversikt over lineære kongruenser og lineære diofantiske ligninger Richard Williamson 3. desember 2014 Oppgave 1 Finn et heltall x slik at 462x 27 (mod 195). Benytt først Euklids algoritme for å finne

Detaljer

Diskret matematikk tirsdag 13. oktober 2015

Diskret matematikk tirsdag 13. oktober 2015 Eksempler på praktisk bruk av modulo-regning. Tverrsum Tverrsummen til et heltall er summen av tallets sifre. a = 7358. Tverrsummen til a er lik 7 + 3 + 5 + 8 = 23. Setning. La sum(a) stå for tverrsummen

Detaljer

Introduksjon i tallteotri med anvendelser

Introduksjon i tallteotri med anvendelser Introduksjon i tallteotri med anvendelser Vladimir Oleshchuk 15. september 2005 Delbarhet og divisorer Delbarhet og divisorer Vi skal betrakte tall fra Z = {,..., 2, 1, 0, 1, 2,...} og N = {0, 1,...} og

Detaljer

Teorem 10 (Z n, + n ) er en endelig abelsk gruppe. 8. november 2005 c Vladimir Oleshchuk 35. Teorem 11 (Z n, ) er en endelig abelsk gruppe.

Teorem 10 (Z n, + n ) er en endelig abelsk gruppe. 8. november 2005 c Vladimir Oleshchuk 35. Teorem 11 (Z n, ) er en endelig abelsk gruppe. Endelige grupper Teorem 10 (Z n, + n ) er en endelig abelsk gruppe. En gruppe er en mengde S sammen med en binær operasjon definert på S, betegnes (S, ), med følgende egenskaper: 1. a, b S, a b S 2. det

Detaljer

MA1301 Tallteori Høsten 2014 Løsninger til Eksamen

MA1301 Tallteori Høsten 2014 Løsninger til Eksamen MA1301 Tallteori Høsten 2014 Løsning til Eksamen Richard Williamson 11. desemb 2014 Innhold Oppgave 1 2 a)........................................... 2 b)........................................... 2 c)...........................................

Detaljer

Forelesning 19 torsdag den 23. oktober

Forelesning 19 torsdag den 23. oktober Forelesning 19 torsdag den 23. oktober 5.3 Eulers kriterium Merknad 5.3.1. Følgende proposisjon er kjernen til teorien for kvadratiske rester. Kanskje ser beviset ikke så vanskelig ut, men la merke til

Detaljer

Oversikt over kvadratiske kongruenser og Legendresymboler

Oversikt over kvadratiske kongruenser og Legendresymboler Oversikt over kvadratiske kongruenser og Legendresymboler Richard Williamson 3. desember 2014 Oppgave 1 Heltallet er et primtall. Er 11799 en kvadratisk rest modulo? Hvordan løse oppgaven? Oversett først

Detaljer

Forelesning 14 torsdag den 2. oktober

Forelesning 14 torsdag den 2. oktober Forelesning 14 torsdag den 2. oktober 4.1 Primtall Definisjon 4.1.1. La n være et naturlig tall. Da er n et primtall om: (1) n 2; (2) de eneste naturlige tallene som er divisorer til n er 1 og n. Eksempel

Detaljer

Oversikt over det kinesiske restteoremet

Oversikt over det kinesiske restteoremet Oversikt over det kinesiske restteoremet Richard Williamson 3. desember 2014 Oppgave 1 Finn et heltall x slik at: (1) x 2 (mod 6); (2) x 3 (mod 11). Hvordan vet jeg at vi bør benytte det kinesiske restteoremet?

Detaljer

Rekker (eng: series, summations)

Rekker (eng: series, summations) Rekker (eng: series, summations) En rekke er summen av leddene i en følge. Gitt følgen a 0, a 1, a,, a n,, a N Da blir den tilsvarende rekken a 0 + a 1 + a + + a n + + a N Bokstaven n er en summasjonsindeks.

Detaljer

STØRRELSER OG TALL Om størrelser skriver Euklid i Bok 5: 1. En størrelse er en del av en annen størrelse, den mindre av den større når den måler (går

STØRRELSER OG TALL Om størrelser skriver Euklid i Bok 5: 1. En størrelse er en del av en annen størrelse, den mindre av den større når den måler (går STØRRELSER OG TALL Om størrelser skriver Euklid i Bok 5:. En størrelse er en del av en annen størrelse, den mindre av den større når den måler (går opp i) den større.. Den større er et multiplum av den

Detaljer

KAPITTEL 10. EUKLIDS ALGORITME OG DIOFANTISKE LIGNINGER

KAPITTEL 10. EUKLIDS ALGORITME OG DIOFANTISKE LIGNINGER KAPITTEL 10. EUKLIDS ALGORITME OG DIOFANTISKE LIGNINGER Euklids algoritme Euklid s setning 1, divisjonslemmaet, fra Bok 7 Gitt to ulike tall. Det minste trekkes så fra det største så mange ganger dette

Detaljer

Faglig kontakt under eksamen: Haaken A. Moe Bokmål MIDTSEMESTERPRØVE I TMA Oktober 2007 Tid:

Faglig kontakt under eksamen: Haaken A. Moe Bokmål MIDTSEMESTERPRØVE I TMA Oktober 2007 Tid: Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Haaken A. Moe 92650655 Bokmål MIDTSEMESTERPRØVE I TMA4140 23.Oktober 2007 Tid: 18.15

Detaljer

Oversikt over kryptografi

Oversikt over kryptografi Oversikt over kryptografi Richard Williamson 3. desember 2014 Oppgave 1 Person A ønsker å sende meldingen Ha det! til person B, og ønsker å benytte RSAalgoritmen for å kryptere den. Den offentlige nøkkelen

Detaljer

Rekker (eng: series, summations)

Rekker (eng: series, summations) Rekker (eng: series, summations) En rekke er summen av leddene i en følge. Gitt følgen a 0, a 1, a,, a n,, a N Da blir den tilsvarende rekken a 0 + a 1 + a + + a n + + a N Bokstaven n er en summasjonsindeks.

Detaljer

TALL. 1 De naturlige tallene. H. Fausk

TALL. 1 De naturlige tallene. H. Fausk TALL H. Fausk 1 De naturlige tallene De naturlige tallene er 1, 2, 3, 4, 5,... (og så videre). Disse tallene brukes til å telle med, og de kalles også telletallene. Listen med naturlige tall stopper ikke

Detaljer

MA1301 Tallteori Høsten 2014

MA1301 Tallteori Høsten 2014 MA1301 Tallteori Høsten 014 Richard Williamson 1. august 015 Innhold Forord 7 1 Induksjon og rekursjon 9 1.1 Naturlige tall og heltall............................ 9 1. Bevis.......................................

Detaljer

Løysingsforslag til eksamen i MA1301-Talteori, 30/11-2005.

Løysingsforslag til eksamen i MA1301-Talteori, 30/11-2005. Løysingsforslag til eksamen i MA1301-Talteori, 30/11-2005. Oppgåve 1 a) Rekn ut gcd(788, 116). Finn alle løysingane i heile tal til likninga 788x + 116y = gcd(788, 116). b) Ein antikvar sel ein dag nokre

Detaljer

Repetisjon: høydepunkter fra første del av MA1301-tallteori.

Repetisjon: høydepunkter fra første del av MA1301-tallteori. Repetisjon: høydepunkter fra første del av MA1301-tallteori. Matematisk induksjon Binomialteoremet Divisjonsalgoritmen Euklids algoritme Lineære diofantiske ligninger Aritmetikkens fundamentalteorem Euklid:

Detaljer

Løsningsforslag til eksamen høst 2016

Løsningsforslag til eksamen høst 2016 Løsningsforslag til eksamen høst 2016 Hver oppgave tildeles maksimalt 10 poeng. Høyeste poengsum er 100 Karaterer: 90 A 75 B < 90 60 C < 75 50 D < 60 0 E < 50 F < 40 Oppgave 1 a) 3 poeng Ingen av de tre

Detaljer

Forelesning 21 torsdag den 30. oktober

Forelesning 21 torsdag den 30. oktober Forelesning 21 torsdag den 30. oktober 5.12 Mersenne-primtall Merknad 5.12.1. Nå kommer vi til å se på et fint tema hvor kvadratisk gjensidighet kan benyttes. Terminologi 5.12.2. La n være et naturlig

Detaljer

6 Kryptografi Totienten Eulers teorem Et eksempel på et bevis hvor Eulers teorem benyttes RSA-algoritmen...

6 Kryptografi Totienten Eulers teorem Et eksempel på et bevis hvor Eulers teorem benyttes RSA-algoritmen... Innhold 6 Kryptografi 3 6.1 Totienten.................................... 3 6.2 Eulers teorem.................................. 8 6.3 Et eksempel på et bevis hvor Eulers teorem benyttes............ 19

Detaljer

Il UNIVERSITETET I AGDER

Il UNIVERSITETET I AGDER Il UNIVERSITETET I AGDER FAKULTETFOR TEKNOLOGIOG REALFAG EKSAMEN Emnekode: Emnenavn: MA913 Tall og algebra Dato: 7. desember 2011 Varighet: 09.00 15.00 Antall sider inkl. forside 7 Tillatte hjelpemidler:

Detaljer

Alle hele tall g > 1 kan være grunntall i et tallsystem.

Alle hele tall g > 1 kan være grunntall i et tallsystem. Tallsystemer Heltall oppgis vanligvis i det desimale tallsystemet, også kalt 10-tallssystemet. Eksempel. Gitt tallet 3794. Dette kan skrives slik: 3 1000 + 7 100 + 9 10 + 4 = 3 10 3 + 7 10 2 + 9 10 1 +

Detaljer

3 Største felles faktor og minste felles multiplum

3 Største felles faktor og minste felles multiplum 3 Største felles faktor og minste felles multiplum 3.1 Største felles faktor og minste felles multiplum. Metodiske aspekter Største felles faktor og minste felles multiplum er kjente matematiske uttrykk

Detaljer

Chapter 6 - Discrete Mathematics and Its Applications. Løsningsforslag på utvalgte oppgaver

Chapter 6 - Discrete Mathematics and Its Applications. Løsningsforslag på utvalgte oppgaver Avsnitt 6. Chapter 6 - Discrete Mathematics and Its Applications Løsningsforslag på utvalgte oppgaver Oppgave a) Valget av en fra matematikk og en fra data er uavhengig av hverandre. Dermed blir det 35

Detaljer

MA1301 Tallteori Høsten 2014 Oversikt over pensumet

MA1301 Tallteori Høsten 2014 Oversikt over pensumet MA1301 Tallteori Høsten 2014 Oversikt over pensumet Richard Williamson 3. desember 2014 Innhold Pensumet 2 Generelle råd 2 Hvordan bør jeg forberede meg?.......................... 2 Hva slags oppgaver

Detaljer

Forelesning 20 mandag den 27. oktober

Forelesning 20 mandag den 27. oktober Forelesning 20 mandag den 27. oktober 5.10 Eksempler på hvordan regne ut Legendresymboler ved å benytte kvadratisk gjensidighet Eksempel 5.10.1. La oss se igjen på Proposisjon 5.6.2, hvor vi regnet ut

Detaljer

Forelesning 24 mandag den 10. november

Forelesning 24 mandag den 10. november Forelesning 24 mandag den 10. november 6.3 RSA-algoritmen Merknad 6.3.1. Én av de meste berømte anveldesene av tallteori er i kryptografi. Alle former for sikre elektroniske overføringer er avhengige av

Detaljer

Forberedelseskurs i matematikk

Forberedelseskurs i matematikk Forberedelseskurs i matematikk Formålet med kurset er å friske opp matematikkunnskapene før et år med realfag. Temaene for kurset er grunnleggende algebra med regneregler, regnerekkefølgen, brøk, ligninger

Detaljer

1. Bevis følgende logiske ekvivalens: ((p q) p) (p q) 2. Bestem de sannhetsverdier for p, q og r som gjør følgende utsagn galt: (p (q r)) (q r p)

1. Bevis følgende logiske ekvivalens: ((p q) p) (p q) 2. Bestem de sannhetsverdier for p, q og r som gjør følgende utsagn galt: (p (q r)) (q r p) . Oppgave. Bevis følgende logiske ekvivalens: ((p q) p) (p q). Bestem de sannhetsverdier for p, q og r som gjør følgende utsagn galt: (p (q r)) (q r p) 3. Avgjør om følgende utsagn er sant i universet

Detaljer

Koder. Kristian Ranestad. 8. Mars 2005

Koder. Kristian Ranestad. 8. Mars 2005 i kryptering 8. Mars 2005 i kryptering i kryptering i kryptering En hemmelig melding Kari sender til Ole den hemmelige meldingen: J MPWF V siden responsen er litt treg prøver hun påny med: U EVOL I Nå

Detaljer

Oversikt over bevis at det finnes uendelig mange primtall med bestemte egenskaper

Oversikt over bevis at det finnes uendelig mange primtall med bestemte egenskaper Oversikt over bevis at det finnes uendelig mange primtall med bestemte egenskaper Richard Williamson 3. desember 2014 Oppgave 1 La n være et naturlig tall. Bevis at det finnes et primtall p slik at p >

Detaljer

Fasit - det står en sort prikk bak riktig svar. (NB! Rekkefølgen på oppgavesettene varierte).

Fasit - det står en sort prikk bak riktig svar. (NB! Rekkefølgen på oppgavesettene varierte). Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Faglig kontakt under midtsemesterprøven: Christian Skau 73591755 Bokmål MIDTSEMESTERPRØVE I TMA4140 Diskret matematikk

Detaljer

MIDTSEMESTERPRØVE I TMA4140 Diskret matematikk. 14. oktober 2016 Tid:

MIDTSEMESTERPRØVE I TMA4140 Diskret matematikk. 14. oktober 2016 Tid: Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Faglig kontakt under midtsemesterprøven: Christian Skau 73591755 Bokmål MIDTSEMESTERPRØVE I TMA4140 Diskret matematikk

Detaljer

OFFENTLIG-NØKKELKRYPTOGRAFI

OFFENTLIG-NØKKELKRYPTOGRAFI OFFENTLIG-NØKKELKRYPTOGRAFI S. O. SMALØ Abstract. I dette notatet, som skal inngå som pensum i etterog viderutdanningskurs i datasikkerhet, vil vi gi en kort innføring i oentlig-nøkkel-kryptogra med illustrasjoner

Detaljer

Matematikk for IT, høsten 2016

Matematikk for IT, høsten 2016 Matematikk for IT, høsten 0 Oblig 1 Løsningsforslag 6. august 0 1..1 a) 19 76? 76 : 19 = 4 Vi ser at vi får 0 i rest ved denne divisjonen. Vi kan derfor konkludere med at 19 deler 76. b) 19 131? 131 :

Detaljer

Alle hele tall g > 1 kan være grunntall i et tallsystem.

Alle hele tall g > 1 kan være grunntall i et tallsystem. Tallsystemer Heltall oppgis vanligvis i det desimale tallsystemet, også kalt 10-tallssystemet. Eksempel. Gitt tallet 3794. Dette kan skrives slik: 3 1000 + 7 100 + 9 10 + 4 = 3 10 3 + 7 10 2 + 9 10 1 +

Detaljer

LØSNINGSFORSLAG, SIF 5015, DISKRET MATEMATIKK 12. august 2003 Oppgave 1. La oss begynne med å bygge en ikke-deterministisk maskin:

LØSNINGSFORSLAG, SIF 5015, DISKRET MATEMATIKK 12. august 2003 Oppgave 1. La oss begynne med å bygge en ikke-deterministisk maskin: LØSNINGSFORSLAG, SIF 5015, DISKRET MATEMATIKK 12. august 200 Oppgave 1. La oss begynne med å bygge en ikke-deterministisk maskin: s 0 s 1 gjennkjenner 0 1og s 0 gjennkjenner (0 1). Fra dette ser vi at

Detaljer

MAT 1140 Innføring i klassisk tallteori

MAT 1140 Innføring i klassisk tallteori MAT1140, H15 MAT 1140 Innføring i klassisk tallteori Dette heftet er basert på forelesningsnotater av Karl Egil Aubert som senere er blitt bearbeidet av Erik Alfsen, Tom Lindstrøm, Arne B. Sletsjøe og

Detaljer

Forelesning 10 torsdag den 18. september

Forelesning 10 torsdag den 18. september Forelesning 10 torsdag den 18. september 2.8 Relativt primiske heltall og Euklids lemma Merknad 2.8.1. Korollar 2.7.20 er et svært viktig teoretisk verktøy. I denne og neste del av kapittelet skal vi se

Detaljer

Eksamen MAT H Løsninger

Eksamen MAT H Løsninger Eksamen MAT1140 - H2014 - Løsninger Oppgave 1 Vi setter opp en vanlig sannhetsverditabell. La Φ betegne formelen i oppgaven. Tabellen vil bli som følger: A B C A B A C Φ T T T T T T T T F T T T T F T F

Detaljer

Obligatorisk oppgave nr. 3 i Diskret matematikk

Obligatorisk oppgave nr. 3 i Diskret matematikk 3. obligatoriske oppgave i Diskret matematikk høste 08. Obligatorisk oppgave r. 3 i Diskret matematikk Ileverigsfrist. ovember 08 Oppgave er frivillig og tregs ikke leveres, me hvis dere leverer de ie

Detaljer

Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir =

Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir = Tallsystemer Heltall oppgis vanligvis i det desimale tallsystemet, også kalt 10-tallssystemet. Eksempel. Gitt tallet 3794. Dette kan skrives slik: 3 1000 + 7 100 + 9 10 + 4 = 3 10 3 + 7 10 2 + 9 10 1 +

Detaljer

Løsningsforslag til eksamenen i MAT103, våren 2016

Løsningsforslag til eksamenen i MAT103, våren 2016 Løsningsforslag til eksamenen i MAT103, våren 2016 Oppgave 1 (vekt 10%) a) Sjekk om følgende tall er delelig med 9: 654, 45231, 1236546 Løsning: Et tall er delelig med 9 hvis og bare hvis tverrsummen er

Detaljer

Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir =

Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir = Tallsystemer Heltall oppgis vanligvis i det desimale tallsystemet, også kalt 10-tallssystemet. Eksempel. Gitt tallet 3794. Dette kan skrives slik: 3 1000 + 7 100 + 9 10 + 4 = 3 10 3 + 7 10 2 + 9 10 1 +

Detaljer

Sammensetningen h = f g er en funksjon fra A til C, h: A -> C og er definert ved h(a) = f(g(a)) Viktig: f g g f

Sammensetningen h = f g er en funksjon fra A til C, h: A -> C og er definert ved h(a) = f(g(a)) Viktig: f g g f Sammensetningen av to funksjoner. Gitt mengdene A, B og C. La f og g være funksjonene der g: A -> B f: B -> C Da kan vi lage sammensetningen h av f og g. Den betegnes som h = f g (lese som «f ring g»).

Detaljer

Løsningsforslag til eksamenen i MAT103, våren 2015

Løsningsforslag til eksamenen i MAT103, våren 2015 Løsningsforslag til eksamenen i MAT103, våren 2015 Oppgave 1 (vekt 10%) a) Et tall a er et partall hvis a er delelig med 2, dvs a 0(mod 2). Et tall a er et oddetall hvis a ikke delelig med 2, dvs a 1(mod

Detaljer

Forelesning 7 mandag den 8. september

Forelesning 7 mandag den 8. september Forelesning 7 mandag den 8. september 1.1 Absoluttverdien Definisjon 1.1.1. La n være et heltall. Da er absoluttverdien til n: (1) n dersom n 0; (2) n dersom n < 0. Merknad 1.1.2. Med andre ord får vi

Detaljer

HJEMMEOPPGAVER (utgave av 12-7-2005):

HJEMMEOPPGAVER (utgave av 12-7-2005): HJEMMEOPPGAVER (utgave av 12-7-2005: Ogave 1 til 31. januar: La f 1, f 2,... være Fibonacci tallene, det vil si f 1 f 2 1 og f n f n 1 + f n 2 for n 3. Vis: (1 f 1 + f 2 + + f n f n+2 1. (2 f n+1 f n 1

Detaljer

Tall. Regneoperasjoner med naturlige tall har til alle tider fascinert både ung og gammel.

Tall. Regneoperasjoner med naturlige tall har til alle tider fascinert både ung og gammel. Tall Regneoperasjoner med naturlige tall har til alle tider fascinert både ung og gammel. Når vi skal arbeide med hele tall på ClassPad 300, bør vi først gå inn i SetUP og foreta følgende innstilling:

Detaljer

MAT 4000 Innføring i klassisk tallteori

MAT 4000 Innføring i klassisk tallteori MAT 4000 Innføring i klassisk tallteori Dette heftet i tallteori baserer seg i stor grad på tidligere forelesningsnotater av Karl Egil Aubert, som senere er blitt bearbeidet videre av Erik Alfsen, Tom

Detaljer

Forelesning 2 torsdag den 21. august

Forelesning 2 torsdag den 21. august Forelesning 2 torsdag den 21 august 15 Flere eksempler på bevis ved induksjon Proposisjon 151 La n være et naturlig tall Da er 1 + 2 + 4 + + 2 n 1 = 2 n 1 Bevis Først sjekker vi om proposisjonen er sann

Detaljer

MA1301 Tallteori Høsten 2014 Oversikt over pensumet for midtsemesterprøven

MA1301 Tallteori Høsten 2014 Oversikt over pensumet for midtsemesterprøven MA1301 Tallteori Høsten 2014 Oversikt over pensumet for midtsemesterprøven Richard Williamson 3. oktober 2014 Innhold Pensumet 2 Generelle råd 2 Hvordan bør jeg forberede meg?..........................

Detaljer

Relasjoner. Ekvivalensrelasjoner. En relasjon R på en mengde A er en delmengde av produktmengden. La R være en relasjon på en mengde A.

Relasjoner. Ekvivalensrelasjoner. En relasjon R på en mengde A er en delmengde av produktmengden. La R være en relasjon på en mengde A. Relasjoner En relasjon R på en mengde A er en delmengde av produktmengden A A. La R være en relasjon på en mengde A. R er refleksiv hvis ( a, a) R for alle a A. R er symmetrisk hvis ( a, b) R, så er (

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk Oppgave 1.1 MAT1030 Diskret matematikk Plenumsregning 2: Ukeoppgaver fra kapittel 1 & 2 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 24. januar 2008 Modifiser algoritmen fra 1.2.1 slik at

Detaljer

FASIT OG TIPS til Rinvold: Visuelle perspektiv. Tallteori. Caspar forlag, 2. utgave, 2009

FASIT OG TIPS til Rinvold: Visuelle perspektiv. Tallteori. Caspar forlag, 2. utgave, 2009 FASIT OG TIPS til Rinvold: Visuelle perspektiv. Tallteori. Caspar forlag, 2. utgave, 2009 Versjon 09.01.2012. Det er ikke tatt med svar på alle oppgaver. Denne fasiten vil bli oppdatert etter hvert. Oppdager

Detaljer

KONTINUASJONSEKSAMEN I TMA4140 LØSNINGSFORSLAG

KONTINUASJONSEKSAMEN I TMA4140 LØSNINGSFORSLAG Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 KONTINUASJONSEKSAMEN I TMA440 LØSNINGSFORSLAG Oppgave Sannhetsverditabell for det logiske utsagnet ( (p q) ) ( q r

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 2: Ukeoppgaver fra kapittel 1 & 2 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 24. januar 2008 Oppgave 1.1 Modifiser algoritmen fra 1.2.1 slik at

Detaljer

Forelesning 5 mandag den 1. september

Forelesning 5 mandag den 1. september Forelesning mandag den. september. Fibonnacitall forts. Proposisjon..6. La n være et naturlig tall. Da er u + u + + u n = u n+. Bevis. Først sjekker vi om proposisjonen er sann når n =. I dette tilfellet

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 16: Rekursjon og induksjon Roger Antonsen Institutt for informatikk, Universitetet i Oslo 17. mars 009 (Sist oppdatert: 009-03-17 11:4) Forelesning 16 MAT1030 Diskret

Detaljer

Denne følgen har N+1 ledd. En generell uendelig følge kan settes opp slik:

Denne følgen har N+1 ledd. En generell uendelig følge kan settes opp slik: Følger En følge (eng: sequence) er en oppramsing av tall. Hvert tall i oppramsingen har et nummer eller en posisjon som er bestemt av hvor i følgen tallet står. Det første tallet har vanligvis posisjonen

Detaljer

KOMPENDIUM FOR FORKURS I MATEMATIKK FOR MASTERSTUDIET I INFORMASJONSSIKKERHET VED HØGSKOLEN I GJØVIK SOMMEREN 2004.

KOMPENDIUM FOR FORKURS I MATEMATIKK FOR MASTERSTUDIET I INFORMASJONSSIKKERHET VED HØGSKOLEN I GJØVIK SOMMEREN 2004. KOMPENDIUM FOR FORKURS I MATEMATIKK FOR MASTERSTUDIET I INFORMASJONSSIKKERHET VED HØGSKOLEN I GJØVIK SOMMEREN 2004 av Hans Engenes 18. august 2004 2 Innhold 1 Tallteori 3 1.1 Innledning...............................

Detaljer

Ingen hjelpemiddel er tillatne. Ta med all mellomrekning som trengst for å grunngje svaret. Oppgåve 1... (4%) = 5 4 3 2 1 = 10 = 520 519

Ingen hjelpemiddel er tillatne. Ta med all mellomrekning som trengst for å grunngje svaret. Oppgåve 1... (4%) = 5 4 3 2 1 = 10 = 520 519 Eksamen 2. desember 2014 Eksamenstid 4 timar IR201712 Diskret Matematikk Ingen hjelpemiddel er tillatne. Ta med all mellomrekning som trengst for å grunngje svaret. Oppgåve 1.......................................................................................

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger. Eksamensdag: Onsdag 8. oktober 2014. Tid for eksamen: 15:00 17:00. Oppgavesettet er på

Detaljer

er et er et heltall. For eksempel er 2, 3, 5, 7 og 11 primtall, mens 4 = 2 2, 6 = 2 3 og 15 = 3 5 er det ikke.

er et er et heltall. For eksempel er 2, 3, 5, 7 og 11 primtall, mens 4 = 2 2, 6 = 2 3 og 15 = 3 5 er det ikke. . Primtall og primtallsfaktorisering Definisjon Et primtall p er et heltall, større enn, som ikke er delelig med andre tall enn og seg selv, altså bare delelig med og p (og egentlig også og p) At et tall

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: MAT-INF 1100 Modellering og beregninger. Eksamensdag: Onsdag 9. oktober 2013. Tid for eksamen: 15:00 17:00. Oppgavesettet

Detaljer

Kort innføring i polynomdivisjon for MAT 1100

Kort innføring i polynomdivisjon for MAT 1100 Kort innføring i polynomdivisjon for MAT 1100 I dette notatet skal vi se litt på polynomdivisjon. Mange vil kjenne denne teknikken fra før, men etter siste læreplanomlegning er den ikke lenger pensum i

Detaljer

MIDTSEMESTERPRØVE I FAG TMA4140 DISKRET MATEMATIKK Mandag 20. oktober 2003 Tid : INSTRUKSJONER:

MIDTSEMESTERPRØVE I FAG TMA4140 DISKRET MATEMATIKK Mandag 20. oktober 2003 Tid : INSTRUKSJONER: Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 MIDTSEMESTERPRØVE I FAG TMA4140 DISKRET MATEMATIKK Mandag 20. oktober 2003 Tid : 1515-1700 Tillatte hjelpemidler

Detaljer

b) Hvis det er mulig å svare blankt (dvs. vet ikke) blir det 5 svaralternativer på hvert spørsmål, og dermed mulige måter å svare på.

b) Hvis det er mulig å svare blankt (dvs. vet ikke) blir det 5 svaralternativer på hvert spørsmål, og dermed mulige måter å svare på. Diskret matematikk - Høgskolen i Oslo Løsningsforslag for en del oppgaver fra boken Discrete Mathematics and Its Applications Forfatter: Kenneth H. Rosen Avsnitt 5. Oppgave 3 Når et spørsmål har 4 svaralternativer

Detaljer

Hashfunksjoner. Hashfunksjonen beregner en indeks i hashtabellen basert på nøkkelverdien som vi søker etter

Hashfunksjoner. Hashfunksjonen beregner en indeks i hashtabellen basert på nøkkelverdien som vi søker etter Hashfunksjoner Hashfunksjoner Hashfunksjonen beregner en indeks i hashtabellen basert på nøkkelverdien som vi søker etter Hash: «Kutte opp i biter og blande sammen» Perfekt hashfunksjon: Lager aldri kollisjoner

Detaljer

1 Primtall og divisorer

1 Primtall og divisorer Oppgaver 1 Primtall og divisorer KATEGORI 1 1.1 Primtallsfaktorisering Oppgave 1.110 Bruk lommeregneren til å finne ut om tallet er et primtall. a) 47 b) 61 c) 143 Oppgave 1.111 Finn ut ved hjelp av tverrsummen

Detaljer

Repetisjon. MAT1030 Diskret Matematikk. Oppsummering. Oppsummering. Forelesning 15: Rekursjon og induksjon. Roger Antonsen

Repetisjon. MAT1030 Diskret Matematikk. Oppsummering. Oppsummering. Forelesning 15: Rekursjon og induksjon. Roger Antonsen MAT1030 Diskret Matematikk Forelesning 15: og induksjon Roger Antonsen Institutt for informatikk, Universitetet i Oslo Repetisjon 11. mars 2009 (Sist oppdatert: 2009-03-10 20:38) MAT1030 Diskret Matematikk

Detaljer

Eksamensoppgave i TMA4140 Diskret matematikk

Eksamensoppgave i TMA4140 Diskret matematikk Institutt for matematiske fag Eksamensoppgave i TMA44 Diskret matematikk Faglig kontakt under eksamen: Christian Skau Tlf: 7359755 Eksamensdato: 8 desember 25 Eksamenstid (fra til): 9:-3: Hjelpemiddelkode/Tillatte

Detaljer

EKSAMENSOPPGAVE. Kontaktperson under eksamen: Steffen Viken Valvåg Telefon:

EKSAMENSOPPGAVE. Kontaktperson under eksamen: Steffen Viken Valvåg Telefon: EKSAMENSOPPGAVE Eksamen i: INF-1100 Innføring i programmering og datamaskiners virkemåte Dato: Tirsdag 8. desember 2015 Tid: Kl 09:00 13:00 Sted: Teorifagbygget, Hus 1 Tillatte hjelpemidler: Ingen Oppgavesettet

Detaljer

Forelesning 9 mandag den 15. september

Forelesning 9 mandag den 15. september Forelesning 9 mandag den 15. september 2.6 Største felles divisor Definisjon 2.6.1. La l og n være heltall. Et naturlig tall d er den største felles divisoren til l og n dersom følgende er sanne. (1) Vi

Detaljer

Test, 2 Algebra. Innhold. 2.1 Tallfølger. R2, Algebra Quiz

Test, 2 Algebra. Innhold. 2.1 Tallfølger. R2, Algebra Quiz Test, Algebra Innhold. Tallfølger.... Tallrekker.... Uendelige geometriske rekker... 7. Induksjonsbevis... 0 Grete Larsen. Tallfølger ) En rekursiv formel uttrykker et ledd i en tallfølge ved hjelp av

Detaljer

Fermats siste teorem

Fermats siste teorem Fermats siste teorem Cubem autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et generaliter nullam in infinitum ultra quadratum potestatem in duos eiusdem nominis fas est dividere.

Detaljer

Bruk piazza for å få rask hjelp til alles nytte!

Bruk piazza for å få rask hjelp til alles nytte! Kunnskap for en bedre verden 1 TDT4105 Informasjonsteknologi, grunnkurs Matlab 5: Løkker (FOR og WHILE) Amanuensis Terje Rydland Kontor: ITV-021 i IT-bygget vest (Gløshaugen) Epost: terjery@idi.ntnu.no

Detaljer

Fagdag 1 - S2. Kommentarer og oppsummering. Oppgave 1 - Tre grunnleggende aritmetiske følger og rekker

Fagdag 1 - S2. Kommentarer og oppsummering. Oppgave 1 - Tre grunnleggende aritmetiske følger og rekker Fagdag - S Kommentarer og oppsummering Oppgave - Tre grunnleggende aritmetiske følger og rekker De naturlige tallene: Det n-te leddet er rett og slett det samme som nummeret (indeksen) i rekken: (Kunne

Detaljer

i Dato:

i Dato: c:- høgskolen i oslo I Emne I EmnlekOde: I FagligvelIeder: Diskret matematikk FO 019A UJfUttersrud raruppe( r): i Dato: - I Eksamenstid: 12.12.2005 9-14 I Eksam-ensopp gavenbestår av: I Antall sid~nkl

Detaljer

Filbehandling Tekstfiler

Filbehandling Tekstfiler 1 Kunnskap for en bedre verden TDT4110 Informasjonsteknologi grunnkurs: Python: Repetisjon tekstfiler rekursjon Terje Rydland - IDI/NTNU 2 Filbehandling Tekstfiler 3 Prosessen for filoperasjoner i Python

Detaljer

SAMMENDRAG OG FORMLER

SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER Nye Mega 8A Kapittel A GEOMETRI LINJE, LINJESTYKKE OG STRÅLE linje stråle linjestykke VINKLER VINKELBEIN OG TOPPUNKT En vinkel har et toppunkt. Denne vinkelen

Detaljer

UNIVERSITETET I BERGEN

UNIVERSITETET I BERGEN BOKMÅL UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i emnet MAT220/MAUMAT44 - Algebra Fredag. juni 204, kl. 09-4 Tillatte hjelpemidler: Kalkulator i samsvar med fakultetets

Detaljer

Forelesning 6 torsdag den 4. september

Forelesning 6 torsdag den 4. september Forelesning 6 torsdag den 4. september 1.13 Varianter av induksjon Merknad 1.13.1. Det finnes mange varianter av induksjon. Noen av disse kalles noen ganger sterk induksjon, men vi skal ikke benytte denne

Detaljer

Ingen hjelpemiddel er tillatne. Ta med all mellomrekning som trengst for å grunngje svaret. Oppgåve 1... (4%) = = 10 =

Ingen hjelpemiddel er tillatne. Ta med all mellomrekning som trengst for å grunngje svaret. Oppgåve 1... (4%) = = 10 = Eksamen. desember 205 Eksamenstid 4 timar IR2072 Diskret Matematikk Ingen hjelpemiddel er tillatne. Ta med all mellomrekning som trengst for å grunngje svaret. Oppgåve.......................................................................................

Detaljer

Kommentarer til Eksamen IM005 - V02

Kommentarer til Eksamen IM005 - V02 Kommentarer til Eksamen IM005 - V02 Følgende oppgaver er aktuelle innenfor dagens pensum: Oppgave 1a,d,e,f,h,i Oppgave 2a,b,c Oppgave 3 Oppgave 4a,c,d I Oppgavene 1f,h,i skal det stå enkel graf (simple

Detaljer