Diskret matematikk tirsdag 13. oktober 2015
|
|
|
- Karoline Berger
- 10 år siden
- Visninger:
Transkript
1 Eksempler på praktisk bruk av modulo-regning. Tverrsum Tverrsummen til et heltall er summen av tallets sifre. a = Tverrsummen til a er lik = 23. Setning. La sum(a) stå for tverrsummen til a. Da er a sum(a)(mod 9) Dvs. a er kongruent med sin tverrsum modulo 9. Bevis. Tallet a har et bestemt antall siffer. Her tenker vi oss at a har fire siffer. Beviset kan gjøres på tilsvarende måte hvis har et annet antall siffer. La de fire sifrene til a være x, y, z og u: a = xyzu. (f.eks. hvis a = 3758 er x = 3, y = 7, z = 5 og u = 8) Tallet a kan skrives som a = 1000x + 100y + 10z + u. mens tverrsummen sum(a) = x + y + z + u I følge definisjonen er a b(mod m ) hvis m går opp i (a b). Her blir b = sum(a) og m = 9, og vi får da a sum(a) = 999x + 99y + 9z = 9(111x + 11y +z) 1
2 Siden 9 er faktor betyr det at 9 går opp i a sum(a). Med andre ord er a kongruent med tverrsummen til a modulo 9: a sum(a)(mod 9). Gjentatt tverrsum. Den gjentatte tverrsummen til et tall a er det tallet vi får ved å ta tverrsummen til tverrsummen osv. til vi ender opp med et ensifret tall. La = Tverrsummen til a blir = 23. Tverrsummen til 23 = 5. Dette betyr at (mod 9). Stemmer det? Ja, fordi = 3753 = Vi ser at 9 er faktor og 9 går derfor opp i Følgelig er a og kongruent med den gjentatte tverrsummen til a modulo 9. Testing av svar i et regnestykke. La a og b være hele tall, og la g(a) være den gjentatte tverrsummen til a og g(b) den gjentatte tverrsummen til b. Da har vi a g(a)(mod 9) og b g(b)(mod 9). I følge regnereglene for kongruenser får vi a b g(a) g(b)(mod 9) La f. eks. a = 3758 og b = 347. Tar vi den gjentatte tverrsummen av tallene får vi g(a) = 5 og g(b) = 5 Da blir g(a) g(b)= 5 5= 25 der tverrsummen blir = 7. 2
3 Dette betyr at g(ab), dvs. den gjentatte tverrsummen g(ab) også må bli 7. Vi sjekker: = g( ) = g( ) = g(16) = = 7. Vi fikk som ventet 7 begge ganger. Hvis vi i utregningen av ab hadde fått et svar som ikke hadde 7 som gjentatt tverrsum, så må svaret være feil. Hvis vi imidlertid bytter om to siffer i et korrekt svar vil ikke denne testen avsløre det! Avsnitt 4.2 fra læreboka Tallsystemer. Heltall oppgis vanligvis i det desimale tallsystemet, også kalt 10-tallssystemet. Gitt tallet Dette kan skrives slik: = Tallet 10 kalles for grunntallet i det desimale tallsystem. Alle hele tall g > 1 kan være grunntall i et tallsystem. Eksempel: La f.eks g = 12. Da finnes det tall x, y, z og u som alle er fra 0 til 11 slik at = x y z u 12 0 = xyzu 12 Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir = Hvordan vi finner x, y, z og u kommer vi straks til. 3
4 I databehandlingen brukes stort sett grunntallene 2, 8, 10 og 16. Brukes flere tallsystemer i samme tekst er det vanlig å oppgi tallets grunntall som indeks , , 176 8, A2F3 16 I Java kan en oppgi tall på binær form ved å sette 0b foran tallet, oktal form med 0 foran tallet og heksadesimal form med 0x foran tallet: 4
5 Konvertering mellom tallsystemer. Fra desimal til binær. Vi viser teknikken ved hjelp av et eksempel. Metoden blir tilsvarende for de andre tallsystemene. La a = Vi setter opp følgende skjema: Algoritmen er slik: a mod 2 gir siste binære siffer. Så setter vi a lik a div 2. Dermed vil a mod 2 neste gang gi nest siste siffer. Fortsetter på samme måte til vi har fått alle sifrene. 5
6 Følgende javakode bruker denne teknikken for å konvertere et tall i 10-tallssystemet til et tall i det tallsystemet vi selv måtte ønske ut fra grunntallet vi velger: Hvis grunntallet vi velger er større enn 10, brukes bokstavene i alfabetet til å representere tallene over 10: A = 10, B = 11, C = 12, D = 13 osv. Kjør programmet selv og test ut med forskjellige grunntall! Generell teknikk. Gitt et grunntall g > 1 og et positivt heltall a. Da kan a skrives entydig på formen: a = s n g n + s n-1 g n-1 + s n-2 g n-2 + +s 2 g 2 + s 1 g 1 + s 0 g 0 der 0 s i < g for i = 0, 1, 2, 3,., n 6
7 Vi finner siste siffer ved s 0 = a mod g. Så setter vi a = a div g. Dermed neste siffer s1 = a mod g. osv. Eksempel La a = og g = 8: Fra binært tall til oktalte, heksadesimale og desimale tall Gitt a = Hvis vi skal finne a som oktalt tall grupperer vi tre og tre siffer fra høyre mot venstre: Hver gruppe på tre konverteres til et oktalt siffer etter følgende regel: 7
8 Dermed blir = OBS! Hvis det er færre enn 3 siffer i gruppen lengst til venstre, kan vi legge til en eller to 0-er slik at det blir tre siffer. Eksempel Heksadesimale tall. La a = Grupper fire og fire binære siffer fra høyre mot venstre: Gruppen lengst til venstre har kun tre siffer. Da kan vi legge på en ekstra 0 forrest slik at vi får Sifrene i hver gruppe konvergeres til et heksadesimalt siffer etter følgende tabell: Dette gir tallet = 5B
9 9
Modulo-regning. hvis a og b ikke er kongruente modulo m.
Modulo-regning Definisjon: La m være et positivt heltall (dvs. m> 0). Vi sier at to hele tall a og b er kongruente modulo m hvis m går opp i (a b). Dette betegnes med a b (mod m) Vi skriver a b (mod m)
Alle hele tall g > 1 kan være grunntall i et tallsystem.
Tallsystemer Heltall oppgis vanligvis i det desimale tallsystemet, også kalt 10-tallssystemet. Eksempel. Gitt tallet 3794. Dette kan skrives slik: 3 1000 + 7 100 + 9 10 + 4 = 3 10 3 + 7 10 2 + 9 10 1 +
Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir =
Tallsystemer Heltall oppgis vanligvis i det desimale tallsystemet, også kalt 10-tallssystemet. Eksempel. Gitt tallet 3794. Dette kan skrives slik: 3 1000 + 7 100 + 9 10 + 4 = 3 10 3 + 7 10 2 + 9 10 1 +
Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir =
Tallsystemer Heltall oppgis vanligvis i det desimale tallsystemet, også kalt 10-tallssystemet. Eksempel. Gitt tallet 3794. Dette kan skrives slik: 3 1000 + 7 100 + 9 10 + 4 = 3 10 3 + 7 10 2 + 9 10 1 +
Alle hele tall g > 1 kan være grunntall i et tallsystem.
Tallsystemer Heltall oppgis vanligvis i det desimale tallsystemet, også kalt 10-tallssystemet. Eksempel. Gitt tallet 3794. Dette kan skrives slik: 3 1000 + 7 100 + 9 10 + 4 = 3 10 3 + 7 10 2 + 9 10 1 +
Heltallsdivisjon og rest div og mod
Heltallsdivisjon og rest div og mod La a og b være to heltall med a 0. Vi sier at a går opp i b (eng. a divides b) hvis det finnes et heltall c slik at b = ac. I så fall kalles a for en faktor i b og b
Heltallsdivisjon og rest div og mod
Heltallsdivisjon og rest div og mod La a og b være to heltall med a 0. Vi sier at a går opp i b (eng. a divides b) hvis det finnes et heltall c slik at b = ac. I så fall kalles a for en faktor i b og b
Eksempler på praktisk bruk av modulo-regning.
Eksempler på praktisk bruk av modulo-regning. Se http://www.cs.hioa.no/~evav/dm/emner/modulo1.pdf Tverrsum Tverrsummen til et heltall er summen av tallets sifre. Eksempel. a = 7358. Tverrsummen til a er
Konvertering mellom tallsystemer
Konvertering mellom tallsystemer Hans Petter Taugbøl Kragset [email protected] November 2014 1 Introduksjon Dette dokumentet er ment som en referanse for konvertering mellom det desimale, det binære,
Matematikk for IT, høsten 2016
Matematikk for IT, høsten 0 Oblig 1 Løsningsforslag 6. august 0 1..1 a) 19 76? 76 : 19 = 4 Vi ser at vi får 0 i rest ved denne divisjonen. Vi kan derfor konkludere med at 19 deler 76. b) 19 131? 131 :
Rekker (eng: series, summations)
Rekker (eng: series, summations) En rekke er summen av leddene i en følge. Gitt følgen a 0, a 1, a,, a n,, a N Da blir den tilsvarende rekken a 0 + a 1 + a + + a n + + a N Bokstaven n er en summasjonsindeks.
Rekker (eng: series, summations)
Rekker (eng: series, summations) En rekke er summen av leddene i en følge. Gitt følgen a 0, a 1, a,, a n,, a N Da blir den tilsvarende rekken a 0 + a 1 + a + + a n + + a N Bokstaven n er en summasjonsindeks.
b) 17 går ikke opp i 84 siden vi får en rest på 16 når 84 deles med 17 c) 17 går opp i 357 siden
Avsnitt. Oppgave Diskret matematikk - Høgskolen i Oslo Løsningsforslag for en del oppgaver fra boken Discrete Mathematics and Its Applications Forfatter: Kenneth H. Rosen a) 7 går opp i 68 siden 68 7 b)
Største felles divisor. (eng: greatest common divisors)
Største felles divisor. (eng: greatest common divisors) La a og b være to tall der ikke begge er 0. Største felles divisor (eller faktor) for a og b er det største heltallet som går opp i både a og b.
Teori og oppgaver om 2-komplement
Høgskolen i Oslo og Akershus Diskret matematikk høsten 2014 Teori og oppgaver om 2-komplement 1) Binær addisjon Vi legger sammen binære tall på en tilsvarende måte som desimale tall (dvs. tall i 10- talssystemet).
Potenser og tallsystemer
1 Potenser og tallsystemer Mål for opplæringen er at eleven skal kunne regne med potenser og tall på standardform med positive og negative eksponenter og bruke dette i praktiske sammenhenger gjøre rede
Løsningsforslag Øving 5 TMA4140 Diskret matematikk Høsten 2010
Løsningsforslag Øving 5 TMA4140 Diskret matematikk Høsten 2010 1. a) Ingen andre tall enn en deler en, og en deler fire, så (1, 4) = 1 b) 1 c) 7 er et primtall og 7 er ikke en faktor i 41, så største felles
Potenser og tallsystemer
8 1 Potenser og tallsystemer Mål for opplæringen er at eleven skal kunne regne med potenser og tall på standardform med positive og negative eksponenter og bruke dette i praktiske sammen henger gjøre rede
MAT1030 Forelesning 2
MAT1030 Forelesning 2 Kontrollstrukturer, tallsystemer, basis Dag Normann - 20. januar 2010 (Sist oppdatert: 2010-01-20 12:31) Kapittel 1: Algoritmer (fortsettelse) Kontrollstrukturer I går innførte vi
MAT1030 Diskret Matematikk
MAT1030 Diskret Matematikk Forelesning 2: Kontrollstrukturer, tallsystemer, basis Roger Antonsen Institutt for informatikk, Universitetet i Oslo 14. januar 2009 (Sist oppdatert: 2009-01-14 16:45) Kapittel
Oversikt over det kinesiske restteoremet
Oversikt over det kinesiske restteoremet Richard Williamson 3. desember 2014 Oppgave 1 Finn et heltall x slik at: (1) x 2 (mod 6); (2) x 3 (mod 11). Hvordan vet jeg at vi bør benytte det kinesiske restteoremet?
TALL. Titallsystemet et posisjonssystem. Konvertering: Titallsystemet binære tall. Det binære tallsystemet. Alternativ 1.
TALL Dagens plan: Tallsystemer (kapittel 6) Titallsystemet Det binære tallsystemet Det heksadesimale tallsystemet Representasjon av tall (kapittel 7) Heltall Negative tall Reelle tall Gray-kode (les selv!)
Relativt primiske tall
Relativt primiske tall To heltall a og b (der ikke begge er 0) kalles relativt primiske hvis gcd(a, b) = 1, dvs. de har ingen felles faktorer utenom 1. NB! a og b trenger ikke være primtall for at de skal
INF1040 Digital representasjon TALL
TALL Dagens plan: Tallsystemer (kapittel 6) Titallsystemet Det binære tallsystemet Det heksadesimale tallsystemet Representasjon av tall (kapittel 7) Heltall Negative tall Reelle tall Gray-kode (les selv!)
INF1040 løsningsforslag oppgavesett 7: Tall og geometrier
INF1040 løsningsforslag oppgavesett 7: Tall og geometrier (Kapittel 7.1, 7.4-7.8, 8 + Appendiks B) Hvis du finner feil i løsningsforslaget er det fint om du gir beskjed om dette ved å sende en mail til
Resymé: I denne leksjonen blir de viktigste tallsystemer presentert. Det gjelder det binære, heksadesimale og desimale tallsystem.
Geir Ove Rosvold 23. august 2012 Opphavsrett: Forfatter og Stiftelsen TISIP Resymé: I denne leksjonen blir de viktigste tallsystemer presentert. Det gjelder det binære, heksadesimale og desimale tallsystem.
Oversikt over kvadratiske kongruenser og Legendresymboler
Oversikt over kvadratiske kongruenser og Legendresymboler Richard Williamson 3. desember 2014 Oppgave 1 Heltallet er et primtall. Er 11799 en kvadratisk rest modulo? Hvordan løse oppgaven? Oversett først
Euklids algoritmen. p t 2. 2 p t n og b = p s 1. p min(t 2,s 2 )
For å finne største felles divisor (gcd) kan vi begrense oss til N, sidenfor alle a, b Z, harvi gcd(a, b) =gcd( a, b ). I prinsippet, dersom vi vet at a = p t 1 kan vi se at 1 p t 2 2 p t n og b = p s
Øvingsforelesning 4. Modulo hva er nå det for no? TMA4140 Diskret Matematikk. 24. og 26. september 2018
Modulo hva er nå det for no? Øvingsforelesning 4 TMA4140 Diskret Matematikk 24. og 26. september 2018 Dagen i dag Repetere den euklidske algoritmen, kongruensregning og annet underveis H11.3a: Inverser
Chapter 6 - Discrete Mathematics and Its Applications. Løsningsforslag på utvalgte oppgaver
Avsnitt 6. Chapter 6 - Discrete Mathematics and Its Applications Løsningsforslag på utvalgte oppgaver Oppgave a) Valget av en fra matematikk og en fra data er uavhengig av hverandre. Dermed blir det 35
2.3 Delelighetsregler
2.3 Delelighetsregler Begrepene multiplikasjon og divisjon og regneferdigheter med disse operasjonene utgjør sentralt lærestoff på barnetrinnet. Det er mange tabellfakta å huske og operasjonene skal kunne
Mer om representasjon av tall
Forelesning 3 Mer om representasjon av tall Dag Normann - 21. januar 2008 Oppsummering av Uke 3 Mandag 14.01 og delvis onsdag 16.01 diskuterte vi hva som menes med en algoritme, og vi så på pseudokoder
INF1040 Oppgavesett 1: Tallsystemer og binærtall
INF1040 Oppgavesett 1: Tallsystemer og binærtall (Kapittel 1.1 1.4, 6, 7.2 7.3) Fasitoppgaver 1. Skriv tallene fra 1 10 til 20 10 som binærtall. 2. Skriv tallene fra 1 10 til 20 10 som heksadesimale tall.
KONTROLLSTRUKTURER. MAT1030 Diskret matematikk. Kontrollstrukturer. Kontrollstrukturer. Eksempel (Ubegrenset while-løkke)
KONTROLLSTRUKTURER MAT1030 Diskret matematikk Forelesning 2: Flere pseudokoder. Representasjoner av tall. Dag Normann Matematisk Institutt, Universitetet i Oslo 16. januar 2008 Mandag innførte vi pseudokoder
1 Potenser og tallsystemer
Oppgaver Potenser og tallsystemer KATEGORI. Potenser Oppgave.0 a) b) c) d) Oppgave. a) 0 b) ( ) c) ( ) d) ( ) Oppgave. Skriv uttrykkene som én potens. a) b) 7 c) d). Potensene a 0 og a n Oppgave.0 a) 7
Oppsummering av Uke 3. MAT1030 Diskret matematikk. Binære tall. Oppsummering av Uke 3
Oppsummering av Uke 3 MAT1030 Diskret matematikk Forelesning 3: Mer om representasjon av tall Dag Normann Matematisk Institutt, Universitetet i Oslo 21. januar 2008 Mandag 14.01 og delvis onsdag 16.01
Matematikk for IT. Prøve 1 Løsningsforslag. Fredag 23. september september Oppgave 1
Matematikk for IT Prøve 1 Løsningsforslag Fredag 23. september 2016 23. september 2016 Oppgave 1 Er 29 17 (mod 4)? Begrunn svaret. Dette kan vi lettest sjekke ved å se om 4 deler 29 17. 29 17 = 12. Vi
Tall. Posisjons-tallsystemer. Representasjon av heltall. Tall positive, negative heltall, flytende tall. Tekst ASCII, UNICODE XML, CSS
Tall jfr. Cyganski & Orr 3..3, 3..5 se også http://courses.cs.vt.edu/~csonline/numbersystems/lessons/index.html Tekst ASCII, UNICODE XML, CSS Konverteringsrutiner Tall positive, negative heltall, flytende
Representasjon av tall på datamaskin Kort innføring for MAT-INF1100L
Representasjon av tall på datamaskin Kort innføring for MAT-INF00L Knut Mørken 3. desember 204 Det er noen få prinsipper fra den første delen av MAT-INF00 om tall som studentene i MAT-INF00L bør kjenne
Øvingsforelesning 5. Binær-, oktal-, desimal- og heksidesimaletall, litt mer tallteori og kombinatorikk. TMA4140 Diskret Matematikk
Binær-, oktal-, desimal- og heksidesimaletall, litt mer tallteori og kombinatorikk Øvingsforelesning 5 TMA4140 Diskret Matematikk 1. og 3. oktober 2018 Dagen i dag Repetere binære, oktale osv. heltallsrepresentasjoner,
Forelesning 19 torsdag den 23. oktober
Forelesning 19 torsdag den 23. oktober 5.3 Eulers kriterium Merknad 5.3.1. Følgende proposisjon er kjernen til teorien for kvadratiske rester. Kanskje ser beviset ikke så vanskelig ut, men la merke til
Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler:
Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler: Tallene i en matrise kalles matriseelementer eller bare elementer. En matrise har
Hovedområder og kompetansemål fra kunnskapsløftet:
Lærerveiledning: Passer for: Varighet: Moro med matematikk 5. - 7. trinn 75 minutter Moro med matematikk er et skoleprogram der elevene får jobbe variert med problemløsingsoppgaver både i plenum og i grupper.
TMA4140 Diskret Matematikk Høst 2018
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4140 Diskret Matematikk Høst 2018 Seksjon 4.1 6 Dersom a c og b d, betyr dette at det eksisterer heltall s og t slik at c
1 Potenser og tallsystemer
Oppgaver 1 Potenser og tallsystemer KATEGORI 1 1.1 Potenser Oppgave 1.110 3 b) 3 c) 4 d) 4 Oppgave 1.111 10 3 b) ( 5) c) ( ) 3 d) ( ) 4 Oppgave 1.11 Skriv uttrykkene som én potens. 3 4 b) 5 3 c) 5 3 5
TALLÆRE UKE 34. Rest. Hvis vi deler a med b og det ikke går opp har vi rest som er mindre enn b.
TALLÆRE UKE 34. Faktor. Hva er en faktor i et heltall? Vi fant ut at hvis et heltall b er med i et regnestykke med kun multiplikasjon som gir heltallet a som svar da er b faktor i a. Eksempel: 3 8=24 og
INF1040 Oppgavesett 7: Tall og geometrier
INF1040 Oppgavesett 7: Tall og geometrier (Kapittel 7.1, 7.4-7.8, 8 + Appendiks B) Husk: De viktigste oppgavetypene i oppgavesettet er Tenk selv -oppgavene. Fasitoppgaver Denne seksjonen inneholder innledende
Definisjon. I et binært tre har hver node enten 0, 1 eller 2 barn
Binære trær Definisjon I et binært tre har hver node enten 0, 1 eller 2 barn Rekursiv definisjon: Et binært tre er enten tomt, eller: Består av en rotnode og to binære trær som kalles venstre subtre og
TDT4105/TDT4110 Informasjonsteknologi grunnkurs:
1 TDT4105/TDT4110 Informasjonsteknologi grunnkurs: Uke 39 Digital representasjon, del 1 - Digital representasjon - Tekst og tall - positive, negative, komma? Alf Inge Wang [email protected] Bidragsytere
Il UNIVERSITETET I AGDER
Il UNIVERSITETET I AGDER FAKULTETFOR TEKNOLOGIOG REALFAG EKSAMEN Emnekode: Emnenavn: MA913 Tall og algebra Dato: 7. desember 2011 Varighet: 09.00 15.00 Antall sider inkl. forside 7 Tillatte hjelpemidler:
Tall Vi på vindusrekka
Tall Vi på vindusrekka Tall og siffer... 2 Dekadiske enheter... 3 Store tall... 4 Avrunding... 5 Tverrsum... 8 Partall og oddetall... 9 Primtall... 10 Sammensatte tall... 11 Faktorisering... 13 Negative
MAT-INF1100 Oblig 1. Teodor Spæren, brukernavn teodors. September 16, 2015
MAT-INF1100 Oblig 1 Teodor Spæren, brukernavn teodors September 1, 015 1 Oppgave 1 I de oppgavene som krever at man gjør om et rasjonalt tall i intervallet (0, 1) om til en binærsifferutvikling, fant jeg
Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler:
Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler: Tallene i en matrise kalles elementer. En matrise har rader (vannrett, horisontalt)
Kapittel 2 TALL. Tall er kanskje mer enn du tror
Tall er kanskje mer enn du tror Titallsystemet 123 = 1 100 + 2 10 + 3 1 321 = 3 100 + 2 10 + 1 1 1, 2 og 3 kaller vi siffer 123 og 321 er tall Ikke bare valg av siffer, men også posisjon har betydning
Litt om Javas håndtering av tall MAT-INF 1100 høsten 2004
Litt om Javas håndtering av tall MAT-INF 1100 høsten 2004 13. september 2004 En viktig del av den første obligatoriske oppgaven er å få erfaring med hvordan Java håndterer tall. Til å begynne med kan dette
Oversikt over lineære kongruenser og lineære diofantiske ligninger
Oversikt over lineære kongruenser og lineære diofantiske ligninger Richard Williamson 3. desember 2014 Oppgave 1 Finn et heltall x slik at 462x 27 (mod 195). Benytt først Euklids algoritme for å finne
i Dato:
c:- høgskolen i oslo I Emne I EmnlekOde: I FagligvelIeder: Diskret matematikk FO 019A UJfUttersrud raruppe( r): i Dato: - I Eksamenstid: 12.12.2005 9-14 I Eksam-ensopp gavenbestår av: I Antall sid~nkl
Løsningsforslag til eksamenen i MAT103, våren 2016
Løsningsforslag til eksamenen i MAT103, våren 2016 Oppgave 1 (vekt 10%) a) Sjekk om følgende tall er delelig med 9: 654, 45231, 1236546 Løsning: Et tall er delelig med 9 hvis og bare hvis tverrsummen er
Husk å registrer deg på emnets hjemmeside!
IT Informatikk basisfag 28/8 Husk å registrer deg på emnets hjemmeside! http://it.idi.ntnu.no Gikk du glipp av øving? Gjør øving og få den godkjent på datasal av din lærass! Forrige gang: HTML Merkelapper
Posisjonsystemet FRA A TIL Å
Posisjonsystemet FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til posisjonsystemet P - 2 2 Grunnleggende om posisjonsystemet P - 2 3 Titallsystemet P - 3 4 Posisjonsystemet
Tallregning Vi på vindusrekka
Tallregning Vi på vindusrekka Addisjon... 2 Addisjon: Oppstilling... 3 Addisjon med minnetall... 4 Addisjon med desimaltall... 5 Subtraksjon... 6 Subtraksjon uten låning... 7 Subtraksjon med låning...
Forelesning 14 torsdag den 2. oktober
Forelesning 14 torsdag den 2. oktober 4.1 Primtall Definisjon 4.1.1. La n være et naturlig tall. Da er n et primtall om: (1) n 2; (2) de eneste naturlige tallene som er divisorer til n er 1 og n. Eksempel
Norsk informatikkolympiade runde
Norsk informatikkolympiade 2017 2018 1. runde Sponset av Uke 46, 2017 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.
Oppgaver til kapittel 19 - Kryptering og steganografi
Oppgaver til kapittel 19 - Kryptering og steganografi Oppgave 1 - Cæsars kode (plenum) I symmetrisk kryptering brukes samme nøkkel både for å kryptere og dekryptere. Avhengig av hvordan nøkkelen utformes
9 Potenser. Logaritmer
9 Potenser. Logaritmer 9.1 Potenser Regneregler 2 3 ¼ 2 2 2 Vi kaller 2 3 for en potens. 2 kaller vi for potensens grunntall og 3 for eksponenten. En potens er per definisjon produktet av like store tall.
Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler:
Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler: Tallene i en matrise kalles matriseelementer eller bare elementer. En matrise har
Norsk informatikkolympiade runde
Norsk informatikkolympiade 2016 2017 1. runde Sponset av Uke 46, 2016 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.
Obs. Læreren må være klar over at det er mulig å få riktig svar ved å regne feil her,
Oppgave 1 b 3b Hva er 3a 8a b hvis a 2? A 5 B 7 C 8 D 24 E 70 Er det nødvendig å finne tall for a og b? Hvor i uttrykket finnes a b? b Hva blir verdien av første ledd når a 2? Skriv om potensen i andre
Reelle tall på datamaskin
Reelle tall på datamaskin Knut Mørken 5. september 2007 1 Innledning Tirsdag 4/9 var tema for forelesningen hvordan reelle tall representeres på datamaskin og noen konsekvenser av dette, særlig med tanke
b) Hvis det er mulig å svare blankt (dvs. vet ikke) blir det 5 svaralternativer på hvert spørsmål, og dermed mulige måter å svare på.
Diskret matematikk - Høgskolen i Oslo Løsningsforslag for en del oppgaver fra boken Discrete Mathematics and Its Applications Forfatter: Kenneth H. Rosen Avsnitt 5. Oppgave 3 Når et spørsmål har 4 svaralternativer
Teorem 10 (Z n, + n ) er en endelig abelsk gruppe. 8. november 2005 c Vladimir Oleshchuk 35. Teorem 11 (Z n, ) er en endelig abelsk gruppe.
Endelige grupper Teorem 10 (Z n, + n ) er en endelig abelsk gruppe. En gruppe er en mengde S sammen med en binær operasjon definert på S, betegnes (S, ), med følgende egenskaper: 1. a, b S, a b S 2. det
Vi bruker desimaltall for Ô oppgi verdiene mellom de hele tallene. Tall med komma kaller vi desimaltall, og sifrene bak komma kaller vi desimaler.
196 FAKTA De naturlige tallene bestôr av ett eller ere sifre: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,...Alle de hele positive tallene kaller vi naturlige tall, og tallmengden kaller vi N. NÔr vi tar med 0 og
Oversikt over kryptografi
Oversikt over kryptografi Richard Williamson 3. desember 2014 Oppgave 1 Person A ønsker å sende meldingen Ha det! til person B, og ønsker å benytte RSAalgoritmen for å kryptere den. Den offentlige nøkkelen
KONTINUASJONSEKSAMEN I TMA4140 LØSNINGSFORSLAG
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 KONTINUASJONSEKSAMEN I TMA440 LØSNINGSFORSLAG Oppgave Sannhetsverditabell for det logiske utsagnet ( (p q) ) ( q r
INF1400 Kap 1. Digital representasjon og digitale porter
INF4 Kap Digital representasjon og digitale porter Hovedpunkter Desimale / binære tall Digital hardware-representasjon Binær koding av bokstaver og lyd Boolsk algebra Digitale byggeblokker / sannhetstabell
MA1301 Tallteori Høsten 2014 Løsninger til Eksamen
MA1301 Tallteori Høsten 2014 Løsning til Eksamen Richard Williamson 11. desemb 2014 Innhold Oppgave 1 2 a)........................................... 2 b)........................................... 2 c)...........................................
Tall. Ulike klasser tall. Læringsmål tall. To måter å representere tall. De naturlige tallene: N = { 1, 2, 3, }
1111 Tall 0000 0001 De naturlige tallene: N = { 1, 2, 3, } Ulike klasser tall 1101 1110-3 -2-1 0 1 2 3 0010 0011 De hele tallene: Z = {, -2, -1, 0, 1, 2, } 1100-4 4 0100 1011 1010-5 -6-7 -8 7 6 5 0110
TDT4105/TDT4110 Informasjonsteknologi grunnkurs:
1 TDT4105/TDT4110 Informasjonsteknologi grunnkurs: Uke 37 Digital representasjon, del 1 - Digital representasjon - Tekst og tall - positive, negative, komma? Rune Sætre [email protected] Slidepakke forberedt
1.8 Binære tall EKSEMPEL
1.8 Binære tall Når vi regner, bruker vi titallssystemet. Hvordan det virker, finner vi ut ved å se på for eksempel tallet 2347. 2347 = 2 1000 + 3 100 + 4 10 + 7 Hvis vi bruker potenser, får vi 2347 =
Dette brukte vi f.eks. til å bevise binomialteoremet. n i. (a + b) n = a i b n i. i=0
Prinsippet om matematisk induksjon: anta du har en påstand som er avhengig av et positivt heltall n. Om du kan vise to ting, nemlig at påstanden er sann for n = 1 og at om påstanden er sann for n = k,
Søking i strenger. Prefiks-søking Naiv algoritme Knuth-Morris-Pratt-algoritmen Suffiks-søking Boyer-Moore-algoritmen Hash-basert Karp-Rabin-algoritmen
Søking i strenger Vanlige søkealgoritmer (on-line-søk) Prefiks-søking Naiv algoritme Knuth-Morris-Pratt-algoritmen Suffiks-søking Boyer-Moore-algoritmen Hash-basert Karp-Rabin-algoritmen Indeksering av
Løsningsforslag til eksamenen i MAT103, våren 2015
Løsningsforslag til eksamenen i MAT103, våren 2015 Oppgave 1 (vekt 10%) a) Et tall a er et partall hvis a er delelig med 2, dvs a 0(mod 2). Et tall a er et oddetall hvis a ikke delelig med 2, dvs a 1(mod
Digital representasjon
Digital representasjon Om biter og bytes, tekst og tall Litt mer XHTML 30.08.2004 Webpublisering 2004 - Kirsten Ribu - HiO I dag Tallsystemer Om biter og bytes: hvordan tall og tekst er representert i
1.2 Posisjonssystemer
MMCDXCIII. c) Skriv som romertall: 1) Ditt fødselsår 2) 1993 3) År 2000. 1.2 Posisjonssystemer Vi ser her nærmere på begrepet plassverdi og ulike posisjonssystemer. Utgangspunktet er at en vil beskrive
I Kapittel 2 lærte vi om tall i alternative tallsystemer, i hovedsak om binære tall, oktale tall og heksadesimale tall.
Forelesning 4 Tall som data Dag Normann - 23. januar 2008 Valg av kontaktpersoner/tillitsvalgte Før vi tar pause skal vi velge to til fire tillitsvalgte/kontaktpersoner. Kontaktpersonene skal være med
Norsk informatikkolympiade runde. Sponset av. Uke 46, 2017
Norsk informatikkolympiade 2017 2018 1. runde Sponset av Uke 46, 2017 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.
STØRRELSER OG TALL Om størrelser skriver Euklid i Bok 5: 1. En størrelse er en del av en annen størrelse, den mindre av den større når den måler (går
STØRRELSER OG TALL Om størrelser skriver Euklid i Bok 5:. En størrelse er en del av en annen størrelse, den mindre av den større når den måler (går opp i) den større.. Den større er et multiplum av den
Turingmaskiner.
Turingmaskiner http://www.youtube.com/watch?v=e3kelemwfhy http://www.youtube.com/watch?v=cyw2ewoo6c4 Søking i strenger Vanlige søkealgoritmer (on-line-søk) Prefiks-søking Naiv algoritme Knuth-Morris-Pratt-algoritmen
Valg av kontaktpersoner/tillitsvalgte. MAT1030 Diskret matematikk. Oppsummering av kapittel 2. Representasjon av hele tall
Valg av kontaktpersoner/tillitsvalgte MAT1030 Diskret matematikk Forelesning 4: Tall som data Dag Normann Matematisk Institutt, Universitetet i Oslo 23. januar 2008 Før vi tar pause skal vi velge to til
Tall. Tallsystemer. Posisjonstallsystemer. Veiing med skålvekt titallsystemet 123 = = 7B 16. Lærebokas kapittel 6
Tall Tallsstemer - - - - = = 7B - - -7-8 7 Lærebokas kapittel INF-tall- INF-tall- Posisjonstallsstemer Vårt velkjente titallsstem er et posisjonssstem: 7 = + + + + 7 eller: 7 = ( * ) + ( * ) + ( * ) +
Tempoplan: Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver. 4: Algebra
Tempoplan: Kapittel 5: /1 1/. Kapittel 6: 1/ 1/. Kapittel 7: 1/ 1/4. Resten av tida repetisjon og prøver. 4: Algebra Algebra omfatter tall- og bokstavregninga i matematikken. Et viktig grunnlag for dette
Vi anbefaler at elevene blir introdusert for likninger via en praktisk problemstilling. Det kan for eksempel være:
Likninger og algebra Det er større sprang fra å regne med tall til å regne med bokstaver enn det vi skulle tro. Vi tror at både likninger og bokstavregning (som er den algebraen elevene møter i grunnskolen)
MAT1030 Diskret matematikk
Oppgave 1.1 MAT1030 Diskret matematikk Plenumsregning 2: Ukeoppgaver fra kapittel 1 & 2 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 24. januar 2008 Modifiser algoritmen fra 1.2.1 slik at
MAT1030 Diskret matematikk
MAT1030 Diskret matematikk Plenumsregning 2: Ukeoppgaver fra kapittel 1 & 2 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 24. januar 2008 Oppgave 1.1 Modifiser algoritmen fra 1.2.1 slik at
Løsningsforslag. Oppgavesettet består av 9 oppgaver med i alt 20 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye.
Løsningsforslag Emnekode: ITF75 Dato: 5 desember Emne: Matematikk for IT Eksamenstid: kl 9 til kl Hjelpemidler: To A4-ark med valgfritt innhold på begge sider Kalkulator er ikke tillatt Faglærer: Christian
