MAT-INF1100 Oblig 1. Teodor Spæren, brukernavn teodors. September 16, 2015

Størrelse: px
Begynne med side:

Download "MAT-INF1100 Oblig 1. Teodor Spæren, brukernavn teodors. September 16, 2015"

Transkript

1 MAT-INF1100 Oblig 1 Teodor Spæren, brukernavn teodors September 1, 015 1

2 Oppgave 1 I de oppgavene som krever at man gjør om et rasjonalt tall i intervallet (0, 1) om til en binærsifferutvikling, fant jeg denne sifferutviklingen ved å sette første siffer lik (b β)//c og så sette b = (b β)%c. Her er b/c lik det rasjonale tallet jeg omgjør og β er basen, med andre ord. Dette forsatte jeg med inntil b ble 0 eller fikk en tidligere verdi. Jeg har derfor valgt å ikke skrive opp alle omgjøringer av denne typen, da det ville ha brukt unødvendig mye plass. a) For å gjøre om da7 1 til en sifferutvikling i -tallsystemet, kan man bare omgjøre hvert siffer til den binære versjonen og så putte de sammen. Da får man: da7 1 = b) c) 9 4 = = d) Her brukte jeg samme regel som i 1.a. Gjør her bare om 4 til det tilsvarende binære tallet = 0.01 e) Her gjør jeg om til 10-tallssystemet for så å bruke vanlig metode for å få den binære tallutviklingen. Oppgave Skal vise at følgen {x n } gitt ved: bc 1 = = x n = (cos (x n 1 )) sin (x n ) for n der x 0 = π/ og x 1 = 3, ligger i de lukkede intervallet [0, 1] for alle n. Jeg ønsker å bevise dette ved induksjon. Induksjonshypotesen er P n : 0 x n 1 for n og siden n, så setter vi n 0 =. Det første vi må gjøre er å teste om P n0 sann 0 x 1 0 (cos (x 1 )) sin (x ) 1 0 (cos (3)) sin ( ) π 1 er

3 og vi ser i fra dette at P n0 sann. Da er det nok å vise at dersom P m er sann for alle m slik at m < k, så er P k også sann. Dette viser vi slik: 0 x k 1 0 (cos (x k 1 )) sin (x k ) 1 Siden vi antar at P m er sann, ser vi at 0 x k 1 1 og 0 x k 1. Da er det lett å se at den største verdien P k kan ha er 1 og den minste verdien P k kan ha er 0. Oppgave 3 a) Programmet jeg skrev for å regne ut røttene til et andregrads polynom: 1 import math 3 a = float(raw_input("a: ")) 4 b = float(raw_input("b: ")) 5 c = float(raw_input("c: ")) 7 p1, p = -b/(*a), math.sqrt(b*b - 4*a*c)/(*a) 8 x1, x = p1 - p, p1 + p 9 10 print("x1 = {:g}, x = {:g}".format(x1, x)) For å sjekke om programmet fungerer, tester vi ut 3 eksempler. Venstre siden er program kjøringen og den høyre siden er manuell utregning. 3

4 a: 1 b: c: 1 x1 = -1, x = -1 x = ± x = x 1 = 1, x = 1 a: 1 b: c: 9 x1 = -3, x = -3 x = ± x = x 1 = 3, x = 3 a: 1 b: -1 c: - x1 = -, x = 3 x = 1 ± ( 1) x = 1 ± 5 x 1 =, x = 3 b) Bruker programmet i a) til å løse ligningen Kjørelogg: a: 1e-8 b: 10 c: 1e-8 x1 = -1e+09, x = x + 10x = 0 Den roten som får en feil er x. Denne skulle vært , noe som gir oss en stor relativ feil = 1 4

5 Dette skjer når b 4ac og det oppstår en underflow slik at b = b 4ac. En måte å få mer nøyaktige resultater på er å regne ut den roten hvor avrundingsfeilen oppstår ved hjelp av den andre roten og det faktum at produktet mellom de to røttene alltid er r 1 r = b + b 4ac a r 1 r = ( b) ( b 4ac ) 4a r 1 r = b b + 4ac 4a r 1 r = c a b b 4ac a Dette betyr at hvis vi kan kalkulere en av røttene med høy presisjon, så kan vi få den andre roten også, ved hjelp av dette forholdet. Programmet under implementerer denne alternative løsningsmetoden: 5

6 1 import math 3 a = float(raw_input("a: ")) 4 b = float(raw_input("b: ")) 5 c = float(raw_input("c: ")) 7 # Compute the parts. 8 p1, p = -b/(*a), math.sqrt(b** - 4*a*c)/(*a) 9 10 # Compute both roots as normal. 11 x1, x = p1 - p, p1 + p 1 13 # If we have an underflow, compute one of the two roots by 14 # using the fact that the product of the two roots are c/a 15 if b** == (b**-4*a*c): 1 if abs(x1) > abs(x): 17 x = c/(x1*a) 18 else: 19 x1 = c/(x*a) 0 1 print("x1 = {:g}, x = {:g}".format(x1, x)) Nå hånterer programmet ligning gitt i starten av b) og andre lik den, helt fint: a: 1e-8 b: 10 c: 1e-8 x1 = -1e+09, x = -1e-09 a: 1e-8 b: -10 c: 1e-8 x1 = 1e-09, x = 1e+09 Oppgave 4 a) Programmet sjekker om matematiske identiter også holder for maskiner. Den kjører en sjekk ganger, og ser om (x + y) 3 = x 3 + 3x y + 3xy + y 3 også holder når man bruker 3 tilfeldigvalgte flyttall for x, y. For hvergang dette ikke holder blir verdien av x, y og z skrevet ned og de to forskjellige resultatene notert. Til slutt printes antall feil i prosent, fulgt av verdiene x, y og z hadde når den siste feilen oppstod. Hvor stor forskjellen var skrives også ut. Derfor forteller utskriften oss at hele 50.4% av testene fant forskjellige resultater for (x + y) 3 og x 3 + 3x y + 3xy + y 3. Videre kan vi lese at den siste

7 feilen var svært liten, , men forsatt nok til at resultatene ikke var like. Det å bruke == for å teste om to flyttall er like, er en vanlig feil i programmering. Tester som den over og mange andre forteller oss at slike naive måter å sammenligne flyttall på kan ha katastrofale følger! b) Det modifiserte programmet: 1 from random import random 3 antfeil = 0; N = x0 = y0 = z0 = feil1 = feil = for i in range(n): 8 x = random(); y = random(); z = random(); 9 res1 = (x + y) + z 10 res = x + (y + z) 11 1 if res1!= res: 13 antfeil += 1 14 x0 = x; y0 = y; z0 = z 15 feil1 = res1 1 feil = res print (100. * antfeil/n) 19 print x0, y0, z0, feil1 - feil og her har vi kjøreloggen: e-1 Vi ser helt klart at feil prosenten er langt lavere denne gangen. Jeg tror grunnen til dette er vi i dette programmet gjør færre operasjoner, noe som leder til mindre avrundingsfeil. 7

Obligatorisk oppgave MAT-INF1100. Lars Kristian Henriksen UiO

Obligatorisk oppgave MAT-INF1100. Lars Kristian Henriksen UiO Obligatorisk oppgave MAT-INF Lars Kristian Henriksen UiO 6. september 3 Oppgave a)for å skrive fb 6 i -tallssystem, bruker vi at: Tabell : 6 -tallssystemet 6 6 9 9 a b 3 3 c 3 d 5 5 e 6 6 5 f Vi tar følgende

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 11 Modellering og beregninger Eksamensdag: Mandag 1 Desember 218 Tid for eksamen: 9: 13: Oppgavesettet er på 5 sider

Detaljer

Løsningsforslag til prøveunderveiseksamen i MAT-INF 1100, H-03

Løsningsforslag til prøveunderveiseksamen i MAT-INF 1100, H-03 Løsningsforslag til prøveunderveiseksamen i MAT-INF 1100, H-03 Denne prøveeksamenen har samme format som den virkelige underveiseksamenen, og inneholder oppgaver av samme type og vanskelighetsgrad. De

Detaljer

MAT-INF 1100: Obligatorisk oppgave 1

MAT-INF 1100: Obligatorisk oppgave 1 22. september, 2016 MAT-INF 1100: Obligatorisk oppgave 1 Innleveringsfrist: 6/10-2016, kl. 14:30 i Devilry Obligatoriske oppgaver («obliger») er en sentral del av MAT-INF1100 og er utmerket trening i å

Detaljer

MAT-INF 1100: Obligatorisk oppgave 1

MAT-INF 1100: Obligatorisk oppgave 1 13. september, 2018 MAT-INF 1100: Obligatorisk oppgave 1 Innleveringsfrist: 27/9-2018, kl. 14:30 i Devilry Obligatoriske oppgaver («obliger») er en sentral del av MAT-INF1100 og er utmerket trening i å

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 1100L Programmering, modellering, og beregninger. Prøveeksamen 2 Eksamensdag: Onsdag 14. November 2014. Tid for eksamen:

Detaljer

Underveiseksamen i MAT-INF 1100, 17. oktober 2003 Tid: Oppgave- og svarark

Underveiseksamen i MAT-INF 1100, 17. oktober 2003 Tid: Oppgave- og svarark Underveiseksamen i MAT-INF 1100, 17. oktober 003 Tid: 9.00 11.00 Kandidatnummer: De 15 første oppgavene teller poeng hver, de siste 5 teller 4 poeng hver. Den totale poengsummen er altså 50. Det er 5 svaralternativer

Detaljer

Prøveunderveiseksamen i MAT-INF 1100, H-03

Prøveunderveiseksamen i MAT-INF 1100, H-03 Prøveunderveiseksamen i MAT-INF 1100, H-03 Denne prøveeksamenen har samme format som den virkelige underveiseksamenen, og inneholder oppgaver av samme type og vanskelighetsgrad. De 15 første oppgavene

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 1100L Programmering, modellering, og beregninger. Prøveeksamen 1 Eksamensdag: Onsdag 14. November 2014. Tid for eksamen:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger Eksamensdag: 15. oktober 004 Tid for eksamen: 11:00 13:00 Oppgavesettet er på 8 sider.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 11 Modellering og beregninger. Eksamensdag: Torsdag 12. oktober 26. Tid for eksamen: 9: 11:. Oppgavesettet er på 8 sider.

Detaljer

Reelle tall på datamaskin

Reelle tall på datamaskin Reelle tall på datamaskin Knut Mørken 5. september 2007 1 Innledning Tirsdag 4/9 var tema for forelesningen hvordan reelle tall representeres på datamaskin og noen konsekvenser av dette, særlig med tanke

Detaljer

Diskret matematikk tirsdag 13. oktober 2015

Diskret matematikk tirsdag 13. oktober 2015 Eksempler på praktisk bruk av modulo-regning. Tverrsum Tverrsummen til et heltall er summen av tallets sifre. a = 7358. Tverrsummen til a er lik 7 + 3 + 5 + 8 = 23. Setning. La sum(a) stå for tverrsummen

Detaljer

Modulo-regning. hvis a og b ikke er kongruente modulo m.

Modulo-regning. hvis a og b ikke er kongruente modulo m. Modulo-regning Definisjon: La m være et positivt heltall (dvs. m> 0). Vi sier at to hele tall a og b er kongruente modulo m hvis m går opp i (a b). Dette betegnes med a b (mod m) Vi skriver a b (mod m)

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: MAT-INF 1100 Modellering og beregninger. Eksamensdag: Onsdag 12. oktober 2016. Tid for eksamen: 15:00 17:00. Oppgavesettet

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger. Eksamensdag: Torsdag 1. oktober 2005. Tid for eksamen: 9:00 11:00. Oppgavesettet er på

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger. Eksamensdag: Onsdag 12. oktober 2011. Tid for eksamen: 15:00 17:00. Oppgavesettet er

Detaljer

Forside. MAT INF 1100 Modellering og beregninger. Mandag 9. oktober 2017 kl Vedlegg (deles ut): formelark. Tillatte hjelpemidler: ingen

Forside. MAT INF 1100 Modellering og beregninger. Mandag 9. oktober 2017 kl Vedlegg (deles ut): formelark. Tillatte hjelpemidler: ingen Forside MAT INF 1100 Modellering og beregninger Mandag 9. oktober 2017 kl 1430 1630 Vedlegg (deles ut): formelark Tillatte hjelpemidler: ingen De 10 første oppgavene teller 2 poeng hver, de 10 siste teller

Detaljer

Oppgaver uke 1: Løsningsforslag

Oppgaver uke 1: Løsningsforslag Oppgaver uke 1: Løsningsforslag Oppgave 1 Hva tror du følgende program skriver ut til terminalen? Diskuter med gruppen. alder = 30 print("din alder er", alder) alder = 15 Din alder er 30 Når print() kalles

Detaljer

Alle hele tall g > 1 kan være grunntall i et tallsystem.

Alle hele tall g > 1 kan være grunntall i et tallsystem. Tallsystemer Heltall oppgis vanligvis i det desimale tallsystemet, også kalt 10-tallssystemet. Eksempel. Gitt tallet 3794. Dette kan skrives slik: 3 1000 + 7 100 + 9 10 + 4 = 3 10 3 + 7 10 2 + 9 10 1 +

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger. Eksamensdag: Onsdag 8. oktober 2014. Tid for eksamen: 15:00 17:00. Oppgavesettet er på

Detaljer

MAT1030 Forelesning 2

MAT1030 Forelesning 2 MAT1030 Forelesning 2 Kontrollstrukturer, tallsystemer, basis Dag Normann - 20. januar 2010 (Sist oppdatert: 2010-01-20 12:31) Kapittel 1: Algoritmer (fortsettelse) Kontrollstrukturer I går innførte vi

Detaljer

Innleveringsoppgave 1

Innleveringsoppgave 1 Innleveringsoppgave 1 INF109 Dataprogrammering for naturvitskap Dette er den første av syv obligatoriske oppgaver. Du kan få totalt 10 poeng på denne oppgaven. Innleveringsfristen er fredag, 12. feb, 23:59.9999999.

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 2: Kontrollstrukturer, tallsystemer, basis Roger Antonsen Institutt for informatikk, Universitetet i Oslo 14. januar 2009 (Sist oppdatert: 2009-01-14 16:45) Kapittel

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF Modellering og beregninger. Eksamensdag: Fredag. oktober 28. Tid for eksamen: 5: 7:. Oppgavesettet er på 6 sider. Vedlegg:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: MAT-INF 1100 Modellering og beregninger. Eksamensdag: Onsdag 9. oktober 2013. Tid for eksamen: 15:00 17:00. Oppgavesettet

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 7 Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 7 Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 7 Løsningsforslag Oppgave 1 Halveringsmetoden igjen a) I skriptet vårt fra leksjon 6 skal altså linje 16 erstattes med while abs(b-a)>1e-3. Når vi gjør

Detaljer

Oppsummering av Uke 3. MAT1030 Diskret matematikk. Binære tall. Oppsummering av Uke 3

Oppsummering av Uke 3. MAT1030 Diskret matematikk. Binære tall. Oppsummering av Uke 3 Oppsummering av Uke 3 MAT1030 Diskret matematikk Forelesning 3: Mer om representasjon av tall Dag Normann Matematisk Institutt, Universitetet i Oslo 21. januar 2008 Mandag 14.01 og delvis onsdag 16.01

Detaljer

Rekker (eng: series, summations)

Rekker (eng: series, summations) Rekker (eng: series, summations) En rekke er summen av leddene i en følge. Gitt følgen a 0, a 1, a,, a n,, a N Da blir den tilsvarende rekken a 0 + a 1 + a + + a n + + a N Bokstaven n er en summasjonsindeks.

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag Oppgave 1 Tredjegradslikninga a) Vi viser her hvordan det kan gjøres både som funksjonsl og som skript. Vi starter med funksjonla: 1

Detaljer

Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir =

Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir = Tallsystemer Heltall oppgis vanligvis i det desimale tallsystemet, også kalt 10-tallssystemet. Eksempel. Gitt tallet 3794. Dette kan skrives slik: 3 1000 + 7 100 + 9 10 + 4 = 3 10 3 + 7 10 2 + 9 10 1 +

Detaljer

Simulering av differenslikninger

Simulering av differenslikninger Forelesning uke 37, 2007 Løsning av differenslikninger i formel Mulig for lineære likninger med konst. koeff. og enkelte inhomogeniteter. Eksempel: (b, c er konstante) x n+2 + bx n+1 + cx n = cos(n), x

Detaljer

Representasjon av tall på datamaskin Kort innføring for MAT-INF1100L

Representasjon av tall på datamaskin Kort innføring for MAT-INF1100L Representasjon av tall på datamaskin Kort innføring for MAT-INF00L Knut Mørken 3. desember 204 Det er noen få prinsipper fra den første delen av MAT-INF00 om tall som studentene i MAT-INF00L bør kjenne

Detaljer

Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir =

Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir = Tallsystemer Heltall oppgis vanligvis i det desimale tallsystemet, også kalt 10-tallssystemet. Eksempel. Gitt tallet 3794. Dette kan skrives slik: 3 1000 + 7 100 + 9 10 + 4 = 3 10 3 + 7 10 2 + 9 10 1 +

Detaljer

Forkurs i informatikk Python. Andreas Færøvig Olsen

Forkurs i informatikk Python. Andreas Færøvig Olsen Andreas Færøvig Olsen andrefol@ifi.uio.no Mål Hvorfor Python? Gi en mykere start på INF1100 Komme i gang med programmering 2 3 Hva er Python? Hva er programmering? 4 Hva er Python? Hva er programmering?

Detaljer

Rekker (eng: series, summations)

Rekker (eng: series, summations) Rekker (eng: series, summations) En rekke er summen av leddene i en følge. Gitt følgen a 0, a 1, a,, a n,, a N Da blir den tilsvarende rekken a 0 + a 1 + a + + a n + + a N Bokstaven n er en summasjonsindeks.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 11L Programmering, modellering, og beregninger. Eksamensdag: Fredag 5. Desember 214. Tid for eksamen: 9: 13:. Oppgavesettet

Detaljer

KONTROLLSTRUKTURER. MAT1030 Diskret matematikk. Kontrollstrukturer. Kontrollstrukturer. Eksempel (Ubegrenset while-løkke)

KONTROLLSTRUKTURER. MAT1030 Diskret matematikk. Kontrollstrukturer. Kontrollstrukturer. Eksempel (Ubegrenset while-løkke) KONTROLLSTRUKTURER MAT1030 Diskret matematikk Forelesning 2: Flere pseudokoder. Representasjoner av tall. Dag Normann Matematisk Institutt, Universitetet i Oslo 16. januar 2008 Mandag innførte vi pseudokoder

Detaljer

Mer om representasjon av tall

Mer om representasjon av tall Forelesning 3 Mer om representasjon av tall Dag Normann - 21. januar 2008 Oppsummering av Uke 3 Mandag 14.01 og delvis onsdag 16.01 diskuterte vi hva som menes med en algoritme, og vi så på pseudokoder

Detaljer

Alle hele tall g > 1 kan være grunntall i et tallsystem.

Alle hele tall g > 1 kan være grunntall i et tallsystem. Tallsystemer Heltall oppgis vanligvis i det desimale tallsystemet, også kalt 10-tallssystemet. Eksempel. Gitt tallet 3794. Dette kan skrives slik: 3 1000 + 7 100 + 9 10 + 4 = 3 10 3 + 7 10 2 + 9 10 1 +

Detaljer

Forelesning 2. Flere pseudokoder. Representasjoner av tall. Dag Normann januar 2008 KONTROLLSTRUKTURER. Kontrollstrukturer. Kontrollstrukturer

Forelesning 2. Flere pseudokoder. Representasjoner av tall. Dag Normann januar 2008 KONTROLLSTRUKTURER. Kontrollstrukturer. Kontrollstrukturer Forelesning 2 Flere pseudokoder. Representasjoner av tall. Dag Normann - 16. januar 2008 KONTROLLSTRUKTURER Mandag innførte vi pseudokoder og kontrollstrukturer. Vi hadde tre typer grunn-instruksjoner:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: MAT-INF 1100 Modellering og beregninger. Eksamensdag: Onsdag 7. oktober 2015. Tid for eksamen: 15:00 17:00. Oppgavesettet

Detaljer

Mer om mengder: Tillegg til Kapittel 1. 1 Regneregler for Booleske operasjoner

Mer om mengder: Tillegg til Kapittel 1. 1 Regneregler for Booleske operasjoner MAT1140, H-16 Mer om mengder: Tillegg til Kapittel 1 Vi trenger å vite litt mer om mengder enn det som omtales i første kapittel av læreboken. I dette tillegget skal vi først se på regneregler for Booleske

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 00 Modellering og beregninger. Eksamensdag: Torsdag 6. desember 202. Tid for eksamen: 9:00 3:00. Oppgavesettet er på 8

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 1100L Programmering, modellering, og beregninger. Eksamensdag: Fredag 2. Desember 2016. Tid for eksamen: 9:00 13:00.

Detaljer

Programmering i Java med eksempler

Programmering i Java med eksempler Differenslikn. p.124 Simulering av differenslikninger Programmering i Java med eksempler Forelesning uke 39, 2005 MAT-INF1100 Differenslikn. p.224 Differenslikning av orden 2 (1) Vi kjenner formler for

Detaljer

Oppfriskningskurs dag 1

Oppfriskningskurs dag 1 Oppfriskningskurs dag 1 og ligninger Steffen Junge Oppfriskningskurs i matematikk 3.-8. august 2009 Outline 1 Outline 1 Typiske problem Ranger følgende brøker etter størrelse: 1 2, 7 12, 2 3, 5 8, 17 24

Detaljer

Hvor gammel er du? Hvor gammel er du? Del 1: Skrive ut til skjerm. Gjøre selv. Skrevet av: Sindre O. Rasmussen, Kodeklubben Trondheim

Hvor gammel er du? Hvor gammel er du? Del 1: Skrive ut til skjerm. Gjøre selv. Skrevet av: Sindre O. Rasmussen, Kodeklubben Trondheim Hvor gammel er du? Skrevet av: Sindre O. Rasmussen, Kodeklubben Trondheim Kurs: Python Tema: Tekstbasert Fag: Programmering Klassetrinn: 5.-7. klasse, 8.-10. klasse Hvor gammel er du? I dette oppgavesettet

Detaljer

Løsningsforslag Øving 7 TMA4140 Diskret matematikk Høsten 2008

Løsningsforslag Øving 7 TMA4140 Diskret matematikk Høsten 2008 Løsningsforslag Øving 7 TMA4140 Diskret matematikk Høsten 008 3-1-9 prosedyre palindromsjekk (a 1, a,..., a n : streng) svar :=sann for i := 1 to n/ if a i a n+1 i then svar :=usann {svaret er sant hvis

Detaljer

Løsningsførslag i Matematikk 4D, 4N, 4M

Løsningsførslag i Matematikk 4D, 4N, 4M Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 Løsningsførslag i Matematikk 4D, 4N, 4M Oppgave (Kun før 4D Vi har f(x, y x + y x y, for x y. Dette gir For (x, y

Detaljer

Denne oppgaven innfører funksjoner, og viser hvordan vi kan skrive og teste funksjoner i Ellie.

Denne oppgaven innfører funksjoner, og viser hvordan vi kan skrive og teste funksjoner i Ellie. Ellie og funksjoner Skrevet av: Teodor Heggelund Kurs: Elm Tema: Tekstbasert, Nettside Fag: Programmering, Teknologi Klassetrinn: 8.-10. klasse, Videregående skole Introduksjon Denne oppgaven innfører

Detaljer

Øvingsforelesning 3 Python (TDT4110)

Øvingsforelesning 3 Python (TDT4110) Øvingsforelesning 3 Python (TDT4110) For og While-løkker Ole-Magnus Pedersen Oversikt Praktisk Info Gjennomgang av øving 1 Programmering for Øving 3 2 Studasser og Piazza Studasser er der for å hjelpe

Detaljer

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 18. august 2011

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 18. august 2011 Funksjoner Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 8. august 20 2 Definisjon av funksjon Definisjon En funksjon er en regel f som til et hvert tall i definisjonsmengden

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger. Eksamensdag: Mandag 5. desember 2011. Tid for eksamen: 9:00 13:00. Oppgavesettet er på

Detaljer

Bygge en pyramide. Introduksjon. Steg 1: Lage en ny mod. Sjekkliste. Skrevet av: Pål G. Solheim

Bygge en pyramide. Introduksjon. Steg 1: Lage en ny mod. Sjekkliste. Skrevet av: Pål G. Solheim Bygge en pyramide Skrevet av: Pål G. Solheim Kurs: Learntomod Tema: Blokkbasert, Minecraft Fag: Programmering, Teknologi Klassetrinn: 1.-4. klasse, 5.-7. klasse, 8.-10. klasse Introduksjon La oss gjøre

Detaljer

Øvingsforelesning 1 Python (TDT4110)

Øvingsforelesning 1 Python (TDT4110) Øvingsforelesning 1 Python (TDT4110) Introduksjon, Kalkulasjoner Ole-Magnus Pedersen Oversikt Praktisk Info Repetisjon fra sist Oppgaver for øving 2 2 Praktisk Info Last opp øvinger på Blackboard før godkjenning

Detaljer

Heldagsprøve i matematikk. Svar og løsningsforslag

Heldagsprøve i matematikk. Svar og løsningsforslag Heldagsprøve i matematikk Svar og løsningsforslag Mandag 19. desember 005 Forkurset, Høgskolen i Oslo Tillatte hjelpemidler: Lommeregner. Formelsamling i matematikk. Tid: 5 klokketimer Alle svar må være

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger Eksamensdag: 12. desember 2003 Tid for eksamen: 9:00 12:00 Oppgavesettet er på 7 sider.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger Eksamensdag: Torsdag 10 januar 2008 Tid for eksamen: 9:00 12:00 Oppgavesettet er på 6

Detaljer

TDT4110 Informasjonsteknologi, grunnkurs Uke 35 Introduksjon til programmering i Python

TDT4110 Informasjonsteknologi, grunnkurs Uke 35 Introduksjon til programmering i Python TDT4110 Informasjonsteknologi, grunnkurs Uke 35 Introduksjon til programmering i Python Professor Guttorm Sindre Institutt for datateknikk og informasjonsvitenskap Læringsmål og pensum Mål Vite hva et

Detaljer

INF Logikk og analysemetoder Forslag til løsning på oppgave fra læreboken

INF Logikk og analysemetoder Forslag til løsning på oppgave fra læreboken INF4170 - Logikk og analysemetoder Forslag til løsning på oppgave 3.2.1 fra læreboken Joakim Hjertås, joakimh@ifi.uio.no 7. mars 2004 Sammendrag Disse sidene kommer med forslag til løsning på oppgave 3.2.1

Detaljer

Kap 2: Løkker og lister

Kap 2: Løkker og lister Kap 2: Løkker og lister Ole Christian Lingjærde, Inst for Informatikk, UiO 26-30 August, 2019 (Del 2 av 2) Forrige forelesning på en foil Formatert utskrift: %-operator og f-strings To typer løkker: while-løkker

Detaljer

MAT-INF 1100: Obligatorisk oppgave 1

MAT-INF 1100: Obligatorisk oppgave 1 3. september, 2004 MAT-INF 1100: Obligatorisk oppgave 1 Innleveringsfrist: 17/9-2004, kl. 14:30 Informasjon Den skriftlige besvarelsen skal leveres på ekspedisjonskontoret i 7. etg. i Niels Henrik Abels

Detaljer

Oppgave 1 Hva tror du følgende program skriver ut til terminalen? Diskuter med gruppen.

Oppgave 1 Hva tror du følgende program skriver ut til terminalen? Diskuter med gruppen. IN1000 - Seminaroppgaver til uke 1 Nyttig å vite: PEP 8 -- Style Guide for Python Code. Dersom det som undervises i IN1000 ikke samstemmer med PEP, så skal dere følge den stilen som undervises og ikke

Detaljer

Programmering i Java med eksempler

Programmering i Java med eksempler Simulering av differenslikninger Programmering i Java med eksempler Forelesning uke 39, 2006 MAT-INF1100 Differenslikn. p. 1 Løsning av differenslikninger i formel Mulig for lineære likninger med konst.

Detaljer

Repetisjon Novice Videregående Python PDF

Repetisjon Novice Videregående Python PDF Repetisjon Novice Videregående Python PDF Introduksjon I denne oppgaven skal vi repetere litt Python-syntaks. Hele dette kurset er for de som har programmert Python før. Dersom ikke har mye erfaring med

Detaljer

Bli Kjent med Datamaskinen Introduksjon ComputerCraft PDF

Bli Kjent med Datamaskinen Introduksjon ComputerCraft PDF Bli Kjent med Datamaskinen Introduksjon ComputerCraft PDF Introduksjon Vi begynner med å bygge en enkel datamaskin. Etter å ha brukt litt tid på å bli kjent med hvordan datamaskinen virker, bruker vi den

Detaljer

Oppgaveark Uke 37 (07/09-11/09) MAT111 - H09

Oppgaveark Uke 37 (07/09-11/09) MAT111 - H09 Oppgaveark Uke 37 (07/09-11/09) MAT111 - H09 Oppgave 1 Du ar fått deg en jobb i et firma og skal kjøre til en konferanse med overnatting. Du drar jemmefra på mandag kl 07:15 og ankommer 11:07. Du overnatter

Detaljer

MAT-INF 1100: Obligatorisk oppgave 1

MAT-INF 1100: Obligatorisk oppgave 1 8. september, 2005 MAT-INF 1100: Obligatorisk oppgave 1 Innleveringsfrist: 23/9-2005, kl. 14:30 Informasjon Den skriftlige besvarelsen skal leveres på ekspedisjonskontoret i 7. etg. i Niels Henrik Abels

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Tenkeonsdag i MAT-INF 1100 Modellering og beregninger. Dag: Onsdag 28. november 2012. Tid for moroa: 16:00 19:00. Oppgavesettet er på 9

Detaljer

Mattespill Nybegynner Python PDF

Mattespill Nybegynner Python PDF Mattespill Nybegynner Python PDF Introduksjon I denne leksjonen vil vi se litt nærmere på hvordan Python jobber med tall, og vi vil lage et enkelt mattespill. Vi vil også se hvordan vi kan gjøre ting tilfeldige.

Detaljer

K Andre Ordens Differensialligninger

K Andre Ordens Differensialligninger K 6.6 - Andre Ordens Differensialligninger Innhold: H-P Ulven, 03.04.09 Terminologi Utvikling av regel for løsning av y ay by 0 (Tilfelle: y Ce r 1x De r x ) Utvikling av regel for løsning av y ay by 0

Detaljer

Finne ut om en løsning er helt riktig og korrigere ved behov

Finne ut om en løsning er helt riktig og korrigere ved behov Finne ut om en løsning er helt riktig og korrigere ved behov Finurlige feil og debugging av kode IN1000, uke5 Geir Kjetil Sandve Oppgave (Lett modifisert fra eksamen 2014) Skriv en funksjon Dersom parameteren

Detaljer

På tide med et nytt spill! I dag skal vi lage tre på rad, hvor spillerne etter tur merker ruter med X eller O inntil en av spillerne får tre på rad.

På tide med et nytt spill! I dag skal vi lage tre på rad, hvor spillerne etter tur merker ruter med X eller O inntil en av spillerne får tre på rad. Tre på rad Skrevet av: Oversatt fra Code Club UK (//codeclub.org.uk Oversatt av: Geir Arne Hjelle Kurs: Python Tema: Tekstbasert, Spill Fag: Programmering Klassetrinn: 8.-10. klasse Introduksjon På tide

Detaljer

Matriser. Kapittel 4. Definisjoner og notasjon

Matriser. Kapittel 4. Definisjoner og notasjon Kapittel Matriser Vi har lært å løse et lineært ligningssystem ved å sette opp totalmatrisen til systemet gausseliminere den ved hjelp av radoperasjoner på matrisen Vi skal nå se nærmere på egenskaper

Detaljer

TDT4110 IT Grunnkurs Høst 2016

TDT4110 IT Grunnkurs Høst 2016 TDT4110 IT Grunnkurs Høst 2016 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Auditorieøving 1 Vennligst fyll ut følgende informasjon i blokkbokstaver

Detaljer

MAT-INF 1100 Modellering og beregninger. Fredag 12. oktober 2018 kl Vedlegg (deles ut): formelark. Tillatte hjelpemidler: ingen

MAT-INF 1100 Modellering og beregninger. Fredag 12. oktober 2018 kl Vedlegg (deles ut): formelark. Tillatte hjelpemidler: ingen MAT-INF 1100 Modellering og beregninger Fredag 12. oktober 2018 kl 1430-1630 Vedlegg (deles ut): formelark Tillatte hjelpemidler: ingen De 10 første oppgavene teller 2 poeng hver, de 10 siste teller 3

Detaljer

TDT4102 Prosedyre og Objektorientert programmering Vår 2014

TDT4102 Prosedyre og Objektorientert programmering Vår 2014 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap TDT4102 Prosedyre og Objektorientert programmering Vår 2014 Løsningsforslag øving 2 Frist: DD.MM.YYYY Mål

Detaljer

Steg 1: Rest etter divisjon

Steg 1: Rest etter divisjon Primtall og effektivitet Skrevet av: Martin Strand Kurs: Python Tema: Tekstbasert, Kryptografi Fag: Matematikk, Programmering Klassetrinn: 8.-10. klasse, Videregående skole Introduksjon I matematikktimene

Detaljer

Verden. Introduksjon. Skrevet av: Kine Gjerstad Eide og Ruben Gjerstad Eide

Verden. Introduksjon. Skrevet av: Kine Gjerstad Eide og Ruben Gjerstad Eide Verden Skrevet av: Kine Gjerstad Eide og Ruben Gjerstad Eide Kurs: Processing Tema: Tekstbasert Fag: Matematikk, Programmering, Samfunnsfag Klassetrinn: 8.-10. klasse, Videregående skole Introduksjon Velkommen

Detaljer

NIO 1. runde eksempeloppgaver

NIO 1. runde eksempeloppgaver NIO 1. runde eksempeloppgaver Oppgave 1 (dersom du ikke klarer en oppgave, bare gå videre vanskelighetsgraden er varierende) Hva må til for at hele det følgende uttrykket skal bli sant? NOT(a OR (b AND

Detaljer

6 Numeriske likningsløsere TMA4125 våren 2019

6 Numeriske likningsløsere TMA4125 våren 2019 6 Numeriske likningsløsere TMA415 våren 019 Andregradslikningen kan vi løse med formelen a + b + c 0 b ± b 4ac a Men i mange anvendelser dukker det opp likninger ikke kan løses analytisk Et klassisk eksempel

Detaljer

Komplekse tall. Kapittel 2. Den imaginære enheten. Operasjoner på komplekse tall

Komplekse tall. Kapittel 2. Den imaginære enheten. Operasjoner på komplekse tall Kapittel Komplekse tall Oppfinnelsen av nye tallsystemer henger gjerne sammen med polynomligninger x + 4 0 har ingen positiv løsning, selv om koeffisientene er positive tall Vi må altså inn med negative

Detaljer

I denne oppgaven skal vi repetere litt Python-syntaks, det er en god blanding av alle tingene du har lært i Python til nå.

I denne oppgaven skal vi repetere litt Python-syntaks, det er en god blanding av alle tingene du har lært i Python til nå. Repetisjon Skrevet av: Ole Kristian Pedersen, Kodeklubben Trondheim Kurs: Python Tema: Tekstbasert Fag: Programmering Klassetrinn: 8.-10. klasse Introduksjon I denne oppgaven skal vi repetere litt Python-syntaks,

Detaljer

Algebra. Likningsløsning. tasten) for å komme ned til S, og bla videre nedover til du finner solve(.

Algebra. Likningsløsning. tasten) for å komme ned til S, og bla videre nedover til du finner solve(. Algebra Algebra blir ofte referert til som bokstavregning, selv om man nok mister noe av det helhetlige bildet ved å holde seg til en slik oppfatning. Vi velger her å ta med ting som likningsløsning og

Detaljer

Løsningsforslag for eksamen i brukerkurs i matematikk A (MA0001)

Løsningsforslag for eksamen i brukerkurs i matematikk A (MA0001) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 8 Løsningsforslag for eksamen i brukerkurs i matematikk A (MA1) Bokmål Tirsdag 1. desember 11 Tid: 9: 1: (4 timer)

Detaljer

Tre på rad mot datamaskinen. Steg 1: Vi fortsetter fra forrige gang

Tre på rad mot datamaskinen. Steg 1: Vi fortsetter fra forrige gang Tre på rad mot datamaskinen Skrevet av: Oversatt fra Code Club UK (//codeclub.org.uk) Oversatt av: Geir Arne Hjelle Kurs: Python Tema: Tekstbasert, Spill Fag: Programmering Klassetrinn: 8.-10. klasse Introduksjon

Detaljer

Verden. Steg 1: Vinduet. Introduksjon

Verden. Steg 1: Vinduet. Introduksjon Verden Introduksjon Processing Introduksjon Velkommen til verdensspillet! Her skal vi lage begynnelsen av et spill hvor man skal gjette hvilke verdensdeler som er hvor. Så kan du utvide oppgava til å heller

Detaljer

Stjerner og galakser Nybegynner Python PDF

Stjerner og galakser Nybegynner Python PDF Stjerner og galakser Nybegynner Python PDF Introduksjon I denne oppgaven skal vi bruke funksjoner for å gjøre programmene vi skriver enklere og mer oversiktlige. Steg 1: Tegne stjerner Sjekkliste Vi begynner

Detaljer

x 2 = x 1 f(x 1) (x 0 ) 3 = 2 n x 1 n x 2 n 0 0, , , , , , , , , , , 7124

x 2 = x 1 f(x 1) (x 0 ) 3 = 2 n x 1 n x 2 n 0 0, , , , , , , , , , , 7124 NTNU Institutt for matematiske fag TMA4100 Matematikk 1 høsten 2012 Løsningsforslag - Øving 4 Avsnitt 47 3 La f(x) = x 4 +x 3 med f (x) = 4x 3 +1 Med x 0 = 1 får ein med Newtons metode at Med x 0 = 1 får

Detaljer

Løsningsforslag. Innlevering i BYFE/EMFE 1000 Oppgavesett 1 Innleveringsfrist: 14. september klokka 14:00 Antall oppgaver: 3.

Løsningsforslag. Innlevering i BYFE/EMFE 1000 Oppgavesett 1 Innleveringsfrist: 14. september klokka 14:00 Antall oppgaver: 3. Innlevering i BYFE/EMFE 1000 Oppgavesett 1 Innleveringsfrist: 14. september klokka 14:00 Antall oppgaver: 3 Løsningsforslag Oppgave 1 a) ln a ln 3 a+ln 4 a = ln a 1/2 ln a 1/3 +ln a 1/4 = 1 2 ln a 1 3

Detaljer

Kortryllekunst og matematikk.

Kortryllekunst og matematikk. Kortryllekunst og matematikk. Innlevert av 7. trinn, Ulsmåg skole ved Ulsmåg skole (Bergen, Hordaland) Årets nysgjerrigper 201 Kjære leser Nå skal du få lese en rapport om et korttriks og mattematikk.

Detaljer

Steg 1: Vår første datamaskin

Steg 1: Vår første datamaskin Bli Kjent med Datamaskinen Skrevet av: Geir Arne Hjelle Kurs: Computercraft Tema: Tekstbasert, Minecraft Fag: Programmering, Teknologi Klassetrinn: 5.-7. klasse, 8.-10. klasse, Videregåe skole Introduksjon

Detaljer

Tre på rad mot datamaskinen. Steg 1: Vi fortsetter fra forrige gang. Sjekkliste. Introduksjon

Tre på rad mot datamaskinen. Steg 1: Vi fortsetter fra forrige gang. Sjekkliste. Introduksjon Tre på rad mot datamaskinen Erfaren Python Introduksjon I dag skal vi prøve å skrive kode slik at datamaskinen kan spille tre på rad mot oss. Datamaskinen vil ikke spille så bra i begynnelsen, men etterhvert

Detaljer

b) 17 går ikke opp i 84 siden vi får en rest på 16 når 84 deles med 17 c) 17 går opp i 357 siden

b) 17 går ikke opp i 84 siden vi får en rest på 16 når 84 deles med 17 c) 17 går opp i 357 siden Avsnitt. Oppgave Diskret matematikk - Høgskolen i Oslo Løsningsforslag for en del oppgaver fra boken Discrete Mathematics and Its Applications Forfatter: Kenneth H. Rosen a) 7 går opp i 68 siden 68 7 b)

Detaljer

INF1000 Eksamen 2014 (modifisert)

INF1000 Eksamen 2014 (modifisert) INF1000 Eksamen 2014 (modifisert) Oppgave 1 (4 poeng) a) Hva er verdien til tall etter at følgende kode er utført? tall = (5+3)*2 tall = tall+2 18. b) Anta at følgende programsetninger utføres. Hva skrives

Detaljer

Finne ut om en løsning er helt riktig og korrigere ved behov

Finne ut om en løsning er helt riktig og korrigere ved behov Finne ut om en løsning er helt riktig og korrigere ved behov Finurlige feil og debugging av kode IN1000, uke5 Henrik H. Løvold Oppgave (Lett modifisert fra eksamen 2014) Skriv en funksjon Dersom parameteren

Detaljer

TDT4110 IT Grunnkurs Høst 2016

TDT4110 IT Grunnkurs Høst 2016 TDT4110 IT Grunnkurs Høst 2016 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Løsningsforslag til Auditorieøving 1 1 Teori 1. Hvilket tall kan IKKE lagres

Detaljer

Object [] element. array. int [] tall

Object [] element. array. int [] tall Datastrukturer Object [] int [] tall array element 0 1 2 3 4 5 0 1 2 3 4 5 6 7 8 40 55 63 17 22 68 89 97 89 graf lenkeliste graf Object data Node neste Node neste Node neste Node neste Node Node neste

Detaljer