Obligatorisk oppgave MAT-INF1100. Lars Kristian Henriksen UiO

Størrelse: px
Begynne med side:

Download "Obligatorisk oppgave MAT-INF1100. Lars Kristian Henriksen UiO"

Transkript

1 Obligatorisk oppgave MAT-INF Lars Kristian Henriksen UiO 6. september 3

2 Oppgave a)for å skrive fb 6 i -tallssystem, bruker vi at: Tabell : 6 -tallssystemet a b 3 3 c 3 d 5 5 e f Vi tar følgende verdier ut av tabellen f 6 =, b 6 =, 6 = fb 6 = b) For å konvertere, til -tallsystemet, tar jeg i bruk tabellform og ganger hver brøk med for hvert ledd og ser om vi får er (ikke over ) eller er (over og vi trekker da fra før neste ledd): 3 96 Vi kan dermed ta fra høyre kolonne (fra toppen, siden vi opererer med et tall under ) at: =,

3 c)for å konvertere, til -tallsystemet, tar jeg igjen i bruk tabellform og ganger hver brøk med for hvert ledd og ser om vi får er (ikke over ) eller er (over og vi trekker da fra før neste ledd) Vi ser fra dette at: =,... Vi kan nå også se at vi har en repeterende sekvens, siden vi stadig vil komme tilbake til at =. Den repeterte sekvensen vil da være: d)her skal vi konvertere et tall,,, til -tallsystemet, og jeg begynner da med å konvertere til -tallsystemet: + = Igjen bruker vi tabellform og får at: Her ser vi av høyre kolonne, fra toppen, at, =,... I denne sekvensen vil vi få en repeterende sekvens etter bare tre ledd:...

4 e) I dette tilfellet, skal vi konvertere følgende tall til -tallsystemet: da 6 6 For å gjør dette litt enklere, konverterer vi først til -tallsystemet: = 33 6 Så tar vi: og 33//6 = 33%6 = Derfor må vi ha to tabeller, en for å finne i -tallsystemet, og en for å finne 6 i -tallsystemet: Tabell : Tabell.e Og: Tabell 3: Tabell.e Kombinasjonen av disse to tabellene, med hensyn på at tabell.e. representerer et tall over, og tabell.e. representerer et tall under. da 6 6 =, 3

5 Oppgave Vi har følgen: {x n } = cos(x n ) sin(x n ) for n Vi har også at: x = 3 og x = 3 Vi skal så vise at x n for alle heltall n Det første jeg gjør er å sette n =, siden vi vet fra oppgave teksten at n ( 3 {x } = cos(x ) sin(x ) = cos sin(3) =, 5 ) < x < x = sann ( 3 {x 3 } = cos(x 3 sin(x 3 ) = cos(, 5) sin =..6 ) < x 3 < x 3 = sann Vi antar nå at x n er sann. Er da x n+ sann? Vi setter inn n + for n. ) ) {x n+ } = cos (x ((n+) ) sin (x ((n+) ) = cos (x n ) sin (x n ) Siden vi antar at < x n <, så vil < cos(x n ) < siden cos til et tall mellom og, alltid produserer et tall mellom og. Det samme gjelder for sin(x n ), og to tall, begge med en verdi mellom og, multiplisert med hverandre, vil produsere et svar mellom og. Vi har dermed bevist det vi ønsket.

6 Oppgave 3 Python-programmet jeg skrev for å løse denne oppgaven er som følger n = while (+**n)!=.: n-= # Løkka kjører helt til vi produserer svaret. print (("Når vi har n=%d, vil python produsere tallet.") %(n)) Dette vil produsere svaret: -53 Ut i fra dette programmet, kan vi lese at ved n = 53 vil python produsere tallet,. Fra kompendiet fact. kan vi lese at Python, i et -bit system, er bit reservert eksponenter, og 53bit for signifikanter. Vi vet derfor at vi har har med et bit system å gjøre. 5

7 Oppgave De to formlene vi skal jobbe med: b b ac a b + b ac a Program skrevet i Python: # ABC Formelen from math import* a = float(input("skriv inn verdien for a-leddet:")) b = float(input("skriv inn verdien for b-leddet:")) c = float(input("skriv inn verdien for c-leddet:")) x = ((-b - (sqrt(b**) - (*a*c)))/(*a)) x = ((-b + (sqrt(b**) - (*a*c)))/(*a)) print (("x = %f x = %f") %(x, x)) Så til oppgaven: Hvilke problemer kan vi møte på om vi kjører dette programmet? Som vi vet fra oppgave vil vi ved veldig små tall få en avrundingsfeil, altså det rundes av til. I den klassiske ABC-formelen vil dette få katastrofale følger, siden vi da vil få i nevneren. Om vi får a = et veldig lite tall, vil det være mer fornuftig å bruke en formel der vi dropper a leddet. En formel kan derfor være: bx + c = bx = c x = c b 6

8 Oppgave 5 La meg her forklare hva følgende program gjør: from random import random antfeil = ; N = x = y = z =. feilass = feilass =. for i in range(n): x = random(); y = random(); z = random() ass = (x + y) + z ass = x + (y + z) if ass!= ass: antfeil += x = x; y = y; z = z feilass = ass feilass = ass print (. * antfeil/n) print x, y, z, feilass - feilass der en utskrift ga: e-6 I første ledd importerer vi pakken random. I andre ledd, fra antledd til feilass, setter vi verdier til variablene våre. for i in range (N): er en for-loop som defineres til å gå igjen og igjen opp til N =. Inne i loopen setter vi tilfeldige verdier til x, y, z for så å regne ut to versjoner av uttrykket x+y +z. ass settes til (x+y)+z og ass til x+(y+z). Neste ledd i prossessen er en if-statement som sier at hvis ass ikke er lik ass skal det legges til + i variablen antfeil, for så å endre variablene x, y, z til verdiene x, y, z har i uttrykket som ikke er likt. På godt norsk betyr dette at programmet er laget for å se om datamaskinen klarer å indentifisere de assoiative lovene i matematikken som sier at x+(y +z) = (x+z)+y. Vi kan fort se at dette ikke er noe datamaskinen klarer å indentifisere, så vi legger da inn en tellemekanisme i programmet for å indentifisere hvor ofte denne feilen skjer når vi kjører programmet med tilfeldig valgte tall, ganger. Dette er skuffen antfeil. Til slutt i programmet har vi to linjer med print, der den første linjen identifiserer feilprosenten. Linje skriver ut de verdiene x, y, z har, og differansen mellom ass og ass, altså hvor stor feilen er, ved siste ass ass.

MAT-INF1100 Oblig 1. Teodor Spæren, brukernavn teodors. September 16, 2015

MAT-INF1100 Oblig 1. Teodor Spæren, brukernavn teodors. September 16, 2015 MAT-INF1100 Oblig 1 Teodor Spæren, brukernavn teodors September 1, 015 1 Oppgave 1 I de oppgavene som krever at man gjør om et rasjonalt tall i intervallet (0, 1) om til en binærsifferutvikling, fant jeg

Detaljer

MAT-INF 1100: Obligatorisk oppgave 1

MAT-INF 1100: Obligatorisk oppgave 1 13. september, 2018 MAT-INF 1100: Obligatorisk oppgave 1 Innleveringsfrist: 27/9-2018, kl. 14:30 i Devilry Obligatoriske oppgaver («obliger») er en sentral del av MAT-INF1100 og er utmerket trening i å

Detaljer

MAT-INF 1100: Obligatorisk oppgave 1

MAT-INF 1100: Obligatorisk oppgave 1 22. september, 2016 MAT-INF 1100: Obligatorisk oppgave 1 Innleveringsfrist: 6/10-2016, kl. 14:30 i Devilry Obligatoriske oppgaver («obliger») er en sentral del av MAT-INF1100 og er utmerket trening i å

Detaljer

MAT-INF 1100: Obligatorisk oppgave 1

MAT-INF 1100: Obligatorisk oppgave 1 8. september, 2005 MAT-INF 1100: Obligatorisk oppgave 1 Innleveringsfrist: 23/9-2005, kl. 14:30 Informasjon Den skriftlige besvarelsen skal leveres på ekspedisjonskontoret i 7. etg. i Niels Henrik Abels

Detaljer

MAT-INF 1100: Obligatorisk oppgave 1

MAT-INF 1100: Obligatorisk oppgave 1 3. september, 2004 MAT-INF 1100: Obligatorisk oppgave 1 Innleveringsfrist: 17/9-2004, kl. 14:30 Informasjon Den skriftlige besvarelsen skal leveres på ekspedisjonskontoret i 7. etg. i Niels Henrik Abels

Detaljer

Forkurs i informatikk Python. Andreas Færøvig Olsen

Forkurs i informatikk Python. Andreas Færøvig Olsen Andreas Færøvig Olsen andrefol@ifi.uio.no Mål Hvorfor Python? Gi en mykere start på INF1100 Komme i gang med programmering 2 3 Hva er Python? Hva er programmering? 4 Hva er Python? Hva er programmering?

Detaljer

Øvingsforelesning 3 Python (TDT4110)

Øvingsforelesning 3 Python (TDT4110) Øvingsforelesning 3 Python (TDT4110) For og While-løkker Ole-Magnus Pedersen Oversikt Praktisk Info Gjennomgang av øving 1 Programmering for Øving 3 2 Studasser og Piazza Studasser er der for å hjelpe

Detaljer

Med løkke: Læringsmål og pensum. TDT4110 Informasjonsteknologi grunnkurs: Tema: Løkker/Sløyfer Utgave 3: Kap. 4 Utgave 2: Kap. 5. Mål.

Med løkke: Læringsmål og pensum. TDT4110 Informasjonsteknologi grunnkurs: Tema: Løkker/Sløyfer Utgave 3: Kap. 4 Utgave 2: Kap. 5. Mål. 1 Kunnskap for en bedre verden TDT4110 Informasjonsteknologi grunnkurs: Tema: Løkker/Sløyfer Utgave 3: Kap. 4 Utgave 2: Kap. 5 Terje Rydland - IDI/NTNU 2 Læringsmål og pensum Mål Lære om begrepet løkker

Detaljer

TDT4110 Informasjonsteknologi grunnkurs: Tema: Løkker. - 3rd edition: Kapittel 4. Professor Alf Inge Wang

TDT4110 Informasjonsteknologi grunnkurs: Tema: Løkker. - 3rd edition: Kapittel 4. Professor Alf Inge Wang 1 TDT4110 Informasjonsteknologi grunnkurs: Tema: Løkker - 3rd edition: Kapittel 4 Professor Alf Inge Wang 2 Læringsmål og pensum Mål Lære om begrepet løkker Lære om bruk av while-løkke Lære om bruk av

Detaljer

TDT4110 IT Grunnkurs Høst 2015

TDT4110 IT Grunnkurs Høst 2015 TDT4110 IT Grunnkurs Høst 2015 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Løsningsforlag Auditorieøving 1 1 Teori Løsning er skrevet med uthevet tekst

Detaljer

Oppsummering fra sist

Oppsummering fra sist 1 av 34 Kunnskap for en bedre verden TDT4110 Informasjonsteknologi grunnkurs: Tema: Løkker/Sløyfer Utgave 3: Kap. 4 Terje Rydland - IDI/NTNU 2 av 34 Oppsummering fra sist Betingelser i Python: ,

Detaljer

INF109 - Uke 1b 20.01.2016

INF109 - Uke 1b 20.01.2016 INF109 - Uke 1b 20.01.2016 1 Variabler Et program er ikke til stor hjelp hvis det er statisk. Statisk betyr at programmet bare bearbeider faste data som er lagt inn i programkoden. For å gjøre programmer

Detaljer

Læringsmål og pensum. Intro løkker. Mål Lære om begrepet løkker Lære om bruk av while-løkke Lære om bruk av for-løkke Pensum. Kapittel 4.

Læringsmål og pensum. Intro løkker. Mål Lære om begrepet løkker Lære om bruk av while-løkke Lære om bruk av for-løkke Pensum. Kapittel 4. 1 TDT4110 Informasjonsteknologi grunnkurs: Tema: Løkker - 3rd edition: Kapittel 4 Professor Alf Inge Wang 2 Læringsmål og pensum Mål Lære om begrepet løkker Lære om bruk av while-løkke Lære om bruk av

Detaljer

Øvingsforelesning i Python (TDT4110)

Øvingsforelesning i Python (TDT4110) Øvingsforelesning i Python (TDT4110) Tema: Øving 2, Betingelser, if/elif/else Kristoffer Hagen Oversikt Praktisk informasjon Gjennomgang av Øving 1 Oppgaver for Øving 2 2 Praktisk Bruke andre studasser

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 4 Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 4 Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 4 Løsningsforslag Oppgave 1 Funksjonsler b) Kommandoen ` help FunksjonenMin' gjør at dette blir skrevet til skjerm: Funksjonen f(x)=sin(x) - x^. Funksjonen

Detaljer

Innleveringsoppgave 1

Innleveringsoppgave 1 Innleveringsoppgave 1 INF109 Dataprogrammering for naturvitskap Dette er den første av syv obligatoriske oppgaver. Du kan få totalt 10 poeng på denne oppgaven. Innleveringsfristen er fredag, 12. feb, 23:59.9999999.

Detaljer

KONTROLLSTRUKTURER. MAT1030 Diskret matematikk. Kontrollstrukturer. Kontrollstrukturer. Eksempel (Ubegrenset while-løkke)

KONTROLLSTRUKTURER. MAT1030 Diskret matematikk. Kontrollstrukturer. Kontrollstrukturer. Eksempel (Ubegrenset while-løkke) KONTROLLSTRUKTURER MAT1030 Diskret matematikk Forelesning 2: Flere pseudokoder. Representasjoner av tall. Dag Normann Matematisk Institutt, Universitetet i Oslo 16. januar 2008 Mandag innførte vi pseudokoder

Detaljer

Mattespill Nybegynner Python PDF

Mattespill Nybegynner Python PDF Mattespill Nybegynner Python PDF Introduksjon I denne leksjonen vil vi se litt nærmere på hvordan Python jobber med tall, og vi vil lage et enkelt mattespill. Vi vil også se hvordan vi kan gjøre ting tilfeldige.

Detaljer

Forelesning 2. Flere pseudokoder. Representasjoner av tall. Dag Normann januar 2008 KONTROLLSTRUKTURER. Kontrollstrukturer. Kontrollstrukturer

Forelesning 2. Flere pseudokoder. Representasjoner av tall. Dag Normann januar 2008 KONTROLLSTRUKTURER. Kontrollstrukturer. Kontrollstrukturer Forelesning 2 Flere pseudokoder. Representasjoner av tall. Dag Normann - 16. januar 2008 KONTROLLSTRUKTURER Mandag innførte vi pseudokoder og kontrollstrukturer. Vi hadde tre typer grunn-instruksjoner:

Detaljer

Forkurs INF1010. Dag 1. Andreas Færøvig Olsen Tuva Kristine Thoresen

Forkurs INF1010. Dag 1. Andreas Færøvig Olsen Tuva Kristine Thoresen Forkurs INF1010 Dag 1 Andreas Færøvig Olsen (andrefol@ifi.uio.no) Tuva Kristine Thoresen (tuvakt@ifi.uio.no) Institutt for Informatikk, 6. januar 2014 Forkurs INF1010 - dag 1 Hello, World! Typer Input/output

Detaljer

Obligatorisk oppgave MAT-INF Lars Kristian Henriksen UiO

Obligatorisk oppgave MAT-INF Lars Kristian Henriksen UiO Obligatorisk oppgave MAT-INF 1100 Lars Kristian Henriksen UiO November 6, 013 Oppgave 1 a) Den generelle tilnærmingen med sekantmetoden: I vårt tilfelle, der a(t) = v (t) får vi f (t) f(t + ) f(t) v (t)

Detaljer

Hangman. Steg 1: Velg et ord. Steg 2: Gjett en bokstav. Sjekkliste. Sjekkliste. Introduksjon

Hangman. Steg 1: Velg et ord. Steg 2: Gjett en bokstav. Sjekkliste. Sjekkliste. Introduksjon Hangman Erfaren Python Introduksjon La oss lage et spill: Hangman! Datamaskinen vil velge et ord og du kan gjette det bokstav for bokstav. Dersom du gjetter feil for mange ganger taper du. Steg 1: Velg

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 1100L Programmering, modellering, og beregninger. Prøveeksamen 1 Eksamensdag: Onsdag 14. November 2014. Tid for eksamen:

Detaljer

Repetisjon Novice Videregående Python PDF

Repetisjon Novice Videregående Python PDF Repetisjon Novice Videregående Python PDF Introduksjon I denne oppgaven skal vi repetere litt Python-syntaks. Hele dette kurset er for de som har programmert Python før. Dersom ikke har mye erfaring med

Detaljer

Øvingsforelesning 1 Python (TDT4110)

Øvingsforelesning 1 Python (TDT4110) Øvingsforelesning 1 Python (TDT4110) Introduksjon, Kalkulasjoner Ole-Magnus Pedersen Oversikt Praktisk Info Repetisjon fra sist Oppgaver for øving 2 2 Praktisk Info Last opp øvinger på Blackboard før godkjenning

Detaljer

I dag. Rep: Oppsummering - variabler. Rep: Datatyper. INF1000 (Uke 3) Mer om uttrykk, terminal I/O, forgreninger

I dag. Rep: Oppsummering - variabler. Rep: Datatyper. INF1000 (Uke 3) Mer om uttrykk, terminal I/O, forgreninger I dag INF1000 (Uke 3) Mer om uttrykk, terminal I/O, forgreninger Grunnkurs i programmering Institutt for Informatikk Universitet i Oslo Litt repetisjon Mer om uttrykk Lesing og skriving til terminal Forgreninger

Detaljer

TDT4110 IT Grunnkurs Høst 2016

TDT4110 IT Grunnkurs Høst 2016 TDT4110 IT Grunnkurs Høst 2016 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Løsningsforslag til Auditorieøving 1 1 Teori 1. Hvilket tall kan IKKE lagres

Detaljer

a) Ved numerisk metode er det løst en differensiallikning av et objekt som faller mot jorden. Da, kan vi vi finne en tilnærming av akselerasjonen.

a) Ved numerisk metode er det løst en differensiallikning av et objekt som faller mot jorden. Da, kan vi vi finne en tilnærming av akselerasjonen. Oppgave 1 a) Ved numerisk metode er det løst en differensiallikning av et objekt som faller mot jorden. Da verdier av er kjent gjennom resultater i form av,, kan vi vi finne en tilnærming av akselerasjonen.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 11 Modellering og beregninger Eksamensdag: Mandag 1 Desember 218 Tid for eksamen: 9: 13: Oppgavesettet er på 5 sider

Detaljer

TDT4110 Informasjonsteknologi grunnkurs: Tema: Funksjoner med retur og moduler Utgave 3: Kap

TDT4110 Informasjonsteknologi grunnkurs: Tema: Funksjoner med retur og moduler Utgave 3: Kap 1 av 44 Kunnskap for en bedre verden TDT4110 Informasjonsteknologi grunnkurs: Tema: Funksjoner med retur og moduler Utgave 3: Kap. 5.7-5.10 Terje Rydland - IDI/NTNU 2 av 44 Læringsmål og pensum Mål Beherske

Detaljer

Først må vi få datamaskinen til å velge et tilfeldig ord, så la oss begynne. Lagre programmet ditt og kjør det. Hvilket ord skrives ut?

Først må vi få datamaskinen til å velge et tilfeldig ord, så la oss begynne. Lagre programmet ditt og kjør det. Hvilket ord skrives ut? Hangman Skrevet av: Oversatt fra Code Club UK (//codeclub.org.uk) Oversatt av: Geir Arne Hjelle Kurs: Python Tema: Tekstbasert, Spill Fag: Programmering Klassetrinn: 5.-7. klasse, 8.-10. klasse Introduksjon

Detaljer

Nicolai Kristen Solheim

Nicolai Kristen Solheim Oppgave 1. For å kunne skrive det komplekse tallet følgende endringer foretas på uttrykket. 3 3, hvor 3 og 3 på formen, hvor og, må For å kunne skrive det komplekse tallet på polarformen, må vi først finne

Detaljer

Oppgave 1 Hva tror du følgende program skriver ut til terminalen? Diskuter med gruppen.

Oppgave 1 Hva tror du følgende program skriver ut til terminalen? Diskuter med gruppen. IN1000 - Seminaroppgaver til uke 1 Nyttig å vite: PEP 8 -- Style Guide for Python Code. Dersom det som undervises i IN1000 ikke samstemmer med PEP, så skal dere følge den stilen som undervises og ikke

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 4 m-ler

Matematikk Øvingsoppgaver i numerikk leksjon 4 m-ler Matematikk 1000 Øvingsoppgaver i numerikk leksjon 4 m-ler I denne øvinga skal vi lære oss å lage m-ler små tekstler som vi bruker i MATLAB-sammenheng. Der nst to typer m-ler: Funksjonsler og skript. Funksjonsler

Detaljer

I denne oppgaven skal vi repetere litt Python-syntaks, det er en god blanding av alle tingene du har lært i Python til nå.

I denne oppgaven skal vi repetere litt Python-syntaks, det er en god blanding av alle tingene du har lært i Python til nå. Repetisjon Skrevet av: Ole Kristian Pedersen, Kodeklubben Trondheim Kurs: Python Tema: Tekstbasert Fag: Programmering Klassetrinn: 8.-10. klasse Introduksjon I denne oppgaven skal vi repetere litt Python-syntaks,

Detaljer

Potenser og tallsystemer

Potenser og tallsystemer 1 Potenser og tallsystemer Mål for opplæringen er at eleven skal kunne regne med potenser og tall på standardform med positive og negative eksponenter og bruke dette i praktiske sammenhenger gjøre rede

Detaljer

Reelle tall på datamaskin

Reelle tall på datamaskin Reelle tall på datamaskin Knut Mørken 5. september 2007 1 Innledning Tirsdag 4/9 var tema for forelesningen hvordan reelle tall representeres på datamaskin og noen konsekvenser av dette, særlig med tanke

Detaljer

Potenser og tallsystemer

Potenser og tallsystemer 8 1 Potenser og tallsystemer Mål for opplæringen er at eleven skal kunne regne med potenser og tall på standardform med positive og negative eksponenter og bruke dette i praktiske sammen henger gjøre rede

Detaljer

MAT1030 Forelesning 2

MAT1030 Forelesning 2 MAT1030 Forelesning 2 Kontrollstrukturer, tallsystemer, basis Dag Normann - 20. januar 2010 (Sist oppdatert: 2010-01-20 12:31) Kapittel 1: Algoritmer (fortsettelse) Kontrollstrukturer I går innførte vi

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 2: Kontrollstrukturer, tallsystemer, basis Roger Antonsen Institutt for informatikk, Universitetet i Oslo 14. januar 2009 (Sist oppdatert: 2009-01-14 16:45) Kapittel

Detaljer

Bli Kjent med Datamaskinen Introduksjon ComputerCraft PDF

Bli Kjent med Datamaskinen Introduksjon ComputerCraft PDF Bli Kjent med Datamaskinen Introduksjon ComputerCraft PDF Introduksjon Vi begynner med å bygge en enkel datamaskin. Etter å ha brukt litt tid på å bli kjent med hvordan datamaskinen virker, bruker vi den

Detaljer

Hvordan løse problemer med programmering?

Hvordan løse problemer med programmering? Start screencast!! (tidlig..) Ha klar glass med linser Lukk programmer, untatt Atom, Keynote, Terminal Hvordan løse problemer med programmering? Problemløsning, løkker, og funksjoner med parametre IN1000,

Detaljer

Bygge en pyramide. Introduksjon. Steg 1: Lage en ny mod. Sjekkliste. Skrevet av: Pål G. Solheim

Bygge en pyramide. Introduksjon. Steg 1: Lage en ny mod. Sjekkliste. Skrevet av: Pål G. Solheim Bygge en pyramide Skrevet av: Pål G. Solheim Kurs: Learntomod Tema: Blokkbasert, Minecraft Fag: Programmering, Teknologi Klassetrinn: 1.-4. klasse, 5.-7. klasse, 8.-10. klasse Introduksjon La oss gjøre

Detaljer

Representasjon av tall på datamaskin Kort innføring for MAT-INF1100L

Representasjon av tall på datamaskin Kort innføring for MAT-INF1100L Representasjon av tall på datamaskin Kort innføring for MAT-INF00L Knut Mørken 3. desember 204 Det er noen få prinsipper fra den første delen av MAT-INF00 om tall som studentene i MAT-INF00L bør kjenne

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 11 Modellering og beregninger. Eksamensdag: Torsdag 12. oktober 26. Tid for eksamen: 9: 11:. Oppgavesettet er på 8 sider.

Detaljer

EKSAMENSOPPGAVE / EKSAMENSOPPGÅVE

EKSAMENSOPPGAVE / EKSAMENSOPPGÅVE Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE / EKSAMENSOPPGÅVE Eksamen i: Inf-1049, Introduksjon til beregningsorientert programmering Dato: 15. desember 017 Klokkeslett: 09.00 13.00 Sted /

Detaljer

INF Obligatorisk innlevering 7 - Hangman

INF Obligatorisk innlevering 7 - Hangman INF1001 - Obligatorisk innlevering 7 - Hangman Frist: 7.11.16 12:00 1 Introduksjon Du skal i denne innleveringen skrive et objektorientert Hangman-spill. Spillet skal ha støtte for å lese inn en ordliste

Detaljer

Python: Variable og beregninger, input og utskrift. TDT4110 IT Grunnkurs Professor Guttorm Sindre

Python: Variable og beregninger, input og utskrift. TDT4110 IT Grunnkurs Professor Guttorm Sindre Python: Variable og beregninger, input og utskrift TDT4110 IT Grunnkurs Professor Guttorm Sindre Læringsmål og pensum Mål for denne uka: Vite litt om design av programmer (2.1, 2.2, 2.4) Kunne skrive ut

Detaljer

3. obligatoriske innlevering, høsten 2014

3. obligatoriske innlevering, høsten 2014 3. obligatoriske innlevering, høsten 2014 {Jonathan Feinberg, Joakim Sundnes} {jonathf,sundnes}@simula.no November 3, 2014 Innleveringskrav Denne skal følge malen gitt på emnesidene Legges ut 2. september.

Detaljer

Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir =

Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir = Tallsystemer Heltall oppgis vanligvis i det desimale tallsystemet, også kalt 10-tallssystemet. Eksempel. Gitt tallet 3794. Dette kan skrives slik: 3 1000 + 7 100 + 9 10 + 4 = 3 10 3 + 7 10 2 + 9 10 1 +

Detaljer

Hvor gammel er du? Hvor gammel er du? Del 1: Skrive ut til skjerm. Gjøre selv. Skrevet av: Sindre O. Rasmussen, Kodeklubben Trondheim

Hvor gammel er du? Hvor gammel er du? Del 1: Skrive ut til skjerm. Gjøre selv. Skrevet av: Sindre O. Rasmussen, Kodeklubben Trondheim Hvor gammel er du? Skrevet av: Sindre O. Rasmussen, Kodeklubben Trondheim Kurs: Python Tema: Tekstbasert Fag: Programmering Klassetrinn: 5.-7. klasse, 8.-10. klasse Hvor gammel er du? I dette oppgavesettet

Detaljer

Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir =

Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir = Tallsystemer Heltall oppgis vanligvis i det desimale tallsystemet, også kalt 10-tallssystemet. Eksempel. Gitt tallet 3794. Dette kan skrives slik: 3 1000 + 7 100 + 9 10 + 4 = 3 10 3 + 7 10 2 + 9 10 1 +

Detaljer

Tre på rad mot datamaskinen. Steg 1: Vi fortsetter fra forrige gang

Tre på rad mot datamaskinen. Steg 1: Vi fortsetter fra forrige gang Tre på rad mot datamaskinen Skrevet av: Oversatt fra Code Club UK (//codeclub.org.uk) Oversatt av: Geir Arne Hjelle Kurs: Python Tema: Tekstbasert, Spill Fag: Programmering Klassetrinn: 8.-10. klasse Introduksjon

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 1100L Programmering, modellering, og beregninger. Prøveeksamen 2 Eksamensdag: Onsdag 14. November 2014. Tid for eksamen:

Detaljer

Tre på rad mot datamaskinen. Steg 1: Vi fortsetter fra forrige gang. Sjekkliste. Introduksjon

Tre på rad mot datamaskinen. Steg 1: Vi fortsetter fra forrige gang. Sjekkliste. Introduksjon Tre på rad mot datamaskinen Erfaren Python Introduksjon I dag skal vi prøve å skrive kode slik at datamaskinen kan spille tre på rad mot oss. Datamaskinen vil ikke spille så bra i begynnelsen, men etterhvert

Detaljer

TDT4110 Informasjonsteknologi grunnkurs: Tema: Funksjoner med retur og moduler. - 3rd edition: Kapittel Professor Alf Inge Wang

TDT4110 Informasjonsteknologi grunnkurs: Tema: Funksjoner med retur og moduler. - 3rd edition: Kapittel Professor Alf Inge Wang 1 TDT4110 Informasjonsteknologi grunnkurs: Tema: Funksjoner med retur og moduler - 3rd edition: Kapittel 5.7-5.10 Professor Alf Inge Wang 2 Læringsmål og pensum Mål Beherske returverdier og returverdifunksjoner

Detaljer

Eksempel 1: Bestemmer om tallet som skrives inn er et partall eller et oddetall side 12

Eksempel 1: Bestemmer om tallet som skrives inn er et partall eller et oddetall side 12 1 INNHOLD PROGRAMMERING I MATEMATIKK side 3 MINIKURS I PROGRAMMERING side 4 TRINKET side 5 LØKKER side 6 ARRAYER side 8 GRAFTEGNING MED PYTHON side 10 Eksempel 1: Bestemmer om tallet som skrives inn er

Detaljer

Læringsmål og pensum. Intro til returverdifunksjoner: Generering av tilfeldige tall 27/09/16

Læringsmål og pensum. Intro til returverdifunksjoner: Generering av tilfeldige tall 27/09/16 1 TDT4110 Informasjonsteknologi grunnkurs: Tema: Funksjoner med retur og moduler - 3rd edition: Kapittel 5.7-5.10 Professor Alf Inge Wang 2 Læringsmål og pensum Mål Beherske returverdier og returverdifunksjoner

Detaljer

Alle hele tall g > 1 kan være grunntall i et tallsystem.

Alle hele tall g > 1 kan være grunntall i et tallsystem. Tallsystemer Heltall oppgis vanligvis i det desimale tallsystemet, også kalt 10-tallssystemet. Eksempel. Gitt tallet 3794. Dette kan skrives slik: 3 1000 + 7 100 + 9 10 + 4 = 3 10 3 + 7 10 2 + 9 10 1 +

Detaljer

Prøveunderveiseksamen i MAT-INF 1100, H-03

Prøveunderveiseksamen i MAT-INF 1100, H-03 Prøveunderveiseksamen i MAT-INF 1100, H-03 Denne prøveeksamenen har samme format som den virkelige underveiseksamenen, og inneholder oppgaver av samme type og vanskelighetsgrad. De 15 første oppgavene

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 5 Skript

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 5 Skript Matematikk 1000 Øvingsoppgaver i numerikk leksjon 5 Skript I denne øvinga skal vi lære oss mer om skript. Et skript kan vi se på som et lite program altså en sekvens av kommandoer. Til sist skal vi se

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger Eksamensdag: 12. desember 2003 Tid for eksamen: 9:00 12:00 Oppgavesettet er på 7 sider.

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag Oppgave 1 Tredjegradslikninga a) Vi viser her hvordan det kan gjøres både som funksjonsl og som skript. Vi starter med funksjonla: 1

Detaljer

Løsningsskisser til oppgaver i Kapittel Integrerende faktor

Løsningsskisser til oppgaver i Kapittel Integrerende faktor Løsningsskisser til oppgaver i Kapittel 6.4 - Integrerende faktor Teori: Differensialligninger på formen y fx y gx (lineære i y av første orden) er ikke separable hvis ikke fx og gx er tallkonstanter.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger. Eksamensdag: Onsdag 8. oktober 2014. Tid for eksamen: 15:00 17:00. Oppgavesettet er på

Detaljer

MAT Oblig 1. Halvard Sutterud. 22. september 2016

MAT Oblig 1. Halvard Sutterud. 22. september 2016 MAT1110 - Oblig 1 Halvard Sutterud 22. september 2016 Sammendrag I dette prosjektet skal vi se på anvendelsen av lineær algebra til å generere rangeringer av nettsider i et web basert på antall hyperlinker

Detaljer

Kap 2: Løkker og lister

Kap 2: Løkker og lister Kap 2: Løkker og lister Ole Christian Lingjærde, Inst for Informatikk, UiO 26-30 August, 2019 (Del 2 av 2) Forrige forelesning på en foil Formatert utskrift: %-operator og f-strings To typer løkker: while-løkker

Detaljer

Alle hele tall g > 1 kan være grunntall i et tallsystem.

Alle hele tall g > 1 kan være grunntall i et tallsystem. Tallsystemer Heltall oppgis vanligvis i det desimale tallsystemet, også kalt 10-tallssystemet. Eksempel. Gitt tallet 3794. Dette kan skrives slik: 3 1000 + 7 100 + 9 10 + 4 = 3 10 3 + 7 10 2 + 9 10 1 +

Detaljer

Øvingsforelesning 5 Python (TDT4110)

Øvingsforelesning 5 Python (TDT4110) Øvingsforelesning 5 Python (TDT4110) Repetisjon av løkker og funksjoner Ole-Magnus Pedersen Oversikt Praktisk Info Gjennomgang av Øving 3 Repetisjon 2 Praktisk info Prosjekter i PyCharm må startes med

Detaljer

Python: Intro til funksjoner. TDT4110 IT Grunnkurs Professor Guttorm Sindre

Python: Intro til funksjoner. TDT4110 IT Grunnkurs Professor Guttorm Sindre Python: Intro til funksjoner TDT4110 IT Grunnkurs Professor Guttorm Sindre Snart referansegruppemøte Viktig mulighet for å gi tilbakemelding på emnet Pensumbøker Forelesninger Øvingsforelesninger Veiledning

Detaljer

IN1000 Obligatorisk innlevering 7

IN1000 Obligatorisk innlevering 7 IN1000 Obligatorisk innlevering 7 Frist for innlevering: 23.10. kl 12:00 Introduksjon I denne innleveringen skal du lage et program som simulerer cellers liv og død. Dette skal du gjøre ved hjelp av en

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 1100L Programmering, modellering, og beregninger. Eksamensdag: Fredag 2. Desember 2016. Tid for eksamen: 9:00 13:00.

Detaljer

Forside. MAT INF 1100 Modellering og beregninger. Mandag 9. oktober 2017 kl Vedlegg (deles ut): formelark. Tillatte hjelpemidler: ingen

Forside. MAT INF 1100 Modellering og beregninger. Mandag 9. oktober 2017 kl Vedlegg (deles ut): formelark. Tillatte hjelpemidler: ingen Forside MAT INF 1100 Modellering og beregninger Mandag 9. oktober 2017 kl 1430 1630 Vedlegg (deles ut): formelark Tillatte hjelpemidler: ingen De 10 første oppgavene teller 2 poeng hver, de 10 siste teller

Detaljer

TDT4110 IT Grunnkurs Høst 2014

TDT4110 IT Grunnkurs Høst 2014 TDT4110 IT Grunnkurs Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Auditorieøving 1 Navn: Linje: Brukernavn (blokkbokstaver): Oppgavesettet

Detaljer

Løsningsforslag eksamen R2

Løsningsforslag eksamen R2 Løsningsforslag eksamen R Vår 010 Oppgave 1 a) f (x) = x cos(3x) f (x) = x cos(3x) + x ( sin(3x) 3) = x cos(3x) 3x sin(3x) b) 1. Bruker delvis integrasjon med u = 5x og v = 1 ex slik at u = 5 og v = e

Detaljer

Python: Funksjoner og moduler Kapittel

Python: Funksjoner og moduler Kapittel Python: Funksjoner og moduler Kapittel 5.7-5.10 TDT4110 IT Grunnkurs Professor Guttorm Sindre Læringsmål og pensum Mål Kunne lage og kalle funksjoner med returverdi Bruke bibliotek i Python, f.eks random

Detaljer

Oppfriskningskurs dag 1

Oppfriskningskurs dag 1 Oppfriskningskurs dag 1 og ligninger Steffen Junge Oppfriskningskurs i matematikk 3.-8. august 2009 Outline 1 Outline 1 Typiske problem Ranger følgende brøker etter størrelse: 1 2, 7 12, 2 3, 5 8, 17 24

Detaljer

Python: Løkker. TDT4110 IT Grunnkurs Professor Guttorm Sindre

Python: Løkker. TDT4110 IT Grunnkurs Professor Guttorm Sindre Python: Løkker TDT4110 IT Grunnkurs Professor Guttorm Sindre Læringsmål og pensum Mål Forstå hvorfor vi trenger løkker i programmering Ha kjennskap to ulike typer løkker (while-løkke, for-løkke) Og vite

Detaljer

Difflikninger med løsningsforslag.

Difflikninger med løsningsforslag. Repetisjon i Matematikk : Difflikninger med løsningsforslag. Høgskolen i Gjøvik Avdeling TØL Eksamensrepetisjon REA4 Matematikk Difflikninger med løsningsforslag. Difflikninger med løsningsforslag. Dette

Detaljer

I dag skal vi ved hjelp av ganske enkel Python-kode finne ut om det er mulig å tjene penger på å selge og kjøpe en aksje.

I dag skal vi ved hjelp av ganske enkel Python-kode finne ut om det er mulig å tjene penger på å selge og kjøpe en aksje. Trading-algoritme I dag skal vi ved hjelp av ganske enkel Python-kode finne ut om det er mulig å tjene penger på å selge og kjøpe en aksje. Vi skal gjøre dette ved å lage et Python-program (med noen for-løkker)

Detaljer

IR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer

IR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer Eksamen 8. desember 16 Eksamenstid 4 timer IR151 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del uten bruk av hjelpemidler. Du kan bare bruke

Detaljer

Løse reelle problemer

Løse reelle problemer Løse reelle problemer Litt mer om løkker, prosedyrer, funksjoner, tekst og innlesing fra fil INF1000, uke4 Geir Kjetil Sandve 1 Tilbakeblikk Dere bør nå beherske det sentrale fra uke 1 og 2: Uttrykk, typer,

Detaljer

Python: Løkker. TDT4110 IT Grunnkurs Professor Guttorm Sindre

Python: Løkker. TDT4110 IT Grunnkurs Professor Guttorm Sindre Python: Løkker TDT4110 IT Grunnkurs Professor Guttorm Sindre Denne uka Vi trenger å Støttes av Hente data fra bruker Vise data til bruker Lagre data i minnet for bruk videre i programmet Fra tastatur:

Detaljer

Øvingsforelesning 5 Python (TDT4110)

Øvingsforelesning 5 Python (TDT4110) Øvingsforelesning 5 Python (TDT4110) Repetisjon av løkker og funksjoner Ole-Magnus Pedersen Oversikt Praktisk Info Gjennomgang av Øving 3 Repetisjon 2 Praktisk info Prosjekter i PyCharm må startes med

Detaljer

På tide med et nytt spill! I dag skal vi lage tre på rad, hvor spillerne etter tur merker ruter med X eller O inntil en av spillerne får tre på rad.

På tide med et nytt spill! I dag skal vi lage tre på rad, hvor spillerne etter tur merker ruter med X eller O inntil en av spillerne får tre på rad. Tre på rad Skrevet av: Oversatt fra Code Club UK (//codeclub.org.uk Oversatt av: Geir Arne Hjelle Kurs: Python Tema: Tekstbasert, Spill Fag: Programmering Klassetrinn: 8.-10. klasse Introduksjon På tide

Detaljer

print("hurra!") som ikke har innrykk, er ikke del av løkka, og vil derfor bare bli utført en gang, etter at løkka er ferdig.

print(hurra!) som ikke har innrykk, er ikke del av løkka, og vil derfor bare bli utført en gang, etter at løkka er ferdig. Intro til løkker Læringsmål: Løkker Velge egnet løkkekonstruksjon (for eller while) etter behov Starting Out with Python: Kap. 4.1-4.3 I denne oppgaven skal du lære å skrive kode hvor handlinger repeteres

Detaljer

Obligatorisk oppgave nr 5 FYS Lars Kristian Henriksen UiO

Obligatorisk oppgave nr 5 FYS Lars Kristian Henriksen UiO Obligatorisk oppgave nr 5 FYS-2130 Lars Kristian Henriksen UiO 12. mars 2015 Diskusjonsoppgaver: 1 Overflatebølger på vann er transversale bølger, dvs utslaget er vinkelrett på bølgens bevegelse. Bruker

Detaljer

Stjerner og galakser Nybegynner Python PDF

Stjerner og galakser Nybegynner Python PDF Stjerner og galakser Nybegynner Python PDF Introduksjon I denne oppgaven skal vi bruke funksjoner for å gjøre programmene vi skriver enklere og mer oversiktlige. Steg 1: Tegne stjerner Sjekkliste Vi begynner

Detaljer

Innleveringsoppgave 3

Innleveringsoppgave 3 Innleveringsoppgave 3 INF109 Dataprogrammering for naturvitskap Dette er den tredje av syv obligatoriske oppgaver. Du kan få totalt 15 poeng på denne oppgaven. Innleveringsfristen er fredag, 4. mars, 23:59.

Detaljer

Mer om uttrykk, terminal I/O, forgreninger. Grunnkurs i programmering Institutt for Informatikk Universitet i Oslo

Mer om uttrykk, terminal I/O, forgreninger. Grunnkurs i programmering Institutt for Informatikk Universitet i Oslo INF1000 (Uke 3) Mer om uttrykk, terminal I/O, forgreninger Grunnkurs i programmering Institutt for Informatikk Universitet i Oslo Are Magnus Bruaset og Anja B. Kristoffersen I dag Litt repetisjon Mer om

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger. Eksamensdag: Onsdag 12. oktober 2011. Tid for eksamen: 15:00 17:00. Oppgavesettet er

Detaljer

Husk at du skal ha to vinduer åpne. Det ene er 'Python Shell' og det andre er for å skrive kode i.

Husk at du skal ha to vinduer åpne. Det ene er 'Python Shell' og det andre er for å skrive kode i. Skilpaddeskolen Skrevet av: Oversatt fra Code Club UK (//codeclub.org.uk) Oversatt av: Bjørn Einar Bjartnes Kurs: Python Tema: Tekstbasert Fag: Programmering, Kunst og håndverk Klassetrinn: 8.-10. klasse

Detaljer

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform 1 10 Tall og tallregning Studentene skal kunne gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall definere og benytte de anerkjente skrivemåtene for åpne, halvåpne og lukkede intervaller

Detaljer

Øvingsforelesning 6 i Python (TDT4110)

Øvingsforelesning 6 i Python (TDT4110) Øvingsforelesning 6 i Python (TDT4110) Lister Ole-Magnus Pedersen Oversikt Praktisk Info Gjennomgang av Øving 3 Programmering til Øving 6 2 Praktisk info Prosjekter i PyCharm må startes med Python 3.x

Detaljer

Kapittel 3: Litt om representasjon av tall

Kapittel 3: Litt om representasjon av tall MAT1030 Diskret Matematikk Forelesning 3: Litt om representasjon av tall Dag Normann Matematisk Institutt, Universitetet i Oslo Kapittel 3: Litt om representasjon av tall 26. januar 2010 (Sist oppdatert:

Detaljer

Forberedelseskurs i matematikk

Forberedelseskurs i matematikk Forberedelseskurs i matematikk Formålet med kurset er å friske opp matematikkunnskapene før et år med realfag. Temaene for kurset er grunnleggende algebra med regneregler, regnerekkefølgen, brøk, ligninger

Detaljer

Løse reelle problemer

Løse reelle problemer Løse reelle problemer Løse problemer med data fra fil, samt litt mer om funksjoner IN1000, uke6 Geir Kjetil Sandve Mål for uken Få enda mer trening i hvordan bruke løkker, samlinger og beslutninger for

Detaljer

Oppgaver uke 1: Løsningsforslag

Oppgaver uke 1: Løsningsforslag Oppgaver uke 1: Løsningsforslag Oppgave 1 Hva tror du følgende program skriver ut til terminalen? Diskuter med gruppen. alder = 30 print("din alder er", alder) alder = 15 Din alder er 30 Når print() kalles

Detaljer

Fra Python til Java. En introduksjon til programmeringsspråkenes verden. Dag Langmyhr

Fra Python til Java. En introduksjon til programmeringsspråkenes verden. Dag Langmyhr Fra Python til Java En introduksjon til programmeringsspråkenes verden dag@ifi.uio.no Oversikt Introduksjon Python Java Noe er likt Noe bare ser anderledes ut Noe er helt forskjellig Et eksempel Klasser

Detaljer

Simulering av differenslikninger

Simulering av differenslikninger Forelesning uke 37, 2007 Løsning av differenslikninger i formel Mulig for lineære likninger med konst. koeff. og enkelte inhomogeniteter. Eksempel: (b, c er konstante) x n+2 + bx n+1 + cx n = cos(n), x

Detaljer