Løsningsforslag. Oppgavesettet består av 9 oppgaver med i alt 20 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye.

Størrelse: px
Begynne med side:

Download "Løsningsforslag. Oppgavesettet består av 9 oppgaver med i alt 20 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye."

Transkript

1 Løsningsforslag Emnekode: ITF75 Dato: 5 desember Emne: Matematikk for IT Eksamenstid: kl 9 til kl Hjelpemidler: To A4-ark med valgfritt innhold på begge sider Kalkulator er ikke tillatt Faglærer: Christian F Heide Eksamensoppgaven: Oppgavesettet består av 6 sider inklusiv denne forsiden og et vedlegg på én side Kontroller at oppgaven er komplett før du begynner å besvare spørsmålene Oppgavesettet består av 9 oppgaver med i alt deloppgaver Ved sensur vil alle deloppgaver telle omtrent like mye Der det er mulig skal du: vise utregninger og hvordan du kommer fram til svarene begrunne dine svar, selv om dette ikke er eksplisitt sagt i hvert spørsmål Sensurdato: Mandag 7 januar Karakterene er tilgjengelige for studenter på studentweb senest virkedager etter oppgitt sensurfrist Følg instruksjoner gitt på: wwwhiofno/studentweb Løsningsforslag til eksamen i Matematikk for IT, desember Side av

2 Oppgave Gitt følgende mengder: A = {,, 5, 7, 9} B = {, 4, 6, 8} C = {,, } og universet U = {,,,, 4, 5, 6, 7, 8, 9} a) Finn følgende mengde: [( B C) A] C Tar vi det trinnvis, ser vi: B C {4, 6, 8} ( B C) A {,, 4, 5, 6, 7, 8, 9} C {, 4, 5, 6, 7, 8, 9} [( B C) A] C {, 4, 5, 6, 7, 8, 9} = C b) Finn potensmengden til C, P (C) P ( C) {,{},{},{},{,},{, },{, },{,, }} Oppgave a) En relasjon R {( a, b) a b} er definert på mengden av alle heltall, Z a b er vanlig «mindre enn», og betyr altså at a er mindre enn b Angi om relasjonen er refleksiv, symmetrisk, antisymmetrisk og/eller transitiv Relasjonen er ikke refleksiv fordi et tall aldri kan være mindre enn seg selv Relasjonen er ikke symmetrisk, fordi dersom et tall n er mindre enn et tall m, vil aldri m også være mindre enn n Relasjonen er antisymmetrisk, fordi dersom et tall n er mindre enn et tall m, vil aldri m også være mindre enn n Relasjonen er transitiv, fordi dersom n < m og m < p, så vil også n < p Løsningsforslag til eksamen i Matematikk for IT, desember Side av

3 b) Anta så at relasjonen er definert på mengden A = {,,, 4} Skriv relasjonen R som en matrise (binær matrise) M c) En annen relasjon, S, er en ekvivalensrelasjon på en mengde M Hvis vi vet at ( a, b) S og ( b, c) S, hvilke andre elementer kan vi da vite at S har? Når vi vet at relasjonen er en ekvivalensrelasjon, vet vi samtidig at den er refleksiv, symmetrisk og transitiv Det kan være lurt å tegne for lettere å se dette De elementene som er oppgitt i oppgaven er følgende: a b c For at den skal være refleksiv, må følgende elementer være med i S: ( a, a), ( b, b) og ( c, c) : a b c For at den skal være transitiv, må vi ha med ( a, c) a b c For at den skal være symmetrisk, må vi ha med ( b, a), ( c, b) og ( c, a) a b c Løsningsforslag til eksamen i Matematikk for IT, desember Side av

4 Vi ser nå at denne er både refleksiv, symmetrisk og transitiv, og følgelig en ekvivalensrelasjon Oppsummert kan vi si at følgende elementer må være med i tillegg til ( a, b) og ( b, c) fordi vi vet at den er en ekvivalensrelasjon: ( a, a), ( a, c), ( b, a), ( b, b), ( c, a), ( c, b) og ( c, c) Oppgave a) Finn ved hjelp av sannhetstabeller om de to følgende sammensatte utsagn er logisk ekvivalente: i) ( p q) r ii) p ( q r) Utsagn i): Utsagn ii): p q r p q ( p q) r S S S S S S S F S F S F S F S S F F F S F S S S S F S F S F F F S S S F F F S F p q r q r p ( q r) S S S S S S S F F F S F S S S S F F S S F S S S S F S F F S F F S S S F F F S S Vi ser at siste kolonne ikke er lik for de to uttrykkene Følgelig er de ikke logisk ekvivalente b) I denne oppgaven skal du bruke logikklovene på vedlagte ark til å forenkle følgende uttrykk og finne om det er en tautologi Bruk kun en lov i hvert trinn og angi for hvert trinn nummeret på den loven du har brukt Uttrykket du skal undersøke er: [ q ( p q)] p Løsningsforslag til eksamen i Matematikk for IT, desember Side 4 av

5 [ q ( p q)] p [ q ( p q)] p [ q ( p q)] p [ q ( p q)] p [ q ( p q)] p [ q ( p q)] p [ q ( p q)] p Lov om implikasjon () på den ytterste implikasjonen Lov om implikasjon () på den gjenstående implikasjonen De Morgans lov (4) på den ytterste negasjonen (hakeparentesen) Involusjonsloven (7) (dobbel negasjon) De Morgans lov (4) på negasjonen foran parentesen Involusjonsloven (7) (dobbel negasjon) Den distributive lov () [( q p) ( q q)] p Inversloven (8) [( q p) S] p ( q p) p Identitetsloven (9) Den assosiative lov () q ( p p) Inversloven (8) q S Dominansloven () S Vi ser at uttrykkets sannhetsverdi er logisk ekvivalent med S Uttrykket er altså sant uansett hva sannhetsverdiene til p og q er Uttrykket er følgelig en tautologi Oppgave 4 a) Konverter tallet 57 til det binære tallsystemet Dette kan f eks gjøres ved gjentatte divisjoner med inntil kvotienten er : 57: = 8: = 4: = 7: = : = : = Løsningsforslag til eksamen i Matematikk for IT, desember Side 5 av

6 Det binære tallet vi søker vil da være restene i divisjonene lest fra høyre mot venstre, altså: b) Utfør følgende multiplikasjon: c) En basketballtrener skal plukke ut et lag på fem personer fra spillergruppa som består av totalt personer Hvor mange ulike lag kan treneren plukke ut? (Siden kalkulator ikke er tillatt på denne eksamen, trenger du ikke å regne ut svaret, men bare sette opp hvordan det skal regnes ut og forkorte brøken du får mest mulig) Dette er et uordnet utvalg (rekkefølgen er uten betydning) uten tilbakelegging (dersom en spiller er valgt, kan han/hun ikke velges på nytt til det samme laget) Antallet er derfor gitt ved! 9 8 7! ( 5)! 5! 7! 5! 5 4 Oppgave 5 Gitt en grammatikk med startsymbol s, hvor mengden av ikke-avslutningssymboler er N = {s, t} og mengden av avslutningssymboler er T = {, } Gitt følgende produksjonsregler: s s s t t t t t a) i) Er denne grammatikken kontekstfri? Begrunn svaret Kravene for at en grammatikk skal være kontekstfri, er at den har: en endelig mengde avslutningssymboler, kalt T en endelig mengde ikke-avslutningssymboler, kalt N, og hvor T og N er disjunkte, altså at T N en endelig mengde produksjonsregler på formen w w hvor w N og w ( N T) * Løsningsforslag til eksamen i Matematikk for IT, desember Side 6 av

7 Her er både T og N endelige mengder, og de er disjunkte De to første kravene er derfor oppfylt Videre er venstresiden i alle produksjonsreglene element i N, og alle høyresidene er strenger fra ( N T) * Følgelig er også det tredje kravet oppfylt Grammatikken er følgelig en kontekstfri grammatikk ii) Er denne grammatikken regulær? Begrunn svaret Kravene for at en grammatikk skal være regulær, er at: Grammatikken er en kontekstfri grammatikk Produksjonsreglene er av en følgende former a w der w N og er den tomme strengen b w aw der w, w N og a T c w a der w N og a T Det første kravet er oppfylt (det ble begrunnet i delspørsmål i) Hvis vi ser på produksjonsreglene, ser vi at s s, s t og t t er av type b Regelen t er av type c t er av type a Alle produksjonsreglene er derfor av påkrevet type Vi kan derfor konkludere med at grammatikken er regulær b) Tilhører følgende strenger dette språket? Sagt på en annen måte: kan strengene produseres av denne grammatikken? Vis i så fall hvordan dette kan skje i) Denne strengen tilhører ikke språket ii) Denne strengen tilhører språket, og kan produseres slik: s s (Regel ) s s (Regel ) s t (Regel ) t (Regel ) Oppgave 6 a) Bruk direkte bevis til å bevise at produktet av to påfølgende heltall er et partall Det er flere måter å bevise dette på En måte er å benytte at to påfølgende heltall består av ett partall og ett oddetall En litt annen måte å vise det på, er slik: Gitt et tall n Det påfølgende tallet er da n+ Vi får da i prinsippet to muligheter: i) n er et partall og kan da skrives n = k hvor k er et heltall n + kan da skrives n + = k + Produktet av disse tallene blir da Løsningsforslag til eksamen i Matematikk for IT, desember Side 7 av

8 n ( n ) k (k ) 4k k (k k) Siden k er et heltall, vil (k k) også være et heltall ganger et heltall er et partall, og produktet blir derfor et partall ii) n er et oddetall, og kan skrives n = k hvor k er et heltall n + kan da skrives n + = k + = k Produktet av disse tallene blir da n ( n ) (k ) k (k ) Siden k er et heltall, vil (k ) også være et heltall ganger et heltall er et partall, og produktet blir altså et partall også i dette tilfellet b) Bruk induksjonsbevis til å bevise at n n for n Basistrinn Vi må vise at det gjelder for n = : Venstre side blir da: Høyre side blir: Vi ser at det uttrykket er korrekt for n = Induksjonstrinn Vi antar her at uttrykket gjelder for n = k (dette kalles induksjonshypotesen), altså at k k Vi skal da vise at det av dette følger at uttrykket også gjelder for n = k + : k Av induksjonshypotesen følger det at dette er lik k Vi kan derfor skrive uttrykket som k k k ( ) Adderer vi nå på begge sider, får vi k k k (*) ( k) Venstre side kan nå omformes på følgende måte: k k k k k k ( ) k k Løsningsforslag til eksamen i Matematikk for IT, desember Side 8 av

9 Vi ser at dette er lik høyre side i uttrykket (*) Dette viser at dersom uttrykket i oppgaven gjelder for n = k, vil det også gjelde for n = k + Siden vi i basistrinnet har vist at uttrykket gjelder for n =, har vi derved vist at det gjelder for alle n Beviset er med det fullført Oppgave 7 I denne oppgaven kan du ha nytte av en av følgende: tan 6 tan 4 tan a) Gitt et komplekst tall z i Tegn tallet z og tallets komplekskonjugerte i det komplekse planet Tallets komplekskonjugerte er z i Når man skal tegne dette i det komplekse planet er det nødvendig å vite at, 7 Det er imidlertid ikke avgjørende for sensuren om studenten kjenner en korrekt tilnærmingsverdi for Im z Re - z - b) Skriv tallet z på eksponentialform Modulen til z (altså lengden av z) er gitt ved Løsningsforslag til eksamen i Matematikk for IT, desember Side 9 av

10 r ( ) 4 Argumentet til z er gitt ved tan tan Eksponentialformen til z blir derfor z i e c) Finn den generelle (allmenne) løsningen til følgende differensligning: y n yn 4yn Den karakteristiske ligningen til denne differensligningen, er 4 Vi finner røttene i denne: ( ) ( ) ( ) i i i I spørsmål b) fant vi at denne kunne skrives som Løsningen på en differensligning som har komplekse røtter re i i den karakteristiske ligningen, er gitt ved e i y n n r ( Acos n Bsin n) I vårt tilfelle får vi derfor følgende generelle løsning på differensligningen: n n n yn ( Acos Bsin ) Løsningsforslag til eksamen i Matematikk for IT, desember Side av

11 Oppgave 8 Nedenfor er grafene G ( V, E ) og G ( V, E) tegnet Er G og G isomorfe? Dersom de er isomorfe, angi en isomorfi f : V V Dersom de ikke er isomorfe, forklar hvorfor de ikke er det a b e c 4 5 d G V, ) G V, ) ( E ( E Vi ser at begge grafene har fem noder og sju kanter At de har like mange noder og kanter er en nødvendig, men ikke tilstrekkelig, betingelse for at de skal være isomorfe Vi ser at node b har grad 4, mens nodene c og d har grad I G har node 4 grad 4, mens node og 5 har grad Node a og e samt node og har grad Når vi skal finne en isomorfi, vil må vi «pare» noder som har samme grad i de to grafene Etter litt prøving og feiling finner vi følgende funksjon f : V V : f ( a) f ( b) 4 f ( c) f ( d) 5 f ( e) Vi ser at denne funksjonen er injektiv (én-entydig), fordi ulike elementer i definisjonsmengden V har ulike bilder i verdimengden V Vi ser videre at f ( V ) V, altså at funksjonen er surjektiv (på) Vi må også sjekke at naboskap beholdes, altså at dersom u og v er naboer i G så er f(u) og f(v) naboer i G Det er lurt å være systematisk når man lister opp disse: først naboer til a, så naboer til b, osv Da ser vi: a og b er naboer i G Da må f ( a) og f ( b) 4 være naboer i G a og d er naboer i G Da må f ( a) og f ( d) 5 være naboer i G Løsningsforslag til eksamen i Matematikk for IT, desember Side av

12 b og c er naboer i G Da må f ( b) 4 og f ( c) være naboer i G b og d er naboer i G Da må f ( b) 4 og f ( d) 5 være naboer i G b og e er naboer i G Da må f ( b) 4 og f ( e) være naboer i G c og d er naboer i G Da må f ( c) og f ( d) 5 være naboer i G c og e er naboer i G Da må f ( c) og f ( e) være naboer i G Vi ser at naboskap bevares under f Siden f også er injektiv og surjektiv (altså bijektiv), kan vi konkludere med at f er en isomorfi G og G er følgelig isomorfe (Den isomorfien vi fant over, er ikke den eneste mulig En alternativ isomorfi er f ( a) f ( b) 4 f ( c) 5 f ( d) f ( e) ) Oppgave 9 Gitt følgende matriser: A 4 B 5 a) Regn ut AB og BA dersom de eksisterer AB 4 5 ( ) ( ) ( ) ( 4) 5 ( ) ( ) ( ) ( ) ( 4) 5 ( ) 6 Løsningsforslag til eksamen i Matematikk for IT, desember Side av

13 Løsningsforslag til eksamen i Matematikk for IT, desember Side av 5 4 BA Matriseproduktet BA eksisterer ikke b) Finn T A T A angir den transponerte matrisen Denne er: 5 4 T A

EKSAMEN. Oppgavesettet består av 9 oppgaver med i alt 20 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye.

EKSAMEN. Oppgavesettet består av 9 oppgaver med i alt 20 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye. EKSAMEN Emnekode: ITF75 Dato: 5. desember Emne: Matematikk for IT Eksamenstid: kl 9. til kl. Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Kalkulator er ikke tillatt. Faglærer: Christian

Detaljer

EKSAMEN. Emne: Emnekode: Matematikk for IT ITF Dato: Eksamenstid: til desember Hjelpemidler: Faglærer:

EKSAMEN. Emne: Emnekode: Matematikk for IT ITF Dato: Eksamenstid: til desember Hjelpemidler: Faglærer: EKSAMEN Emnekode: ITF0705 Dato: 5. desember 05 Emne: Matematikk for IT Eksamenstid: 09.00 til 3.00 Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Kalkulator er ikke tillatt. Faglærer: Christian

Detaljer

EKSAMEN. Oppgavesettet består av 11 oppgaver med i alt 21 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye.

EKSAMEN. Oppgavesettet består av 11 oppgaver med i alt 21 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye. EKSAMEN Emnekode: ITF0705 Dato: 6. desember 03 Emne: Matematikk for IT Eksamenstid: kl 09.00 til kl 3.00 Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Kalkulator er ikke tillatt. Faglærer:

Detaljer

EKSAMEN. Oppgavesettet består av 9 oppgaver med i alt 21 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye.

EKSAMEN. Oppgavesettet består av 9 oppgaver med i alt 21 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye. EKSAMEN Emnekode: ITF0705 Dato:. desember 00 Emne: Matematikk for IT Eksamenstid: kl 09.00 til kl 3.00 Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Faglærer: Christian F Heide Eksamensoppgaven:

Detaljer

EKSAMEN. Emnekode: Emne: Matematikk for IT ITF Eksamenstid: Dato: kl til kl desember Hjelpemidler: Faglærer:

EKSAMEN. Emnekode: Emne: Matematikk for IT ITF Eksamenstid: Dato: kl til kl desember Hjelpemidler: Faglærer: EKSAMEN Emnekode: ITF0705 Dato: 7. desember 0 Emne: Matematikk for IT Eksamenstid: kl 09.00 til kl 3.00 Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Kalkulator er ikke tillatt. Faglærer:

Detaljer

Emnenavn: Matematikk for IT. Eksamenstid: Faglærer: Christian F Heide

Emnenavn: Matematikk for IT. Eksamenstid: Faglærer: Christian F Heide EKSAMEN ny og utsatt Emnekode: ITF10705 Dato: 4. juni 2018 Hjelpemidler: - To A4-ark med valgfritt innhold på begge sider. Emnenavn: Matematikk for IT Eksamenstid: 09.00 13.00 Faglærer: Christian F Heide

Detaljer

EKSAMEN. Oppgavesettet består av 16 oppgaver. Ved sensur vil alle oppgaver telle like mye med unntak av oppgave 6 som teller som to oppgaver.

EKSAMEN. Oppgavesettet består av 16 oppgaver. Ved sensur vil alle oppgaver telle like mye med unntak av oppgave 6 som teller som to oppgaver. EKSAMEN Emnekode: ITF0705 Dato: 5. desember 204 Emne: Matematikk for IT Eksamenstid: kl 09.00 til kl 3.00 Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Kalkulator er ikke tillatt. Faglærer:

Detaljer

Løsningsforslag. Emnekode: Emne: Matematikk for IT ITF Eksamenstid: Dato: kl til kl desember Hjelpemidler: Faglærer:

Løsningsforslag. Emnekode: Emne: Matematikk for IT ITF Eksamenstid: Dato: kl til kl desember Hjelpemidler: Faglærer: Løsningsforslag Emnekode: ITF75 Dato: 7. desember Emne: Matematikk for IT Eksamenstid: kl 9. til kl. Hjelpemidler: To -ark med valgfritt innhold på begge sider. Kalkulator er ikke tillatt. Faglærer: Christian

Detaljer

Emnenavn: Matematikk for IT. Eksamenstid: Faglærer: Christian F Heide

Emnenavn: Matematikk for IT. Eksamenstid: Faglærer: Christian F Heide EKSAMEN Emnekode: ITF75 Dato: 4. desember 6 Hjelpemidler: - To A4-ark med valgfritt innhold på begge sider. Emnenavn: Matematikk for IT Eksamenstid: 9. 3. Faglærer: Christian F Heide Kalkulator er ikke

Detaljer

Emnenavn: Matematikk for IT. Eksamenstid: Faglærer: Christian F Heide

Emnenavn: Matematikk for IT. Eksamenstid: Faglærer: Christian F Heide EKSAMEN Emnekode: ITF0705 Dato: 5. desember 07 Hjelpemidler: - To A4-ark med valgfritt innhold på begge sider. Emnenavn: Matematikk for IT Eksamenstid: 09.00 3.00 Faglærer: Christian F Heide Kalkulator

Detaljer

Cr) Høgskoleni østfold

Cr) Høgskoleni østfold Cr) Høgskoleni østfold EKSAMEN Emnekode:Emne: ITF10705Matematikk for IT Dato:Eksamenstid: 15. desember 2015 09.00 til 13.00 Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Kalkulator er ikke

Detaljer

EKSAMEN. To A4-ark med valgfritt innhold på begge sider. Kalkulator er ikke tillatt.

EKSAMEN. To A4-ark med valgfritt innhold på begge sider. Kalkulator er ikke tillatt. Høgskoleni østfold EKSAMEN Emnekode:Emne: ITF10705Matematikk for IT Dato:Eksamenstid: 16. desember 2013 kl 09.00 til kl 13.00 Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Kalkulator er

Detaljer

Emnenavn: Matematikk for IT. Eksamenstid: Faglærer: Christian F Heide

Emnenavn: Matematikk for IT. Eksamenstid: Faglærer: Christian F Heide EKSAMEN Emnekode: ITF10705 Dato: 4. januar 2019 Hjelpemidler: - To A4-ark med valgfritt innhold på begge sider. Emnenavn: Matematikk for IT Eksamenstid: 09.00 13.00 Faglærer: Christian F Heide Kalkulator

Detaljer

Faglærer: Oppgavesettet består av 12 oppgaver med totalt 15 deloppgaver. Ved sensur vil alle deloppgaver telle like mye.

Faglærer: Oppgavesettet består av 12 oppgaver med totalt 15 deloppgaver. Ved sensur vil alle deloppgaver telle like mye. Høgskoleni østfold EKSAMEN Emnekode: ITF10705 Dato: Emnenavn: Matematikk for IT Eksamenstid: 14. desember 2016 09.00 13.00 Hjelpemidler: Faglærer: - To A4-ark med valgfritt Christian F Heide innhold på

Detaljer

Høgskoleni østfold. EKSAMEN Ny og utsatt

Høgskoleni østfold. EKSAMEN Ny og utsatt Høgskoleni østfold EKSAMEN Ny og utsatt Emnekode:Emne: ITF10705Matematikk for IT Dato:Eksamenstid: 8. juni 2015 09.00 13.00 Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Faglærer: Christian

Detaljer

Matematikk for IT. Prøve 1. Torsdag 17. september 2015. Løsningsforslag. 22. september 2015

Matematikk for IT. Prøve 1. Torsdag 17. september 2015. Løsningsforslag. 22. september 2015 Matematikk for IT Prøve 1 Torsdag 17. september 2015 Løsningsforslag 22. september 2015 Oppgave 1 Gitt følgende mengder A = {0, 1, 2, 3, 4}, B = {0, 1, 2} og C = {0, 3, 6, 9} Universet er U = {0, 1, 2,

Detaljer

Matematikk for IT Eksamen. Løsningsforslag

Matematikk for IT Eksamen. Løsningsforslag HØGSKOLEN I ØSTFOLD, AVDELING FOR INFORMASJONSTEKNOLOGI Matematikk for IT Eksamen 4. januar 2019 Løsningsforslag Christian F. Heide January 10, 2019 OPPGAVE 1 En spørreundersøkelse blant en gruppe studenter

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag ..4 EKSAMEN Løsigsforslag Emekode: ITF75 Dato: 6. desember Eme: Matematikk for IT Eksamestid: kl 9. til kl. Hjelpemidler: To A4-ark med valgfritt ihold på begge sider. Kalkulator er ikke tillatt. Faglærer:

Detaljer

Eksamensoppgave i TMA4140 Diskret matematikk

Eksamensoppgave i TMA4140 Diskret matematikk Institutt for matematiske fag Eksamensoppgave i TMA44 Diskret matematikk Faglig kontakt under eksamen: Christian Skau Tlf: 7359755 Eksamensdato: 8 desember 25 Eksamenstid (fra til): 9:-3: Hjelpemiddelkode/Tillatte

Detaljer

Matematikk for IT, høsten 2015

Matematikk for IT, høsten 2015 Matematikk for IT, høsten 015 Oblig 5 Løsningsforslag 5. oktober 016 3.1.1 3.1.13 a) Modus ponens. b) Modus tollens. c) Syllogismeloven. a) Ikke gyldig. b) Gyldig. 3.1.15 a) Hvis regattaen ikke avlyses,

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag 5..7 EKSAMEN Løsningsforslag Emnekode: ITD5 Dato:. desember 7 Hjelpemidler: - To A-ark med valgfritt innhold på begge sider. - Formelhefte. - Kalkulator som deles ut samtidig med oppgaven. Emnenavn: Matematikk

Detaljer

Eksamensoppgave i TMA4140 Diskret matematikk

Eksamensoppgave i TMA4140 Diskret matematikk Institutt for matematiske fag Eksamensoppgave i TMA414 Diskret matematikk Faglig kontakt under eksamen: Christian Skau Tlf: 97 96 5 57 Eksamensdato: 15. desember 217 Eksamenstid (fra til): 9: 13: Hjelpemiddelkode/Tillatte

Detaljer

Eksamensoppgave i TMA4140 Diskret matematikk

Eksamensoppgave i TMA4140 Diskret matematikk Institutt for matematiske fag Eksamensoppgave i TMA4140 Diskret matematikk Faglig kontakt under eksamen: Christian Skau Tlf: 73 59 17 55 Eksamensdato: 15. desember 2016 Eksamenstid (fra til): 09:00 13:00

Detaljer

Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag

Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag Institutt for matematiske fag Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag Faglig kontakt under eksamen: Martin Strand Tlf: 970 27 848 Eksamensdato:. august 2014 Eksamenstid (fra

Detaljer

Matematikk for IT, høsten 2017

Matematikk for IT, høsten 2017 Matematikk for IT, høsten 017 Oblig 5 Løsningsforslag 0. september 017 Oppgave 1 (eksamen desember 013) Gitt følgende logiske utsagn: ( p ( p q)) Benytt lovene i logikk til å finne hvilket av følgende

Detaljer

LØSNINGSFORSLAG EKSAMEN MNF130 VÅREN 2010 OPPGAVE 1

LØSNINGSFORSLAG EKSAMEN MNF130 VÅREN 2010 OPPGAVE 1 LØSNINGSFORSLAG EKSAMEN MNF130 VÅREN 2010 OPPGAVE 1 p q p p q p q T T F T T Sannhetstabell: T F F F F F T T T T F F T T T Siden proposisjonene p q og p q har samme sannhetsverdier (for alle sannhetsverdier

Detaljer

EKSAMEN (Del 1, høsten 2015)

EKSAMEN (Del 1, høsten 2015) EKSAMEN (Del 1, høsten 2015) Emnekode: ITD13012 Emne: Datateknikk Dato: 02.12.2015 Eksamenstid: kl 0900 til kl 1200 Hjelpemidler: Faglærer: to A4-ark (fire sider) med egne notater Robert Roppestad "ikke-kommuniserende"

Detaljer

Matematikk for IT. Prøve 1. Torsdag 18. september Løsningsforslag

Matematikk for IT. Prøve 1. Torsdag 18. september Løsningsforslag 23.09.2014 Matematikk for IT Prøve 1 Torsdag 18. september 2014 Løsningsforslag Oppgave 1 a) Gitt tallet BD 16. Konvertér dette tallet til titallsystemet. Siden B 16 = 11 10 og D 16 = 13 10 blir dette

Detaljer

Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag

Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag Institutt for matematiske fag Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag Faglig kontakt under eksamen: Martin Strand Tlf: 970 7 848 Eksamensdato: 3. mai 014 Eksamenstid (fra

Detaljer

Matematikk for IT. Prøve 1 Løsningsforslag. Fredag 23. september september Oppgave 1

Matematikk for IT. Prøve 1 Løsningsforslag. Fredag 23. september september Oppgave 1 Matematikk for IT Prøve 1 Løsningsforslag Fredag 23. september 2016 23. september 2016 Oppgave 1 Er 29 17 (mod 4)? Begrunn svaret. Dette kan vi lettest sjekke ved å se om 4 deler 29 17. 29 17 = 12. Vi

Detaljer

Løsningsforslag Øving 9 TMA4140 Diskret matematikk Høsten 2008. i for i = 0, 1, 2, 3, 4, og så er W 4 svaret. 0 1 0 0

Løsningsforslag Øving 9 TMA4140 Diskret matematikk Høsten 2008. i for i = 0, 1, 2, 3, 4, og så er W 4 svaret. 0 1 0 0 Løsningsforslag Øving 9 TMA4140 Diskret matematikk Høsten 2008 8.4.27 Vi beregner matrisene W i for i = 0, 1, 2, 3, 4, og så er W 4 svaret. a) W 0 = W 1 = W 2 = 1 0 0 0 1 1 0 0 b) W 0 = c) W 0 = d) W 0

Detaljer

Prøveeksamen 2016 (med løsningsforslag)

Prøveeksamen 2016 (med løsningsforslag) Prøveeksamen 2016 (med løsningsforslag 1 Grunnleggende mengdelære La A = {0, {0}} og B = {0, {0}, {0, {0}}}. Er følgende påstander sanne eller usanne? 1 {{0}} A 2 0 B 3 A B 4 A B 1 Usann 2 Usann 3 Sann

Detaljer

Matematikk for IT. Prøve 1. Onsdag 18. september Løsningsforslag

Matematikk for IT. Prøve 1. Onsdag 18. september Løsningsforslag Matematikk for IT Prøve 1 Onsdag 18. september 2013 Løsningsforslag Oppgave 1 a) Er 26 11 (mod 3)? Begrunn svaret. Dette spørsmålet betyr: Gir 26 : 3 samme rest som 11 : 3? Vi ser at 26 : 3 gir rest 2,

Detaljer

Matematikk for IT, høsten 2016

Matematikk for IT, høsten 2016 Matematikk for IT, høsten 2016 Oblig Løsningsforslag 16. september 2016 2.4.1 a) {(0, 1), (0, 2), (1, 2)} b) {(0, 0), (1, 1), (2, 2)} c) {(0, 0), (0, 1), (1, 0), (0, 2), (2, 0)} d) {(0, 0), (1, 0), (1,

Detaljer

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 10. desember 2013 Tid for eksamen: 09.00 13.00 Oppgave 1 Mengdelære (10 poeng)

Detaljer

Matematikk for IT, høsten 2016

Matematikk for IT, høsten 2016 Matematikk or IT, høsten 016 Oblig 4 Løsningsorslag 30. setember 016.4.11 a) ( 1, 3, 5, 7, ) Her vil relasjonsmengden være slik: {(1, 1), (3, 1), (3, 3), (5, 1), (5, 3), (5, 5), (7, 1), (7, 3), (7, 5),

Detaljer

Løsningsforlag til eksamen i Diskret matematikk. 29. november 2017

Løsningsforlag til eksamen i Diskret matematikk. 29. november 2017 Løsningsforlag til eksamen i Diskret matematikk 29. november 2017 Oppgave 1, 2, 3, 4, 5 og 6 teller likt. For å få full score må man vise hvordan man har kommet frem til svarene (ved f. eks. figurer eller

Detaljer

True False. Q(0, 1, 2) yq(0, y, y) x yq(x, y, 10) x yq(x, y, x + x) y xq(x, y, x + x) x y Q(x, y, x + x) y x Q(x, y, x + x) x y zq(x, y, z)

True False. Q(0, 1, 2) yq(0, y, y) x yq(x, y, 10) x yq(x, y, x + x) y xq(x, y, x + x) x y Q(x, y, x + x) y x Q(x, y, x + x) x y zq(x, y, z) BOKMÅL-MNF130 Kand.nr:... Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I BERGEN Eksamen i emnet MNF130 - Diskrete Strukturer Onsdag 8. juni 2005, kl. 09-14, dvs 5 timer. Skriv ditt kanidatnr

Detaljer

LØSNINGSFORSLAG UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet. Oppgave 1 Mengdelære (10 poeng)

LØSNINGSFORSLAG UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet. Oppgave 1 Mengdelære (10 poeng) UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 9. desember 2010 Tid for eksamen: 09:00 13:00 INF1080 Logiske metoder for informatikk Oppgave 1 Mengdelære (10 poeng)

Detaljer

Emnenavn: Eksamenstid: Faglærer: Christian F Heide

Emnenavn: Eksamenstid: Faglærer: Christian F Heide EKSAMEN Emnekode: ITD15013 Emnenavn: Matematikk 1 første deleksamen Dato: 13. desember 017 Hjelpemidler: Eksamenstid: 09.00 1.00 Faglærer: To A4-ark med valgfritt innhold på begge sider. Formelhefte. Kalkulator

Detaljer

EKSAMEN Ny og utsatt

EKSAMEN Ny og utsatt EKSAMEN Ny og utsatt Emekode: ITF0705 Dato: 30. mai 04 Eme: Matematikk for IT Eksamestid: kl 09.00 til kl 3.00 Hjelpemidler: To A4-ark med valgfritt ihold på begge sider. Kalkulator er ikke tillatt. Faglærer:

Detaljer

Løsningsforslag oblig. innlevering 1

Løsningsforslag oblig. innlevering 1 Løsningsforslag oblig. innlevering 1 IN1150 Logiske metoder Høsten 2017 Oppgave 1 - Mengdelære (10 poeng) a) Ut fra opplysningene under, angi hvilke mengder A og B er. A B = {1, 2, 3, 4, 5, 6} A B = {2,

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag 7 desember EKSAMEN Løsningsorslag Emnekode: ITD5 Dato: 6 desember Hjelpemidler: Emne: Matematikk ørste deleksamen Eksamenstid: 9 Faglærer: To A-ark med valgritt innhold på begge sider Formelhete Kalkulator

Detaljer

R for alle a A. (, så er a, En relasjon R på en mengde A er en Ekvivalensrelasjon hvis den er refleksiv, symmetrisk og transitiv.

R for alle a A. (, så er a, En relasjon R på en mengde A er en Ekvivalensrelasjon hvis den er refleksiv, symmetrisk og transitiv. Repetisjon fra siste uke: Relasjoner En relasjon R på en mengde A er en delmengde av produktmengden A A. La R være en relasjon på en mengde A. R er refleksiv hvis R er symmetrisk hvis R er antisymmetrisk

Detaljer

Høgskoleni østfold EKSAMEN. LSVIMAT12 Matematikk 1, V 1: Tall og algebra. funksjoner 1. Dato: 16. desember Eksamenstid: kl til kl 15.

Høgskoleni østfold EKSAMEN. LSVIMAT12 Matematikk 1, V 1: Tall og algebra. funksjoner 1. Dato: 16. desember Eksamenstid: kl til kl 15. Høgskoleni østfold EKSAMEN Emnekode: Emne: LSVIMAT12 Matematikk 1, V 1: Tall og algebra. funksjoner 1 Dato: 16. desember Eksamenstid: kl 09.00 til kl 15.00 2015 Hjelpemidler: Faglærer: Khaled Jemai Kalkulator

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF Logiske metoder for informatikk Eksamensdag:. desember Tid for eksamen:.. Oppgavesettet er på sider. Vedlegg: Ingen Tillatte

Detaljer

Høgskoleni østfold EKSAMEN

Høgskoleni østfold EKSAMEN Høgskoleni østfold EKSAMEN Emnekode: LBMAT10311 Emne: Måling, tall og algebra og funksjoner Dato: Eksamenstid: kl 09.00 til kl 15.00 4. desember 2014 Hjelpemidler: Kalkulator uten grafisk vindu Faglærer:

Detaljer

Høgskoleni østfold EKSAMEN. Emnekode: Emne: ITD13012 Datateknikk (deleksamen 1, høstsemesteret) Dato: Eksamenstid: kl til kl.

Høgskoleni østfold EKSAMEN. Emnekode: Emne: ITD13012 Datateknikk (deleksamen 1, høstsemesteret) Dato: Eksamenstid: kl til kl. Høgskoleni østfold EKSAMEN Emnekode: Emne: ITD13012 Datateknikk (deleksamen 1, høstsemesteret) Dato: 02.12.2015 Eksamenstid: kl. 0900 til kl. 1200 Hjelpemidler: Faglærer: to A4-ark (fire sider) med egne

Detaljer

Høgskoleni østfold EKSAMEN. LSV1MAT12 Matematikk Vl: Tall, algebra og funksjoner 1

Høgskoleni østfold EKSAMEN. LSV1MAT12 Matematikk Vl: Tall, algebra og funksjoner 1 13/. Høgskoleni østfold EKSAMEN Emnekode: Emne: LSV1MAT1 Matematikk Vl: Tall, algebra og funksjoner 1 Dato: 1.1.013 Eksamenstid: kl. 9 til kl. 15 Hjelpemidler: Kalkulator uten grafisk skjerm. Faglærer:

Detaljer

i Dato:

i Dato: c:- høgskolen i oslo I Emne I EmnlekOde: I FagligvelIeder: Diskret matematikk FO 019A UJfUttersrud raruppe( r): i Dato: - I Eksamenstid: 12.12.2005 9-14 I Eksam-ensopp gavenbestår av: I Antall sid~nkl

Detaljer

EKSAMEN. Emne: V1: Tall og algebra, funksjoner 1. Eksamenstid: 6 timer, kl til kl

EKSAMEN. Emne: V1: Tall og algebra, funksjoner 1. Eksamenstid: 6 timer, kl til kl EKSAMEN Emnekode: LSV1MAT12 Emne: V1: Tall og algebra, funksjoner 1 Dato: 13. desember 2012 Eksamenstid: 6 timer, kl. 09.00 til kl. 15.00 Hjelpemidler: Kalkulator uten grafisk vindu Faglærer: Andrea Hofmann

Detaljer

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet. INF1080 Logiske metoder for informatikk

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet. INF1080 Logiske metoder for informatikk UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag:. desember Tid for eksamen:.. INF Logiske metoder for informatikk Oppgave Mengdelære ( poeng) La A = {,, {}}, B =

Detaljer

Ekvivalente utsagn. Eksempler: Tautologi : p V p Selvmotsigelse: p Λ p

Ekvivalente utsagn. Eksempler: Tautologi : p V p Selvmotsigelse: p Λ p Ekvivalente utsagn Definisjoner: Et sammensatt utsagn som ALLTID er SANT kalles for en TAUTOLOGI. Et sammensatt utsagn som ALLTID er USANT kalles for en SELVMOTIGELSE eller en KONTRADIKSJON (eng. contradiction).

Detaljer

Eksamen i Elementær Diskret Matematikk - (MA0301)

Eksamen i Elementær Diskret Matematikk - (MA0301) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Steffen Junge (73 59 17 73 / 94 16 27 27) Eksamen i Elementær Diskret Matematikk -

Detaljer

EKSAMEN Emnekode: ITD13012

EKSAMEN Emnekode: ITD13012 EKSAMEN Emnekode: ITD13012 Dato: 29.11.2017 Hjelpemidler: To (2) A4-ark (fire sider) med egne notater. HIØ-kalkulator som kan lånes under eksamen. Emnenavn: Datateknikk Eksamenstid: 3 timer Faglærer: Robert

Detaljer

EKSAMEN I FAG TMA4140 DISKRET MATEMATIKK Tirsdag 16. desember 2003 Tid :

EKSAMEN I FAG TMA4140 DISKRET MATEMATIKK Tirsdag 16. desember 2003 Tid : Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Marius Irgens 92 81 23 87 EKSAMEN I FAG TMA4140 DISKRET MATEMATIKK Tirsdag 16. desember

Detaljer

Høgskoleni østfold EKSAMEN. Dato: Eksamenstid: kl til kl. 1200

Høgskoleni østfold EKSAMEN. Dato: Eksamenstid: kl til kl. 1200 Høgskoleni østfold EKSAMEN Emnekode: ITD13012 Emne: Datateknikk Dato: 3.12.2014 Eksamenstid: kl. 0900 til kl. 1200 Hjelpemidler: to A4-ark (fire sider) med egne notater "ikke-kommuniserende" kalkulator

Detaljer

R for alle a A. (, så er a, En relasjon R på en mengde A er en Ekvivalensrelasjon hvis den er refleksiv, symmetrisk og transitiv.

R for alle a A. (, så er a, En relasjon R på en mengde A er en Ekvivalensrelasjon hvis den er refleksiv, symmetrisk og transitiv. Repetisjon fra siste uke: Relasjoner En relasjon R på en mengde A er en delmengde av produktmengden A A. La R være en relasjon på en mengde A. R er refleksiv hvis R er symmetrisk hvis R er antisymmetrisk

Detaljer

Emnenavn: Datateknikk. Eksamenstid: 3 timer. Faglærer: Robert Roppestad. består av 5 sider inklusiv denne forsiden, samt 1 vedleggside.

Emnenavn: Datateknikk. Eksamenstid: 3 timer. Faglærer: Robert Roppestad. består av 5 sider inklusiv denne forsiden, samt 1 vedleggside. Høgskolen i østfold EKSAMEN Emnekode: ITD13012 Dato: 2.12.2016 Hjelpemidler: To (2) A4-ark (fire sider) med egne notater Hlø-kalkulator som kan lånes under eksamen Emnenavn: Datateknikk Eksamenstid: 3

Detaljer

Høgskoleni østfold EKSAMEN. Ikke-programmerbar lommeregner uten grafisk skjerm Monica Nordbakke Marianne Maugesten

Høgskoleni østfold EKSAMEN. Ikke-programmerbar lommeregner uten grafisk skjerm Monica Nordbakke Marianne Maugesten Høgskoleni østfold EKSAMEN Emnekode: Emne: LUMAT10115 Tall, algebra og funksjoner 1 Dato: 16.12.2015 Eksamenstid: kl. 9 til k1.15 Hjelpemidler: Faglærere: Ikke-programmerbar lommeregner uten grafisk skjerm

Detaljer

INF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng]

INF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng] INF1080 Logiske metoder for informatikk Digital eksamen Tid: Onsdag 7. desember 2016 kl. 14.30 18.30 (4 timer) Tillatte hjelpemidler: Ingen Eksamen består av to deler som er verdt omtrent like mye. Den

Detaljer

EKSAMEN. Evaluering av IT-systemer. Eksamenstid: kl 0900 til kl 1300

EKSAMEN. Evaluering av IT-systemer. Eksamenstid: kl 0900 til kl 1300 EKSAMEN Emnekode: ITL24006 Dato: 4. desember 2007 Hjelpemidler: Emne: Evaluering av IT-systemer Eksamenstid: kl 0900 til kl 1300 Faglærer: Ingen, heller ikke kalkulator eller mobiltelefon Kåre Sorteberg

Detaljer

EKSAMEN. Algoritmer og datastrukturer. Eksamensoppgaven: Oppgavesettet består av 11 sider inklusiv vedlegg og denne forsiden.

EKSAMEN. Algoritmer og datastrukturer. Eksamensoppgaven: Oppgavesettet består av 11 sider inklusiv vedlegg og denne forsiden. EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: Eksamenstid: 20. mai 2008 kl 09.00 til kl 13.00 Hjelpemidler: 4 A4-sider (2 ark) med valgfritt innhold Kalkulator Faglærer: Mari-Ann

Detaljer

EKSAMEN. 1 Om eksamen. EMNE: MA2610 FAGLÆRER: Svein Olav Nyberg, Trond Stølen Gustavsen. Klasser: (div) Dato: 24. mai 2004 Eksamenstid:

EKSAMEN. 1 Om eksamen. EMNE: MA2610 FAGLÆRER: Svein Olav Nyberg, Trond Stølen Gustavsen. Klasser: (div) Dato: 24. mai 2004 Eksamenstid: EKSAMEN EMNE: MA6 FAGLÆRER: Svein Olav Nyberg, Trond Stølen Gustavsen Klasser: (div) Dato: mai Eksamenstid: Eksamensoppgaven består av følgende: Antall sider (ink forside): 5 Antall oppgaver: Antall vedlegg:

Detaljer

NY EKSAMEN Emnekode: ITD13012

NY EKSAMEN Emnekode: ITD13012 NY EKSAMEN Emnekode: ITD13012 Dato: 30.05.2018 Hjelpemidler: To (2) A4-ark (fire sider) med egne notater. HIØ-kalkulator som kan lånes under eksamen. Emnenavn: Datateknikk (deleksamen 1) Eksamenstid: 3

Detaljer

EKSAMEN. Emne: Matematikk 101: Tall, algebra og funksjonslære Matematikk 101: Tall, algebra og funksjonslære (5-10)

EKSAMEN. Emne: Matematikk 101: Tall, algebra og funksjonslære Matematikk 101: Tall, algebra og funksjonslære (5-10) EKSAMEN Emnekode: LMAT10111 LUMAT10111 Emne: Matematikk 101: Tall, algebra og funksjonslære Matematikk 101: Tall, algebra og funksjonslære (5-10) Dato: 13.12.2012 Eksamenstid: kl. 9 til kl. 15. Hjelpemidler:

Detaljer

Repetisjon og mer motivasjon. MAT1030 Diskret matematikk. Repetisjon og mer motivasjon

Repetisjon og mer motivasjon. MAT1030 Diskret matematikk. Repetisjon og mer motivasjon Repetisjon og mer motivasjon MAT030 Diskret matematikk Forelesning 22: Grafteori Roger Antonsen Matematisk Institutt, Universitetet i Oslo 4. april 2008 Først litt repetisjon En graf består av noder og

Detaljer

Høgskoen i Østfold EKSAMEN

Høgskoen i Østfold EKSAMEN Høgskoen i Østfold EKSAMEN Emnekode: Emne: LMAT10111 Tall, algebra og funksjonslære LUMAT10111 Tall, algebra og funksjonslære (5-10) Dato: 5.12.2014 Eksamenstid: kl. 9 til kl. 15 Hjelpemidler: Ikke-programmerbar

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Forelesning 32: Repetisjon Dag Normann Matematisk Institutt, Universitetet i Oslo 21. mai 2008 Streik? Det er muligheter for streik i offentlig sektor fra midnatt, natt til fredag.

Detaljer

EKSAMEN med løsningsforslag

EKSAMEN med løsningsforslag EKSAMEN med løsningsforslag Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: Eksamenstid: 20. mai 2009 kl 09.00 til kl 13.00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater Kalkulator Faglærer:

Detaljer

EKSAMEN. Algoritmer og datastrukturer

EKSAMEN. Algoritmer og datastrukturer EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: Eksamenstid: 20. mai 2009 kl 09.00 til kl 13.00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater Kalkulator Faglærer: Gunnar Misund

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 28. november 2014 Tid for eksamen: 08.15 12.15 Oppgavesettet er på 6 sider. Vedlegg: Tillatte hjelpemidler: INF1080

Detaljer

1. del av Del - EKSAMEN

1. del av Del - EKSAMEN 1. del av Del - EKSAMEN Emnekode: ITD13012 Emne: Datateknikk Dato: 27. November 2012 Eksamenstid: kl 9:00 til kl 12:00 Hjelpemidler: 4 sider (A4) (2 ark) med egne notater. Ikke-kummuniserende kalkulator.

Detaljer

EKSAMEN Løsningsforslag. med forbehold om bugs :-)

EKSAMEN Løsningsforslag. med forbehold om bugs :-) 1 EKSAMEN Løsningsforslag med forbehold om bugs :-) Emnekode: ITF20006 000 Dato: 20. mai 2011 Emne: Algoritmer og datastrukturer Eksamenstid: 09:00 til 13:00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 28. november 2014 Tid for eksamen: 08.15 12.15 Oppgave 1 Mengdelære (10 poeng)

Detaljer

LO118D Forelesning 5 (DM)

LO118D Forelesning 5 (DM) LO118D Forelesning 5 (DM) Relasjoner 03.09.2007 1 Relasjoner 2 Ekvivalensrelasjoner 3 Matriser av relasjoner 4 Relasjonsdatabaser Relasjon Relasjoner er en generalisering av funksjoner En relasjon er en

Detaljer

TMA4140 Diskret Matematikk Høst 2016

TMA4140 Diskret Matematikk Høst 2016 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4140 Diskret Matematikk Høst 2016 Seksjon 10.2 18 La G = (V,E) være en enkel graf med V 2. Ettersom G er enkel er de mulige

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 9. desember 2010 Tid for eksamen: 09:00 13:00 Oppgavesettet er på 5 sider.

Detaljer

Grafteori. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori.

Grafteori. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori. MAT030 Diskret Matematikk Forelesning 23: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo Grafteori 20. april 200 (Sist oppdatert: 200-04-20 4:8) MAT030 Diskret Matematikk 20. april 200

Detaljer

EKSAMEN. Emne: V1: Tall og algebra, funksjoner 1. Eksamenstid: 6 timer kl til kl.15.00

EKSAMEN. Emne: V1: Tall og algebra, funksjoner 1. Eksamenstid: 6 timer kl til kl.15.00 EKSAMEN Emnekode: LSMATAF11 Emne: V1: Tall og algebra, funksjoner 1 Dato: 13. desember 01 Eksamenstid: 6 timer kl. 09.00 til kl.15.00 Hjelpemidler: Kalkulator uten grafisk vindu Faglærer: Marianne Maugesten

Detaljer

Eksamensoppgave i MA1201 Lineær algebra og geometri

Eksamensoppgave i MA1201 Lineær algebra og geometri Institutt for matematiske fag Eksamensoppgave i MA1201 Lineær algebra og geometri Faglig kontakt under eksamen: Steffen Oppermann Tlf: 9189 7712 Eksamensdato: 05.10.2016 Eksamenstid (fra til): 08:15 09:45

Detaljer

Løsningsforslag til prøveunderveiseksamen i MAT-INF 1100, H-03

Løsningsforslag til prøveunderveiseksamen i MAT-INF 1100, H-03 Løsningsforslag til prøveunderveiseksamen i MAT-INF 1100, H-03 Denne prøveeksamenen har samme format som den virkelige underveiseksamenen, og inneholder oppgaver av samme type og vanskelighetsgrad. De

Detaljer

EKSAMEN. Tall og algebra, funksjoner 2

EKSAMEN. Tall og algebra, funksjoner 2 EKSAMEN Emnekode: LSV3MAT12 Emne: Tall og algebra, funksjoner 2 Dato: 06/12/2012 Eksamenstid: kl. 09.00 til kl. 15.00 Hjelpemidler: Kalkulator Faglærer: Petter Løkkeberg Eksamensoppgaven: Oppgavesettet

Detaljer

EKSAMEN (Del 1, høsten 2014)

EKSAMEN (Del 1, høsten 2014) EKSAMEN (Del 1, høsten 2014) Emnekode: ITD13012 Emne: Datateknikk Dato: 03.12.2014 Eksamenstid: kl 0900 til kl 1200 Hjelpemidler: to A4-ark (fire sider) med egne notater "ikke-kommuniserende" kalkulator

Detaljer

INF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng]

INF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng] INF1080 Logiske metoder for informatikk Digital eksamen (med løsningsforslag) Dette er et utkast til løsningsforslag til eksamen i INF1080, og feil kan forekomme. Hvis du finner noen feil, si ifra til

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 23: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo 20. april 2010 (Sist oppdatert: 2010-04-20 14:17) Grafteori MAT1030 Diskret Matematikk 20. april

Detaljer

MAT1030 Forelesning 23

MAT1030 Forelesning 23 MAT030 Forelesning 23 Grafteori Roger Antonsen - 22. april 2009 (Sist oppdatert: 2009-04-22 2:36) Forelesning 23 Repetisjon og mer motivasjon Først litt repetisjon En graf består av noder og kanter Kanter

Detaljer

Forelesning 23. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori.

Forelesning 23. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori. MAT030 Diskret Matematikk Forelesning 23: Grafteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo Forelesning 23 22. april 2009 (Sist oppdatert: 2009-04-22 2:37) MAT030 Diskret Matematikk

Detaljer

Høgskolen i Agder. Institutt for matematiske fag EKSAMEN

Høgskolen i Agder. Institutt for matematiske fag EKSAMEN Høgskolen i Agder Institutt for matematiske fag EKSAMEN i MA1040 Matematikk for IT-studenter Mandag 5. mai 2003, kl. 09 00 13 00 Alle trykte og skrevne hjelpemidler er tillatt. Oppgavesettet er på 7 sider.

Detaljer

EKSAMEN. V3: Tall og algebra, funksjoner 2 ( trinn)

EKSAMEN. V3: Tall og algebra, funksjoner 2 ( trinn) EKSAMEN Emnekode: LSV3MAT Emne: V3: Tall og algebra, funksjoner (5.-0. trinn) Dato: 3. desember 08 Eksamenstid: kl. 09.00 til kl. 5.00 Hjelpemidler: Kalkulator uten grafisk vindu Vedlagt formelark Faglærere:

Detaljer

Løsningsforslag til EKSAMEN

Løsningsforslag til EKSAMEN Løsningsforslag til EKSAMEN Emnekode: ITD006 Emne: Fysikk og datateknikk Dato: 09. Mai 007 Eksamenstid: kl 9:00 til kl :00 Hjelpemidler: 4 sider (A4) ( ark) med egne notater. Kalkulator. Gruppebesvarelse,

Detaljer

Løsningsforslag til 1. del av Del - EKSAMEN

Løsningsforslag til 1. del av Del - EKSAMEN Løsningsforslag til 1. del av Del - EKSAMEN Emnekode: ITD13012 Emne: Datateknikk Dato: 27. November 2012 Eksamenstid: kl 9:00 til kl 12:00 Hjelpemidler: 4 sider (A4) (2 ark) med egne notater. Ikke-kummuniserende

Detaljer

INF1800 LOGIKK OG BEREGNBARHET

INF1800 LOGIKK OG BEREGNBARHET INF1800 LOGIKK OG BEREGNBARHET FORELESNING 6: UTSAGNSLOGIKK Roger Antonsen Institutt for informatikk Universitetet i Oslo 3. september 2008 (Sist oppdatert: 2008-09-03 12:49) Mer om bruk av utsagnslogikk

Detaljer

INF3170 Forelesning 1

INF3170 Forelesning 1 INF3170 Forelesning 1 Introduksjon og mengdelære Roger Antonsen - 26. januar 2010 (Sist oppdatert: 2010-01-26 14:58) Dagens plan Innhold Velkommen til INF3710 Logikk 1 Litt praktisk informasjon...................................

Detaljer

EKSAMEN. Emne: Webprogrammering med PHP (kont.) Webprogrammering 1 (kont.) Eksamenstid: 09.00-13.00

EKSAMEN. Emne: Webprogrammering med PHP (kont.) Webprogrammering 1 (kont.) Eksamenstid: 09.00-13.00 EKSAMEN Emnekode: ITM20606 ITF10208 Dato: Emne: Webprogrammering med PHP (kont.) Webprogrammering 1 (kont.) Eksamenstid: 09.00-13.00 05/06-2009 Hjelpemidler: 2 A4 ark (4 sider) med egenproduserte notater

Detaljer

LØSNINGSFORSLAG, SIF 5015, DISKRET MATEMATIKK 12. august 2003 Oppgave 1. La oss begynne med å bygge en ikke-deterministisk maskin:

LØSNINGSFORSLAG, SIF 5015, DISKRET MATEMATIKK 12. august 2003 Oppgave 1. La oss begynne med å bygge en ikke-deterministisk maskin: LØSNINGSFORSLAG, SIF 5015, DISKRET MATEMATIKK 12. august 200 Oppgave 1. La oss begynne med å bygge en ikke-deterministisk maskin: s 0 s 1 gjennkjenner 0 1og s 0 gjennkjenner (0 1). Fra dette ser vi at

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 9. desember 2015 Tid for eksamen: 09.00 13.00 (Fortsettes på side 2.) INF1080 Logiske metoder for informatikk Oppgave

Detaljer

13/21. Høgskoleni østfold EKSAMEN. Emnekode: Emne: LSMATAF213 V3: Tall, algebra, funksjoner 2

13/21. Høgskoleni østfold EKSAMEN. Emnekode: Emne: LSMATAF213 V3: Tall, algebra, funksjoner 2 13/21 Høgskoleni østfold EKSAMEN Emnekode: Emne: LSMATAF213 V3: Tall, algebra, funksjoner 2 Dato:Eksamenstid: 13. desember 2013kl. 09.00 til kl. 15.00 Hjelpemidler: Kalkulator uten grafisk vindu Faglærere:

Detaljer

EKSAMEN. Objektorientert programmering

EKSAMEN. Objektorientert programmering EKSAMEN Emnekode: ITF 10609 Dato: 13.mai 2009 Emne: Objektorientert programmering Eksamenstid: kl 09.00 til kl 12.00 Hjelpemidler: 2 A4-ark med valgfritt innhold på begge sider. Faglærere: Tom Heine Nätt

Detaljer

LØSNINGSFORSLAG SIF5015 DISKRET MATEMATIKK Onsdag 18. desember 2002

LØSNINGSFORSLAG SIF5015 DISKRET MATEMATIKK Onsdag 18. desember 2002 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 LØSNINGSFORSLAG SIF55 DISKRET MATEMATIKK Onsdag 8. desember 22 Oppgave a) Vi vil ha 77x (mod 3), så vi trenger en

Detaljer