Matematikk for IT. Prøve 1 Løsningsforslag. Fredag 23. september september Oppgave 1
|
|
- Elisabeth Clausen
- 8 år siden
- Visninger:
Transkript
1 Matematikk for IT Prøve 1 Løsningsforslag Fredag 23. september september 2016 Oppgave 1 Er (mod 4)? Begrunn svaret. Dette kan vi lettest sjekke ved å se om 4 deler = 12. Vi vet at 4 12 siden 12 : 4 = 3 med rest er følgelig kongruent med 17 modulo 4. Oppgave 2 a) Konvertér det heksadesimale tallet BC516 til binærtall (altså grunntall 2). Her kan vi konvertere hvert av de tre heksadesimale sifrene til fire binære sifre: B: 1011 C: : 0101 Følgelig: BC516 = b) Konvertér det binære tallet til desimaltall (altså grunntall 10) c) Benytt binær multiplikasjon for å finne Oppgave 3 Gitt følgende mengder = {1, 3, 5, 7, 9} og B = {0, 2, 4}.
2 Universet er U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Finn B. B. Her er 1, 3, 5, 6, 7, 8, 9 Videre er da B 1, 3, 5, 7, 9 Komplementet av dette er B 0, 2, 4, 6, 8 Oppgave 4 Bruk venndiagram til å løse følgende problem. Gitt to mengder og B. nta nå at B En tredje mengde C er gitt ved Hva er da C B C? Vi tegner først et venndiagram som viser B : B 2
3 Mengden C B er da den skraverte delen i følgende venndiagram, altså lik : B C Da må C = Oppgave 5 En frimerkeklubb på 21 personer skal velge et styre bestående av leder, kasserer og sekretær. Hvor mange ulike slike styrer kan settes sammen? Du trenger ikke å regne ut, men bare sette opp uttrykket og forkorte brøken du får mest mulig. Siden det skal velges til ulike roller blir dette et ordnet utvalg (det er to ulike styrer om en person velges til leder eller kasserer). Det er også uten tilbakelegging siden en person som velges til et verv ikke kan velges også til et annet verv i det samme styret. ntallet blir derfor 21! ! P ( 21, 3) (21 3)! 18! Oppgave 6 Gitt mengden = {1, 2, 3}. Det er definert en relasjon, R, på ved R = {(1, 1), (3, 1), (2, 1), (2, 2), (3, 3)} Er relasjonen en ekvivalensrelasjon, en delvis ordning, en totalordning eller ingen av delene? Begrunn svaret. For å undersøke dette, må vi gjøre en vurdering av hvorvidt relasjonen er refleksiv, symmetrisk, antisymmetrisk og/eller transitiv. Dette er lettest å se dersom vi tegner relasjonen som en rettet graf: 3
4 1 2 3 v denne figuren ser vi at relasjonen er refleksiv fordi alle elementene i mengden har relasjon til seg selv. Videre ser vi at relasjonen ikke er symmetrisk siden for eksempel (2, 1) er element i relasjonsmengden, mens (1, 2) ikke er med. Relasjonen er antisymmetrisk fordi vi ikke har noen symmetriske par. Relasjonen er transitiv så lenge vi ikke klarer å finne noe moteksempel hvor (x, y) R og (y, z) R men (x, z) R. Her finner vi ikke noe slikt moteksempel. Relasjonen er følgelig transitiv. Relasjonen er altså refleksiv, antisymmetrisk og transitiv, og er følgelig en delvis ordning. Det er ikke en totalordning fordi 2 og 3 ikke er relatert (vi har hverken (2, 3) eller (3, 2) med i relasjonsmengden). Oppgave 7 I denne oppgaven er følgende mengder gitt: = {0, 1, 2, 3} og B = {a, b, c}. a) Gitt en relasjon fra til B. Beskriv hva som skal til for at relasjonen er en funksjon. For at en slik relasjon skal være en funksjon må alle elementene i mengden ha en relasjon og denne relasjonen må være til nøyaktig ett element i mengden B. b) Forklar hva det innebærer det at en funksjon er surjektiv. Gi også et eksempel på en funksjon f : B som ikke er surjektiv. Det innebærer at alle elementene i B er bilde av et element i. Vi kan alternativt si at verdimengden til f må være lik kodomenet B. Et eksempel på en funksjon som ikke er surjektiv: f = {(0, a), (1, a), (2, a), (3, b)} I dette eksemplet er elementet c i kodomenet ikke bilde av noe element i definisjonsmengden, og funksjonen er derfor ikke surjektiv. 4
5 c) Er det mulig å definere funksjonen f : B slik at den blir injektiv? Begrunn svaret. En funksjon er injektiv dersom alle elementene i definisjonsmengden har ulike bilder i kodomenet. Fordi = 4 og B = 3 er det ikke mulig å ha en funksjon fra til B slik at alle elementene i har ulike bilder i B (det er for få elementer i B). Oppgave 8 En faglærer har 43 lærebøker som omhandler ulike temaer innen IT, og ønsker å se litt på hvordan de dekker pensum innen de tre temaene datakommunikasjon, operativsystemer og algoritmer. Hver av bøkene omhandler ingen, ett eller flere av disse tre temaene. 12 bøker omhandler datakommunikasjon, 15 bøker omhandler operativsystemer og 18 omhandler algoritmer. 6 bøker omhandler både datakommunikasjon og operativsystemer, 3 bøker omhandler både datakommunikasjon og algoritmer, 5 bøker omhandler både operativsystemer og algoritmer og 2 bøker omhandler alle de tre temaene. a) Hvor mange lærebøker omhandler ingen av de tre temaene? Vi kan kalle mengden av bøker som omhandler datakommunikasjon D, de som omhandler operativsystemer O og de som omhandler algoritmer. Opplysningene som er gitt i oppgaven kan da uttrykkes slik: D = 12 O = 15 = 18 D O 6 D 3 O 5 D O 2 ntall bøker som ikke omhandler noen av disse temaene er gitt ved totalt antall bøker minus antall bøker som omhandler minst ett av temaene, altså som 43 D O Inklusjons- og eksklusjonsprinsippet for dette problemet kan uttrykkes D O = D + O + D O D O + D O Bruker vi tallene gitt i oppgaven, finner vi: D O = = 33 ntall bøker som ikke omhandler noen av temaene, er derfor = 10 b) Hvor mange lærebøker omhandler eksakt ett av de tre temaene? ltså antall bøker som omhandler enten datakommunikasjon, operativsystemer eller algoritmer, men hvor det ikke er mer enn ett av disse temaene i hver av bøkene. Vi kan regne ut dette på to ulike måter. Den ene måten er slik: 5
6 Vi regner ut D O og trekker så fra det antallet som er i snittene mellom mengdene: D O D O D O + 2 D O Det siste leddet i uttrykket skyldes at vi trekker fra snittet mellom alle de tre mengdene tre ganger, og må derfor legge det til to ganger for at vi skal ha trukket det fra bare en gang. Underveis i oppgave a) fant vi at D O = 33. Setter vi inn dette og de andre tallene som er oppgitt i oppgaven, finner vi: = 23 En alternativ måte å regne ut dette på, er slik: Vi tar først de bøkene som omhandler datakommunikasjon og trekker fra de bøkene som også omhandler enten operativsystemer, algoritmer eller begge deler, som vist i følgende venndiagram: D O Dette er gitt ved D D O D + D O = = 5 Det at vi må legge til D O skyldes at vi har trukket det fra to ganger men skal bare trekke det fra en gang. Vi må deretter gjøre det samme for de to andre fagområdene. For bøker som bare omhandler operativsystemer får vi O D O O + D O = = 6 For bøker som bare omhandler algoritmer får vi D O + D O = = 12 Totalt antall bøker som omhandler kun ett av de tre temaene blir summen av disse tre bidragene, altså = 23 For oversiktens skyld vises her er antall i de ulike kategoriene: 6
7 D O
Matematikk for IT. Prøve 1. Torsdag 18. september Løsningsforslag
23.09.2014 Matematikk for IT Prøve 1 Torsdag 18. september 2014 Løsningsforslag Oppgave 1 a) Gitt tallet BD 16. Konvertér dette tallet til titallsystemet. Siden B 16 = 11 10 og D 16 = 13 10 blir dette
DetaljerMatematikk for IT. Prøve 1. Onsdag 18. september Løsningsforslag
Matematikk for IT Prøve 1 Onsdag 18. september 2013 Løsningsforslag Oppgave 1 a) Er 26 11 (mod 3)? Begrunn svaret. Dette spørsmålet betyr: Gir 26 : 3 samme rest som 11 : 3? Vi ser at 26 : 3 gir rest 2,
DetaljerMatematikk for IT. Prøve 1. Torsdag 17. september 2015. Løsningsforslag. 22. september 2015
Matematikk for IT Prøve 1 Torsdag 17. september 2015 Løsningsforslag 22. september 2015 Oppgave 1 Gitt følgende mengder A = {0, 1, 2, 3, 4}, B = {0, 1, 2} og C = {0, 3, 6, 9} Universet er U = {0, 1, 2,
DetaljerInjektive og surjektive funksjoner
Injektive og surjektive funksjoner Christian F. Heide 5. september 07 Dette notatet forklarer begrepene injektive og surjektive funksjoner, og er tenkt brukt som et supplement til avsnitt.5 i boken «Mathem»
DetaljerMatematikk for IT, høsten 2016
Matematikk for IT, høsten 2016 Oblig Løsningsforslag 16. september 2016 2.4.1 a) {(0, 1), (0, 2), (1, 2)} b) {(0, 0), (1, 1), (2, 2)} c) {(0, 0), (0, 1), (1, 0), (0, 2), (2, 0)} d) {(0, 0), (1, 0), (1,
DetaljerEKSAMEN. Oppgavesettet består av 11 oppgaver med i alt 21 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye.
EKSAMEN Emnekode: ITF0705 Dato: 6. desember 03 Emne: Matematikk for IT Eksamenstid: kl 09.00 til kl 3.00 Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Kalkulator er ikke tillatt. Faglærer:
DetaljerEmnenavn: Matematikk for IT. Eksamenstid: Faglærer: Christian F Heide
EKSAMEN ny og utsatt Emnekode: ITF10705 Dato: 4. juni 2018 Hjelpemidler: - To A4-ark med valgfritt innhold på begge sider. Emnenavn: Matematikk for IT Eksamenstid: 09.00 13.00 Faglærer: Christian F Heide
DetaljerEKSAMEN. Emne: Emnekode: Matematikk for IT ITF Dato: Eksamenstid: til desember Hjelpemidler: Faglærer:
EKSAMEN Emnekode: ITF0705 Dato: 5. desember 05 Emne: Matematikk for IT Eksamenstid: 09.00 til 3.00 Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Kalkulator er ikke tillatt. Faglærer: Christian
DetaljerLøsningsforslag. Oppgavesettet består av 9 oppgaver med i alt 20 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye.
Løsningsforslag Emnekode: ITF75 Dato: 5 desember Emne: Matematikk for IT Eksamenstid: kl 9 til kl Hjelpemidler: To A4-ark med valgfritt innhold på begge sider Kalkulator er ikke tillatt Faglærer: Christian
DetaljerLøsningsforslag Øving 9 TMA4140 Diskret matematikk Høsten 2008. i for i = 0, 1, 2, 3, 4, og så er W 4 svaret. 0 1 0 0
Løsningsforslag Øving 9 TMA4140 Diskret matematikk Høsten 2008 8.4.27 Vi beregner matrisene W i for i = 0, 1, 2, 3, 4, og så er W 4 svaret. a) W 0 = W 1 = W 2 = 1 0 0 0 1 1 0 0 b) W 0 = c) W 0 = d) W 0
DetaljerLøsningsforslag. Emnekode: Emne: Matematikk for IT ITF Eksamenstid: Dato: kl til kl desember Hjelpemidler: Faglærer:
Løsningsforslag Emnekode: ITF75 Dato: 7. desember Emne: Matematikk for IT Eksamenstid: kl 9. til kl. Hjelpemidler: To -ark med valgfritt innhold på begge sider. Kalkulator er ikke tillatt. Faglærer: Christian
DetaljerEmnenavn: Matematikk for IT. Eksamenstid: Faglærer: Christian F Heide
EKSAMEN Emnekode: ITF0705 Dato: 5. desember 07 Hjelpemidler: - To A4-ark med valgfritt innhold på begge sider. Emnenavn: Matematikk for IT Eksamenstid: 09.00 3.00 Faglærer: Christian F Heide Kalkulator
DetaljerEmnenavn: Matematikk for IT. Eksamenstid: Faglærer: Christian F Heide
EKSAMEN Emnekode: ITF75 Dato: 4. desember 6 Hjelpemidler: - To A4-ark med valgfritt innhold på begge sider. Emnenavn: Matematikk for IT Eksamenstid: 9. 3. Faglærer: Christian F Heide Kalkulator er ikke
DetaljerEKSAMEN. Emnekode: Emne: Matematikk for IT ITF Eksamenstid: Dato: kl til kl desember Hjelpemidler: Faglærer:
EKSAMEN Emnekode: ITF0705 Dato: 7. desember 0 Emne: Matematikk for IT Eksamenstid: kl 09.00 til kl 3.00 Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Kalkulator er ikke tillatt. Faglærer:
DetaljerCr) Høgskoleni østfold
Cr) Høgskoleni østfold EKSAMEN Emnekode:Emne: ITF10705Matematikk for IT Dato:Eksamenstid: 15. desember 2015 09.00 til 13.00 Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Kalkulator er ikke
DetaljerEKSAMEN. To A4-ark med valgfritt innhold på begge sider. Kalkulator er ikke tillatt.
Høgskoleni østfold EKSAMEN Emnekode:Emne: ITF10705Matematikk for IT Dato:Eksamenstid: 16. desember 2013 kl 09.00 til kl 13.00 Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Kalkulator er
DetaljerEKSAMEN. Oppgavesettet består av 16 oppgaver. Ved sensur vil alle oppgaver telle like mye med unntak av oppgave 6 som teller som to oppgaver.
EKSAMEN Emnekode: ITF0705 Dato: 5. desember 204 Emne: Matematikk for IT Eksamenstid: kl 09.00 til kl 3.00 Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Kalkulator er ikke tillatt. Faglærer:
DetaljerLøsningsforlag til eksamen i Diskret matematikk. 29. november 2017
Løsningsforlag til eksamen i Diskret matematikk 29. november 2017 Oppgave 1, 2, 3, 4, 5 og 6 teller likt. For å få full score må man vise hvordan man har kommet frem til svarene (ved f. eks. figurer eller
DetaljerEKSAMEN. Oppgavesettet består av 9 oppgaver med i alt 20 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye.
EKSAMEN Emnekode: ITF75 Dato: 5. desember Emne: Matematikk for IT Eksamenstid: kl 9. til kl. Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Kalkulator er ikke tillatt. Faglærer: Christian
DetaljerRelasjoner. Ekvivalensrelasjoner. En relasjon R på en mengde A er en delmengde av produktmengden. La R være en relasjon på en mengde A.
Relasjoner En relasjon R på en mengde A er en delmengde av produktmengden A A. La R være en relasjon på en mengde A. R er refleksiv hvis ( a, a) R for alle a A. R er symmetrisk hvis ( a, b) R, så er (
DetaljerLO118D Forelesning 5 (DM)
LO118D Forelesning 5 (DM) Relasjoner 03.09.2007 1 Relasjoner 2 Ekvivalensrelasjoner 3 Matriser av relasjoner 4 Relasjonsdatabaser Relasjon Relasjoner er en generalisering av funksjoner En relasjon er en
DetaljerEksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag
Institutt for matematiske fag Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag Faglig kontakt under eksamen: Martin Strand Tlf: 970 27 848 Eksamensdato:. august 2014 Eksamenstid (fra
DetaljerHøgskoleni østfold. EKSAMEN Ny og utsatt
Høgskoleni østfold EKSAMEN Ny og utsatt Emnekode:Emne: ITF10705Matematikk for IT Dato:Eksamenstid: 8. juni 2015 09.00 13.00 Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Faglærer: Christian
DetaljerMatematikk for IT Eksamen. Løsningsforslag
HØGSKOLEN I ØSTFOLD, AVDELING FOR INFORMASJONSTEKNOLOGI Matematikk for IT Eksamen 4. januar 2019 Løsningsforslag Christian F. Heide January 10, 2019 OPPGAVE 1 En spørreundersøkelse blant en gruppe studenter
Detaljer{(1,0), (2,0), (2,1), (3,0), (3,1), (3,2), (4,0), (4,1), (4,2), (4,3) } {(1,0), (1,1), (1,2), (1,3), (2,0), (2,2), (3,0), (3,3), (4,0)}
Diskret matematikk - Høgskolen i Oslo Løsningsforslag for en del oppgaver fra boken Discrete athematics and Its Applications Forfatter: Kenneth H. osen Avsnitt 8. Oppgave A {,,,,4} og B {,,,} a) {( a,
DetaljerFaglærer: Oppgavesettet består av 12 oppgaver med totalt 15 deloppgaver. Ved sensur vil alle deloppgaver telle like mye.
Høgskoleni østfold EKSAMEN Emnekode: ITF10705 Dato: Emnenavn: Matematikk for IT Eksamenstid: 14. desember 2016 09.00 13.00 Hjelpemidler: Faglærer: - To A4-ark med valgfritt Christian F Heide innhold på
DetaljerMatematikk for IT, høsten 2016
Matematikk for IT, høsten 0 Oblig 1 Løsningsforslag 6. august 0 1..1 a) 19 76? 76 : 19 = 4 Vi ser at vi får 0 i rest ved denne divisjonen. Vi kan derfor konkludere med at 19 deler 76. b) 19 131? 131 :
DetaljerINF3170 Forelesning 1
INF3170 Forelesning 1 Introduksjon og mengdelære Roger Antonsen - 26. januar 2010 (Sist oppdatert: 2010-01-26 14:58) Dagens plan Innhold Velkommen til INF3710 Logikk 1 Litt praktisk informasjon...................................
DetaljerRepetisjon og mer motivasjon. MAT1030 Diskret matematikk. Repetisjon og mer motivasjon
Repetisjon og mer motivasjon MAT030 Diskret matematikk Forelesning 22: Grafteori Roger Antonsen Matematisk Institutt, Universitetet i Oslo 4. april 2008 Først litt repetisjon En graf består av noder og
DetaljerLøsningsforslag til 3. oblogatoriske oppgave i Diskret Matematikk. Høsten 2018
Løsningsforslag til 3. oblogatoriske oppgave i Diskret Matematikk Oppgave 1. ( 9 3 ) = 9 8 7 3 2 1 = 3 4 7 = 84 Høsten 2018 {1, 5, 9}, {1, 6, 8}, {2, 4, 9}, { 2, 5, 8}, {2, 6, 7}, {3, 4, 8}, {3, 5, 7},
DetaljerLØSNINGSFORSLAG UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet. Oppgave 1 Mengdelære (10 poeng)
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 9. desember 2010 Tid for eksamen: 09:00 13:00 INF1080 Logiske metoder for informatikk Oppgave 1 Mengdelære (10 poeng)
DetaljerMAT1030 Diskret Matematikk
MAT1030 Diskret Matematikk Forelesning 13: Funksjoner Roger Antonsen Institutt for informatikk, Universitetet i Oslo 4. mars 2009 (Sist oppdatert: 2009-03-06 18:57) Kapittel 6: Funksjoner MAT1030 Diskret
DetaljerKapittel 5: Relasjoner
MAT1030 Diskret Matematikk Forelesning 12: Relasjoner Dag Normann Matematisk Institutt, Universitetet i Oslo Kapittel 5: Relasjoner 24. februar 2010 (Sist oppdatert: 2010-02-24 12:36) MAT1030 Diskret Matematikk
DetaljerR for alle a A. (, så er a, En relasjon R på en mengde A er en Ekvivalensrelasjon hvis den er refleksiv, symmetrisk og transitiv.
Repetisjon fra siste uke: Relasjoner En relasjon R på en mengde A er en delmengde av produktmengden A A. La R være en relasjon på en mengde A. R er refleksiv hvis R er symmetrisk hvis R er antisymmetrisk
DetaljerRepetisjonsforelesning - INF1080
Repetisjonsforelesning - INF1080 Mengder, relasjoner og funksjoner 18. november 2015 1 Grunnleggende mengdelære 1.1 Elementært om mengder 1.1.1 Hva er en mengde? Definisjon 1.1 (Mengde). En mengde er en
DetaljerGrafteori. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori.
MAT030 Diskret Matematikk Forelesning 23: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo Grafteori 20. april 200 (Sist oppdatert: 200-04-20 4:8) MAT030 Diskret Matematikk 20. april 200
DetaljerEksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag
Institutt for matematiske fag Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag Faglig kontakt under eksamen: Martin Strand Tlf: 970 7 848 Eksamensdato: 3. mai 014 Eksamenstid (fra
DetaljerMAT1030 Diskret Matematikk
MAT1030 Diskret Matematikk Forelesning 23: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo 20. april 2010 (Sist oppdatert: 2010-04-20 14:17) Grafteori MAT1030 Diskret Matematikk 20. april
DetaljerUNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 10. desember 2012 Tid for eksamen: 09.00 13.00 Innledning La U være mengden
DetaljerForelesning 23. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori.
MAT030 Diskret Matematikk Forelesning 23: Grafteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo Forelesning 23 22. april 2009 (Sist oppdatert: 2009-04-22 2:37) MAT030 Diskret Matematikk
DetaljerMAT1030 Forelesning 23
MAT030 Forelesning 23 Grafteori Roger Antonsen - 22. april 2009 (Sist oppdatert: 2009-04-22 2:36) Forelesning 23 Repetisjon og mer motivasjon Først litt repetisjon En graf består av noder og kanter Kanter
DetaljerR for alle a A. (, så er a, En relasjon R på en mengde A er en Ekvivalensrelasjon hvis den er refleksiv, symmetrisk og transitiv.
Repetisjon fra siste uke: Relasjoner En relasjon R på en mengde A er en delmengde av produktmengden A A. La R være en relasjon på en mengde A. R er refleksiv hvis R er symmetrisk hvis R er antisymmetrisk
DetaljerMAT1030 Forelesning 13
MAT1030 Forelesning 13 Funksjoner Roger Antonsen - 4. mars 2009 (Sist oppdatert: 2009-03-06 18:57) Kapittel 6: Funksjoner Opphenting Forrige forelesning snakket vi veldig grundig om relasjoner Vi snakket
DetaljerKONTINUASJONSEKSAMEN I TMA4140 LØSNINGSFORSLAG
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 KONTINUASJONSEKSAMEN I TMA440 LØSNINGSFORSLAG Oppgave Sannhetsverditabell for det logiske utsagnet ( (p q) ) ( q r
DetaljerTo mengder S og T er like, S = T, hvis de inneholder de samme elementene. Notasjon. Mengden med elementene a, b, c og d skrives ofte {a, b, c, d}.
Forelesning 0: Mengdelære, Induksjon Martin Giese - 23. januar 2008 1 Mengdelære 1.1 Mengder Mengder Definisjon 1.1. En mengde er en endelig eller uendelig samling objekter der innbyrdes rekkefølge og
DetaljerForelesning 1: Introduksjon og mengdelære Christian Mahesh Hansen januar Praktisk informasjon. 1.1 Forelesere og tid/sted
Forelesning 1: Introduksjon og mengdelære Christian Mahesh Hansen - 22. januar 2007 1 Praktisk informasjon 1.1 Forelesere og tid/sted Foreleser: Christian Mahesh Hansen (chrisha@ifi.uio.no) Kontor 2403,
DetaljerMAT1030 Forelesning 12
MAT1030 Forelesning 12 Relasjoner Dag Normann - 24. februar 2010 (Sist oppdatert: 2010-02-24 12:36) Kapittel 5: Relasjoner Repetisjon En relasjon på en mengde A er en delmengde R A A = A 2. Vi har satt
DetaljerDagens plan. INF3170 Logikk
INF3170 Logikk Dagens plan Forelesning 1: Introduksjon og mengdelære Christian Mahesh Hansen Institutt for informatikk, Universitetet i Oslo 1 Praktisk informasjon 2 Hva skal vi lære? 22. januar 2007 3
DetaljerPlenumsregning 12. Diverse oppgaver. Roger Antonsen mai Eksamen 12/6-06 Oppgave 2. Plan
Plenumsregning 12 Diverse oppgaver Roger Antonsen - 22. mai 2008 Plan Dette er siste plenumsregning. Vi regner stort sett eksamensoppgaver. Neste uke blir det repetisjon på mandag og onsdag. Send epost
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 26. november 2010 Tid for eksamen: 13:00 17:00 Oppgave 1 La A = { }. Mengdelære
DetaljerObligatorisk oppgave 1 i MAT1140, Høst Løsninger med kommentarer
Obligatorisk oppgave 1 i MAT1140, Høst 2014. Oppgave 1 er med kommentarer En funksjon f : R R er en polynomfunksjon hvis f kan defineres som f(x) = a 0 + a 1 x + + a n x n hvor n 0 og a 0,..., a n er reelle
DetaljerPrøveeksamen 2016 (med løsningsforslag)
Prøveeksamen 2016 (med løsningsforslag 1 Grunnleggende mengdelære La A = {0, {0}} og B = {0, {0}, {0, {0}}}. Er følgende påstander sanne eller usanne? 1 {{0}} A 2 0 B 3 A B 4 A B 1 Usann 2 Usann 3 Sann
DetaljerDiskret matematikk tirsdag 13. oktober 2015
Eksempler på praktisk bruk av modulo-regning. Tverrsum Tverrsummen til et heltall er summen av tallets sifre. a = 7358. Tverrsummen til a er lik 7 + 3 + 5 + 8 = 23. Setning. La sum(a) stå for tverrsummen
DetaljerHøgskolen i Agder. Institutt for matematiske fag EKSAMEN
Høgskolen i Agder Institutt for matematiske fag EKSAMEN i MA1040 Matematikk for IT-studenter Mandag 5. mai 2003, kl. 09 00 13 00 Alle trykte og skrevne hjelpemidler er tillatt. Oppgavesettet er på 7 sider.
DetaljerMAT1030 Diskret Matematikk
MAT1030 Diskret Matematikk Forelesning 11: Relasjoner Roger Antonsen Institutt for informatikk, Universitetet i Oslo 25. februar 2009 (Sist oppdatert: 2009-03-03 11:37) Kapittel 5: Relasjoner MAT1030 Diskret
DetaljerKapittel 5: Relasjoner
MAT1030 Diskret Matematikk Forelesning 11: Relasjoner Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kapittel 5: Relasjoner 25. februar 2009 (Sist oppdatert: 2009-03-03 11:37) MAT1030 Diskret
DetaljerModulo-regning. hvis a og b ikke er kongruente modulo m.
Modulo-regning Definisjon: La m være et positivt heltall (dvs. m> 0). Vi sier at to hele tall a og b er kongruente modulo m hvis m går opp i (a b). Dette betegnes med a b (mod m) Vi skriver a b (mod m)
DetaljerOppsummering. MAT1030 Diskret matematikk. Ekvivalensrelasjoner. Oppsummering. Definisjon. Merk
Oppsummering MAT1030 Diskret matematikk Forelesning 12: Relasjoner, Dag Normann Matematisk Institutt, Universitetet i Oslo 20. februar 2008 En relasjon på en mengde A er en delmengde R A A = A 2. Vi har
DetaljerEksamen MAT H Løsninger
Eksamen MAT1140 - H2014 - Løsninger Oppgave 1 Vi setter opp en vanlig sannhetsverditabell. La Φ betegne formelen i oppgaven. Tabellen vil bli som følger: A B C A B A C Φ T T T T T T T T F T T T T F T F
DetaljerRelasjoner - forelesningsnotat i Diskret matematikk 2015
Relasjoner Utdrag fra avsnitt 9.1, 9.3, 9.4 og 9.5 i læreboka 9.1 - Relasjoner 9.3 - Operasjoner på relasjoner 9.4 - Utvidelser av relasjoner - tillukninger 9.5 - Ekvivalensrelasjoner og ekvivalensklasser
DetaljerDagens plan. INF3170 Logikk. Mengder. Definisjon. Notasjon. Forelesning 0: Mengdelære, Induksjon. Martin Giese. 23. januar 2008.
INF3170 Logikk Dagens plan Forelesning 0:, Induksjon Martin Giese 1 Institutt for informatikk, Universitetet i Oslo 2 23. januar 2008 Institutt for informatikk (UiO) INF3170 Logikk 23.01.2008 2 / 47 1
DetaljerOppgave: Avgjør om følgende to mengder er like: 1) (A B) C 2) A (B C)
Mengder, fortsettelse. Tre mengder Venndiagram for tre mengder A, B og C må tegnes slik at alle muligheter blir dekket. For å få dette til må de overlappe hverandre: Oppgave: Avgjør om følgende to mengder
DetaljerLØSNINGSFORSLAG EKSAMEN MNF130 VÅREN 2010 OPPGAVE 1
LØSNINGSFORSLAG EKSAMEN MNF130 VÅREN 2010 OPPGAVE 1 p q p p q p q T T F T T Sannhetstabell: T F F F F F T T T T F F T T T Siden proposisjonene p q og p q har samme sannhetsverdier (for alle sannhetsverdier
DetaljerLF, KONTINUASJONSEKSAMEN TMA
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Haaken A. Moe 92650655 Bokmål LF, KONTINUASJONSEKSAMEN TMA4140 2008 Oppgave 1 (10%)
DetaljerKapittel 6: Funksjoner
MAT1030 Diskret Matematikk Forelesning 13: Funksjoner Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kapittel 6: Funksjoner 4. mars 2009 (Sist oppdatert: 2009-03-06 18:57) MAT1030 Diskret
DetaljerMengder, relasjoner og funksjoner
MAT1030 Diskret Matematikk Forelesning 15: og induksjon Dag Normann Matematisk Institutt, Universitetet i Oslo Mengder, relasjoner og funksjoner 9. mars 2010 (Sist oppdatert: 2010-03-09 14:18) MAT1030
DetaljerØvingsforelesning 5. Binær-, oktal-, desimal- og heksidesimaletall, litt mer tallteori og kombinatorikk. TMA4140 Diskret Matematikk
Binær-, oktal-, desimal- og heksidesimaletall, litt mer tallteori og kombinatorikk Øvingsforelesning 5 TMA4140 Diskret Matematikk 1. og 3. oktober 2018 Dagen i dag Repetere binære, oktale osv. heltallsrepresentasjoner,
DetaljerEn relasjon på en mengde A er en delmengde R A A = A 2. Vi har satt navn på visse egenskaper relasjoner som oppstår i anvendelser ofte kan ha.
Forelesning 12 Relasjoner, Dag Normann - 20. februar 2008 Oppsummering En relasjon på en mengde A er en delmengde R A A = A 2. Vi har satt navn på visse egenskaper relasjoner som oppstår i anvendelser
DetaljerINF1800 LOGIKK OG BEREGNBARHET
INF1800 LOGIKK OG BEREGNBARHET FORELESNING 3: MENGDELÆRE, RELASJONER, FUNKSJONER Roger Antonsen Institutt for informatikk Universitetet i Oslo 26. august 2008 (Sist oppdatert: 2008-09-05 12:55) Repetisjon
DetaljerMAT1030 Diskret matematikk
MAT1030 Diskret matematikk Forelesning 32: Repetisjon Dag Normann Matematisk Institutt, Universitetet i Oslo 21. mai 2008 Streik? Det er muligheter for streik i offentlig sektor fra midnatt, natt til fredag.
DetaljerRepetisjon INF1800 LOGIKK OG BEREGNBARHET FORELESNING 3: MENGDELÆRE, RELASJONER, FUNKSJONER. Mengder. Multimengder og tupler.
INF1800 LOGIKK OG BEREGNBARHET FORELESNING 3: MENGDELÆRE, RELASJONER, FUNKSJONER Roger Antonsen Repetisjon Institutt for informatikk Universitetet i Oslo 26. august 2008 (Sist oppdatert: 2008-09-05 12:55)
DetaljerKapittel 5: Relasjoner
MAT1030 Diskret Matematikk Forelesning 11: Relasjoner Dag Normann Matematisk Institutt, Universitetet i Oslo Kapittel 5: Relasjoner 23. februar 2010 (Sist oppdatert: 2010-02-23 14:33) MAT1030 Diskret Matematikk
DetaljerMAT1030 Forelesning 11
MAT1030 Forelesning 11 Relasjoner Roger Antonsen - 25. februar 2009 (Sist oppdatert: 2009-03-03 11:37) Kapittel 5: Relasjoner Binære relasjoner Definisjon. La A være en mengde. En binær relasjon på A er
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 9. desember 2010 Tid for eksamen: 09:00 13:00 Oppgavesettet er på 5 sider.
DetaljerTMA4140 Diskret Matematikk Høst 2016
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4140 Diskret Matematikk Høst 016 Seksjon 5 4 a) Ved å observere at 18 4 + 7, 19 3 4 + 7, 0 4 5 og 1 3 7 så ser vi at P(18),
DetaljerINF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng]
INF1080 Logiske metoder for informatikk Digital eksamen (med løsningsforslag) Dette er et utkast til løsningsforslag til eksamen i INF1080, og feil kan forekomme. Hvis du finner noen feil, si ifra til
DetaljerFASIT/LF FOR EKSAMEN TMA4140, H07
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 5 FASIT/LF FOR EKSAMEN TMA440, H07 Oppgave (0%) Benytt matematisk induksjon til å vise at for alle heltall n. n i i!
DetaljerKapittel 6: Funksjoner
MAT1030 Diskret Matematikk Forelesning 13: Funksjoner Dag Normann Matematisk Institutt, Universitetet i Oslo Kapittel 6: Funksjoner 2. mars 2010 (Sist oppdatert: 2010-03-02 14:14) MAT1030 Diskret Matematikk
DetaljerMAT1030 Forelesning 13
MAT1030 Forelesning 13 Funksjoner Dag Normann - 2. mars 2010 (Sist oppdatert: 2010-03-02 14:15) Kapittel 6: Funksjoner Forrige uke Forrige forelesning snakket vi om relasjoner. Vi snakket om ekvivalensrelasjoner
DetaljerINF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng]
INF1080 Logiske metoder for informatikk Digital eksamen Tid: Onsdag 7. desember 2016 kl. 14.30 18.30 (4 timer) Tillatte hjelpemidler: Ingen Eksamen består av to deler som er verdt omtrent like mye. Den
Detaljeri Dato:
c:- høgskolen i oslo I Emne I EmnlekOde: I FagligvelIeder: Diskret matematikk FO 019A UJfUttersrud raruppe( r): i Dato: - I Eksamenstid: 12.12.2005 9-14 I Eksam-ensopp gavenbestår av: I Antall sid~nkl
DetaljerEgenskaper til relasjoner på en mengde A.
Egenskaper til relasjoner på en mengde A. Refleksivitet Relasjonen er refleksiv hvis (a, a) R for alle a A. Vi kan se det ut fra: 1) Grafen: R er refleksiv hvis alle punktene i grafen har en sløyfe. 2)
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 25. november 2011 Tid for eksamen: 14:45 16:45 Oppgave 1 Mengdelære (15 poeng)
DetaljerMatematikk for IT, høsten 2016
Matematikk or IT, høsten 016 Oblig 4 Løsningsorslag 30. setember 016.4.11 a) ( 1, 3, 5, 7, ) Her vil relasjonsmengden være slik: {(1, 1), (3, 1), (3, 3), (5, 1), (5, 3), (5, 5), (7, 1), (7, 3), (7, 5),
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 27. november 2012 Tid for eksamen: 13:00 16:00 Oppgave 1 Mengdelære (15 poeng)
DetaljerMAT1030 Diskret matematikk
MAT1030 Diskret matematikk Forelesning 13: Funksjoner Dag Normann Matematisk Institutt, Universitetet i Oslo 25. februar 2008 Opphenting Forrige forelesning fortsatte vi innføringen av ekvivalensrelasjoner.
DetaljerForelesning 13. Funksjoner. Dag Normann februar Opphenting. Opphenting. Opphenting. Opphenting
Forelesning 13 Dag Normann - 25. februar 2008 Forrige forelesning fortsatte vi innføringen av ekvivalensrelasjoner. Vi definerte hva vi mener med partielle ordninger og med totale ordninger. Deretter snakket
DetaljerAlle hele tall g > 1 kan være grunntall i et tallsystem.
Tallsystemer Heltall oppgis vanligvis i det desimale tallsystemet, også kalt 10-tallssystemet. Eksempel. Gitt tallet 3794. Dette kan skrives slik: 3 1000 + 7 100 + 9 10 + 4 = 3 10 3 + 7 10 2 + 9 10 1 +
DetaljerTrue False. Q(0, 1, 2) yq(0, y, y) x yq(x, y, 10) x yq(x, y, x + x) y xq(x, y, x + x) x y Q(x, y, x + x) y x Q(x, y, x + x) x y zq(x, y, z)
BOKMÅL-MNF130 Kand.nr:... Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I BERGEN Eksamen i emnet MNF130 - Diskrete Strukturer Onsdag 8. juni 2005, kl. 09-14, dvs 5 timer. Skriv ditt kanidatnr
DetaljerEKSAMEN. Oppgavesettet består av 9 oppgaver med i alt 21 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye.
EKSAMEN Emnekode: ITF0705 Dato:. desember 00 Emne: Matematikk for IT Eksamenstid: kl 09.00 til kl 3.00 Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Faglærer: Christian F Heide Eksamensoppgaven:
DetaljerLøsningsforslag Øving 7 TMA4140 Diskret matematikk Høsten 2008
Løsningsforslag Øving 7 TMA4140 Diskret matematikk Høsten 008 3-1-9 prosedyre palindromsjekk (a 1, a,..., a n : streng) svar :=sann for i := 1 to n/ if a i a n+1 i then svar :=usann {svaret er sant hvis
DetaljerNotat med oppgaver for MAT1140
Notat med oppgaver for MAT1140 1 Injeksjon, surjeksjon Oppgave 1.1. La f : A B være en avbildning. Vis at da er f injektiv hvis og bare hvis følgende holder: for hver mengde C og for hver g, h : C A hvis
DetaljerLøsningsforslag oblig. innlevering 1
Løsningsforslag oblig. innlevering 1 IN1150 Logiske metoder Høsten 2017 Oppgave 1 - Mengdelære (10 poeng) a) Ut fra opplysningene under, angi hvilke mengder A og B er. A B = {1, 2, 3, 4, 5, 6} A B = {2,
DetaljerØvingsforelesning 2. Mengdelære, funksjoner, rekurrenser, osv. TMA4140 Diskret Matematikk. 10. og 12. september 2018
Mengdelære, funksjoner, rekurrenser, osv. Øvingsforelesning 2 TMA4140 Diskret Matematikk 10. og 12. september 2018 Dagens øvingsforelesning Spørsmål til emnene i forrige uke Oppgaver fra midtsemesterprøver
DetaljerForelesning 19. Kombinatorikk. Dag Normann mars Oppsummering. Oppsummering. Oppsummering
Forelesning 19 Dag Normann - 26. mars 2008 Oppsummering Før påske gikk vi gjennom kapitlene 1-7 i læreboka. De omfattet Eksempler på algoritmer og bruk av pseudokoder. Forskjellige tallsystemer. Hvordan
DetaljerFør vi begynner. Kapittel 5: Relasjoner og funksjoner. MAT1030 Diskret Matematikk. Litt om obligen og studentengasjementet
MAT1030 Diskret Matematikk Forelesning 12: Relasjoner og litt funksjoner Roger Antonsen Institutt for informatikk, Universitetet i Oslo Før vi begynner 3. mars 2009 (Sist oppdatert: 2009-03-04 01:00) MAT1030
DetaljerOppsummering. MAT1030 Diskret matematikk. Oppsummering. Oppsummering. Forelesning 19: Kombinatorikk
Oppsummering MAT1030 Diskret matematikk Forelesning 19: Dag Normann Matematisk Institutt, Universitetet i Oslo 26. mars 2008 Før påske gikk vi gjennom kapitlene 1-7 i læreboka. De omfattet Eksempler på
DetaljerFørst litt repetisjon
Først litt repetisjon En relasjon er en mengde av verdipar, der første koordinaten a er fra mengden A og andrekoordinaten b er fra mengden B. Verdiparet beskriver en forbindelse (en relasjon) fra a til
DetaljerOppsummering. MAT1030 Diskret matematikk. Relasjoner. Relasjoner. Forelesning 11: Relasjoner
Oppsummering MAT1030 Diskret matematikk Forelesning 11: Relasjoner Dag Normann Matematisk Institutt, Universitetet i Oslo 18. februar 2008 Vi har gjort oss ferdige med innføringen av Boolesk mengdelære.
DetaljerMAT1030 Diskret matematikk
MAT1030 Diskret matematikk Plenumsregning 7: Ukeoppgaver fra kapittel 5 & 6, mm. Roger Antonsen Matematisk Institutt, Universitetet i Oslo 28. februar 2008 Oppgave 5.16 La R være relasjonen på {a, b, c,
Detaljer