Løsningsforslag. Emnekode: Emne: Matematikk for IT ITF Eksamenstid: Dato: kl til kl desember Hjelpemidler: Faglærer:
|
|
- Otto Jakobsen
- 8 år siden
- Visninger:
Transkript
1 Løsningsforslag Emnekode: ITF75 Dato: 7. desember Emne: Matematikk for IT Eksamenstid: kl 9. til kl. Hjelpemidler: To -ark med valgfritt innhold på begge sider. Kalkulator er ikke tillatt. Faglærer: Christian F Heide Eksamensoppgaven: Oppgavesettet består av 6 sider inklusiv denne forsiden og et vedlegg på én side. Kontroller at oppgaven er komplett før du begynner å besvare spørsmålene. Oppgavesettet består av syv oppgaver med i alt 8 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye. Karakteren settes ut fra en helhetsvurdering av besvarelsen. På alle oppgaver så sant det er mulig) skal du: vise utregninger og hvordan du kommer fram til svarene begrunne dine svar, selv om dette ikke er eksplisitt sagt i hvert spørsmål Sensurdato: Torsdag 5. januar Karakterene er tilgjengelige for studenter på studentweb senest virkedager etter oppgitt sensurfrist. Følg instruksjoner gitt på:
2 Oppgave En aksepterende automat er angitt med følgende tilstandstabell: Tilstand Inngangsverdi s s s s s s s s s s s s åde tilstand s og s er aksepterende tilstander. a) Tegn tilstandsdiagrammet for denne automaten. Tilstandsdiagrammet kan tegnes slik: Start s s s s b) utomaten vil akseptere bestemte strenger som tilhører et regulært språk. i. ngi mengden av ikke-avslutningsymboler N) og avslutningssymboler T) for dette språket. lfabetet for dette språket, er gitt ved følgende to mengder: N = {s, s, s, s } Man kan bruke andre ikke-avslutningssymboler enn disse, men da må disse andre symbolene benyttes korrekt i produksjonsreglene i punkt ii nedenfor.) T = {, } ii. ngi produksjonsreglene for grammatikken som genererer dette språket. Produksjonsreglene for denne grammatikken, blir: s s s s s s s s s Eksamen i Matematikk for IT, desember løsningsforslag Side av
3 s s s s s s s s s s s s Oppgave a) Gitt det komplekse tallet 5i z i Skriv tallet på kartesisk rektangulær) form, altså som z a bi. For å bli kvitt den komplekse nevneren, ganger vi teller og nevner med den komplekskonjugerte av nevneren, altså i : i i i i i i i z i i i i i i i i b) Konvertér tallet til det binære tallsystemet. Vi kan f eks bruke algoritmen med å dele gjentatte ganger med grunntallet i det tallsystemet vi skal konvertere til, og ta vare på resten fra hver divisjon: : 5 : 5 : : 6 : : : 5 Resten må leses fra høyre mot venstre, og resultatet blir altså: 6 c) Ved straffesparkkonkurranser i fotball må treneren velge ut fem av de elleve spillerne på banen som skal ta de fem første straffene for laget. Det anses for å være av stor betydning i hvilken rekkefølge spillerne tar straffesparkene. Hvor mange ulike grupper av fem spillere har treneren å velge blant, når vi altså tar hensyn til rekkefølgen de skal ta straffene? Siden kalkulator ikke er tillatt på denne eksamen, trenger du ikke å regne ut svaret, men bare sette opp hvordan det skal regnes ut og forkorte brøken du får mest mulig.) Dette er altså et ordnet utvalg siden rekkefølgen har betydning) uten tilbakelegging siden hver spiller bare kan ta en straffe). Følgelig: Eksamen i Matematikk for IT, desember løsningsforslag Side av
4 !! P, 5) )! 6! 65 Man kan også tenke slik: når treneren skal velge den hvem som skal ta den første straffen, har han å velge blant. Når han skal velge hvem som skal ta den andre straffen, har han å velge blant, osv. Når han skal velg hvem som skal ta den femte straffen, har han 7 å velge blant. Derfor er det 98 7 muligheter. Dersom noen skulle si at det kun er utespillerne som kan ta straffe, og derfor regner!/-5)! vil også dette godkjennes som riktig. Oppgave a) Gitt følgende vektede graf: a 8 b 6 f c e d ruk Kruskals algoritme til å finne et minimalt spenntre for grafen. Vis hvert trinn i algoritmen. Første trinn i Kruskals algoritme er å sortere kantene etter stigende vekt. Resultatet av denne sorteringen, blir: a, e): b, c): c, d): d, e): e, f): d, f): 5 a, f): 6 b, d): 7 a, b): 8 b, f): 8 Vi skal så velg en av kantene med minst vekt. Her der det bare en kant med minst vekt, nemlig a, e). Deretter skal vi tilføye en av kantene med lavest vekt og som ikke gjør at det dannes en syklus. Vi ser av den sorterte listen over, at de med minst vekt, som vi altså kan velge mellom, er kantene b, c) og c, d) som begge har vekt. Ingen av disse vil danne en syklus når vi føyer dem til treet. Vi velger b, c): Eksamen i Matematikk for IT, desember løsningsforslag Side av
5 a f b c e d Den neste kanten med lavest kost som vi kan føye til uten å danne en syklus, blir da c, d). Så føyer vi til kant d, e) som har vekt : a f b c e d Vi har nå et tre som kun mangler node f. Neste kant vi føyer til, blir e, f) med vekt. Når vi har gjort dette, har vi fått følgende tre, og vi ser at alle nodene med i treet: a f b c e d Dette er da et minimalt spenntre for grafen. b) Nedenfor er grafene G V, E ) og G V, E) tegnet. Er G og G isomorfe? Dersom de er isomorfe, angi en isomorfi f : V V. Dersom de ikke er isomorfe, forklar hvorfor de ikke er det. Eksamen i Matematikk for IT, desember løsningsforslag Side 5 av
6 a b e d c 5 G V, ) G V, ) E E Oppgave Vi ser at grafene har like mange noder. Imidlertid har G seks kanter, mens G har fem kanter. Grafene er derfor ikke isomorfe. Vi kan også bruke som argument at noden b har grad, mens det i G ikke finnes noen noder med grad.) a) ruk sannhetstabeller til å vise følgende p q p q) q p) Sannhetstabellen til en ekvivalens er som følger: p q p q S S S S F F F S F F F S Sannhetstabellen til uttrykket på høyre side, er: p q p q) q p) p q) q p) S S S S S S F F S F F S S F F F F S S S Vi ser at siste kolonne i disse tabellene er like, og uttrykkene er derfor logisk ekvivalente. b) ruk resultatet i spørsmål a) og lovene for logisk ekvivalens gitt på vedlagte ark), til å vise at uttrykkene og p q Eksamen i Matematikk for IT, desember løsningsforslag Side 6 av
7 p q) p q) er logisk ekvivalente. Vi starter med uttrykket p q Fra spørsmål a) vet vi at dette er logisk ekvivalent med p q) q p) Vi benytter nå at p q p q, dvs. at implikasjonene i utrykket over kan erstattes av disjunksjoner, og skriver uttrykket over som p q) q p) For lettere å se hvordan vi skal gå videre, kaller vi nå uttrykket r q p) p q for r: Den distributive loven sier p q r) p q) p r). ruker vi denne på uttrykket over altså at konjunksjonen med r distribueres over disjunksjonen i parentesen), får vi r q) r p) Så erstatter vi r med p q og får: p q) q p q) p ruker vi så den distributive loven på uttrykkene inne i begge hakeparentesene, får vi p q) q q) p p) q p) Inversloven sier at p p F. Vi bruker dette, og får p q) F F q p) Identitetsloven medfører at dette blir p q) q p) ruker vi så den kommutative loven på passende steder, får vi da p q) p q) som er det søkte uttrykket. Eksamen i Matematikk for IT, desember løsningsforslag Side 7 av
8 c) I læreboka er det beskrevet tre gyldige slutningsregler: modus ponens, modus tollens og syllogismeloven. Er noen av disse tre gyldige slutningsreglene brukt i de følgende to slutninger? ngi i så tilfelle hvilken slutningsregel som er brukt i hvert tilfelle. i. Hvis Kari og Per har samme mor, så er Kari og Per søsken. Kari og Per er søsken. Derfor har Kari og Per samme mor. Det kan være lurt å gi de ulike utsagnene navn for lettere å kunne sammenligne med slutningsreglene. Vi kan f eks bruke følgende betegnelser: p: Kari og Per har samme mor. q: Kari og Per er søsken. Slutningen over kan da skrives ved hjelp av symboler på følgende måte: p q q p Vi ser at dette ikke er noen av de tre gyldige slutningsreglene nevnt i oppgaven. ii. Hvis Kari og Per har samme far, så er Kari og Per søsken. Kari og Per er ikke søsken. Derfor har Kari og Per ikke samme far. Her bruker vi følgende symboler: p: Kari og Per har samme far q: Kari og Per er søsken Slutningen over kan da skrives ved hjelp av symboler på følgende måte: p q q p Dette er modus tollens, og følgelig en gyldig slutning. d) enytt direkte bevis til å bevise at summen av et partall og et oddetall, er et oddetall. nta nå at n er et partall og m er et oddetall. Vi skal da vise at n + m er et oddetall. Dersom n er et partall, kan det skrives som n = a med a Z a er altså et heltall) Dersom m er et oddetall, kan det skrives som m = b + med b Z Dette gir n + m = a + b + = a + b) + Siden a og b er heltall, er også a + b et heltall. Følgelig er a + b) et partall siden et heltall ganger er et partall). Eksamen i Matematikk for IT, desember løsningsforslag Side 8 av
9 Et partall + er et oddetall. Følgelig er a + b) + et oddetall. Siden a + b) + er lik n + m, er også n + m et oddetall, og det var jo nettopp det vi skulle bevise. Oppgave 5. En relasjon på denne mengden er gitt ved b), b, d), c, c), c, e), e, b), e, e), a, a), d, d) Gitt mengden a, b, c, d, e R a, c), a, d), b, a), b, a) ngi relasjonen ved dens nabomatrise. Nabomatrisen er skrevet slik at først rad gjelder fra node a, andre rad fra node b, osv, samt at første kolonne gjelder til node a, andre kolonne gjelder til node b osv. Nabomatrisen blir da som følger: M b) Tegn relasjonen som en rettet graf. a b d c e c) ngi og begrunn hvorvidt relasjonen er refleksiv, symmetrisk, antisymmetrisk og/eller transitiv. ruk dette til å avgjøre om R er en ekvivalensrelasjon, en delvis ordning partialordning) eller ingen av delene. Relasjonen er refleksiv fordi alle elementer i har relasjon til seg selv. Relasjonen er ikke symmetrisk fordi vi f eks har a, c) R mens c, a) R. Relasjonen er antisymmetrisk fordi vi ikke har noen symmetriske par. Relasjonen er ikke transitiv, fordi vi f eks har a, c) og c, e) mens vi mangler a, e). Fordi relasjonen ikke er transitiv, er den verken en ekvivalensrelasjon eller en delvis ordning. Eksamen i Matematikk for IT, desember løsningsforslag Side 9 av
10 Oppgave 6 Gitt et univers, U, og mengdene og. nta nå at mengdene og er ikke-disjunkte. a) Hva er )? ruk venndiagram når du begrunner svaret. t og er ikke-disjunkte, betyr at de har felles elementer, altså at de i venndiagrammet skal tegnes som delvis overlappende. Venndiagrammet for er slik det skraverte feltet angir resultatet av mengdeoperasjonen): Venndiagrammet for er som følger: Venndiagrammet for ) blir derfor: Vi ser av venndiagrammet at ) b) Vi definerer en ny mengde, C, ved C ) ) Eksamen i Matematikk for IT, desember løsningsforslag Side av
11 Hva er da C ) ruk venndiagram til å begrunne svaret. Mengden den skraverte delen er resultatet av mengdeoperasjonen): Mengden : Mengden C ) ) blir derfor: Dette kalles for øvrig den symmetriske differensen mellom og, og kan skrives. er jo feltet som ikke er skravert på venndiagrammet over. Vi ser da at C ) Eksamen i Matematikk for IT, desember løsningsforslag Side av
12 Eksamen i Matematikk for IT, desember løsningsforslag Side av Oppgave 7 Gitt følgende matriser: a) Finn T. T b) Finn følgende matriseprodukter dersom de eksisterer: i. ) ) ) ) ) ) ) ii. Dette matriseproduktet eksisterer ikke.
EKSAMEN. Emnekode: Emne: Matematikk for IT ITF Eksamenstid: Dato: kl til kl desember Hjelpemidler: Faglærer:
EKSAMEN Emnekode: ITF0705 Dato: 7. desember 0 Emne: Matematikk for IT Eksamenstid: kl 09.00 til kl 3.00 Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Kalkulator er ikke tillatt. Faglærer:
DetaljerEKSAMEN. Oppgavesettet består av 9 oppgaver med i alt 20 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye.
EKSAMEN Emnekode: ITF75 Dato: 5. desember Emne: Matematikk for IT Eksamenstid: kl 9. til kl. Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Kalkulator er ikke tillatt. Faglærer: Christian
DetaljerLøsningsforslag. Oppgavesettet består av 9 oppgaver med i alt 20 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye.
Løsningsforslag Emnekode: ITF75 Dato: 5 desember Emne: Matematikk for IT Eksamenstid: kl 9 til kl Hjelpemidler: To A4-ark med valgfritt innhold på begge sider Kalkulator er ikke tillatt Faglærer: Christian
DetaljerEKSAMEN. Oppgavesettet består av 16 oppgaver. Ved sensur vil alle oppgaver telle like mye med unntak av oppgave 6 som teller som to oppgaver.
EKSAMEN Emnekode: ITF0705 Dato: 5. desember 204 Emne: Matematikk for IT Eksamenstid: kl 09.00 til kl 3.00 Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Kalkulator er ikke tillatt. Faglærer:
DetaljerEKSAMEN. Oppgavesettet består av 11 oppgaver med i alt 21 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye.
EKSAMEN Emnekode: ITF0705 Dato: 6. desember 03 Emne: Matematikk for IT Eksamenstid: kl 09.00 til kl 3.00 Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Kalkulator er ikke tillatt. Faglærer:
DetaljerEKSAMEN. Oppgavesettet består av 9 oppgaver med i alt 21 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye.
EKSAMEN Emnekode: ITF0705 Dato:. desember 00 Emne: Matematikk for IT Eksamenstid: kl 09.00 til kl 3.00 Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Faglærer: Christian F Heide Eksamensoppgaven:
DetaljerEmnenavn: Matematikk for IT. Eksamenstid: Faglærer: Christian F Heide
EKSAMEN ny og utsatt Emnekode: ITF10705 Dato: 4. juni 2018 Hjelpemidler: - To A4-ark med valgfritt innhold på begge sider. Emnenavn: Matematikk for IT Eksamenstid: 09.00 13.00 Faglærer: Christian F Heide
DetaljerEKSAMEN. Emne: Emnekode: Matematikk for IT ITF Dato: Eksamenstid: til desember Hjelpemidler: Faglærer:
EKSAMEN Emnekode: ITF0705 Dato: 5. desember 05 Emne: Matematikk for IT Eksamenstid: 09.00 til 3.00 Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Kalkulator er ikke tillatt. Faglærer: Christian
DetaljerEmnenavn: Matematikk for IT. Eksamenstid: Faglærer: Christian F Heide
EKSAMEN Emnekode: ITF75 Dato: 4. desember 6 Hjelpemidler: - To A4-ark med valgfritt innhold på begge sider. Emnenavn: Matematikk for IT Eksamenstid: 9. 3. Faglærer: Christian F Heide Kalkulator er ikke
DetaljerEmnenavn: Matematikk for IT. Eksamenstid: Faglærer: Christian F Heide
EKSAMEN Emnekode: ITF0705 Dato: 5. desember 07 Hjelpemidler: - To A4-ark med valgfritt innhold på begge sider. Emnenavn: Matematikk for IT Eksamenstid: 09.00 3.00 Faglærer: Christian F Heide Kalkulator
DetaljerEKSAMEN. To A4-ark med valgfritt innhold på begge sider. Kalkulator er ikke tillatt.
Høgskoleni østfold EKSAMEN Emnekode:Emne: ITF10705Matematikk for IT Dato:Eksamenstid: 16. desember 2013 kl 09.00 til kl 13.00 Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Kalkulator er
DetaljerHøgskoleni østfold. EKSAMEN Ny og utsatt
Høgskoleni østfold EKSAMEN Ny og utsatt Emnekode:Emne: ITF10705Matematikk for IT Dato:Eksamenstid: 8. juni 2015 09.00 13.00 Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Faglærer: Christian
DetaljerFaglærer: Oppgavesettet består av 12 oppgaver med totalt 15 deloppgaver. Ved sensur vil alle deloppgaver telle like mye.
Høgskoleni østfold EKSAMEN Emnekode: ITF10705 Dato: Emnenavn: Matematikk for IT Eksamenstid: 14. desember 2016 09.00 13.00 Hjelpemidler: Faglærer: - To A4-ark med valgfritt Christian F Heide innhold på
DetaljerEmnenavn: Matematikk for IT. Eksamenstid: Faglærer: Christian F Heide
EKSAMEN Emnekode: ITF10705 Dato: 4. januar 2019 Hjelpemidler: - To A4-ark med valgfritt innhold på begge sider. Emnenavn: Matematikk for IT Eksamenstid: 09.00 13.00 Faglærer: Christian F Heide Kalkulator
DetaljerCr) Høgskoleni østfold
Cr) Høgskoleni østfold EKSAMEN Emnekode:Emne: ITF10705Matematikk for IT Dato:Eksamenstid: 15. desember 2015 09.00 til 13.00 Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Kalkulator er ikke
DetaljerMatematikk for IT, høsten 2015
Matematikk for IT, høsten 015 Oblig 5 Løsningsforslag 5. oktober 016 3.1.1 3.1.13 a) Modus ponens. b) Modus tollens. c) Syllogismeloven. a) Ikke gyldig. b) Gyldig. 3.1.15 a) Hvis regattaen ikke avlyses,
DetaljerEksamensoppgave i TMA4140 Diskret matematikk
Institutt for matematiske fag Eksamensoppgave i TMA44 Diskret matematikk Faglig kontakt under eksamen: Christian Skau Tlf: 7359755 Eksamensdato: 8 desember 25 Eksamenstid (fra til): 9:-3: Hjelpemiddelkode/Tillatte
DetaljerMatematikk for IT Eksamen. Løsningsforslag
HØGSKOLEN I ØSTFOLD, AVDELING FOR INFORMASJONSTEKNOLOGI Matematikk for IT Eksamen 4. januar 2019 Løsningsforslag Christian F. Heide January 10, 2019 OPPGAVE 1 En spørreundersøkelse blant en gruppe studenter
DetaljerEksamensoppgave i TMA4140 Diskret matematikk
Institutt for matematiske fag Eksamensoppgave i TMA414 Diskret matematikk Faglig kontakt under eksamen: Christian Skau Tlf: 97 96 5 57 Eksamensdato: 15. desember 217 Eksamenstid (fra til): 9: 13: Hjelpemiddelkode/Tillatte
DetaljerEksamensoppgave i TMA4140 Diskret matematikk
Institutt for matematiske fag Eksamensoppgave i TMA4140 Diskret matematikk Faglig kontakt under eksamen: Christian Skau Tlf: 73 59 17 55 Eksamensdato: 15. desember 2016 Eksamenstid (fra til): 09:00 13:00
DetaljerMatematikk for IT. Prøve 1. Torsdag 18. september Løsningsforslag
23.09.2014 Matematikk for IT Prøve 1 Torsdag 18. september 2014 Løsningsforslag Oppgave 1 a) Gitt tallet BD 16. Konvertér dette tallet til titallsystemet. Siden B 16 = 11 10 og D 16 = 13 10 blir dette
DetaljerEKSAMEN Løsningsforslag
5..7 EKSAMEN Løsningsforslag Emnekode: ITD5 Dato:. desember 7 Hjelpemidler: - To A-ark med valgfritt innhold på begge sider. - Formelhefte. - Kalkulator som deles ut samtidig med oppgaven. Emnenavn: Matematikk
DetaljerMatematikk for IT, høsten 2016
Matematikk for IT, høsten 2016 Oblig Løsningsforslag 16. september 2016 2.4.1 a) {(0, 1), (0, 2), (1, 2)} b) {(0, 0), (1, 1), (2, 2)} c) {(0, 0), (0, 1), (1, 0), (0, 2), (2, 0)} d) {(0, 0), (1, 0), (1,
DetaljerMatematikk for IT. Prøve 1 Løsningsforslag. Fredag 23. september september Oppgave 1
Matematikk for IT Prøve 1 Løsningsforslag Fredag 23. september 2016 23. september 2016 Oppgave 1 Er 29 17 (mod 4)? Begrunn svaret. Dette kan vi lettest sjekke ved å se om 4 deler 29 17. 29 17 = 12. Vi
DetaljerMatematikk for IT. Prøve 1. Torsdag 17. september 2015. Løsningsforslag. 22. september 2015
Matematikk for IT Prøve 1 Torsdag 17. september 2015 Løsningsforslag 22. september 2015 Oppgave 1 Gitt følgende mengder A = {0, 1, 2, 3, 4}, B = {0, 1, 2} og C = {0, 3, 6, 9} Universet er U = {0, 1, 2,
DetaljerEKSAMEN I FAG TMA4140 DISKRET MATEMATIKK Tirsdag 16. desember 2003 Tid :
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Marius Irgens 92 81 23 87 EKSAMEN I FAG TMA4140 DISKRET MATEMATIKK Tirsdag 16. desember
DetaljerEksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag
Institutt for matematiske fag Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag Faglig kontakt under eksamen: Martin Strand Tlf: 970 27 848 Eksamensdato:. august 2014 Eksamenstid (fra
DetaljerEKSAMEN Løsningsforslag
..4 EKSAMEN Løsigsforslag Emekode: ITF75 Dato: 6. desember Eme: Matematikk for IT Eksamestid: kl 9. til kl. Hjelpemidler: To A4-ark med valgfritt ihold på begge sider. Kalkulator er ikke tillatt. Faglærer:
DetaljerEKSAMEN. Dato: 9. mai 2016 Eksamenstid: 09:00 13:00
EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: 9. mai 2016 Eksamenstid: 09:00 13:00 Hjelpemidler: Alle trykte og skrevne Faglærer: Jan Høiberg Om eksamensoppgavene: Oppgavesettet består
DetaljerMatematikk for IT, høsten 2017
Matematikk for IT, høsten 017 Oblig 5 Løsningsforslag 0. september 017 Oppgave 1 (eksamen desember 013) Gitt følgende logiske utsagn: ( p ( p q)) Benytt lovene i logikk til å finne hvilket av følgende
DetaljerEKSAMEN (Del 1, høsten 2015)
EKSAMEN (Del 1, høsten 2015) Emnekode: ITD13012 Emne: Datateknikk Dato: 02.12.2015 Eksamenstid: kl 0900 til kl 1200 Hjelpemidler: Faglærer: to A4-ark (fire sider) med egne notater Robert Roppestad "ikke-kommuniserende"
DetaljerHøgskoleni østfold EKSAMEN
Høgskoleni østfold EKSAMEN Emnekode: LBMAT10311 Emne: Måling, tall og algebra og funksjoner Dato: Eksamenstid: kl 09.00 til kl 15.00 4. desember 2014 Hjelpemidler: Kalkulator uten grafisk vindu Faglærer:
DetaljerEKSAMEN. Algoritmer og datastrukturer
EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: Eksamenstid: 20. mai 2009 kl 09.00 til kl 13.00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater Kalkulator Faglærer: Gunnar Misund
DetaljerMatematikk for IT. Prøve 1. Onsdag 18. september Løsningsforslag
Matematikk for IT Prøve 1 Onsdag 18. september 2013 Løsningsforslag Oppgave 1 a) Er 26 11 (mod 3)? Begrunn svaret. Dette spørsmålet betyr: Gir 26 : 3 samme rest som 11 : 3? Vi ser at 26 : 3 gir rest 2,
DetaljerEksamen i Elementær Diskret Matematikk - (MA0301)
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Steffen Junge (73 59 17 73 / 94 16 27 27) Eksamen i Elementær Diskret Matematikk -
DetaljerHøgskoleni østfold EKSAMEN. LSV1MAT12 Matematikk Vl: Tall, algebra og funksjoner 1
13/. Høgskoleni østfold EKSAMEN Emnekode: Emne: LSV1MAT1 Matematikk Vl: Tall, algebra og funksjoner 1 Dato: 1.1.013 Eksamenstid: kl. 9 til kl. 15 Hjelpemidler: Kalkulator uten grafisk skjerm. Faglærer:
DetaljerEKSAMEN. Emne: V1: Tall og algebra, funksjoner 1. Eksamenstid: 6 timer kl til kl.15.00
EKSAMEN Emnekode: LSMATAF11 Emne: V1: Tall og algebra, funksjoner 1 Dato: 13. desember 01 Eksamenstid: 6 timer kl. 09.00 til kl.15.00 Hjelpemidler: Kalkulator uten grafisk vindu Faglærer: Marianne Maugesten
DetaljerHøgskoen i Østfold EKSAMEN
Høgskoen i Østfold EKSAMEN Emnekode: Emne: LMAT10111 Tall, algebra og funksjonslære LUMAT10111 Tall, algebra og funksjonslære (5-10) Dato: 5.12.2014 Eksamenstid: kl. 9 til kl. 15 Hjelpemidler: Ikke-programmerbar
DetaljerEKSAMEN. Emne: V1: Tall og algebra, funksjoner 1. Eksamenstid: 6 timer, kl til kl
EKSAMEN Emnekode: LSV1MAT12 Emne: V1: Tall og algebra, funksjoner 1 Dato: 13. desember 2012 Eksamenstid: 6 timer, kl. 09.00 til kl. 15.00 Hjelpemidler: Kalkulator uten grafisk vindu Faglærer: Andrea Hofmann
DetaljerTrue False. Q(0, 1, 2) yq(0, y, y) x yq(x, y, 10) x yq(x, y, x + x) y xq(x, y, x + x) x y Q(x, y, x + x) y x Q(x, y, x + x) x y zq(x, y, z)
BOKMÅL-MNF130 Kand.nr:... Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I BERGEN Eksamen i emnet MNF130 - Diskrete Strukturer Onsdag 8. juni 2005, kl. 09-14, dvs 5 timer. Skriv ditt kanidatnr
DetaljerHøgskoleni østfold EKSAMEN. Ikke-programmerbar lommeregner uten grafisk skjerm Monica Nordbakke Marianne Maugesten
Høgskoleni østfold EKSAMEN Emnekode: Emne: LUMAT10115 Tall, algebra og funksjoner 1 Dato: 16.12.2015 Eksamenstid: kl. 9 til k1.15 Hjelpemidler: Faglærere: Ikke-programmerbar lommeregner uten grafisk skjerm
DetaljerHøgskoleni østfold EKSAMEN. LSVIMAT12 Matematikk 1, V 1: Tall og algebra. funksjoner 1. Dato: 16. desember Eksamenstid: kl til kl 15.
Høgskoleni østfold EKSAMEN Emnekode: Emne: LSVIMAT12 Matematikk 1, V 1: Tall og algebra. funksjoner 1 Dato: 16. desember Eksamenstid: kl 09.00 til kl 15.00 2015 Hjelpemidler: Faglærer: Khaled Jemai Kalkulator
DetaljerLØSNINGSFORSLAG EKSAMEN MNF130 VÅREN 2010 OPPGAVE 1
LØSNINGSFORSLAG EKSAMEN MNF130 VÅREN 2010 OPPGAVE 1 p q p p q p q T T F T T Sannhetstabell: T F F F F F T T T T F F T T T Siden proposisjonene p q og p q har samme sannhetsverdier (for alle sannhetsverdier
DetaljerEKSAMEN. Emne: Matematikk 101: Tall, algebra og funksjonslære Matematikk 101: Tall, algebra og funksjonslære (5-10)
EKSAMEN Emnekode: LMAT10111 LUMAT10111 Emne: Matematikk 101: Tall, algebra og funksjonslære Matematikk 101: Tall, algebra og funksjonslære (5-10) Dato: 13.12.2012 Eksamenstid: kl. 9 til kl. 15. Hjelpemidler:
DetaljerEKSAMEN Emnekode: ITD13012
EKSAMEN Emnekode: ITD13012 Dato: 29.11.2017 Hjelpemidler: To (2) A4-ark (fire sider) med egne notater. HIØ-kalkulator som kan lånes under eksamen. Emnenavn: Datateknikk Eksamenstid: 3 timer Faglærer: Robert
DetaljerUNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 10. desember 2013 Tid for eksamen: 09.00 13.00 Oppgave 1 Mengdelære (10 poeng)
DetaljerEKSAMEN. Dato: 18. mai 2017 Eksamenstid: 09:00 13:00
EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: 18. mai 2017 Eksamenstid: 09:00 13:00 Hjelpemidler: Alle trykte og skrevne Kalkulator Faglærer: Jan Høiberg Om eksamensoppgavene: Oppgavesettet
DetaljerEKSAMEN Ny og utsatt
EKSAMEN Ny og utsatt Emekode: ITF0705 Dato: 30. mai 04 Eme: Matematikk for IT Eksamestid: kl 09.00 til kl 3.00 Hjelpemidler: To A4-ark med valgfritt ihold på begge sider. Kalkulator er ikke tillatt. Faglærer:
DetaljerLO118D Forelesning 5 (DM)
LO118D Forelesning 5 (DM) Relasjoner 03.09.2007 1 Relasjoner 2 Ekvivalensrelasjoner 3 Matriser av relasjoner 4 Relasjonsdatabaser Relasjon Relasjoner er en generalisering av funksjoner En relasjon er en
DetaljerEKSAMEN. Algoritmer og datastrukturer. Eksamensoppgaven: Oppgavesettet består av 11 sider inklusiv vedlegg og denne forsiden.
EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: Eksamenstid: 20. mai 2008 kl 09.00 til kl 13.00 Hjelpemidler: 4 A4-sider (2 ark) med valgfritt innhold Kalkulator Faglærer: Mari-Ann
DetaljerEmnenavn: Ny, utsatt eksamen. Eksamenstid: Faglærere: Monica Nordbakke. Marianne Maugesten
EKSAMEN Emnekode: LMUMAT10117 Emnenavn: MAT101: Tall, algebra og funksjoner 1 (5-10) Ny, utsatt eksamen Dato: 14.06.2018 Eksamenstid: 9.00 15.00 Hjelpemidler: Kalkulator (ikke grafisk) Faglærere: Monica
DetaljerEKSAMEN. Emne: Algoritmer og datastrukturer
1 EKSAMEN Emnekode: ITF20006 000 Dato: 19. mai 2010 Emne: Algoritmer og datastrukturer Eksamenstid: 09:00 til 13:00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater Faglærer: Gunnar Misund Oppgavesettet
DetaljerEksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag
Institutt for matematiske fag Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag Faglig kontakt under eksamen: Martin Strand Tlf: 970 7 848 Eksamensdato: 3. mai 014 Eksamenstid (fra
DetaljerEmnenavn: Eksamenstid: Faglærer: Christian F Heide
EKSAMEN Emnekode: ITD15013 Emnenavn: Matematikk 1 første deleksamen Dato: 13. desember 017 Hjelpemidler: Eksamenstid: 09.00 1.00 Faglærer: To A4-ark med valgfritt innhold på begge sider. Formelhefte. Kalkulator
DetaljerEKSAMEN med løsningsforslag
EKSAMEN med løsningsforslag Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: Eksamenstid: 20. mai 2009 kl 09.00 til kl 13.00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater Kalkulator Faglærer:
DetaljerHøgskoleni østfold EKSAMEN. V3: Tall og algebra, funksjoner 2 ( trinn) Dato: Eksamenstid: Fra kl til kl
Høgskoleni østfold EKSAMEN Emnekode: LSV3MAT12 Emne: V3: Tall og algebra, funksjoner 2 (5.-10. trinn) Dato: Eksamenstid: Fra kl. 09.00 til kl. 15.00 3. desember 2015 Hjelpemidler: Numerisk lommeregner
Detaljer1. del av Del - EKSAMEN
1. del av Del - EKSAMEN Emnekode: ITD13012 Emne: Datateknikk Dato: 27. November 2012 Eksamenstid: kl 9:00 til kl 12:00 Hjelpemidler: 4 sider (A4) (2 ark) med egne notater. Ikke-kummuniserende kalkulator.
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF Logiske metoder for informatikk Eksamensdag:. desember Tid for eksamen:.. Oppgavesettet er på sider. Vedlegg: Ingen Tillatte
DetaljerLØSNINGSFORSLAG EKSAMEN V06, MA0301
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 LØSNINGSFORSLAG EKSAMEN V06, MA0301 Oppgave 1 a) Sett opp en sannhetsverditabell(truth table) for det logiske uttrykket
DetaljerEKSAMEN. Emne: Algoritmer og datastrukturer
1 EKSAMEN Emnekode: ITF20006 000 Dato: 18. mai 2012 Emne: Algoritmer og datastrukturer Eksamenstid: 09:00 til 13:00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater Faglærer: Gunnar Misund Oppgavesettet
DetaljerNY EKSAMEN Emnekode: ITD13012
NY EKSAMEN Emnekode: ITD13012 Dato: 30.05.2018 Hjelpemidler: To (2) A4-ark (fire sider) med egne notater. HIØ-kalkulator som kan lånes under eksamen. Emnenavn: Datateknikk (deleksamen 1) Eksamenstid: 3
DetaljerEKSAMEN. Tall og algebra, funksjoner 2
EKSAMEN Emnekode: LSV3MAT12 Emne: Tall og algebra, funksjoner 2 Dato: 06/12/2012 Eksamenstid: kl. 09.00 til kl. 15.00 Hjelpemidler: Kalkulator Faglærer: Petter Løkkeberg Eksamensoppgaven: Oppgavesettet
DetaljerOppgavesettet består av 7 sider, inkludert denne forsiden. Kontroll& at oppgaven er komplett før du begynner å besvare spørsmålene.
Høgskoleni Østfold EKSAMEN Emnekode: Emnenavn: ITF20006 Algoritmer og datastrukturer Dato: Eksamenstid: 9. mai 2016 9.00 13.00 Hjelpemidler: Faglærer: Alle trykte og skrevne Jan Høiberg Om eksamensoppgaven
DetaljerNy/utsatt EKSAMEN. Dato: 6. januar 2017 Eksamenstid: 09:00 13:00
Ny/utsatt EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: 6. januar 2017 Eksamenstid: 09:00 13:00 Hjelpemidler: Alle trykte og skrevne Faglærer: Jan Høiberg Om eksamensoppgavene: Oppgavesettet
DetaljerLøsningsforslag til 1. del av Del - EKSAMEN
Løsningsforslag til 1. del av Del - EKSAMEN Emnekode: ITD13012 Emne: Datateknikk Dato: 27. November 2012 Eksamenstid: kl 9:00 til kl 12:00 Hjelpemidler: 4 sider (A4) (2 ark) med egne notater. Ikke-kummuniserende
DetaljerHøgskoleni østfold EKSAMEN
Høgskoleni østfold EKSAMEN Emnekode: Emne: ITF10208 og Webprogrammering 1 og ITF10212 Innføring i programmering Dato: Eksamenstid: 03/12-2013 09.00-13.00 Hjelpemidler: Faglærer: 2 A4 ark (4 sider) med
DetaljerMatematikk for IT, høsten 2016
Matematikk for IT, høsten 2016 Oblig 2 Løsningsforslag 6. september 2016 2.1.4 a, b, c, c, d og C a, b, c, d vgjør om en av mengdene er en delmengde til en av de to andre. Her ser vi at C og C 2.1.5. Hvilke
DetaljerHøgskoleni østfold EKSAMEN. Emnekode: Emne: ITD13012 Datateknikk (deleksamen 1, høstsemesteret) Dato: Eksamenstid: kl til kl.
Høgskoleni østfold EKSAMEN Emnekode: Emne: ITD13012 Datateknikk (deleksamen 1, høstsemesteret) Dato: 02.12.2015 Eksamenstid: kl. 0900 til kl. 1200 Hjelpemidler: Faglærer: to A4-ark (fire sider) med egne
DetaljerHøgskolen i Agder. Institutt for matematiske fag EKSAMEN
Høgskolen i Agder Institutt for matematiske fag EKSAMEN i MA1040 Matematikk for IT-studenter Mandag 5. mai 2003, kl. 09 00 13 00 Alle trykte og skrevne hjelpemidler er tillatt. Oppgavesettet er på 7 sider.
DetaljerSensorveiledning for Matematikk 103 Måling, tall og algebra og funksjoner LBMAT10311
Høst 2018 Sensorveiledning for Matematikk 103 Måling, tall og algebra og funksjoner LBMAT10311 1) Eksamensoppgaven med løsningsforslag side 3 til 11. Den inneholder fasit og forslag eller kommentarer til
DetaljerHøgskoleni østfold EKSAMEN. Dato: Eksamenstid: kl til kl. 1200
Høgskoleni østfold EKSAMEN Emnekode: ITD13012 Emne: Datateknikk Dato: 3.12.2014 Eksamenstid: kl. 0900 til kl. 1200 Hjelpemidler: to A4-ark (fire sider) med egne notater "ikke-kommuniserende" kalkulator
DetaljerPrøve- EKSAMEN med løsningsforslag
Prøve- EKSAMEN med løsningsforslag Emnekode: ITD33514 Dato: Vår 2015 Hjelpemidler: Alle trykte og skrevne. Emne: Bildebehandling og mønstergjenkjenning Eksamenstid: 4 timers eksamen Faglærer: Jan Høiberg
DetaljerEKSAMEN Løsningsforslag. med forbehold om bugs :-)
1 EKSAMEN Løsningsforslag med forbehold om bugs :-) Emnekode: ITF20006 000 Dato: 20. mai 2011 Emne: Algoritmer og datastrukturer Eksamenstid: 09:00 til 13:00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater
DetaljerR for alle a A. (, så er a, En relasjon R på en mengde A er en Ekvivalensrelasjon hvis den er refleksiv, symmetrisk og transitiv.
Repetisjon fra siste uke: Relasjoner En relasjon R på en mengde A er en delmengde av produktmengden A A. La R være en relasjon på en mengde A. R er refleksiv hvis R er symmetrisk hvis R er antisymmetrisk
DetaljerEmnenavn: Datateknikk. Eksamenstid: 3 timer. Faglærer: Robert Roppestad. består av 5 sider inklusiv denne forsiden, samt 1 vedleggside.
Høgskolen i østfold EKSAMEN Emnekode: ITD13012 Dato: 2.12.2016 Hjelpemidler: To (2) A4-ark (fire sider) med egne notater Hlø-kalkulator som kan lånes under eksamen Emnenavn: Datateknikk Eksamenstid: 3
DetaljerHøgskoleni østfold EKSAMEN. LSV1MAT12 Vl: Tall og algebra, funksjoner 1. Dato: Eksamenstid: kl til kl
Høgskoleni østfold EKSAMEN Emnekode: Emne: LSV1MAT12 Vl: Tall og algebra, funksjoner 1 Dato: Eksamenstid: kl. 09.00 til kl. 15.00 9. desember 2014 Hjelpemidler: Kalkulator uten grafisk vindu Faglærer:
DetaljerLøsningsforlag til eksamen i Diskret matematikk. 29. november 2017
Løsningsforlag til eksamen i Diskret matematikk 29. november 2017 Oppgave 1, 2, 3, 4, 5 og 6 teller likt. For å få full score må man vise hvordan man har kommet frem til svarene (ved f. eks. figurer eller
DetaljerLøsningsforslag Øving 9 TMA4140 Diskret matematikk Høsten 2008. i for i = 0, 1, 2, 3, 4, og så er W 4 svaret. 0 1 0 0
Løsningsforslag Øving 9 TMA4140 Diskret matematikk Høsten 2008 8.4.27 Vi beregner matrisene W i for i = 0, 1, 2, 3, 4, og så er W 4 svaret. a) W 0 = W 1 = W 2 = 1 0 0 0 1 1 0 0 b) W 0 = c) W 0 = d) W 0
DetaljerHøgskoleni østfold EKSAMEN
Høgskoleni østfold EKSAMEN Emnekode: Emne: LMAT10111 Matematikk 1, emne 101: Tall, algebra og funksjonslære LUMAT10111 Matematikk 101: Tall, algebra og funksjonslære (5-10) Dato: 1.1.013 Eksamenstid: kl.
DetaljerR for alle a A. (, så er a, En relasjon R på en mengde A er en Ekvivalensrelasjon hvis den er refleksiv, symmetrisk og transitiv.
Repetisjon fra siste uke: Relasjoner En relasjon R på en mengde A er en delmengde av produktmengden A A. La R være en relasjon på en mengde A. R er refleksiv hvis R er symmetrisk hvis R er antisymmetrisk
DetaljerEKSAMEN. Bildebehandling og mønstergjenkjenning
EKSAMEN Emnekode: ITD33514 Dato: 18. mai 2015 Hjelpemidler: Alle trykte og skrevne. Emne: Bildebehandling og mønstergjenkjenning Eksamenstid: 4 timers eksamen Faglærer: Jan Høiberg Eksamensoppgaven: Oppgavesettet
DetaljerEKSAMEN ITF10208. Webprogrammering 1 Dato: Eksamenstid: Hjelpemidler: 2 A4 ark (4 sider) med egenproduserte notater (håndskrevne/maskinskrevne)
EKSAMEN Emnekode: Emne: ITF10208 Webprogrammering 1 Dato: Eksamenstid: 01/06-2011 09.00-13.00 Hjelpemidler: 2 A4 ark (4 sider) med egenproduserte notater (håndskrevne/maskinskrevne) Faglærer: Tom Heine
DetaljerEKSAMEN. Emne: Datakommunikasjon
EKSAMEN Emnekode: ITF20205 Emne: Datakommunikasjon Dato: 4.Des 2006 Eksamenstid: kl 9:00 til kl 13:00 Hjelpemidler: 4 sider (A4) (2 ark) med egne notater. Kalkulator. Gruppebesvarelse, som blir delt ut
DetaljerLØSNINGSFORSLAG SIF5015 DISKRET MATEMATIKK Onsdag 18. desember 2002
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 LØSNINGSFORSLAG SIF55 DISKRET MATEMATIKK Onsdag 8. desember 22 Oppgave a) Vi vil ha 77x (mod 3), så vi trenger en
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 28. november 2014 Tid for eksamen: 08.15 12.15 Oppgavesettet er på 6 sider. Vedlegg: Tillatte hjelpemidler: INF1080
DetaljerPrøveeksamen 2016 (med løsningsforslag)
Prøveeksamen 2016 (med løsningsforslag 1 Grunnleggende mengdelære La A = {0, {0}} og B = {0, {0}, {0, {0}}}. Er følgende påstander sanne eller usanne? 1 {{0}} A 2 0 B 3 A B 4 A B 1 Usann 2 Usann 3 Sann
DetaljerEKSAMEN Løsningsforslag
7 desember EKSAMEN Løsningsorslag Emnekode: ITD5 Dato: 6 desember Hjelpemidler: Emne: Matematikk ørste deleksamen Eksamenstid: 9 Faglærer: To A-ark med valgritt innhold på begge sider Formelhete Kalkulator
DetaljerEKSAMEN (Del 1, høsten 2014)
EKSAMEN (Del 1, høsten 2014) Emnekode: ITD13012 Emne: Datateknikk Dato: 03.12.2014 Eksamenstid: kl 0900 til kl 1200 Hjelpemidler: to A4-ark (fire sider) med egne notater "ikke-kommuniserende" kalkulator
DetaljerEKSAMEN. Evaluering av IT-systemer. Eksamenstid: kl 0900 til kl 1300
EKSAMEN Emnekode: ITL24006 Dato: 4. desember 2007 Hjelpemidler: Emne: Evaluering av IT-systemer Eksamenstid: kl 0900 til kl 1300 Faglærer: Ingen, heller ikke kalkulator eller mobiltelefon Kåre Sorteberg
DetaljerEKSAMEN (Konvertert fra en gammel PHP-eksamen)
EKSAMEN (Konvertert fra en gammel PHP-eksamen) Emnekode: Emne: ITF10208 Webprogrammering 1 Dato: Eksamenstid: 07/12-2010 09.00-13.00 Hjelpemidler: 2 A4 ark (4 sider) med egenproduserte notater (håndskrevne/maskinskrevne)
DetaljerLøsningsforslag til EKSAMEN
Løsningsforslag til EKSAMEN Emnekode: ITD006 Emne: Fysikk og datateknikk Dato: 09. Mai 007 Eksamenstid: kl 9:00 til kl :00 Hjelpemidler: 4 sider (A4) ( ark) med egne notater. Kalkulator. Gruppebesvarelse,
DetaljerMatematikk 2, 4MX25-10
Skriftlig eksamen i Matematikk 2, 4MX25-10 30 studiepoeng ORDINÆR EKSAMEN 31. mai 2013. Sensur faller innen tirsdag 25. juni 2013. BOKMÅL Resultatet blir tilgjengelig på studentweb første virkedag etter
DetaljerEKSAMEN (Konvertert fra en gammel PHPeksamen)
EKSAMEN (Konvertert fra en gammel PHPeksamen) Emnekode: Emne: ITF10208 Webprogrammering 1 Dato: Eksamenstid: 01/06-2011 09.00-13.00 Hjelpemidler: 2 A4 ark (4 sider) med egenproduserte notater (håndskrevne/maskinskrevne)
DetaljerEKSAMEN. Dato: 28. mai 2018 Eksamenstid: 09:00 13:00
EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: 28. mai 2018 Eksamenstid: 09:00 13:00 Hjelpemidler: Alle trykte og skrevne Faglærer: Jan Høiberg Om eksamensoppgavene: Oppgavesettet
DetaljerEKSAMEN. Objektorientert programmering
EKSAMEN Emnekode: ITF 10609 Dato: 13.mai 2009 Emne: Objektorientert programmering Eksamenstid: kl 09.00 til kl 12.00 Hjelpemidler: 2 A4-ark med valgfritt innhold på begge sider. Faglærere: Tom Heine Nätt
DetaljerEKSAMEN. Emne: Webprogrammering med PHP (kont.) Webprogrammering 1 (kont.) Eksamenstid: 09.00-13.00
EKSAMEN Emnekode: ITM20606 ITF10208 Dato: Emne: Webprogrammering med PHP (kont.) Webprogrammering 1 (kont.) Eksamenstid: 09.00-13.00 05/06-2009 Hjelpemidler: 2 A4 ark (4 sider) med egenproduserte notater
DetaljerUNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet. INF1080 Logiske metoder for informatikk
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag:. desember Tid for eksamen:.. INF Logiske metoder for informatikk Oppgave Mengdelære ( poeng) La A = {,, {}}, B =
DetaljerHøgskoleni østfold EKSAMEN. ITD33506 Bildebehandling og monstergjenkjenning. Dato: Eksamenstid: kl 9.00 til kl 12.00
Or Høgskoleni østfold EKSAMEN Emnekode: Emne: ITD33506 Bildebehandling og monstergjenkjenning Dato: 25.11.2013 Eksamenstid: kl 9.00 til kl 12.00 Hjelpemidler: Læreboken, ett A4-ark skrevet på begge sider
DetaljerRelasjoner. Ekvivalensrelasjoner. En relasjon R på en mengde A er en delmengde av produktmengden. La R være en relasjon på en mengde A.
Relasjoner En relasjon R på en mengde A er en delmengde av produktmengden A A. La R være en relasjon på en mengde A. R er refleksiv hvis ( a, a) R for alle a A. R er symmetrisk hvis ( a, b) R, så er (
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 28. november 2014 Tid for eksamen: 08.15 12.15 Oppgave 1 Mengdelære (10 poeng)
Detaljer