AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE

Størrelse: px
Begynne med side:

Download "AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE"

Transkript

1 AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE Eme: Diskret matematikk Gruppe(r): Eksamesoppgave består av: Atall sider (ikl forside): 5 Emekode: FO 9A Dato: 69 Atall oppgaver: Fagasvarlig: Ulf Uttersrud Eksamestid: 9 Atall vedlegg: Tillatte hjelpemidler: Alle trykte og skreve hjelpemidler samt hådholdt kalkulator som ikke kommuiserer trådløst Kadidate må selv kotrollere at oppgavesettet er fullstedig Ved evetuelle uklarheter i oppgavetekste skal du redegjøre for de forutsetiger du legger til gru for løsige Utarbeidet av (faglærer): Ulf Uttersrud Kotrollert av (e av disse): Ae lærer Sesor Studieleder/ Fagkoordiator Studieleders/ Fagkoordiators uderskrift: Avdelig for igeiørutdaig Postboks St Olavs plass Oslo tlf: 5 faks: 5 5 iu@hioo

2 Alle de oppgavee teller likt Det er ikke slik at lette oppgaver kommer først og vaskelige til slutt Bruk derfor ikke for mye tid på e oppgave du ikke får til Prøv istede e y oppgave Alle svar skal begrues! Det ka for eksempel skje ved at du tar med mellomregiger eller gir adre former for argumetasjo Ku et svar ute oe begruelse er ormalt verdiløst Oppgave a) Utsagee p, q, r, s og t er gitt ved p : «Jeg er tørst» q : «Glasset er tomt» r : «Jeg er tørst og glasset er ikke tomt» s : «Hvis jeg ikke er tørst, så er glasset ikke tomt» t : «Glasset er tomt bare hvis jeg ikke er tørst» Skriv de sammesatte utsagee r, s, t, r og s t ved hjelp av p, q og logiske operatorer Skriv dem på så ekel form som mulig, dvs ved færrest mulig logiske operatorer b) La p, q og r være vilkårlige logiske utsag Avgjør om de to sammesatte utsagee ( p q) r og p ( q r) er ekvivalete eller ikke Svaret skal begrues Oppgave a) La A, B og C være vilkårlige megder Lag et Ve-diagram der du skraverer megde ( A B) ( B C) b) Fi (og uttrykk ved hjelp av A, B, C og megdeoperasjoer) de megde som svarer til de skraverte dele av Ve-diagrammet uder:

3 Oppgave La A være megde av alle bitsekveser (eg: bit strigs) med legde 8 For eksempel er og to slike bitsekveser La N være de aturlige tallee, dvs N = {,,,, } a) La fuksjoe f : A N være defiert ved at f (a) for hver a A er lik atallet biter i bitsekvese a Fi verdimegde til f? Er f e-tile? Er f på? Begru svaree b) La A k = { a A f ( a) = k} Fi atallet elemeter i megde Ak for hver k =,,,,, dvs fi A for k =,,,, k c) Skriv opp de åtte første radee i Pascals trekat Husk at første (øverste rad) ku består av tallet Oppgave a) Gitt tallet 5 Fi tallet på biær, oktal og heksadesimal form b) Fi primtallsfaktoriserige til 57 c) Tallsystemer med, 8, eller 6 som grutall er i valig bruk Me et hvilket som helst positivt heltall g ka være grutall i et tallsystem Fi det positive heltallet g som er slik at sifree til 5 i tallsystemet med g som grutall blir 6, dvs 5 = 6 g Oppgave 5 Gitt matrisee A =, B = og C = a) For at et matriseprodukt skal være defiert stilles det bestemte krav til dimesjoee til de to matrisee i produktet Avgjør hvilke av disse matriseproduktee som er defiert: AB, BA, AC, CA, BC, CB Sett opp hvilke dimesjo produktet får for de matriseproduktee som er defiert b) Reg ut matriseproduktee AB og BA Oppgave 6 a) Fi summe av de aritmetiske rekke b) Fi summe k ( ) = + ( ) + ( ) + ( ) + ( k= ) ved å bruke formele for summe av e geometrisk rekke c) Det te harmoiske tallet H er gitt ved H = + / + / + + / La s = H + H + H + + H og t = ( + )( H + ) Vis at s = t for = og = Vis ved iduksjo at s = t for alle

4 Oppgave 7 Her skal vi se på permutasjoer av tallee,,,, 5 a) Hvor mage permutasjoer har tallet først? b) Hvor mage permutasjoer har først og på midte? c) Hvor mage permutasjoer har først eller på midte eller 5 bakerst? Oppgave 8 Gitt differesligige a a a, >, a =, a 6 = = a) Fi a, a og a b) Fi e formel for a c) Fi a ved å sette i i formele for a Oppgave 9 Matrise M edefor er matrise til e relasjo R på megde A = { a, b, c, d } R M R = a) Sett opp R som e megde av par av elemeter fra A b) Teg grafe til R c) Er R e partiell ordig? d) Fi alle par ( x, y ) av elemeter fra A slik at det går e vei i grafe til R fra x til y med legde

5 Oppgave Figure over viser rommee i et hus Det er fem rom med av A, B, C, D og E I hvert rom er det et atall dører (markert på figure med åpiger) For eksempel er det fem dører i rom A Noe dører går ut av huset (til F) og oe går til adre rom For eksempel er det to dører fra A til F og videre e dør fra A til hvert av rommee B, C og D a) La hvert av rommee (A, B, C, D, E) og utedørs (F) være pukter i e graf med døree som kater mellom puktee Teg grafe b) Sett opp grade til hvert av de seks puktee i grafe c) Er det mulig å starte i et av rommee eller evetuelt utedørs og så gå gjeom hver dør øyaktig é gag? 5

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE Eme: Diskret matematikk Gruppe(r): Eksamesoppgave består av: Atall sider (ikl forside): 5 Emekode: FO 9A Dato: 57 Atall oppgaver: Fagasvarlig: Ulf Uttersrud

Detaljer

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE Eme: Diskret matematikk Gruppe(r): Emekode: FO 019A Dato: 12.12.200 Faglig veileder: Ulf Uttersrud Eksamestid: 9-14 Eksamesoppgave består av: Atall sider

Detaljer

Fakultet for teknologi, kunst og design Teknologiske fag Eksamen i: Diskret matematikk

Fakultet for teknologi, kunst og design Teknologiske fag Eksamen i: Diskret matematikk Fakultet for tekologi, kust og desig Tekologiske fag Eksame i: Diskret matematikk Målform: Bokmål Dato: 9. ovember 017 Tid: Atall sider (ikl. forside): 9 Atall oppgaver: 6 Tillatte hjelpemidler: Forhådsgodkjet

Detaljer

Fakultet for teknologi, kunst og design Teknologiske fag

Fakultet for teknologi, kunst og design Teknologiske fag Side 1 av 1 Fakultet for tekologi, kust og desig Tekologiske fag Eksame i: Diskret matematikk Målform: okmål Dato: 30.11.016 Tid: 5 timer / kl. 9-14 tall sider ikl. forside: 1 tall ogaver: 10 Tillatte

Detaljer

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE Eme: Statistikk Gruppe(r): Alle ( 2. årskull) Eksamesoppgav Atall sider (ikl. e består av: forside): 5 Tillatte hjelpemidler: Emekode: LO070A Dato: 11.06.2004

Detaljer

Obligatorisk oppgave nr. 3 i Diskret matematikk

Obligatorisk oppgave nr. 3 i Diskret matematikk 3. obligatoriske oppgave i Diskret matematikk høste 08. Obligatorisk oppgave r. 3 i Diskret matematikk Ileverigsfrist. ovember 08 Oppgave er frivillig og tregs ikke leveres, me hvis dere leverer de ie

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag 7. jauar 7 EKSAMEN Løsigsforslag Emekode: ITF75 Dato: 4. desember 6 Hjelpemidler: - To A4-ark med valgfritt ihold på begge sider. Emeav: Matematikk for IT Eksamestid: 9. 3. Faglærer: Christia F Heide Kalkulator

Detaljer

Løsningsforslag. Oppgavesettet består av 9 oppgaver med i alt 21 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye.

Løsningsforslag. Oppgavesettet består av 9 oppgaver med i alt 21 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye. .. Løsigsforslag Emekode: ITF7 Dato:. desember Eme: Matematikk for IT Eksamestid: kl. til kl. Hjelpemidler: To A4-ark med valgfritt ihold på begge sider. Faglærer: Christia F Heide Eksamesoppgave: Oppgavesettet

Detaljer

EKSAMEN løsningsforslag

EKSAMEN løsningsforslag 05.0.08 EKSAMEN løsigsforslag Emekode: ITF0705 Dato: 5. desember 07 Hjelpemidler: - To A4-ark med valgfritt ihold på begge sider. Emeav: Matematikk for IT Eksamestid: 09.00 3.00 Faglærer: Christia F Heide

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag ..4 EKSAMEN Løsigsforslag Emekode: ITF75 Dato: 6. desember Eme: Matematikk for IT Eksamestid: kl 9. til kl. Hjelpemidler: To A4-ark med valgfritt ihold på begge sider. Kalkulator er ikke tillatt. Faglærer:

Detaljer

Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål Eksame 6.05.010 REA304 Matematikk R Nyorsk/Bokmål Bokmål Eksamesiformasjo Eksamestid: Hjelpemidler på Del 1: Hjelpemidler på Del : Vedlegg: Framgagsmåte: Veiledig om vurderige: 5 timer: Del 1 skal leveres

Detaljer

Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte.

Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte. Eksame 20052009 REA3024 Matematikk R2 Nyorsk/Bokmål Bokmål Eksamesiformasjo Eksamestid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Bruk av kilder: Vedlegg: Framgagsmåte: Veiledig om vurderige: 5 timer:

Detaljer

Eksempeloppgave 2014. REA3026 Matematikk S1 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)

Eksempeloppgave 2014. REA3026 Matematikk S1 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler) Eksempeloppgave 04 REA306 Matematikk S Eksempel på eksame våre 05 etter y ordig Ny eksamesordig Del : 3 timer (ute hjelpemidler) Del : timer (med hjelpemidler) Mistekrav til digitale verktøy på datamaski:

Detaljer

Eksamen R2, Høsten 2010

Eksamen R2, Høsten 2010 Eksame R, Høste 00 Del Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (6 poeg) a) Deriver fuksjoee ) f l f ( ) l l (l ) ) g( ) si cos f si

Detaljer

2. Bestem nullpunktene til g.

2. Bestem nullpunktene til g. Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL 0. desember 007 EKSAMEN I MATEMATIKK Modul 5 studiepoeg Tid: 5 timer Oppgavesettet er på 9 sider (ikludert formelsamlig).

Detaljer

i Dato:

i Dato: c:- høgskolen i oslo I Emne I EmnlekOde: I FagligvelIeder: Diskret matematikk FO 019A UJfUttersrud raruppe( r): i Dato: - I Eksamenstid: 12.12.2005 9-14 I Eksam-ensopp gavenbestår av: I Antall sid~nkl

Detaljer

Løsningsforslag til eksamen

Løsningsforslag til eksamen 7. jauar 6 Løsigsforslag til eksame Emekode: ITF75 Dato: 5. desember 5 Eme: Matematikk for IT Eksamestid: kl 9. til kl. Hjelpemidler: To A4-ark med valgfritt ihold på begge sider. Kalkulator er ikke tillatt.

Detaljer

DEL 1. Uten hjelpemidler 500+ er x

DEL 1. Uten hjelpemidler 500+ er x DEL 1 Ute hjelpemidler Oppgave 1 (18 poeg) 500 = + 8 er a) Vis at de deriverte til fuksjoe ( ) O O ( ) = 500+ 16 b) Deriver fuksjoee 1) f( ) = l( ) ) g( ) = e c) Vi har gitt polyomfuksjoe f( ) = 1 + 15

Detaljer

R2 eksamen høsten 2017

R2 eksamen høsten 2017 R eksame høste 017 DEL 1 Ute hjelpemidler Oppgave 1 (5 poeg) Deriver fuksjoee a) f x si3 b) g x si x x h x x cos x c) x Oppgave (5 poeg) Bestem itegralee 3 a) x 3x dx b) xe x dx c) x x 1 dx Oppgave 3 (4

Detaljer

Tallsystemer. Læringsmål. Posisjonstallsystemer. Potensregning en kort repetisjon 123 = = 7B 16. Forstå posisjonstallsystemer

Tallsystemer. Læringsmål. Posisjonstallsystemer. Potensregning en kort repetisjon 123 = = 7B 16. Forstå posisjonstallsystemer Forstå posisjostallsystemer Lærigsmål Tallsystemer Kue biærtall og heksadesimale tall Kue kovertere mellom ulike tallsystemer: Ti 3 = = 7B 6 (Kapittel 6 + 7.-7.3) Kue ekel regig med biærtall addisjo multiplikasjo

Detaljer

Kapittel 10 fra læreboka Grafer

Kapittel 10 fra læreboka Grafer Forelesigsotat i Diskret matematikk torsdag 6. oktober 017 Kapittel 10 fra læreboka Grafer (utdrag) E graf er e samlig pukter (oder) og kater mellom puktee (eg. odes, vertex, edge). E graf kalles rettet

Detaljer

Eksamen 20.05.2009. REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen 20.05.2009. REA3024 Matematikk R2. Nynorsk/Bokmål Eksame 20052009 REA3024 Matematikk R2 Nyorsk/Bokmål Nyorsk Eksamesiformasjo Eksamestid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Bruk av kjelder: Vedlegg: Framgagsmåte: Rettleiig om vurderiga: 5 timar:

Detaljer

DEL 1. Uten hjelpemidler. Oppgave 1 (5 poeng) Oppgave 2 (5 poeng) Oppgave 3 (4 poeng) x x. Deriver funksjonene. a) f( x) 2 sin 3x. Bestem integralene

DEL 1. Uten hjelpemidler. Oppgave 1 (5 poeng) Oppgave 2 (5 poeng) Oppgave 3 (4 poeng) x x. Deriver funksjonene. a) f( x) 2 sin 3x. Bestem integralene DEL 1 Ute hjelpemidler Oppgave 1 (5 poeg) Deriver fuksjoee a) f( x) si 3x b) c) si x g ( x) x h( x) x cos x Oppgave (5 poeg) Bestem itegralee a) 3 ( 3 ) d x x x b) xe x dx c) x x 1 dx Oppgave 3 (4 poeg)

Detaljer

Eksamen 21.05.2013. REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen 21.05.2013. REA3024 Matematikk R2. Nynorsk/Bokmål Eksame 21.05.2013 REA3024 Matematikk R2 Nyorsk/Bokmål Nyorsk Eksamesiformasjo Eksamestid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast i etter 2 timar. Del 2 skal leverast

Detaljer

Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte.

Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte. Eksame 20.05.2009 REA3028 Matematikk S2 Nyorsk/Bokmål Bokmål Eksamesiformasjo Eksamestid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Bruk av kilder: Vedlegg: Framgagsmåte: Veiledig om vurderige: 5 timer:

Detaljer

Eksamen R2, Våren 2010

Eksamen R2, Våren 2010 Eksame R, Våre 010 Del 1 Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave 1 a) Deriver fuksjoe gitt ved f x x cos 3 x b) Bestem itegralee 1)

Detaljer

Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt.

Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Tid: 3 timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (3 poeg) Deriver fuksjoee a) f( ) cos5 f 5 si5 0 si5 g e si Vi bruker produktregele for derivasjo,

Detaljer

Løsningsforslag. Oppgavesettet består av 16 oppgaver. Ved sensur vil alle oppgaver telle like mye med unntak av oppgave 6 som teller som to oppgaver.

Løsningsforslag. Oppgavesettet består av 16 oppgaver. Ved sensur vil alle oppgaver telle like mye med unntak av oppgave 6 som teller som to oppgaver. . mai 5 Løsigsforslag Emekode: ITF75 Dato: 5. desember 4 Eme: Matematikk for IT Eksamestid: kl 9. til kl 3. Hjelpemidler: To A4-ark med valgfritt ihold på begge sider. Kalkulator er ikke tillatt. Faglærer:

Detaljer

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 16. mai 2008

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 16. mai 2008 Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL 6. mai 008 EKSAMEN I MATEMATIKK Modul 5 studiepoeg Tid: 5 timer Oppgavesettet er på 8 sider (ikludert formelsamlig). Hjelpemidler:

Detaljer

Terminprøve R2 Høsten 2014 Løsning

Terminprøve R2 Høsten 2014 Løsning Termiprøve R Høste 04 Løsig Del Tid: 3 timer Hjelpemidler: Skrivesaker Oppgave (6 poeg) E flate i rommet er gitt ved likige: x 4x y 6y z 8z 0 0 a) Vis at puktet P3, 5, ligger på flate Puktet P3, 5, ligger

Detaljer

Terminprøve R2 Høsten 2014

Terminprøve R2 Høsten 2014 Termiprøve R Høste 04 Del Tid: 3 timer Hjelpemidler: Skrivesaker Oppgave (6 poeg) E flate i rommet er gitt ved likige: x 4x y 6y z 8z 0 0 a) Vis at puktet P3, 5, ligger på flate b) Vis at dette er e kuleflate

Detaljer

Eksamen R2, Våren 2013

Eksamen R2, Våren 2013 Eksame R2, Våre 2013 Oppgave 1 (4 poeg) Deriver fuksjoee a) f x 3cos x b) gx x 6si 7 2x c) hx 3e si3x Oppgave 2 (4 poeg) Bestem itegralet a) variabelskifte 2x dx x 4 2 ved å bruke b) delbrøkoppspaltig

Detaljer

Eksempeloppgave 2014. REA3028 Matematikk S2 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)

Eksempeloppgave 2014. REA3028 Matematikk S2 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler) Eksempeloppgave 2014 REA3028 Matematikk S2 Eksempel på eksame våre 2015 etter y ordig Ny eksamesordig Del 1: 3 timer (ute hjelpemidler) Del 2: 2 timer (med hjelpemidler) Mistekrav til digitale verktøy

Detaljer

R2 eksamen våren 2018

R2 eksamen våren 2018 R eksame våre 08 DEL Ute hjelpemidler Oppgave (3 poeg) Deriver fuksjoee a) f ( x) = cos ( x ) b) g ( x) = x si x Oppgave (5 poeg) Bestem itegralee a) ( 4x + 3 ) b) 4x l x dx x dx c) 0 x dx x + 4 Oppgave

Detaljer

Løsning eksamen R1 våren 2010

Løsning eksamen R1 våren 2010 Løsig eksame R våre 00 Oppgave a) ) f ( ) l f ( ) ' l l l l f ( ) (l ) ) g( ) 4e g( ) 4 e ( ) 4 e ( ) g( ) 4( ) e b) ( ) 4 4 6 P ) P() 4 4 6 8 6 8 6 0 Divisjo med ( ) går opp. 4 4 6 : ( ) 8 4 4 8 6 8 6

Detaljer

Differensligninger Forelesningsnotat i Diskret matematikk Differensligninger

Differensligninger Forelesningsnotat i Diskret matematikk Differensligninger Differesligiger Forelesigsotat i Diskret matematikk 017 Differesligiger I kapittel lærte vi om følger og rekker. Vi studerte både aritmetiske og geometriske følger og rekker. Noe følger og rekker er imidlertid

Detaljer

Avsnitt 8.1 i læreboka Differensligninger

Avsnitt 8.1 i læreboka Differensligninger Diskret Matematikk Fredag 6. ovember 015 Avsitt 8.1 i læreboka Differesligiger I kapittel lærte vi om følger og rekker. Vi studerte både aritmetiske og geometriske følger og rekker. Noe følger og rekker

Detaljer

FØLGER, REKKER OG GJENNOMSNITT

FØLGER, REKKER OG GJENNOMSNITT FØLGER, REKKER OG GJENNOMSNITT Espe B. Lagelad realfagshjoret.wordpress.com [email protected] 9.mars 06 Iledig E tallfølge er e serie med tall som kommer etter hveradre i e bestemt rekkefølge. Kvadrattallee

Detaljer

EKSAMEN. Oppgavesettet består av 5 oppgaver, hvor vekten til hver oppgave er angitt i prosent i oppgaveteksten. Alle oppgavene skal besvares.

EKSAMEN. Oppgavesettet består av 5 oppgaver, hvor vekten til hver oppgave er angitt i prosent i oppgaveteksten. Alle oppgavene skal besvares. EKSAMEN Emekode: SFB12003 Eme: Metodekurs II: Samfusviteskapelig metode og avedt statistikk Dato: 2.6.2014 Eksamestid: kl. 09.00 til kl. 13.00 Hjelpemidler: Kalkulator Faglærer: Bjørar Karlse Kivedal Eksamesoppgave:

Detaljer

Tallsystemer. Posisjonstallsystemer. Måling med desimal målestokk. Den generelle formelen for titallsystemet 123 = = 7B 16

Tallsystemer. Posisjonstallsystemer. Måling med desimal målestokk. Den generelle formelen for titallsystemet 123 = = 7B 16 Posisjostallsystemer Tallsystemer Vårt velkjete -talls-systemet er et posisjossystem: = + + + + = = B INF-Tall- eller: = ( * ) + ( * ) + ( * ) + ( * ) + ( * ) Poteser av = = = * = = ** = = *** = osv Vi

Detaljer

Algebra S2, Prøve 2 løsning

Algebra S2, Prøve 2 løsning Algebra S, Prøve løsig Del Tid: 90 mi Hjelpemidler: Skrivesaker Oppgave I rekkee edefor får du oppgitt a og e rekursiv formel for a. Du skal. skrive opp de fire første leddee og avgjøre om rekka er aritmetisk,

Detaljer

Eksamen REA3028 S2, Våren 2012

Eksamen REA3028 S2, Våren 2012 Eksame REA3028 S2, Våre 2012 Del 1 Tid: 2 timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave 1 (24 poeg) a) Deriver fuksjoee 1) 3 f x x 2x 3 2) 2 2

Detaljer

Totalt Antall kandidater oppmeldt 1513 Antall møtt til eksamen 1421 Antall bestått 1128 Antall stryk 247 Antall avbrutt 46 % stryk og avbrutt 21%

Totalt Antall kandidater oppmeldt 1513 Antall møtt til eksamen 1421 Antall bestått 1128 Antall stryk 247 Antall avbrutt 46 % stryk og avbrutt 21% TMA4100 Høste 2007 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Kommetarer til eksame Dette dokumetet er e oppsummerig av erfarigee fra sesure av eksame i TMA4100 Matematikk

Detaljer

Fagdag 2-3mx 24.09.07

Fagdag 2-3mx 24.09.07 Fagdag 2-3mx 24.09.07 Jeg beklager at jeg ikke har fuet oe ye morsomme spill vi ka studere, til gjegjeld skal dere slippe prøve/test dee gage. Istruks: Vi arbeider som valig med 3 persoer på hver gruppe.

Detaljer

2 Algebra R2 Oppgaver

2 Algebra R2 Oppgaver 2 Algebra R2 Oppgaver 2 Tallfølger 2 22 Tallrekker 8 23 Uedelige geometriske rekker 5 24 Iduksjosbevis 20 25 Eksamesoppgaver 2 Øvigsoppgaver Stei Aaese og Olav Kristese/NDLA Eksamesoppgavee er hetet fra

Detaljer

Eksamen REA3028 S2, Våren 2011

Eksamen REA3028 S2, Våren 2011 Eksame REA08 S, Våre 0 Del Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (8 poeg) a) Deriver fuksjoee ) f 5 f 6 5 ) g g ) h l 9 9 6 4 h l

Detaljer

Eksamen REA3028 Matematikk S2. Nynorsk/Bokmål

Eksamen REA3028 Matematikk S2. Nynorsk/Bokmål Eksame 20.05.2009 REA3028 Matematikk S2 Nyorsk/Bokmål Nyorsk Eksamesiformasjo Eksamestid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Bruk av kjelder: Vedlegg: Framgagsmåte: Rettleiig om vurderiga: 5

Detaljer

Ulike typer utvalg. MAT0100V Sannsynlighetsregning og kombinatorikk. Ordnet utvalg uten tilbakelegging 29 (29 1) (29 2) (29 3) =

Ulike typer utvalg. MAT0100V Sannsynlighetsregning og kombinatorikk. Ordnet utvalg uten tilbakelegging 29 (29 1) (29 2) (29 3) = MAT000V Sasylighetsregig og kombiatorikk Urdede utvalg ute tilbakeleggig Pascals talltrekat og biomialkoeffisietee Ørulf Borga Matematisk istitutt Uiversitetet i Oslo Ulike typer utvalg Eksempel 6.: Vi

Detaljer

Eksamen REA3028 S2, Våren 2010

Eksamen REA3028 S2, Våren 2010 Eksame REA308 S, Våre 010 Del 1 Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave 1 (6 poeg) a) Deriver fuksjoee: 1) f x x lx f x x lx x x f

Detaljer

Eksamen REA3028 S2, Våren 2012

Eksamen REA3028 S2, Våren 2012 Eksame REA08 S, Våre 0 Del Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (4 poeg) a) Deriver fuksjoee ) f f ) g e 4 4 4 g e e 4 g e e g e

Detaljer

Eksamen S2, Høsten 2013

Eksamen S2, Høsten 2013 Eksame S, Høste 013 Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler. Oppgave 1 (4 poeg) Deriver fuksjoee 1 x a) fx b) gx 5x 1 5 c) hx x e x 3 Oppgave (5 poeg)

Detaljer

Eksamen R2, Va ren 2013

Eksamen R2, Va ren 2013 Eksame R, Va re 013 Oppgave 1 (4 poeg) Deriver fuksjoee a) f x 3cos x f x 3 six 3si x b) gx x 6si 7 Bruker kjereregele på uttrykket si x der og Vi har da guu siu u cosu cos x gx 6cos x 6 cos x u x g u

Detaljer

Forkunnskaper i matematikk for fysikkstudenter. Derivasjon.

Forkunnskaper i matematikk for fysikkstudenter. Derivasjon. Defiisjo av derivert Vi har stor ytte av å vite hvor raskt e fuksjo vokser eller avtar Mer presist: Vi øsker å bestemme stigigstallet til tagete til fuksjosgrafe P Q Figure til vestre viser hvorda vi ka

Detaljer

Løsning R2-eksamen høsten 2016

Løsning R2-eksamen høsten 2016 Løsig R-eksame høste 016 Tid: 3 timer Hjelpemidler: Valige skrivesaker, lijal med cetimetermål og vikelmåler er tillatt. Oppgave 1 (4 poeg) Deriver fuksjoee a) ( ) 3cos f( x) 3 six 6six f x x b) gx ( )

Detaljer

Kombinatorikk. MAT1030 Diskret matematikk Forelesning 20: Kombinatorikk. Repetisjon. Repetisjon

Kombinatorikk. MAT1030 Diskret matematikk Forelesning 20: Kombinatorikk. Repetisjon. Repetisjon Kombiatori MAT Disret matemati orelesig : Kombiatori Roger Atose Matematis Istitutt, Uiversitetet i Oslo 7. april 8 Kombiatori er studiet av opptelliger, ombiasjoer og permutasjoer. Vi fier svar på spørsmål

Detaljer

Kapittel 9: Mer kombinatorikk

Kapittel 9: Mer kombinatorikk MAT00 Disret Matemati Forelesig : Mer ombiatori Roger Atose Istitutt for iformati, Uiversitetet i Oslo Kapittel 9: Mer ombiatori 5. april 009 (Sist oppdatert: 009-04-5 00:06) MAT00 Disret Matemati 5. april

Detaljer

8 + 2 n n 4. 3n 4 7 = 8 3.

8 + 2 n n 4. 3n 4 7 = 8 3. Seksjo 4. Oppgave (). Fi greseverdiee: 8 a) 4 + 4 7 b) 4 +7 5 c) + 7 4 ( ) d) 5 4 44 + 5 4 e) 5 + si() e +6 5 Løsig. Vi vil bruke samme metode som i Eksempel 4..5 fra boke i disse oppgavee. Når vi skal

Detaljer

8 (inkludert forsiden og formelsamling) Tegne- og skrivesaker, kalkulator, formelsamling (se vedlagt).

8 (inkludert forsiden og formelsamling) Tegne- og skrivesaker, kalkulator, formelsamling (se vedlagt). Eksamesoppgave våre 011 Ordiær eksame Bokmål Fag: Matematikk Eksamesdato: 10.06.011 Studium/klasse: GLU 5-10 Emekode: MGK00 Eksamesform: Skriftlig Atall sider: 8 (ikludert forside og formelsamlig) Eksamestid:

Detaljer

Løsning eksamen S2 våren 2010

Løsning eksamen S2 våren 2010 Løsig eksame S våre 010 Oppgave 1 a) 1) f( ) l 1 f ( ) l l l l ( l 1) ) g ( ) 3e g( ) 3e 3e 6e b) Rekke er geometrisk med Rekke kovergerer. Summe er a1 1 1 s 1 k 1 1 1 1 1 k og oppfller dermed kravet 1

Detaljer

OPPGAVE 4 LØSNINGSFORSLAG OPPGAVE 5 LØSNINGSFORSLAG UTVIKLING AV REKURSIV FORMEL FOR FIGURTALL SOM GIR ANDREGRADSFUNKSJONER

OPPGAVE 4 LØSNINGSFORSLAG OPPGAVE 5 LØSNINGSFORSLAG UTVIKLING AV REKURSIV FORMEL FOR FIGURTALL SOM GIR ANDREGRADSFUNKSJONER OPPGAVE 4 LØSNINGSFORSLAG Tallfølge i f) rektageltallee. Her er de eksplisitte formele R = ( +1) eller R = +. Dette er e adregradsfuksjo. I figurtallsammeheg forutsetter vi at de legste side er (øyaktig)

Detaljer

Matematikk for IT. Prøve 2. Onsdag 21. oktober 2015

Matematikk for IT. Prøve 2. Onsdag 21. oktober 2015 Matematikk for IT Prøve Osdag. oktober 5 Løsigsforslag 6. oktober 5 Oppgave Gitt følgede slutig: Hvis fakturae ble sedt forrige madag så fikk du pegee i går. Du fikk pegee i går. Derfor ble fakturae sedt

Detaljer

Kommentarer til oppgaver;

Kommentarer til oppgaver; Kapittel - Algebra Versjo: 11.09.1 - Rettet feil i 0, 1 og 70 og lagt i litt om GeoGebra-bruk Kommetarer til oppgaver; 0, 05, 10, 13, 15, 5, 9, 37, 5,, 5, 59, 1, 70, 7, 78, 80,81 0 a) Trykkfeil i D-koloe

Detaljer

Matematikk for IT. Løsningsforslag til prøve 2. Torsdag 24. oktober 2013

Matematikk for IT. Løsningsforslag til prøve 2. Torsdag 24. oktober 2013 .. Matematikk for IT Løsigsforslag til prøve Torsdag. oktober Oppgave Gitt følgede predikat: P(x : x > 5 ta at uiverset ( de mulige verdier av x som vi tar i betraktig er alle hele tall, Z. Skriv hvert

Detaljer

Kapittel 5 - Vektorer - Oppgaver

Kapittel 5 - Vektorer - Oppgaver 5.4 Kapittel 5 - Vektorer - Oppgaver 5.4, 5.5, 5.45, 5.49, 5.300, 5.306 a) Kabeles legde: BA 6, 7, 6 6 7 6 b) Dette er e parameterfremstillig (på vektorform) for e lije: OT 6t,7t, 6t 0, 0, t6, 7, 6 OB

Detaljer

1 Algebra oppgaver S2

1 Algebra oppgaver S2 1 Algebra oppgaver S Ihold 11 Tallfølger 1 Tallrekker 9 13 Uedelige geometriske rekker 17 14 Faktoriserig Polyomdivisjo 3 15 Likiger 6 Tredjegradslikiger 6 Likiger med rasjoale uttrykk 7 Likigssett 8 Øvigsoppgaver

Detaljer

Løsningsforslag R2 Eksamen 04.06.2012. Nebuchadnezzar Matematikk.net Øistein Søvik

Løsningsforslag R2 Eksamen 04.06.2012. Nebuchadnezzar Matematikk.net Øistein Søvik Løsigsforslag R2 Eksame 6 Vår 04.06.202 Nebuchadezzar Matematikk.et Øistei Søvik Sammedrag De fleste forlagee som gir ut lærebøker til de videregåede skole, gir ut løsigsforslag til tidligere gitte eksameer.

Detaljer

Algoritmer og datastrukturer Avsnitt Algoritmeanalyse

Algoritmer og datastrukturer Avsnitt Algoritmeanalyse Kapittel 5. Biære søetrær Algoritmer og datastruturer Avsitt 5..5 Algoritmeaalyse Avsitt 5..5.5 - Gjeomsittlig avstad mellom to «aboer» i iorde i et biært søetre med forsjellige verdier ver permutasjo

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital signalbehandling

LØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital signalbehandling Side1av4 HØGSKOLEN I NARVIK Istitutt for data-, elektro-, og romtekologi Siviligeiørstudiet EL/RT LØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital sigalbehadlig Tid: Fredag 06.03.2008, kl: 09:00-12:00 Tillatte

Detaljer

EKSAMENSOPPGAVE. Faglig veileder: Kirsten Aarset, Bente Hellum og Jan Stubergh Gruppe(r): 1-elektro, 1-maskin, 3-almen Dato: 17 desember 2001

EKSAMENSOPPGAVE. Faglig veileder: Kirsten Aarset, Bente Hellum og Jan Stubergh Gruppe(r): 1-elektro, 1-maskin, 3-almen Dato: 17 desember 2001 Avdelig for igeiørutdaig EKSAMENSOPPGAVE Fag: Kjemi og Miljø Fagr FO 05 K Faglig veileder: Kirste Aarset, Bete Hellum og Ja Stubergh Gruppe(r): 1-elektro, 1-maski, -alme Dato: 17 desember 001 Eksamestid,

Detaljer

Emnenavn: Metode 1, statistikk deleksamen. Eksamenstid: 4 timer. Faglærer: Bjørnar Karlsen Kivedal

Emnenavn: Metode 1, statistikk deleksamen. Eksamenstid: 4 timer. Faglærer: Bjørnar Karlsen Kivedal EKSAMEN Emekode: SFB10711 Emeav: Metode 1, statistikk deleksame Dato: 10. oktober 2018 Hjelpemidler: Godkjet kalkulator og vedlagt formelsamlig m/tabeller Eksamestid: 4 timer Faglærer: Bjørar Karlse Kivedal

Detaljer

Forelesning 4 og 5 Transformasjon, Weibull-, lognormal, beta-, kji-kvadrat -, t-, F- fordeling

Forelesning 4 og 5 Transformasjon, Weibull-, lognormal, beta-, kji-kvadrat -, t-, F- fordeling STAT (V6) Statistikk Metoder [email protected] Forelesig 4 og 5 Trasformasjo, Weibull-, logormal, beta-, kji-kvadrat -, t-, F- fordelig. Oppsummerig til Forelesig og..) Momet (momet about 0) og setral momet

Detaljer

1. del av Del - EKSAMEN

1. del av Del - EKSAMEN 1. del av Del - EKSAMEN Emnekode: ITD13012 Emne: Datateknikk Dato: 27. November 2012 Eksamenstid: kl 9:00 til kl 12:00 Hjelpemidler: 4 sider (A4) (2 ark) med egne notater. Ikke-kummuniserende kalkulator.

Detaljer

MA 1410: Analyse Uke 48, aasvaldl/ma1410 H01. Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag

MA 1410: Analyse Uke 48, aasvaldl/ma1410 H01. Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag MA 40: Aalyse Uke 48, 00 http://home.hia.o/ aasvaldl/ma40 H0 Høgskole i Agder Avdelig for realfag Istitutt for matematiske fag Oppgave 8.7:. Vi har f(x) = cosh(x) = ex +e x. f(0) =. Derivasjo gir f (x)

Detaljer

EKSAMEN. Oppgavesettet består av 5 oppgaver, hvor vekten til hver oppgave er angitt i prosent i oppgaveteksten. Alle oppgavene skal besvares.

EKSAMEN. Oppgavesettet består av 5 oppgaver, hvor vekten til hver oppgave er angitt i prosent i oppgaveteksten. Alle oppgavene skal besvares. EKSAMEN Emekode: SFB12003 Eme: Metodekurs II: Samfusviteskapelig metode og avedt statistikk Dato: 10.12.2014 Eksamestid: kl. 09.00 til kl. 13.00 Hjelpemidler: Kalkulator Faglærer: Bjørar Karlse Kivedal

Detaljer

Eksamen REA3028 Matematikk S2. Nynorsk/Bokmål

Eksamen REA3028 Matematikk S2. Nynorsk/Bokmål Eksame 9.11.013 REA308 Matematikk S Nyorsk/Bokmål Nyorsk Eksamesiformasjo Eksamestid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast i etter timar. Del skal leverast i seiast

Detaljer

OM TAYLOR POLYNOMER. f x K f a x K a. f ' a = lim x/ a. f ' a z

OM TAYLOR POLYNOMER. f x K f a x K a. f ' a = lim x/ a. f ' a z OM TAYLOR POLYNOMER I dette otatet, som utfyller avsitt 6. i Gullikses bok, skal vi se på Taylor polyomer og illustrere hvorfor disse er yttige. Det å berege Taylor polyomer for håd er i prisippet ikke

Detaljer

TMA4100 Høst Løsningsforslag Øving 2. Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag

TMA4100 Høst Løsningsforslag Øving 2. Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag TMA400 Høst 206 Norges tekiskaturviteskapelige uiversitet Istitutt for matematiske fag Løsigsforslag Øvig 2 2..0: Vi bruker eisjoe for ikke-vertikale tagetlijer sie 97 i læreboke). Tagetlije gjeom et pukt

Detaljer

EKSAMENSOPPGAVE. Eksamen i: MAT 1005 Diskret matematikk Dato: Torsdag 27. februar 2014 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget, 1. et., B.

EKSAMENSOPPGAVE. Eksamen i: MAT 1005 Diskret matematikk Dato: Torsdag 27. februar 2014 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget, 1. et., B. EKSAMENSOPPGAVE Eksame i: MAT 1005 Diskret matematikk Dato: Torsdag 7. februar 014 Tid: Kl 09:00 13:00 Sted: Admiistrasjosbygget, 1. et., B.154 Tillatte hjelpemidler: Rottmas tabeller. Godkjete statistiske

Detaljer

Matematikk for IT. Oblig 7 løsningsforslag. 16. oktober

Matematikk for IT. Oblig 7 løsningsforslag. 16. oktober Matematikk for IT Oblig 7 løsigsforslag. oktober 7..8 a) Vi skal dae kodeord som består av sifree,,,, 7. odeordet er gldig dersom det ieholder et like atall (partall) -ere. Dee løses på samme måte som..:

Detaljer

Høgskoleni østfold. EKSAMEN Ny og utsatt

Høgskoleni østfold. EKSAMEN Ny og utsatt Høgskoleni østfold EKSAMEN Ny og utsatt Emnekode:Emne: ITF10705Matematikk for IT Dato:Eksamenstid: 8. juni 2015 09.00 13.00 Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Faglærer: Christian

Detaljer

Ulike typer utvalg. MAT0100V Sannsynlighetsregning og kombinatorikk. Ordnet utvalg uten tilbakelegging. Ordnet utvalg med tilbakelegging.

Ulike typer utvalg. MAT0100V Sannsynlighetsregning og kombinatorikk. Ordnet utvalg uten tilbakelegging. Ordnet utvalg med tilbakelegging. MAT0100V Sasylighetsregig og kombiatorikk Ordet utvalg med og ute tilbakeleggig (repetisjo) Uordet utvalg ute tilbakeleggig (repetisjo) Tilfeldige variabler og sasylighetsfordeliger Hypergeometrisk fordelig

Detaljer

Løsning eksamen R2 våren 2010

Løsning eksamen R2 våren 2010 Løsig eksame R våre 010 Oppgave 1 a) f( x) x cos3x f ( x) x cos 3x x cos 3x x cos 3x x si 3x 3x xcos 3x 3x si 3x b) 1) v v u v u 1 u x x 1 x 5 x 5 x 5xe dx 5x e 5 e dx xe e dx 5 5 1 5 5 x x x x xe e C

Detaljer

ARBEIDSHEFTE I MATEMATIKK

ARBEIDSHEFTE I MATEMATIKK ARBEIDSHEFTE I MATEMATIKK Temahefte r Hvorda du reger med poteser Detaljerte forklariger Av Matthias Loretze mattegriseforlag.com Opplsig: E potes er e forkortet skrivemåte for like faktorer. E potes består

Detaljer

Løsningsforslag. Emnekode: Emne: Matematikk for IT ITF Eksamenstid: Dato: kl til kl desember Hjelpemidler: Faglærer:

Løsningsforslag. Emnekode: Emne: Matematikk for IT ITF Eksamenstid: Dato: kl til kl desember Hjelpemidler: Faglærer: Løsningsforslag Emnekode: ITF75 Dato: 7. desember Emne: Matematikk for IT Eksamenstid: kl 9. til kl. Hjelpemidler: To -ark med valgfritt innhold på begge sider. Kalkulator er ikke tillatt. Faglærer: Christian

Detaljer

EKSAMEN. Oppgavesettet består av 9 oppgaver med i alt 20 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye.

EKSAMEN. Oppgavesettet består av 9 oppgaver med i alt 20 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye. EKSAMEN Emnekode: ITF75 Dato: 5. desember Emne: Matematikk for IT Eksamenstid: kl 9. til kl. Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Kalkulator er ikke tillatt. Faglærer: Christian

Detaljer

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 12. desember 2008

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 12. desember 2008 Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL. desember 8 EKSAMEN I MATEMATIKK, Utsatt røve Modul 5 studieoeg Tid: 5 timer Ogavesettet er å sider (ikludert formelsamlig).

Detaljer