Grenseverdier og asymptoter. Eksemplifisert med 403, 404, 408, 409, 410, 411, 412, 414, 416, 417, 418, 419

Størrelse: px
Begynne med side:

Download "Grenseverdier og asymptoter. Eksemplifisert med 403, 404, 408, 409, 410, 411, 412, 414, 416, 417, 418, 419"

Transkript

1 Grenseverdier og asymptoter Eksemplifisert med 403, 404, 408, 409, 40, 4, 42, 44, 46, 47, 48, 49 Grenseverdier Grenseverdien til en funksjon, lim x a f x g, er en verdi vi kan komme så nær vi vil, når vi lar x nærme seg a. Eller: Hvis vi velger en x nærme nok a, det vil si at differansen mellom x og a gjøres svært liten: x a, så kan vi få f x så nærme g vi vil: f x g, unasett hvor liten måtte være. Resonnementet her er at uansett hvor liten du forlanger, så kan jeg finne en liten slik at f x g er oppfyllt. Noen poenger: To skrivemåter: lim x a f x g x a f x g (Den siste notasjonen kan brukes også når g går mot uendelig: x a f x, men da har vi ingen grenseverdi.) Grenseverdien g må være et unikt tall. (Samme verdi om vi kommer fra høyre eller venstre!) Grenseverdien g må være et endelig tall. Hvis f a er definert så er grenseverdien f a rett og slett. Hvis f a ikke er definert, så kan likevel grenseverdien være definert! Dette er noe av poenget, grenseverdien er den verdien f x hadde hatt, hvis den hadde eksistert! Asymptoter Asymptoter er rette linjer, som funksjonen nærmer seg når x går mot en verdi: x a f x :Vertikal asymptote: x a (Vertikal asymptote vanligvis når nevner er null i en brøkfunksjon.) går mot uendelig: x f x a :Horisontal asymptote: y a (Eller: x f x a 0) x f x ax b :Skrå asymptote: y ax b (Eller: x f x ax b 0) Oppgaver: 403 a) f x 4x 8 x 5 To måter å omskrive denne brøkfunksjonen på: Polynomdivisjon: f x 4 2 x 5 Divisjon med x: f x 4 8 x 5 x I II Definisjonsmengde: D f 5 (Alle tillatte x verdier.) av 5 grenseverdier.tex

2 x 5 f x :Vertikal asymptote: x 5 x f x 4 : Horisontal asymptote: y 4 (I og II viser dette!) Verdimengde: V f g x 4x 4x x 2 25 x 5 x 5 4 x 25 x (Alle mulige y verdier.) D g 5,5 x 5 g x : VA : x 5 x 5 g x : VA : x 5 x g x 0 : HA : y f x x2 3x x x 2 x (Polynomdivisjon gir siste uttrykk.) a) D f x f x : VA : x b) Allerede gjort... c) x f x x 2 0 : SA : y x 2 Da f x x 2 x går mot 0 når x går mot. d) Begrunnelsen er at forskjellen mellom f x og y x 2 går mot null når x går mot, da dette er selve definisjonen av en asymptote. e) Legg merke til at verdimengden her er: V f GeoGebra: 2 av 5 grenseverdier.tex

3 Inntastinger: f(x) (x^2 3x )/(x ) x - y 409 Kommentarer: 409 og 40 har disse tre viktige eksemplene som illusterer forskjellige situasjoner vi kan ha: x 2 : Her eksisterer både grenseverdien og funksjonsverdien. De er lik hverandre så her er funksjonen kontinuerlig. (Kontinuerlig i x 2 hvis lim x 2 f x f 2 ) x 2 : 40 x 2 : Her eksisterer funksjonsverdien, men ikke grenseverdien. Altså ikke kontinuerlig. Her eksisterer ikke funksjonsverdien, men grenseverdien eksisterer. Altså ikke kontinuerlig 4 a) lim x 3 2x Når funksjonsverdien eksisterer er grenseverdien selvsagt like funksjonsverdien! (Nokså uinteressant å bruke grenseverdi her, men tatt med for eksemplets skyld.) b) og c) tilsvarende 42 c) Dette er mer interessant, her eksisterer ikke funksjonsverdien, men grenseverdien eksisterer. (Den er den verdien vi har i "hullet" i kurven, som ikke eksisterer som 3 av 5 grenseverdier.tex

4 funksjonsverdi, men som likevel kan være interessant å vite hva er, det er derfor vi har definert grenseverdibegrepet!) lim x 2 5x 4 lim x 7 lim x f x x3 x 2 4 x 2 x 2, x 2 (Polynomdivisjon) D f 2 Her er ikke x 2 vertikal asymptote, f x nærmer seg ikke en rett linje i dette punktet, f x har bare et "hull" i kurven når x 2. På lommeregner bruker vi TBLSET og TABLE. Med GeoGebra kan vi gjøre slik: GeoGebra: Inntastinger: f(x) (x^3-x^2-4)/(x-2) Vi definerer en "glider", a med Min:.9, Maks: 2. og Animasjonstrinn: 0.0. Vi viser GeoGebras regneark (pre-release versjonen har regneark) med Vis, Regneark. Vi definerer et punkt på grafen: P (a,f(a)) Høyreklikk på punktet P og velg: Spor til regneark Høyreklikk på glideren a og velg: Animation On Jeg la også inn Udef (2,8) for å vise hvor "hullet" i kurven er. 4 av 5 grenseverdier.tex

5 46 f x x Grafen er kontinuerlig i x 0, da både funksjonsverdien og grenseverdien eksisterer, og da de er lik hverandre: lim x 0 f x f 0 0 Legg merke til at siden det er en knekk på kurven eksisterer ikke den deriverte f x for x 0, da grenseverdiene for den deriverte fra høyre og venstre er forskjellige! ( og ). 47 a) Vi ser at dette blir en "trappe"-funksjon. b) Da funksjonen ikke er definert for x 0, er funksjonen ikke kontinuerlig i x Som 47, bare forskjøvet til x lim x 3 x 3 2x 2 5x 6 lim x x x x 2 x 6 x lim x 3 x2 x 6 5 av 5 grenseverdier.tex

Mer om likninger og ulikheter

Mer om likninger og ulikheter Mer om likninger og ulikheter Studentene skal kunne utføre polynomdivisjon anvende nullpunktsetningen og polynomdivisjon til faktorisering av polynomer benytte polynomdivisjon til å løse likninger av høyere

Detaljer

Forord. Molde, august 2011. Per Kristian Rekdal. Copyright c Høyskolen i Molde, 2011.

Forord. Molde, august 2011. Per Kristian Rekdal. Copyright c Høyskolen i Molde, 2011. 1 13. august 011 Forord Høgskolen i Molde gjennomfører forkurs i matematikk for studenter som har svakt grunnlag i dette faget, eller som ønsker å friske opp gamle kunnskaper. Formål: Målet med forkurset

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag 7 desember EKSAMEN Løsningsorslag Emnekode: ITD5 Dato: 6 desember Hjelpemidler: Emne: Matematikk ørste deleksamen Eksamenstid: 9 Faglærer: To A-ark med valgritt innhold på begge sider Formelhete Kalkulator

Detaljer

Løsningsforslag til underveisvurdering i MAT111 vår 2005

Løsningsforslag til underveisvurdering i MAT111 vår 2005 Løsningsforslag til underveisvurdering i MAT111 vår 5 Beregn grenseverdien Oppgave 1 (x 1) ln x x x + 1 Svar: Merk at nevneren er lik (x 1), så vi kan forkorte (x 1) oppe og nede og får (x 1) ln x ln x

Detaljer

Vekst av planteplankton - Skeletonema Costatum

Vekst av planteplankton - Skeletonema Costatum Vekst av planteplankton - Skeletonema Costatum Nivå: 9. klasse Formål: Arbeid med store tall. Bruke matematikk til å beskrive naturfenomen. Program: Regneark Referanse til plan: Tall og algebra Arbeide

Detaljer

R1 - K 3.8, 3.9, 4.1, 4.2, 4.3

R1 - K 3.8, 3.9, 4.1, 4.2, 4.3 R - K.8,.9, 4., 4., 4... Løsningsskissser I I et lotteri er det i alt lodd. Det er gevinst på av loddene. Lise kjøper lodd. ) Hva er sannsynligheten for at hun ikke vinner? ) Hva er sannsynligheten for

Detaljer

Sigbjørn Hals. Nedenfor har vi tegnet noen grafer til likningen y = C, der C varierer fra -2 til 3, med en økning på 1.

Sigbjørn Hals. Nedenfor har vi tegnet noen grafer til likningen y = C, der C varierer fra -2 til 3, med en økning på 1. Retningsdiagrammer og integralkurver Eksempel 1 Den enkleste av alle differensiallikninger er nok y' = 0. Denne har løsningen y = C fordi den deriverte av en konstant er 0. Løsningen vil altså bli flere

Detaljer

Løsningsforslag til obligatorisk oppgave i MAT 1100, H-04

Løsningsforslag til obligatorisk oppgave i MAT 1100, H-04 Løsningsforslag til obligatorisk oppgave i MAT 00, H-04 Oppgave : a) Vi har zw ( + i )( + i) + i + i + i i og + i + i ( ) + i( + ) z w + i + i ( + i )( i) ( + i)( i) i + i i i ( i ) ( + ) + i( + ) + +

Detaljer

Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 2009

Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 2009 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 009 Oppgave 1 Funksjonen g er definert ved g(x)

Detaljer

Fremdriftplan. Siste uke. I dag. Kap. 1 Funksjoner Grenseverdier

Fremdriftplan. Siste uke. I dag. Kap. 1 Funksjoner Grenseverdier 1 Fremdriftplan Siste uke Kap. 1 Funksjoner 2.1-2.2 Grenseverdier I dag 2.3 Den formelle definisjonen av grenseverdi 2.4 Ensidige grenser og grenser i uendelig 2.5 Uendelige grenser og vertikale asymptoter

Detaljer

Heldagsprøve i matematikk. Svar og løsningsforslag

Heldagsprøve i matematikk. Svar og løsningsforslag Heldagsprøve i matematikk Svar og løsningsforslag Mandag 19. desember 005 Forkurset, Høgskolen i Oslo Tillatte hjelpemidler: Lommeregner. Formelsamling i matematikk. Tid: 5 klokketimer Alle svar må være

Detaljer

Obligatorisk oppgave i MAT 1100, H-03 Løsningsforslag

Obligatorisk oppgave i MAT 1100, H-03 Løsningsforslag Oppgave : Obligatorisk oppgave i MAT, H- Løsningsforslag a) Vi skal regne ut dx. Substituerer vi u = x, får vi du = x dx. De xex nye grensene er gitt ved u() = = og u() = = 9. Dermed får vi: 9 [ ] 9 xe

Detaljer

Eksempeloppgave 1T, Høsten 2009

Eksempeloppgave 1T, Høsten 2009 Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne

Detaljer

Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010

Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Oppgave 1 Løs ulikheten x + 6 5 x + 2 Strategien er å

Detaljer

Grenser III - rasjonale funskjoner Forelesning i Matematikk 1 TMA4100

Grenser III - rasjonale funskjoner Forelesning i Matematikk 1 TMA4100 Grenser III - rasjonale funskjoner Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 24. august 2010 2 Grenselover for x ± L = lim f(x) M = lim g(x) 1. lim (f(x) ± g(x))

Detaljer

a) Blir produktet av to vilkårlige oddetall et partall eller et oddetall? Bevis det.

a) Blir produktet av to vilkårlige oddetall et partall eller et oddetall? Bevis det. Prøve i R1 04.1.15 Del 1 Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Husk å begrunne alle svar. Det skal gå klart frem av besvarelsen hvordan du har tenkt. Oppgave

Detaljer

Oppfriskningskurs i Matematikk

Oppfriskningskurs i Matematikk Oppfriskningskurs i Matematikk Dag 2 Stine M. Berge 06.07.19 Stine M. Berge (NTNU) Oppfriskningskurs i Matematikk 06.07.19 1 / 16 Funksjoner Definisjon En funksjon f er en prosses som ett element i en

Detaljer

Repetisjon: høydepunkter fra første del av MA1301-tallteori.

Repetisjon: høydepunkter fra første del av MA1301-tallteori. Repetisjon: høydepunkter fra første del av MA1301-tallteori. Matematisk induksjon Binomialteoremet Divisjonsalgoritmen Euklids algoritme Lineære diofantiske ligninger Aritmetikkens fundamentalteorem Euklid:

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 7 Numerisk derivasjon

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 7 Numerisk derivasjon Matematikk 1000 Øvingsoppgaver i numerikk leksjon 7 Numerisk derivasjon Vi skal se at der er ere måte å regne ut deriverte på i tillegg til de derivasjonsreglene vi kjenner fra før Men ikke alle måtene

Detaljer

NTNU MA0003. Ole Jacob Broch. Norwegian University of Science and Technology. MA0003 p.1/29

NTNU MA0003. Ole Jacob Broch. Norwegian University of Science and Technology. MA0003 p.1/29 MA0003 Ole Jacob Broch Norwegian University of Science and Technology MA0003 p.1/29 Oversikt, torsdag 13/1 Avsnitt 1.3: intervaller og intervallnotasjon definisjons- og verdimengden til en funksjon Avsnitt

Detaljer

Forkurs, Avdeling for Ingeniørutdanning

Forkurs, Avdeling for Ingeniørutdanning Eksamen i FO929A Matematikk Prøve-eksamen Dato 13. desember 2007 Tidspunkt 09.00-1.00 Antall oppgaver Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 a) Likningen

Detaljer

Kapittel 1. Potensregning

Kapittel 1. Potensregning Kapittel. Potensregning I potensregning skriver vi tall som potenser og forenkler uttrykk som inneholder potenser. Dette kapitlet handler blant annet om: Betydningen av potenser som har negativ eksponent

Detaljer

Fasit og løsningsforslag til Julekalenderen for mellomtrinnet

Fasit og løsningsforslag til Julekalenderen for mellomtrinnet Fasit og løsningsforslag til Julekalenderen for mellomtrinnet 01.12: Svaret er 11 For å få 11 på to terninger kreves en 5er og en 6er. Siden 6 ikke finnes på terningen kan vi altså ikke få 11. 02.12: Dagens

Detaljer

En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x).

En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x). Funksjoner En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x). Mengden D kalles definisjonsmengden (eng.: domain) til f. Merknad Dersom

Detaljer

Grafisk kryptografi (hemmelig koding av bilder)

Grafisk kryptografi (hemmelig koding av bilder) Grafisk kryptografi (hemmelig koding av bilder) Legg den løse platen nøyaktig den faste og se hva som skjer. Hvordan kan det brukes? Grete skal til Australia, og mens hun er der kan hun få behov for å

Detaljer

Funksjoner med og uten hjelpemidler

Funksjoner med og uten hjelpemidler Funksjoner med og uten hjelpemidler Plan for dagen Del 1: 09:00-11:45 Lunsj: 11:45-12:15 Del 2: 12:15-14:30 Eksamensinformasjon: 14:30-15:00 Plan for tiden før lunsj Økt 1: 09:00-09:45 Økt 2: 10:00-10:45

Detaljer

Oppfriskningskurs i matematikk Dag 2

Oppfriskningskurs i matematikk Dag 2 Oppfriskningskurs i matematikk Dag 2 Petter Nyland Institutt for matematiske fag Tirsdag 7. august 2018 Beskjeder Rombytte: EL5 i dag og i morgen. F1 igjen på torsdag. Skal fikse fasit (til tallsvar) på

Detaljer

GeoGebra 4.2 for Sinus Påbyggingsboka P. av Sigbjørn Hals

GeoGebra 4.2 for Sinus Påbyggingsboka P. av Sigbjørn Hals GeoGebra 4.2 for Sinus Påbyggingsboka P av Sigbjørn Hals Innhold Litt om GeoGebra... 3 Eksponentiell vekst. Side 45 i læreboka... 3 Søylediagram. Side 50-52 i læreboka... 4 Kurvediagram. Side 55-56 i læreboka...

Detaljer

Oppgaver i funksjonsdrøfting

Oppgaver i funksjonsdrøfting Oppgaver i funksjonsdrøfting To av oppgavene er merket med *. Det betyr at de er ekstra interessante. Oppgave 1 Gitt funksjonen f(x) = x + 4. a) Finn nullpunktene til funksjonen. b) Bruk definisjonen på

Detaljer

S1 Eksamen våren 2009 Løsning

S1 Eksamen våren 2009 Løsning S1 Eksamen, våren 009 Løsning S1 Eksamen våren 009 Løsning Del 1 Oppgave 1 a) Skriv så enkelt som mulig 1) x 1 x 1 x 1 x 1 1 x 1 x 1 x x 1 x 1 x 1 1 x 1 x 1 ) a b 3 a b 3 a 4a b 1 3 4a b 3 b 1 b) Løs likningene

Detaljer

1 C z I G + + = + + 2) Multiplikasjon av et tall med en parentes foregår ved å multiplisere tallet med alle leddene i parentesen, slik at

1 C z I G + + = + + 2) Multiplikasjon av et tall med en parentes foregår ved å multiplisere tallet med alle leddene i parentesen, slik at Ekstranotat, 7 august 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser og brøker... Funksjoner...3 Tilvekstform (differensialregning)...4 Telleregelen...7 70-regelen...8

Detaljer

Eksamen REA3022 R1, Våren 2013

Eksamen REA3022 R1, Våren 2013 Eksamen REA30 R1, Våren 013 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Formlene for arealet A av en sirkel og volumet

Detaljer

Terminprøve Sigma 1T Våren 2008 m a t e m a t i k k

Terminprøve Sigma 1T Våren 2008 m a t e m a t i k k Terminprøve Sigma 1T Våren 2008 Prøvetid 5 klokketimer for Del 1 og Del 2 til sammen. Vi anbefaler at du ikke bruker mer enn to klokketimer på Del 1. Du må levere inn Del 1 før du tar fram hjelpemidler.

Detaljer

Oppgave 1. (a) Mindre enn 10 år (b) Mellom 10 og 11 år (c) Mellom 11 og 12 år (d) Mer enn 12 år (e) Jeg velger å ikke besvare denne oppgaven.

Oppgave 1. (a) Mindre enn 10 år (b) Mellom 10 og 11 år (c) Mellom 11 og 12 år (d) Mer enn 12 år (e) Jeg velger å ikke besvare denne oppgaven. Eksamen Prøve-eksamen for MET 11802 Matematikk Dato November 2015 - Alternativ 2 Oppgave 1. En bank-konto gir 3% rente, og renten kapitaliseres kontinuerlig. Vi setter inn 100.000 kr på denne kontoen.

Detaljer

Eksamen S1 Va ren 2014 Løsning

Eksamen S1 Va ren 2014 Løsning Eksamen S1 Va ren 014 Løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (3 poeng) Løs likningene a) x 3x 3 3 x x x x 3 3 3 0 x

Detaljer

Uendelige rekker. Konvergens og konvergenskriterier

Uendelige rekker. Konvergens og konvergenskriterier Uendelige rekker. Konvergens og konvergenskriterier : Et absolutt nødvendig, men ikke tilstrekkelig vilkår for konvergens er at: lim 0 Konvergens vha. delsummer :,.,,,. I motsatt fall divergerer rekka.

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 88 4 Funksjoner og andregradsuttrykk Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder løse likninger, ulikheter

Detaljer

Funksjoner 1T Quiz. Test, 4 Funksjoner

Funksjoner 1T Quiz. Test, 4 Funksjoner Test, 4 Funksjoner Innhold 4.1 Funksjonsbegrepet... 4. Lineære funksjoner... 6 4.3 Andre funksjonstyper... 14 4.4 Vekstfart og derivasjon... 0 4.5 Drøfting av funksjoner på grunnlag av egenskaper hos den

Detaljer

Oppgave 2 Løs oppgavene I og II, og kryss av det alternativet (a, b eller c) som passer best. En funksjon er ikke deriverbar der:

Oppgave 2 Løs oppgavene I og II, og kryss av det alternativet (a, b eller c) som passer best. En funksjon er ikke deriverbar der: Oppgave a) Si kort hva deriverte til en funksjon forteller oss. Hva handler deriverbarhet om? b) Er f (x) = deriverbar for alle reelle x-verdier? x Bestem deriverte til f i sin definisjonsmengde. c) Tegn

Detaljer

Forelesning 10 MA0003, Tirsdag 18/ Asymptoter og skissering av grafer Bittinger:

Forelesning 10 MA0003, Tirsdag 18/ Asymptoter og skissering av grafer Bittinger: Forelesning 0 MA000, Tirsdag 8/9-0 Asymptoter og skissering av grafer Bittinger:.-. Asymptoter Definisjon. La f være en funksjon. Vi sier at linjen l() = a + b er en skrå asymptote for f dersom minst ett

Detaljer

Fasit til utvalgte oppgaver MAT1100, uka 29/11-3/12

Fasit til utvalgte oppgaver MAT1100, uka 29/11-3/12 Fasit til utvalgte oppgaver MAT1100, uka 9/11-3/1 Øyvind Ryan (oyvindry@ifiuiono December, 010 Oppgave 15 Oppgave 155 a 4A 3B 4 1 3 1 3 1 4 1 8 4 1 4 3 3 1 3 0 9 6 + 6 3 9 0 5 18 14 1 3 4 4 9 1 6 8 + 6

Detaljer

Krasjkurs MAT101 og MAT111

Krasjkurs MAT101 og MAT111 Krasjkurs MAT101 og MAT111 Forord Disse notatene ble skrevet under et åtte timer (to firetimers forelesninger) i løpet av 10. og 11. desember 2012. Det er mulig at noen av utregningene ikke stemmer, enten

Detaljer

Løsningsskisser - Kapittel 6 - Differensialligninger

Løsningsskisser - Kapittel 6 - Differensialligninger Løsningsskisser - Kapittel 6 - Differensialligninger Vi bruker det vi har lært i 6.3 om løsning av separable differensialligninger også i noen av oppgavene fra 6.1 og 6.2 for å knytte denne løsningsteknikken

Detaljer

Innlevering i matematikk Obligatorisk innlevering nr. 4 Innleveringsfrist: 21. januar 2010 kl Antall oppgaver: 4.

Innlevering i matematikk Obligatorisk innlevering nr. 4 Innleveringsfrist: 21. januar 2010 kl Antall oppgaver: 4. Innlevering i matematikk Obligatorisk innlevering nr. 4 Innleveringsfrist: 1. januar 1 kl. 14. Antall oppgaver: 4 Løsningsforslag Oppgave 1 a = [3, 1, ], b = [, 4, 7] og c = [ 4, 1, ]. a) a = 3 + ( 1)

Detaljer

Lær å bruke CAS-verktøyet i GeoGebra 4.2

Lær å bruke CAS-verktøyet i GeoGebra 4.2 Lær å bruke CAS-verktøyet i GeoGebra 4. av Sigbjørn Hals Innhold: CAS-verktøyet... Primtallanalyse... Faktorisering og utvidelse av uttrykk... Likninger... 4 Likningssett med flere ukjente... 5 Differensiallikninger...

Detaljer

Fasit, Implisitt derivasjon.

Fasit, Implisitt derivasjon. Ukeoppgaver, uke 8, i Matematikk, Implisitt derivasjon. 5 Fasit, Implisitt derivasjon. Oppgave Vi kaller den deriverte av y for y, og dette blir første ledd. Andre ledd må deriveres med kjerneregelen,

Detaljer

Lær å bruke GeoGebra 4.0

Lær å bruke GeoGebra 4.0 Lær å bruke GeoGebra 4.0 av Sigbjørn Hals Innhold: Generelt om GeoGebra... 2 Innstillinger... 2 Likninger og ulikheter... 5 Implisitte likninger... 5 Ulikheter... 9 Statistikkberegninger i regnearket...

Detaljer

Derivasjon ekstremverdier Forelesning i Matematikk 1 TMA4100

Derivasjon ekstremverdier Forelesning i Matematikk 1 TMA4100 Derivasjon ekstremverdier Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 6. september 20 Kapittel 3.. Hyperbolske funksjoner 3 Hyperbolske funksjoner Definisjon (Grunndefinisjoner)

Detaljer

Eksamen R1 - H

Eksamen R1 - H Eksamen R1 - H 013-8.11.013 Løsningsskisser Del 1 - Uten hjelpemidler Oppgave 1 a) Kjerneregel: f x e u, u 3x f x e u 3 6e 3x b) Kjerneregel på ln 3x ln u, u 3x gir ln 3x 1 u 3 3 3x 1 x Produktregel gir

Detaljer

Plotting av grafer og funksjonsanalyse

Plotting av grafer og funksjonsanalyse Opplæringshefte i GeoGebra Innholdsfortegnelse: Plotting av grafer og funksjonsanalyse... 2 Oppgave 1... 2 Oppgave 2... 4 Oppgave 3... 8 Å plassere et bilde i GeoGebra... 8 Oppgave 4... 8 Vektorregning

Detaljer

Eksamen S1, Høsten 2013

Eksamen S1, Høsten 2013 Eksamen S1, Høsten 013 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Funksjonen f er gitt ved Bestem f. f x 3x 3x 1, Df f

Detaljer

Analyse og metodikk i Calculus 1

Analyse og metodikk i Calculus 1 Analyse og metodikk i Calculus 1 Fredrik Göthner og Raymi Eldby Norges teknisk-naturvitenskapelige universitet 3. desember 01 1 Innhold Forord 3 1 Vurdering av grafer og funksjoner 4 1.1 Hva er en funksjon?.........................

Detaljer

: subs x = 2, f n x end do

: subs x = 2, f n x end do Oppgave 2..5 a) Vi starter med å finne de deriverte til funksjonen av orden opp til og med 5 i punktet x = 2. Det gjør vi ved å bruke kommandoen diff f x, x$n der f x er uttrykket som skal deriveres, x

Detaljer

Eksamen REA3026 S1, Høsten 2012

Eksamen REA3026 S1, Høsten 2012 Eksamen REA306 S1, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Løs likningene a) 8 8 0 1 1 4 1 8 4 3 6

Detaljer

Forelesning 9 mandag den 15. september

Forelesning 9 mandag den 15. september Forelesning 9 mandag den 15. september 2.6 Største felles divisor Definisjon 2.6.1. La l og n være heltall. Et naturlig tall d er den største felles divisoren til l og n dersom følgende er sanne. (1) Vi

Detaljer

Oppfriskningskurs i matematikk 2008

Oppfriskningskurs i matematikk 2008 Oppfriskningskurs i matematikk 2008 Marte Pernille Hatlo Institutt for matematiske fag, NTNU 4.-9. august 2008 Velkommen! 2 Temaer Algebra Trigonometri Funksjoner og derivasjon Integrasjon Eksponensial-

Detaljer

S1 eksamen våren 2016 løsningsforslag

S1 eksamen våren 2016 løsningsforslag S1 eksamen våren 016 løsningsforslag Tid: timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (4 poeng) Løs likningene a) x x 0 4 1 x 1 9 8 x 1 x x 1

Detaljer

Brukerundersøkelsen er anonym, og vi ber om at alle svarer slik at resultatet av denne undersøkelsen blir riktig. Dere må levere skjemaet senest.

Brukerundersøkelsen er anonym, og vi ber om at alle svarer slik at resultatet av denne undersøkelsen blir riktig. Dere må levere skjemaet senest. FORSLAG BRUKERUNDERSØKELSE FOR FORELDRE Barnehageåret nærmer seg slutten. Vi vil gjerne høre hva dere foreldre mener om det tilbudet barna får her i barnehagen, og ønsker å bruke deres svar i arbeidet

Detaljer

Løsningsforslag til eksamen i MAT111 Vår 2013

Løsningsforslag til eksamen i MAT111 Vår 2013 BOKMÅL MAT - Vår Løsningsforslag til eksamen i MAT Vår Oppgave Finn polarrepresentasjonen til i. i Skriv på formen x + iy. i Løsning Finner først modulus og argument til i: i = ( ) + ( ) = 4 = arg( ( )

Detaljer

Enkel matematikk for økonomer 1. Innhold. Parenteser, brøk og potenser. Ekstranotat, februar 2015

Enkel matematikk for økonomer 1. Innhold. Parenteser, brøk og potenser. Ekstranotat, februar 2015 Ekstranotat, februar 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser, brøk og potenser... Funksjoner...4 Tilvekstform (differensialregning)...5 Nyttige tilnærminger...8

Detaljer

Eksamen 1T høsten 2015, løsningsforslag

Eksamen 1T høsten 2015, løsningsforslag Eksamen 1T høsten 015, løsningsforslag Del 1, ingen hjelpemidler Oppgave 1 1,8 10 1 0,0005 = 1,8 10 1 5 10 4 = 1,8 5 10 1+( 4) = 9 10 8 Oppgave Velger addisjonsmetoden Legger sammen ligningene: x + y =

Detaljer

GeoGebra 4.2 for Sinus 2P. av Sigbjørn Hals

GeoGebra 4.2 for Sinus 2P. av Sigbjørn Hals GeoGebra 4.2 for Sinus 2P av Sigbjørn Hals Innhold Litt om GeoGebra... 3 Linjediagram. Side 46 i læreboka... 3 Søylediagram. Side 57 i Læreboka... 5 Histogram. Side 81 i læreboka... 6 Lineær regresjon.

Detaljer

UNIVERSITETET I AGDER

UNIVERSITETET I AGDER UNIVERSITETET I AGDER INSTITUTT FOR MATEMATISKE FAG EKSAMEN MA-100 Kalkulus 1. Fredag. desember 011, kl. 09-14 Tillatte hjelpemidler: Kalkulator uten grafisk vindu og uten minne for tekst. Inntil fire

Detaljer

Deleksamen i MAT111 - Grunnkurs i Matematikk I

Deleksamen i MAT111 - Grunnkurs i Matematikk I Bergen, oktober. 2004. Løsningsforslag til Deleksamen i MAT - Grunnkurs i Matematikk I Mandag. oktober 2004, kl. 09-2. Oppgave Beregn grensen f.eks. ved hjelp av l Hôpitals regel. lim x ln x x Vi ser at

Detaljer

Forelesning 22 MA0003, Mandag 5/11-2012 Invertible matriser Lay: 2.2

Forelesning 22 MA0003, Mandag 5/11-2012 Invertible matriser Lay: 2.2 Forelesning 22 M0003, Mandag 5/-202 Invertible matriser Lay: 2.2 Invertible matriser og ligningssystemet x b Ligninger på formen ax b, a 0 kan løses ved å dividere med a på begge sider av ligninger, noe

Detaljer

Oppfriskningskurs dag 2

Oppfriskningskurs dag 2 Grafer og Oppfriskningskurs dag 2 Grafer og Steffen Junge Oppfriskningskurs i matematikk 3.-8. august 2009 Grafer og Outline 1 Grafer og Outline Grafer og 1 Grafer og Grafer og Vi ser på ligninger av to

Detaljer

x 2 2 x 1 =±x 2 1=x 2 x 2 = y 3 x= y 3

x 2 2 x 1 =±x 2 1=x 2 x 2 = y 3 x= y 3 Obligatorisk om funksjonar og deriverte Oppgåve f 3 f = ±, =R Funksjonen f er ein parabel med botnpunkt på (,y) = (0,3) og definisjonsmengda er difor heile tallinja. Sidan f = f er funksjonen symmeterisk

Detaljer

Funksjonsdrøfting MAT111, høsten 2017

Funksjonsdrøfting MAT111, høsten 2017 Funksjonsdrøfting MAT111, høsten 2017 Andreas Leopold Knutsen 11. Oktober 2017 Strengt voksende funksjon (Def. 6 i Ÿ2.8) f er strengt voksende på intervallet I dersom x 1 < x 2 i I = f (x 1 ) < f (x 2

Detaljer

er et er et heltall. For eksempel er 2, 3, 5, 7 og 11 primtall, mens 4 = 2 2, 6 = 2 3 og 15 = 3 5 er det ikke.

er et er et heltall. For eksempel er 2, 3, 5, 7 og 11 primtall, mens 4 = 2 2, 6 = 2 3 og 15 = 3 5 er det ikke. . Primtall og primtallsfaktorisering Definisjon Et primtall p er et heltall, større enn, som ikke er delelig med andre tall enn og seg selv, altså bare delelig med og p (og egentlig også og p) At et tall

Detaljer

Sinus Påbyggingsboka T

Sinus Påbyggingsboka T Sinus Påbyggingsboka T Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy GeoGebra 4.2 wxmaxima Microsoft Mathematics WordMat TI-Nspire CAS Innhold Litt om programmene... 4

Detaljer

DEL 1 (Uten hjelpemidler, leveres etter 3 timer) 3(a + 1) 4(1 a) (6a 1) = 3a + 3 4 + 4a 6a + 1

DEL 1 (Uten hjelpemidler, leveres etter 3 timer) 3(a + 1) 4(1 a) (6a 1) = 3a + 3 4 + 4a 6a + 1 HELDAGSPRØVE I MATEMATIKK 1T HØST DEL 1 (Uten hjelpemidler, leveres etter 3 timer) Oppgave 1. Trekk sammen uttrykkene: a) 3(a + 1) 4(1 a) (6a 1) 3(a + 1) 4(1 a) (6a 1) = 3a + 3 4 + 4a 6a + 1 = a. b) 1

Detaljer

Funksjonsdrøfting MAT111, høsten 2016

Funksjonsdrøfting MAT111, høsten 2016 Funksjonsdrøfting MAT111, høsten 2016 Andreas Leopold Knutsen 11. oktober 2016 Den deriverte f Newton-kvotienten f (x+h) f (x) h er stigningen til sekantlinjen gjennom punktene (x, f (x)) og (x + h, f

Detaljer

S1 eksamen våren 2018 løsningsforslag

S1 eksamen våren 2018 løsningsforslag S1 eksamen våren 018 løsningsforslag DEL 1 Uten hjelpemidler Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Løs likningene

Detaljer

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Tirsdag 1. april 2014 kl. 12:45 Antall oppgaver: 8+2

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Tirsdag 1. april 2014 kl. 12:45 Antall oppgaver: 8+2 Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Tirsdag 1. april 2014 kl. 12:45 Antall oppgaver: 8+2 1 Bestem den naturlige denisjonsmengden til følgende funksjoner.

Detaljer

Eksempeloppgave 1T, Høsten 2009

Eksempeloppgave 1T, Høsten 2009 Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne

Detaljer

Eksamen i FO929A Matematikk Underveiseksamen Dato 14. desember 2006 Tidspunkt Antall oppgaver 4. Løsningsforslag

Eksamen i FO929A Matematikk Underveiseksamen Dato 14. desember 2006 Tidspunkt Antall oppgaver 4. Løsningsforslag Eksamen i FO99A Matematikk Underveiseksamen Dato. desember 6 Tidspunkt 9. -. Antall oppgaver Vedlegg Tillatte hjelpemidler Ingen Godkjent kalkulator Godkjent formelsamling Oppgave Vi løser likningene ved

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P TI-84

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P TI-84 Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for TI-84 Innhold 1 Innstillinger 4 2 Regning 5 2.1 Regnerekkefølge................................ 5 2.2 Kvadratrot....................................

Detaljer

Løsningsforslag til F-oppgavene i kapittel 2

Løsningsforslag til F-oppgavene i kapittel 2 Løsningsforslag til F-oppgavene i kapittel 2 Oppgave 1 Noen eksempler på ulike markeder: Gatekjøkkenmat i Bergen gatekjøkken produserer mat, folk i Bergen kjøper Aviser i Norge avisene (VG, Dagbladet,

Detaljer

Faktor. Eksamen høst 2005 SØK 1001- Innføring i matematikk for økonomer Besvarelse nr 1: -en eksamensavis utgitt av Pareto

Faktor. Eksamen høst 2005 SØK 1001- Innføring i matematikk for økonomer Besvarelse nr 1: -en eksamensavis utgitt av Pareto Faktor -en eksamensavis utgitt av Pareto Eksamen høst 005 SØK 00- Innføring i matematikk for økonomer Besvarelse nr : OBS!! Dette er en eksamensbevarelse, og ikke en fasit. Besvarelsene er uten endringer

Detaljer

Nicolai Kristen Solheim

Nicolai Kristen Solheim Oppgave 1. 1a) 1, 0, 2, sin 5 4cos sin 54cos sin 8 sin cos cos 54cos 8 sin cos 5cos 4cos 8sin cos 5cos 4cos Dersom vi plotter grafen for vil vi se hvor vokser og avtar. 1 Fra grafen for ser vi følgende

Detaljer

ARBEIDSHEFTE I MATEMATIKK

ARBEIDSHEFTE I MATEMATIKK ARBEIDSHEFTE I MATEMATIKK Temahefte nr Hvordan du regner med brøk Detaljerte forklaringer Av Matthias Lorentzen mattegrisenforlag.com Opplysning: Et helt tall er delelig på et annet helt tall hvis svaret

Detaljer

PRIMTALL FRA A TIL Å

PRIMTALL FRA A TIL Å PRIMTALL FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til primtall P - 2 2 Grunnleggende om primtall P - 2 3 Hvordan finne et primtall P - 5 Innledning til primtall

Detaljer

Utkast til løsningsforslag til eksamen i emnet MAT 121 - Lineær algebra Utan ansvar for feil og mangler Mandag 31. mai 2010, kl. 09-14.

Utkast til løsningsforslag til eksamen i emnet MAT 121 - Lineær algebra Utan ansvar for feil og mangler Mandag 31. mai 2010, kl. 09-14. Utkast til løsningsforslag til eksamen i emnet MAT 2 - Lineær algebra Utan ansvar for feil og mangler Mandag 3. mai 2, kl. 9-4. Oppgave En bisverm flyr mellom to kuber, A og B, på dagtid, og hver bi blir

Detaljer

Matematikk 1 (TMA4100)

Matematikk 1 (TMA4100) Matematikk 1 (TMA4100) Forelesning 4: Grenseverdi (fortsettelse) Eirik Hoel Høiseth Stipendiat IMF NTNU 20. august, 2012 Formell definisjon av grenseverdi Formell definisjon av grenseverdi Uformell definisjon

Detaljer

MAT1030 Forelesning 30

MAT1030 Forelesning 30 MAT1030 Forelesning 30 Kompleksitetsteori Roger Antonsen - 19. mai 2009 (Sist oppdatert: 2009-05-19 15:04) Forelesning 30: Kompleksitetsteori Oppsummering I dag er siste forelesning med nytt stoff! I morgen

Detaljer

1.8 Digital tegning av vinkler

1.8 Digital tegning av vinkler 1.8 Digital tegning av vinkler Det går også an å tegne mangekanter digitalt når vi kjenner noen vinkler og sider. Her tegner vi ABC når A = 50, AB = 6 og AC = 4. I GeoGebra setter vi først av linjestykket

Detaljer

R1 -Fagdag

R1 -Fagdag R1 -Fagdag 3-05.11.2015 Kommentarer Hovedfokus: Trene på å bruke GeoGebra. Fordype oss i fagstoff om logaritmer, funksjoner og grenseverdier I Logaritmer 1) Bevis at lgx ln x ln 10 og at lgx lge ln x.

Detaljer

Fremdriftplan. I går. I dag. 2.5 Uendelige grenser og vertikale asymptoter 2.6 Kontinuitet

Fremdriftplan. I går. I dag. 2.5 Uendelige grenser og vertikale asymptoter 2.6 Kontinuitet 1 Fremdriftplan I går 2.5 Uendelige grenser og vertikale asymptoter 2.6 Kontinuitet I dag 2.7 Tangenter og derivasjon 3.1 Den deriverte til en funksjon 3.2 Derivasjonsregler 3.3 Den deriverte som endringsrate

Detaljer

f (x) = a x k der tallet a og eksponenten k kan være både positive og negative tall. Et eksempel på en potensfunksjon med negativ eksponent er

f (x) = a x k der tallet a og eksponenten k kan være både positive og negative tall. Et eksempel på en potensfunksjon med negativ eksponent er 7.5 Potensfunksjoner Funksjonen f gitt ved f () = 3 er et eksempel på en potensfunksjon. For alle potensfunksjoner er funksjonsuttrykket på formen f () = a k der tallet a og eksponenten k kan være både

Detaljer

Institutt for Samfunnsøkonomi. Utlevering: 29.04.2015 Kl. 09:00 Innlevering: 29.04.2015 Kl. 14:00

Institutt for Samfunnsøkonomi. Utlevering: 29.04.2015 Kl. 09:00 Innlevering: 29.04.2015 Kl. 14:00 SENSORVEILEDNING MET 803 Matematikk Institutt for Samfunnsøkonomi Utlevering: 9.04.05 Kl. 09:00 Innlevering: 9.04.05 Kl. 4:00 For mer informasjon om formalia, se eksamensoppgaven. Oppgave Beregn følgende

Detaljer

Høgskolen i Oslo og Akershus. sin 2 x cos 2 x = 0, x [0, 2π) 1 cos 2 x cos 2 x = 0 2 cos 2 x = 1 cos 2 x = 1 2 1 2

Høgskolen i Oslo og Akershus. sin 2 x cos 2 x = 0, x [0, 2π) 1 cos 2 x cos 2 x = 0 2 cos 2 x = 1 cos 2 x = 1 2 1 2 Innlevering i DAFE/ELFE 1000 Oppgavesett 1 Innleveringsfrist: 31. januar klokka 14:00 Antall oppgaver: 3 Løsningsforslag Oppgave 1 Løs disse likningene ved regning, og oppgi svarene eksakt: a) Vi kan for

Detaljer

Løsning IM3 15.06.2011.

Løsning IM3 15.06.2011. Løsning IM 15611 1 Oppgave 1 Innsetting viser at både teller og nevner er i origo, så uttrykket er ubestemt Siden det ikke er noen umiddelbar omskriving som forenkler uttrykket satser vi på å vise at grensen

Detaljer

Funksjoner. Innhold. Funksjoner R1

Funksjoner. Innhold. Funksjoner R1 Funksjoner Innhold Kompetansemål Funksjoner, R1... 3 Innledning... 4 3.1 Funksjoner... 5 3. Grenseverdier, asymptoter og kontinuerlige funksjoner... 6 Grenseverdier... 6 Rasjonale funksjoner og asymptoter...

Detaljer

Vi kan finne formler som gir oss neste tall i tallfølgen dersom vi kjenner ett tall. Det er den rekursive formelen. gir oss gir oss alle tallene a

Vi kan finne formler som gir oss neste tall i tallfølgen dersom vi kjenner ett tall. Det er den rekursive formelen. gir oss gir oss alle tallene a Tallfølger, figurtall, algebra (utgave beregnet for GLU1-7). Av Geir Martinussen, Høgskolen i Oslo og Akershus (Se også: http://www.matematikk.org/uopplegg.html?tid=114140 ) Tallfølger er en nyttig ressurs

Detaljer

Velkommen til Tyrkia med Sola Golfklubb i 2016!

Velkommen til Tyrkia med Sola Golfklubb i 2016! Velkommen til Tyrkia med Sola Golfklubb i 2016! Vi reiser på medlemstur til Tyrkia for 4. året på rad og denne gang skal vi bo på det flotte hotellet; Cornelia de Lux. Alt er selvsagt inkludert i prisen,

Detaljer

Eksamen S2, Høsten 2013

Eksamen S2, Høsten 2013 Eksamen S, Høsten 0 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave (4 poeng) Deriver funksjonene x a) fx f x x x x b) 5 g x 5 x 5 5 5 4 4 g x x x

Detaljer

Problem 1. Problem 2. Problem 3. Problem 4

Problem 1. Problem 2. Problem 3. Problem 4 Oppsummeringsproblemer som utgangspunkt til ekstraforelesninger i uke 48 i emnet MAT111, høsten 2008 Problem 1 Bruk den formelle definisjonen av grenseverdi til å vise at x 4 1 x 1 x + 1 = 4. Problem 2

Detaljer