Fremdriftplan. Siste uke. I dag. Kap. 1 Funksjoner Grenseverdier
|
|
|
- Unni Ødegård
- 9 år siden
- Visninger:
Transkript
1 1 Fremdriftplan Siste uke Kap. 1 Funksjoner Grenseverdier I dag 2.3 Den formelle definisjonen av grenseverdi 2.4 Ensidige grenser og grenser i uendelig 2.5 Uendelige grenser og vertikale asymptoter Presentasjon av bokens e-læringsystem
2 2 Grenseverdier Uformell definisjon La f være definert på et åpent intervall som inneholder x 0, bortsett muligens fra x 0 selv. Vi sier at et tall L er grenseverdien til f (x) for x gående mot x 0, og skriver lim x x0 f (x) = L, dersom f (x) nærmer seg L når x nærmer seg x 0.
3 3 Den formelle definisjonen av grenseverdi Definisjon, side 75 Anta at det finnes h > 0 slik at f er definert på intervallene (x 0 h, x 0 ) og (x 0, x 0 + h). Vi sier at et tall L er grenseverdien til f (x) for x gående mot x 0, og skriver lim x x0 f (x) = L, dersom følgende gjelder: For ethvert tall ɛ > 0 eksisterer en δ > 0 slik at f (x) L < ɛ når 0 < x x 0 < δ.
4 4 Regneregler for grenseverdier Teorem 1, side 65 Anta at lim x x0 f (x) = L og lim x x0 g(x) = M. Da gjelder at 1 lim x x0 (f (x) + g(x)) = L + M, 2 lim x x0 (f (x)g(x)) = LM, 3 lim x x0 (kf (x)) = kl, ( ) 4 lim f (x) x x0 g(x) = L M hvis M 0, 5 lim x x0 (f (x) p ) = L p hvis L p eksisterer.
5 5 Skviseteoremet (The Sandwich Theorem) Teorem 4, side 69 Anta at det finnes h > 0 slik at f, g og h er definert på intervallene (x 0 h, x 0 ) og (x 0, x 0 + h). Anta også at lim g(x) = lim h(x) = L. x x 0 x x0 Da er lim x x0 f (x) = L.
6 Teorem 5, side 70 Anta at det finnes h > 0 slik at f og g er definert på intervallene (x 0 h, x 0 ) og (x 0, x 0 + h) og at f (x) g(x) for alle x (x 0 h, x 0 ) (x 0, x 0 + h). Anta også at grenseverdiene til f og g eksisterer når x x 0. Da er lim f (x) lim g(x). x x 0 x x0
7 7 Ensidige grenser Definisjon, side 86 Anta at det finnes h > 0 slik at f er definert på intervallet (x 0 h, x 0 ). Vi sier at et tall L er grenseverdien til f (x) for x gående mot x 0 fra venstre, og skriver lim x x 0 f (x) = L, dersom følgende gjelder: For ethvert tall ɛ > 0 eksisterer en δ > 0 slik at f (x) L < ɛ når 0 < x 0 x < δ.
8 8 Ensidige grenser Definisjon, side 86 Anta at det finnes h > 0 slik at f er definert på intervallet (x 0, x 0 + h). Vi sier at et tall L er grenseverdien til f (x) for x gående mot x 0 fra høyre, og skriver lim x x + 0 f (x) = L, dersom følgende gjelder: For ethvert tall ɛ > 0 eksisterer en δ > 0 slik at f (x) L < ɛ når 0 < x x 0 < δ.
9 9 Ensidige og tosidige grenser Teorem 6, side 85 lim x x0 f (x) = L hvis og bare hvis f (x) = L og lim x x + f (x) = L. 0 lim x x 0
10 10 Regneregler for ensidige grenser Merknad Teorem 1 5 i kap. 2.1 gjelder også for ensidige grenser. Teorem 5 for ensidige grenser Anta at det finnes h > 0 slik at f og g er definert på intervallet (x 0 h, x 0 ) og at f (x) g(x) for alle x (x 0 h, x 0 ). Anta også at grenseverdiene til f og g eksisterer når x x 0. Da er lim x x 0 f (x) lim x x 0 g(x).
11 11 Grenser når x ± Definisjon, side 90 Anta at det finnes A slik at f er definert på intervallet (A, ). Vi sier at et tall L er grenseverdien til f (x) for x gående mot uendelig, og skriver lim x f (x) = L, dersom følgende gjelder: For ethvert tall ɛ > 0 eksisterer en N slik at f (x) L < ɛ når x > N.
12 12 Grenser når x ± Definisjon, side 90 Anta at det finnes B slik at f er definert på intervallet (, B). Vi sier at et tall L er grenseverdien til f (x) for x gående mot minus uendelig, og skriver lim x f (x) = L, dersom følgende gjelder: For ethvert tall ɛ > 0 eksisterer en N slik at f (x) L < ɛ når x < N.
13 13 Regneregler for grenser i uendelig Merknad Teorem i kap. 2.1 gjelder også for grenser i uendelig.
14 14 Horisontale asymptoter Definisjon, side 92 En linje y = b er en horisontal asymptote for grafen til en funksjon f hvis enten lim f (x) = b eller lim f (x) = b. x x
15 y 2x+1 x y = 2 x y = 2 er en horisontal asymptote for grafen til f (x) = 2x+1 x.
16 16 Skrå asymptoter Definisjon, side 93 En linje y = ax + b er en horisontal asymptote for grafen til en funksjon f hvis enten lim (ax + b f (x)) = 0 eller lim (ax + b f (x)) = 0. x x
17 y y = 2x 3 y = 2x 3 er en skrå asymptote for grafen til f (x) = 4x 2 sin(x) 2x+3. 4x 2 sin(x) 2x+3 x
18 18 Plan for resten av uken Tirsdag 10:15 11:00 i S7 2.5 Uendelige grenser og vertikale asymptoter 2.6 Kontinuitet Onsdag 8:15 10:00 i R Derivasjon Torsdag 8:15 10:00 i R1 Studieteknikk Derivasjon av trigonometriske funksjoner, kjerneregelen, parametriske kurver
Matematikk 1 (TMA4100)
Matematikk 1 (TMA4100) Forelesning 4: Grenseverdi (fortsettelse) Eirik Hoel Høiseth Stipendiat IMF NTNU 20. august, 2012 Formell definisjon av grenseverdi Formell definisjon av grenseverdi Uformell definisjon
En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x).
Funksjoner En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x). Mengden D kalles definisjonsmengden (eng.: domain) til f. Merknad Dersom
Fremdriftplan. I går. I dag. 1.1 Funksjoner og deres grafer 1.2 Operasjoner av funksjoner
1 Fremdriftplan I går 1.1 Funksjoner og deres grafer 1.2 Operasjoner av funksjoner I dag 1.3 Trigonometriske funksjoner 1.4 Eksponentialfunksjoner 1.5 Omvendte funksjoner, logaritmiske funksjoner, inverse
TMA4100 Matematikk 1, høst 2013
TMA4100 Matematikk 1, høst 2013 Teknostart forelesning 5 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Teknostart forelesning 5 Grenseverdier I dagens forelesning skal vi se på grenseverdier. 1 Hvorfor
Fremdriftplan. I går. I dag. 2.5 Uendelige grenser og vertikale asymptoter 2.6 Kontinuitet
1 Fremdriftplan I går 2.5 Uendelige grenser og vertikale asymptoter 2.6 Kontinuitet I dag 2.7 Tangenter og derivasjon 3.1 Den deriverte til en funksjon 3.2 Derivasjonsregler 3.3 Den deriverte som endringsrate
Grenser III - rasjonale funskjoner Forelesning i Matematikk 1 TMA4100
Grenser III - rasjonale funskjoner Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 24. august 2010 2 Grenselover for x ± L = lim f(x) M = lim g(x) 1. lim (f(x) ± g(x))
TMA4100 Matematikk 1, høst 2013
TMA4100 Matematikk 1, høst 2013 Teknostart forelesning 6 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Teknostart forelesning 6 Grenseverdier I dagens forelesning skal vi se på følgende: 1 En formell definisjon
Deleksamen i MAT111 - Grunnkurs i Matematikk I
Bergen, oktober. 2004. Løsningsforslag til Deleksamen i MAT - Grunnkurs i Matematikk I Mandag. oktober 2004, kl. 09-2. Oppgave Beregn grensen f.eks. ved hjelp av l Hôpitals regel. lim x ln x x Vi ser at
TMA4100 Matematikk 1, høst 2013
TMA4100 Matematikk 1, øst 2013 Forelesning 7 www.ntnu.no TMA4100 Matematikk 1, øst 2013, Forelesning 7 Derivasjon Denne uken skal vi begynne på tema 2 om derivasjon. I dagens forelesning skal vi se på
Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Oppgave 1 Løs ulikheten x + 6 5 x + 2 Strategien er å
Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 2009
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 009 Oppgave 1 Funksjonen g er definert ved g(x)
TMA4100: Repetisjon før midtsemesterprøven
TMA4100: Repetisjon før midtsemesterprøven 10.10.09 Lars Sydnes [email protected] Institutt for matematiske fag October 1, 2009 L.S. (NTNU) TMA4100: Oversikt October 1, 2009 1 / 20 Kapittel 1: Funksjoner.
Matematikk 1 (TMA4100)
Matematikk 1 (TMA4100) Forelesning 7: Derivasjon (fortsettelse) Eirik Hoel Høiseth Stipendiat IMF NTNU 23. august, 2012 Den deriverte som momentan endringsrate Den deriverte som momentan endringsrate Repetisjon
1+2 x, dvs. løse ligningen mhp. x. y = 100. y(1+2 x ) = = 2 x = y. xln2 = ln 100 y. x = 1 ln2 ln. f 1 (x) = 1 ln2 ln x
NTNU Institutt for matematiske fag TMA400 Matematikk Høsten 20 Løsningsforslag - Øving Avsnitt.5 59 a) Vi skal invertere y f(x) 00 +2 x, dvs. løse ligningen mhp. x. y 00 +2 x y(+2 x ) 00 2 x 00 00 y y
Matematikk 1 (TMA4100)
Matematikk 1 (TMA4100) Forelesning 6: Derivasjon Eirik Hoel Høiseth Stipendiat IMF NTNU 22. august, 2012 Stigningstallet i et punkt Stigningstallet i et punkt Vi vender nå tilbake til problemet med å finne
TMA4100 Matematikk 1, høst 2013
TMA4100 Matematikk 1, høst 2013 Forelesning 11 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 11 Transcendentale funksjoner Vi begynner nå på temaet transcendentale funksjoner. I dagens forelesning
OPPGAVESETT MAT111-H17 UKE 36. Oppgaver til seminaret 8/9. Husk at seminaret finnes i to varianter, begge fredag :
OPPGAVESETT MAT111-H17 UKE 36 Avsnitt 1.4: 17, 29, 32 Avsnitt 2.2: 12 Avsnitt 2.3: 41, 52 På settet: S.1 Oppgaver til seminaret 8/9 Husk at seminaret finnes i to varianter, begge fredag 12.15-14.00: Seminar
Funksjonsdrøfting MAT111, høsten 2016
Funksjonsdrøfting MAT111, høsten 2016 Andreas Leopold Knutsen 11. oktober 2016 Den deriverte f Newton-kvotienten f (x+h) f (x) h er stigningen til sekantlinjen gjennom punktene (x, f (x)) og (x + h, f
OPPGAVESETT MAT111-H16 UKE 36. Oppgaver til seminaret 9/9. Husk at seminaret finnes i to varianter, begge fredag :
OPPGAVESETT MAT111-H16 UKE 36 Avsnitt 1.4: 17, 29, 32 Avsnitt 2.2: 12 Avsnitt 2.3: 41, 52 På settet: S.1 Oppgaver til seminaret 9/9 Husk at seminaret finnes i to varianter, begge fredag 12.15-14.00: Seminar
Løsningsforslag til utvalgte oppgaver i kapittel 5
Løsningsforslag til utvalgte oppgaver i kapittel 5 I kapittel 5 har mange av oppgavene et mer teoretisk preg enn du er vant til fra skolematematikken, og jeg har derfor lagt vekt på å lage løsningsforslag
TMA4100 Matematikk 1 for MTDESIG, MTIØT-PP, MTMART og MTPROD høsten 2010
TMA4100 Matematikk 1 for MTDESIG, MTIØT-PP, MTMART og MTPROD høsten 2010 Toke Meier Carlsen Institutt for matematiske fag 2. september 2010 2 Fremdriftplan I går 3.6 Implisitt derivasjon 3.7 Derivasjon
Løsningsforslag for eksamen i brukerkurs i matematikk A (MA0001)
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 8 Løsningsforslag for eksamen i brukerkurs i matematikk A (MA1) Bokmål Tirsdag 1. desember 11 Tid: 9: 1: (4 timer)
UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Eksamen i MAT111 Grunnkurs i matematikk I Løsningsforslag
UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i MAT Grunnkurs i matematikk I Løsningsforslag Onsdag 9. mai, kl. 9. 4. Bokmål Oppgave a) La R være området mellom kurvene Finn
TMA4100 Matematikk 1 for MTDESIG, MTIØT-PP, MTMART og MTPROD høsten 2010
TMA4100 Matematikk 1 for MTDESIG, MTIØT-PP, MTMART og MTPROD høsten 2010 Toke Meier Carlsen Institutt for matematiske fag 28. oktober 2010 2 Fremdriftplan I går 7.7 Uegentlige integraler 8.1 Følger I dag
Oppfriskningskurs i Matematikk
Oppfriskningskurs i Matematikk Dag 2 Stine M. Berge 06.07.19 Stine M. Berge (NTNU) Oppfriskningskurs i Matematikk 06.07.19 1 / 16 Funksjoner Definisjon En funksjon f er en prosses som ett element i en
Heldagsprøve i matematikk. Svar og løsningsforslag
Heldagsprøve i matematikk Svar og løsningsforslag Mandag 19. desember 005 Forkurset, Høgskolen i Oslo Tillatte hjelpemidler: Lommeregner. Formelsamling i matematikk. Tid: 5 klokketimer Alle svar må være
Flere anvendelser av derivasjon
Flere anvendelser av derivasjon Department of Mathematical Sciences, NTNU, Norway September 30, 2014 Forelesning 17.09.2014 Fikspunkt-iterasjon Newtons metode Metoder for å finne nullpunkter av funksjoner:
Forelesning 10 MA0003, Tirsdag 18/ Asymptoter og skissering av grafer Bittinger:
Forelesning 0 MA000, Tirsdag 8/9-0 Asymptoter og skissering av grafer Bittinger:.-. Asymptoter Definisjon. La f være en funksjon. Vi sier at linjen l() = a + b er en skrå asymptote for f dersom minst ett
Funksjonsdrøfting MAT111, høsten 2017
Funksjonsdrøfting MAT111, høsten 2017 Andreas Leopold Knutsen 11. Oktober 2017 Strengt voksende funksjon (Def. 6 i Ÿ2.8) f er strengt voksende på intervallet I dersom x 1 < x 2 i I = f (x 1 ) < f (x 2
Oppgave 2 Løs oppgavene I og II, og kryss av det alternativet (a, b eller c) som passer best. En funksjon er ikke deriverbar der:
Oppgave a) Si kort hva deriverte til en funksjon forteller oss. Hva handler deriverbarhet om? b) Er f (x) = deriverbar for alle reelle x-verdier? x Bestem deriverte til f i sin definisjonsmengde. c) Tegn
NTNU MA0003. Ole Jacob Broch. Norwegian University of Science and Technology. MA0003 p.1/29
MA0003 Ole Jacob Broch Norwegian University of Science and Technology MA0003 p.1/29 Oversikt, torsdag 13/1 Avsnitt 1.3: intervaller og intervallnotasjon definisjons- og verdimengden til en funksjon Avsnitt
Stigende og avtagende funksjoner Definisjon. Horisontal og vertikal forskyvning. Trigonometriske funksjoner
Funksjoner Forelesning i Matematikk TMA00 Hans Jako Rivertz Institutt for matematiske fag 9. august 0 Stigende og avtagende funksjoner En funksjon f kalles stigende på intervallet I vis f (x ) < f (x )
Kontinuitet og grenseverdier
Kontinuitet og grenseverdier Avdeling for lærerutdanning, Høgskolen i Vestfold 5. januar 2009 1 Innledning Kontinuitetsbegrepet For å motivere og innlede til kontinuitetsbegrep skal vi først undersøke
Løsningsforslag til underveiseksamen i MAT 1100, H-06
Løsningsforslag til underveiseksamen i MAT, H-6. ( poeng) Det komplekse tallet z har polarkoordinater r = 4, θ = π 4. Da er z lik: + i + i + i i + i Riktig svar: c) + i Begrunnelse: z = r(cos θ + i sin
Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 19. august 2011
Funksjoner Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 9. august 20 2 Stigende og avtagende funksjoner Definisjon En funksjon f kalles stigende på intervallet I hvis
Den deriverte og derivasjonsregler
Den deriverte og derivasjonsregler Department of Mathematical Sciences, NTNU, Norway September 3, 2014 Tangenten til en funksjon i et punkt (kap. 2.1) Sekant til en funksjon gjennom to punkter 25 20 f(c+h)
Krasjkurs MAT101 og MAT111
Krasjkurs MAT101 og MAT111 Forord Disse notatene ble skrevet under et åtte timer (to firetimers forelesninger) i løpet av 10. og 11. desember 2012. Det er mulig at noen av utregningene ikke stemmer, enten
Trasendentale funksjoner
Trasendentale funksjoner Department of Mathematical Sciences, NTNU, Norway September 9, 2014 Kap. 3.1 og 3.2. Forelesning 8. September. Inverse funksjoner, definisjon og eksistens Deriverte av inverse
Problem 1. Problem 2. Problem 3. Problem 4
Oppsummeringsproblemer som utgangspunkt til ekstraforelesninger i uke 48 i emnet MAT111, høsten 2008 Problem 1 Bruk den formelle definisjonen av grenseverdi til å vise at x 4 1 x 1 x + 1 = 4. Problem 2
MA1102 Grunnkurs i analyse II Vår 2019
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA1102 Grunnkurs i analyse II Vår 2019 10.2.27 a) Vi skal vise at u + v 2 = u 2 + 2u v + v 2. (1) Som boka nevner på side 581,
Notasjon i rettingen:
UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Løsningsforslag med kommentarer) til Innlevering /4 i emnet MAT, høsten 207 Notasjon i rettingen: R Rett R Rett, men med liten tulle)feil
TMA4100 Matematikk 1 for MTDESIG, MTIØT-PP, MTMART og MTPROD høsten 2010
TMA4100 Matematikk 1 for MTDESIG, MTIØT-PP, MTMART og MTPROD høsten 2010 Toke Meier Carlsen Institutt for matematiske fag 30. september 2010 2 Fremdriftplan I går 5.5 Ubestemte integraler og substitusjon
TMA4100 Matematikk 1, høst 2013
TMA400 Matematikk, høst 203 Forelesning 2 www.ntnu.no TMA400 Matematikk, høst 203, Forelesning 2 Transcendentale funksjoner I dagens forelesning skal vi se på følgende: Den naturlige logaritmen. 2 Eksponensialfunksjoner.
Løsningsforslag i matematikk
Løsningsforslag i matematikk 060808 Oppgave (a) ( a b ) b 4 a (ab) = a b b 4 a a b = a b = b a = a + b + 4 a b = a + + b + 4 + (b) Omskrivning av likningen gir sin(x) + cos(x) = 0 sin(x) cos(x) = tan(x)
Første og andrederivasjons testen Anvendt optimering Forelesning i Matematikk 1 TMA4100
Første og andrederivasjons testen Anvendt optimering Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 13. september 2011 Kapittel 4.3. Monotone funksjoner og førstederivasjons-testen
MAT jan jan jan MAT Våren 2010
MAT 1012 Våren 2010 Mandag 18. januar 2010 Forelesning I denne første forelesningen skal vi friske opp litt rundt funksjoner i en variabel, se på hvordan de vokser/avtar, studere kritiske punkter og beskrive
Oppgave 1. (a) Mindre enn 10 år (b) Mellom 10 og 11 år (c) Mellom 11 og 12 år (d) Mer enn 12 år (e) Jeg velger å ikke besvare denne oppgaven.
Eksamen Prøve-eksamen for MET 11802 Matematikk Dato November 2015 - Alternativ 2 Oppgave 1. En bank-konto gir 3% rente, og renten kapitaliseres kontinuerlig. Vi setter inn 100.000 kr på denne kontoen.
Kontinuitet og derivasjon Forelesning i Matematikk 1 TMA4100
Kontinuitet og derivasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 25. august 2010 2 Dagens pensum I dag vil vi se på følgende: Kontinuerlige funksjoner Den deriverte
Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 2. september 2011
Derivasjon Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 2. september 20 Kapittel 3.7. Derivasjon av inverse funksjoner 3 Derivasjon av inverse til deriverbare funksjoner
Oppfriskningskurs i matematikk 2008
Oppfriskningskurs i matematikk 2008 Marte Pernille Hatlo Institutt for matematiske fag, NTNU 4.-9. august 2008 Velkommen! 2 Temaer Algebra Trigonometri Funksjoner og derivasjon Integrasjon Eksponensial-
TMA4105. Notat om skalarfelt. Ulrik Skre Fjordholm 15. april 2016
TMA4105 Notat om skalarfelt Ulrik Skre Fjordholm 15. april 2016 Innhold 1 Grenseverdier og kontinuitet 2 2 Derivasjon av skalarfelt 5 2.1 Partiellderivert og gradient..................................
Sammendrag R1. Sandnes VGS 19. august 2009
Sammendrag R1 Sandnes VGS 19. august 2009 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A
Grenseverdier og asymptoter. Eksemplifisert med 403, 404, 408, 409, 410, 411, 412, 414, 416, 417, 418, 419
Grenseverdier og asymptoter Eksemplifisert med 403, 404, 408, 409, 40, 4, 42, 44, 46, 47, 48, 49 Grenseverdier Grenseverdien til en funksjon, lim x a f x g, er en verdi vi kan komme så nær vi vil, når
Skoleprosjekt i MAT4010: Derivasjon
Skoleprosjekt i MAT4010: Derivasjon Marie Vaksvik Draagen, Anne Line Kjærgård og Cecilie Anine Thorsen 20. mars 2014 1 Innhold 1 Introduksjon 3 1.1 Oppgavebeskrivelse................................. 3
Velkommen til eksamenskurs i matematikk 1
Velkommen til eksamenskurs i matematikk 1 Haakon C. Bakka Institutt for matematiske fag 4.-5. desember 2010 Program I dag og i morgen skal vi holde på fra 10-16 med en pause fra 13-14. Vi skal gjennom:
Eksamen i FO929A Matematikk Underveiseksamen Dato 30. mars 2007 Tidspunkt Antall oppgaver 4 Sirkelskive i radianer.
Eksamen i FO99A Matematikk Underveiseksamen Dato 30. mars 007 Tidspunkt 09.00-14.00 Antall oppgaver 4 Vedlegg Tillatte hjelpemidler Sirkelskive i radianer Godkjent kalkulator Godkjent formelsamling Oppgave
MAT jan jan feb MAT Våren 2010
MAT 1012 Våren 2010 Mandag 25. januar 2010 Forelesning Vi fortsetter med å se på det bestemte integralet, bl.a. på hvordan vi kan bruke numeriske beregninger til å bestemme verdien når vi ikke nødvendigvis
Notasjon i rettingen:
UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Løsningsforslag med kommentarer) til Innlevering /4 i emnet MAT, høsten 07 Notasjon i rettingen: R = Rett R = Rett, men med liten tulle)feil
IR Matematikk 1. Utsatt Eksamen 8. juni 2012 Eksamenstid 4 timer
Utsatt Eksamen 8. juni 212 Eksamenstid 4 timer IR1185 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del 2 uten bruk av hjelpemidler. Du kan bare
TMA4100 Matematikk 1, høst 2013
TMA4100 Matematikk 1, høst 2013 Forelesning 9 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 9 Derivasjon I dagens forelesning skal vi se på følgende: 1 Tilnærminger til små endringer. 2 Vekstfart.
Mål og innhold i Matte 1
Mål og innhold i Institutt for matematiske fag på 19. oktober 2013 Målet med denne oversikten er at vi skal se hvor vi er i pensum, og at du skal kunne finne hva du kan/ikke kan. Jeg vil i tillegg vise
EKSAMEN. V3: Tall og algebra, funksjoner 2 ( trinn)
EKSAMEN Emnekode: LSV3MAT Emne: V3: Tall og algebra, funksjoner (5.-0. trinn) Dato: 3. desember 08 Eksamenstid: kl. 09.00 til kl. 5.00 Hjelpemidler: Kalkulator uten grafisk vindu Vedlagt formelark Faglærere:
Grunnleggende notasjon ℕ = 1, 2, 3, 4, 5, 6, ℤ =, 3, 2, 1, 0, 1, 2, 3,
Grunnleggende notasjon ℕ,, 3, 4, 5, 6, ℤ, 3,,, 0,,, 3, ℝ 𝑎𝑙𝑙𝑒 𝑟𝑒𝑒𝑙𝑒 𝑡𝑎𝑙𝑙 ℚ 𝑎𝑙𝑙𝑒 𝑟𝑎𝑠𝑗𝑜𝑛𝑎𝑙𝑒 𝑡𝑎𝑙𝑙 𝑎 𝑎, ℤ, 0 Induksjonsprinsippet Anta at for hver 𝑛 ℕ har vi gitt et utsagn 𝑃. Anta videre at vi vet at følgende
R2 - Løsningsskisser til noen oppgaver i kapittel 4.1 og 4.2
R2 - Løsningsskisser til noen oppgaver i kapittel 4. og 4.2 405, 406, 4, 43, 49, 420, 422, 424 Versjon: 04..4 405 a) Kjerneregel: f x sin u,u x 2 2x f x cos u 2x 2 2x 2 cos x 2 2x b) Produktregel: uv u
QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 1 Kalkulus
QED 5 10 Matematikk for grunnskolelærerutdanningen Bind 2 Fasit kapittel 1 Kalkulus Kapittel 1 Oppgave 1. a) en funksjon b) en funksjon c) ikke en funksjon d) ikke en funksjon Oppgave 2. a) 12,1 b) 4 c)
MA1102 Grunnkurs i analyse II Vår 2019
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA112 Grunnkurs i analyse II Vår 219 8.4.1 Vi skal finne lengden til kurven x = 3t 2, y = 2t 3 der t 1. Som boka beskriver på
Taylorpolynom (4.8) f en funksjon a et punkt i definisjonsmengden til f f (minst) n ganger deriverbar i a Da er Taylorpolynomet til f om a
Taylorpolynom (4.8) f en funksjon a et punkt i definisjonsmengden til f f (minst) n ganger deriverbar i a Da er Taylorpolynomet til f om a P n (x) = f (a) + f (a)(x a) + f (a) 2 (x a)2 + + f (n) (a) (x
Forelesning Matematikk 4N
Forelesning Matematikk 4N Hans Jakob Rivertz Institutt for matematiske fag 11. september 2006 2 Den høyrederiverte og venstrederiverte Definisjon Den høyrederiverte til en funksjon f(x) i punktet x er
Matematikk 1 Første deleksamen. Løsningsforslag
HØGSKOLEN I ØSTFOLD, AVDELING FOR INFORMASJONSTEKNOLOGI Matematikk Første deleksamen 4. juni 208 Løsningsforslag Christian F. Heide June 8, 208 OPPGAVE a Forklar kortfattet hva den deriverte av en funksjon
UNIVERSITETET I BERGEN
BOKMÅL MAT - Høst 03 UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i emnet MAT Grunnkurs i Matematikk I Mandag 6. desember 03, kl. 09- Tillatte hjelpemidler: Lærebok ( Calculus
NOTAT OM UNIFORM KONTINUITET VEDLEGG TIL BRUK I KURSET MAT112 VED UNIVERSITETET I BERGEN
NOTAT OM UNIFORM KONTINUITET VEDLEGG TIL BRUK I KURSET MAT2 VED UNIVERSITETET I BERGEN ANDREAS LEOPOLD KNUTSEN OG ARNE STRAY. Innledning og definisjoner Vi vil i dette notatet betrakte reelle funksjoner
Eksamen i FO929A Matematikk Underveiseksamen Dato 14. desember 2006 Tidspunkt Antall oppgaver 4. Løsningsforslag
Eksamen i FO99A Matematikk Underveiseksamen Dato. desember 6 Tidspunkt 9. -. Antall oppgaver Vedlegg Tillatte hjelpemidler Ingen Godkjent kalkulator Godkjent formelsamling Oppgave Vi løser likningene ved
f =< 2x + z/x, 2y, 4z + ln(x) >.
MA 40: Analyse Uke 48, 00 http://home.hia.no/ aasvaldl/ma40 H0 Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag Oppgave.5: 5. Vi har gitt funksjon f(x, y) = x + y z + z ln(x) og punkt
Ekstremverdier Mellomverdisatsen Forelesning i Matematikk 1 TMA4100
Ekstremverdier Mellomverdisatsen Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 9. september 2011 Kapittel 4.1. Funksjoners ekseremverdier fra og med lokale ekstrema
UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Obligatorisk innlevering 1 i emnet MAT111, høsten 2016
UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Obligatorisk innlevering 1 i emnet MAT111, høsten 2016 Innleveringsfrist: Mandag 26. september 2016, kl. 14, i Infosenterskranken i inngangsetasjen
Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 19. august 2010
Funksjoner Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 9. august 200 2 Funksjon som en maskin x Funksjon f f(x) 3 Definisjon- og verdimengde x f(x) 4 Funksjon som en
Oppfriskningskurs i matematikk Dag 3
Oppfriskningskurs i matematikk Dag 3 Petter Nyland Institutt for matematiske fag Onsdag 8. august 2018 Dagen i dag Tema 4 Polynomer: Faktorisering, røtter, polynomdivisjon, kvadratiske ligninger og rasjonale
R1 - K 3.8, 3.9, 4.1, 4.2, 4.3
R - K.8,.9, 4., 4., 4... Løsningsskissser I I et lotteri er det i alt lodd. Det er gevinst på av loddene. Lise kjøper lodd. ) Hva er sannsynligheten for at hun ikke vinner? ) Hva er sannsynligheten for
Sammendrag R1. 26. januar 2011
Sammendrag R1 26. januar 2011 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A B hvis to påstander
Kapittel 2. Antiderivering. 2.1 Derivasjon
Kapittel 2 Antiderivering I dette og neste kapittel skal vi bli kjent med noen typer difflikninger og lære hvordan disse kan løses. Til dette trenger vi derivering og antiderivering. 2.1 Derivasjon I Kapittel
TMA4100 Matematikk 1, høst 2013
TMA4100 Matematikk 1, høst 2013 Teknostart Forelesning 3 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Teknostart Forelesning 3 Tema Logikk Definisjoner og Teoremer Mengder og Egenskaper ved de Reelle Tall
Deriver funksjonene. Gjør greie for hvilke derivasjonsregler du bruker.
Heldagsprøve i matematikk, 1. desember 006 Forkurs for Ingeniørutdanningen ved HiO, 006/07 Antall oppgaver: Antall timer: 5 timer fra klokken 0900 til klokken 100. Hjelpemidler: Kalkulator og Formelsamling
Andre del av forelesningen om funksjoner bygger på dette notatet. Notatet bygger på læreboken og er noe mer utfyllende enn forelesningen.
NOTAT TIL FORELESNING OM FUNKSJONER, DEL Andre del av orelesningen om unksjoner bygger på dette notatet. Notatet bygger på læreboken og er noe mer utyllende enn orelesningen. GRENSEVERDI Man kan or eksempel
Mål og innhold i Matte 1
Mål og innhold i Institutt for matematiske fag 15. november 2013 på Målet med denne oversikten er at vi skal se hvor vi er i pensum, og at du skal kunne finne hva du kan/ikke kan. Jeg vil i tillegg vise
Oppfriskningskurs i Matematikk
Oppfriskningskurs i Matematikk Dag 3 Stine M. Berge 07.08.19 Stine M. Berge (NTNU) Oppfriskningskurs i Matematikk 07.08.19 1 / 19 Polynomer Polynomer er de enkleste funksjonene Definert og kontinuerlig
Mål og innhold i Matte 1
Mål og innhold i Institutt for matematiske fag 1. november 2013 Målet med denne oversikten er at vi skal se hvor vi er i pensum, og at du skal kunne finne hva du kan/ikke kan. Jeg vil i tillegg vise hva
Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 30. august 2011
Derivasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 30. august 2011 Kapittel 3.3. Enringsrate 3 Enrings rate hastighet og akselersjon Definisjon Hvis s(t) er
Løsningsforslag til eksamen i MAT 1100 H07
Løsningsforslag til eksamen i MAT H7 DEL. (3 poeng Hva er den partiellderiverte f y når f(x, y, z = xeyz? xze yz e yz xe yz e yz + xze yz e yz + xze yz + xye yz Riktig svar: a xze yz Begrunnelse: Deriver
ANDREAS LEOPOLD KNUTSEN
NOTAT OM FUNKSJONER AV FLERE VARIABLE VEDLEGG TIL BRUK I KURSET MAT112 VED UNIVERSITETET I BERGEN ANDREAS LEOPOLD KNUTSEN Dette notatet inneholder ikke noe nytt pensum i kurset MAT112 i forhold til læreboken
MA1103. Partiellderivert, derivert og linearisering
MA1103 4/2 2013 Partiellderivert, derivert og linearisering Partiellderivert i en koordinatretning: Tenk på alle de andre variablene som konstanter. f : A R n R m, a = (a 1,..., a n ) A f 1 f x 1 (a)...
Fremdriftsplan for sommerkurset 2014 Planen er ment som et utgangspunkt, kan justeres underveis
Oldervoll m.fl. Sinus matematikk, Forkurs grunnbok, Cappelen Jerstad m.fl. Rom-Stoff-Tid, Forkurs grunnbok, Cappelen. Øving: EN/MMT (D3-11), PD (D3-15), EA/DA (D3-17) Fremdriftsplan for sommerkurset 2014
TMA4100 Matematikk 1 Høst 2012
Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag TMA400 Matematikk Høst 202 Løsningsforslag til teknostartøving a) Denisjonsmengden til f() = 3 er D f (, ), som gir at V f (,
Oppgaveark Uke 37 (07/09-11/09) MAT111 - H09
Oppgaveark Uke 37 (07/09-11/09) MAT111 - H09 Oppgave 1 Du ar fått deg en jobb i et firma og skal kjøre til en konferanse med overnatting. Du drar jemmefra på mandag kl 07:15 og ankommer 11:07. Du overnatter
Innlevering i matematikk Obligatorisk innlevering nr. 4 Innleveringsfrist: 21. januar 2010 kl Antall oppgaver: 4.
Innlevering i matematikk Obligatorisk innlevering nr. 4 Innleveringsfrist: 1. januar 1 kl. 14. Antall oppgaver: 4 Løsningsforslag Oppgave 1 a = [3, 1, ], b = [, 4, 7] og c = [ 4, 1, ]. a) a = 3 + ( 1)
